
INTEGRATING FMEA IN A MODEL-DRIVEN METHODOLOGY

Fabio Scippacercola1,2, Roberto Pietrantuono1,2, Stefano Russo1,2, Alexandre Esper3, and Nuno Silva3

1Consorzio Interuniversitario Nazionale per l’Informatica, Via Cinthia, 80126 Napoli, Italy, Tel.: +39 081 67 6770
2DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy, Tel.: +39 081 768 3820,

Email: {fabio.scippacercola, roberto.pietrantuono, stefano.russo}@unina.it
3Critical Software, SA, Parque Industrial de Taveiro, lote 49, 3045-504 Coimbra, Portugal, Tel.: +351 932 574 030,

Email: {aresper, nsilva}@criticalsoftware.com

ABSTRACT

Failure Mode and Effects Analysis (FMEA) is a well
known technique for evaluating the effects of potential
failures of components of a system. FMEA demands for
engineering methods and tools able to support the time-
consuming tasks of the analyst. We propose to make
FMEA part of the design of a critical system, by inte-
gration into a model-driven methodology. We show how
to conduct the analysis of failure modes, propagation and
effects from SysML design models, by means of custom
diagrams, which we name FMEA Diagrams. They of-
fer an additional view of the system, tailored to FMEA
goals. The enriched model can then be exploited to auto-
matically generate FMEA worksheet and to conduct qual-
itative and quantitative analyses. We present a case study
from a real-world project.

1. INTRODUCTION

Failure Mode and Effects Analysis (FMEA) is a technique
to systematically identify the potential failures of parts of
a system – be they subsystems, assemblies, components,
or functions1 – and to analyze their effects on the system.
Since FMEA helps to understand the effects of potential
failures of the system, it is widely adopted in critical sys-
tems engineering.

The FMEA produces a worksheet, which is the main ar-
tifact of the analysis, and influences the amount and type
of information FMEA considers. Indeed, different work-
sheet types may be adopted, depending on context, spe-
cific goals, customer requirement, and preferences of the
workgroup, but they report as minimum for each fail-
ure mode of a component the component-level effects
resulting from failure, the system-level effects, and the
causal factors. The worksheet is useful to identify parts
of the systems that need to be re-engineered to mitigate,
or avoid, certain system failures.

In our previous work [1], we proposed a SysML-
based approach to support FMEA by enabling formal

1Here we will generically refer to parts as components

knowledge representation – thus automated reasoning.
SysML [2] is a design language standardized by the In-
ternational Council of Systems Engineering and the Ob-
ject Management Group, increasingly used in critical do-
mains, for embedded [3] as well as for large-scale sys-
tems [4]. The approach (Fig. 1) starts from a system
model in SysML. Design artifacts are augmented with
FMEA-oriented information using annotations. The ad-
ditional information allows transformation to a Prolog
knowledge base. Queries to the Prolog engine provide
FMEA results.

In this paper we focus on the first step of this approach
(FMEA-oriented modeling in Fig. 1). We show in detail
how to refine SysML design models with FMEA-oriented
information, while reasoning on faults, failure modes, use
cases and requirements by means of models. To this end,
we introduce a novel custom SysML diagram, namely the
FMEA Diagram, that aims at being easy and practical to
analyze and document the propagation and effects of fail-
ures.

The model-driven FMEA starts from a system design
consisting of: requirements specification (modeled with

(3)$Model$
Analysis

™

FMEA&
Profile

SysML&Design&ModelDesign&Engineer

define

Prolog
Engine

(2)$Model$
transformation

(1)$FMEA8oriented
modeling

FMEA&Engineer

define

FMEA6Oriented
SysML&Model

Past Project&
Knowledge

use

use

refine

Prolog
Knowledge& Base

M
2
TFMEA&results

use

query

produce

Figure 1. Overview of the model-driven FMEA method-
ology.

SysML Requirement and Use Case diagrams); compo-
nents definition (Block Definition Diagrams, BDDs, and
Internal Block Diagrams, IBDs); requirements allocation
to components; system operational behavior (Activity di-
agrams). FMEA Diagrams are then built, to provide a
view from the viewpoint of a FMEA analyst on the re-
lations among faults, components, use cases and failure
modes.

The paper is structured as follows. Section 2 discusses
the motivations and the related work. Section 3 de-
scribes how model-driven FMEA is conducted. Section 4
presents a case study based on a real-world embedded
system. Section 5 concludes the paper.

2. MOTIVATIONS AND RELATED WORK

FMEA is a time-consuming technique, performed by
skilled professionals. It basically consists in identify-
ing potential failure modes, analyzing possible effects and
their severity, and suggesting mitigation means. Stan-
dards recommend how it should be conducted in specific
domains [5], [6]. Spreadsheets are traditionally used, but
many ad hoc tools are nowadays available: examples are
Byteworx [7], FMEA-Pro [8] and Raytheon’s ASENT
[9]. They provide guidance, help to reduce mistakes, and
offer useful features, e.g. for consistency checking, trace-
ability and documentation.

Despite this, most FMEA activities are carried out in a
manual way. One reason is that the analysis is often per-
formed late, after main forward engineering stages (re-
quirements analysis, design, development), and with lit-
tle integration with them. FMEA analysts usually start re-
constructing knowledge from design documentation. The
needed information may be spread in many documents,
in different formats, that depend on multiple teams. An-
alyzing these sources is a laborious and error-prone task.
We aim to bridge the gap between the designer and the
FMEA analyst, getting their views closer to each other.
This is meant to be achieved by using SysML and inte-
gration into a model-driven process.

Starting FMEA from SysML artifacts and integrating the
analysis in a model-driven process provides as benefits:

• The FMEA analyst can reason in the same con-
ceptual framework of the design models to analyze
threats to non-functional requirements.

• A relevant initial effort of FMEA is saved. FMEA
is typically performed by a RAMS2 team, who re-
ceives the input documentation (requirements, de-
sign) and needs to extract the system components
and their functionalities and interactions, normally
through the creation of diagrams. A great advantage
is that the RAMS team may receive all this ready
information as an input.

• The support for automation provided by model-
driven techniques and tools can significantly reduce

2Acronym for Reliability, Availability, Maintainability and Safety.

the effort and cost of FMEA; the worksheet and
other artifacts may be derived through model trans-
formations. Moreover, the fragmentation of how
FMEA is performed by different teams is reduced.

• Early exploitation of design artifacts for FMEA be-
comes possible. In many industrial settings, de-
velopment and testing follow a V-model engineer-
ing process according to the well-established MIL-
STD-498 standard [10]. One major goal of the V-
model is early verification and validation. The en-
visaged model-driven FMEA favors better consid-
eration of RAMS requirements in the first stages, by
allowing early feedback from the FMEA team. Such
process-level improvements reduce the risk of major
redesign due to threats to RAMS requirements.

These advantages are clearly inter-related. The relative
importance depends on the context. For instance, when
FMEA is outsourced to independent companies, early
FMEA feedback may be of greater interest for the out-
sourcing organization than easing the task of the out-
sourced team.

The idea of deriving FMEA artifacts from SysML mod-
els is not new. Hecht et al. showed how to automati-
cally generate the worksheet from SyML BDDs, IBDs
and STDs (State Transition Diagrams) [11], through an
intermediate transformation into an AltaRica state ma-
chine model. Before them, David et al. derived FMEA
from IBDs, SDs (Sequence Diagrams) and the AltaRica
language [12], while Xiang et al. from IBDs and the alge-
braic specification language Maude [13]. Less emphasis
has been put at the process level, namely on how FMEA
can be integrated in a model-driven methodology.

Our approach differs from past proposals in that SysML
models are transformed into a Prolog knowledge base.
However, here we are concerned specifically with the
problem of supporting the FMEA engineer in the early
phases, in reasoning on design models at components
level to analyze failure modes, propagation and effects;
that is, we focus on the FMEA-oriented modeling step (1)
of Fig. 1. To this aim, we propose a structured approach
that uses also Requirements and Use Case diagrams and
is driven by FMEA Diagrams.

A FMEA diagram is a custom SysML diagram which is
split in five logical sections (Fig. 2). The diagram places
the Component Under Analysis and its failure modes in
the middle, using the graphical notation of use cases.
This idea has some similarities with misuse cases [14],
which have been proposed as a means to analyze security
threats and applied for safety analysis [15][16]. The dif-
ference is that we are modeling directly the failure modes
of a component in relation to the use cases it is involved
in, rather than - in an indirect way - the sequence of
actions that the component can perform, whose failure
modes can cause harm to some stakeholder. As for use
cases, their exploitation for guiding FMEA has been ini-
tially proposed by Allenby et al. [17]. We leverage the
possibility to derive some failure modes by translating the
use cases for the CUA considering common deviations
from the expected service (e.g. in content and/or timing).

Component((
Under(Analysis((CUA)(Failure(Modes(

of(components(
connected(
to(CUA(

CUA((
Use(Cases(

CUA((
Requirements(

CUA(Internal(Faults((

Failure(
Modes(

CAUSES&

CA
U
SE
S&

Figure 2. Logical layout of a FMEA diagram.

3. MODEL-DRIVEN FMEA

The first step of the methodology consists in modeling the
system with SysML. Functional requirements are mod-
eled with Use Case and Requirement Diagrams. Rela-
tions among the requirements, such as dependencies and
containments, are identified at this stage. The system
architecture is modeled with BDDs and IBDs, and the
requirements are allocated to components. System op-
erational aspects are specified with behavioral diagrams,
e.g., Activity Diagrams.

FMEA-specific activities start from this design model.
For each component the analyst defines one Use Case
Diagram modeling its functionalities. Then, the ana-
lyst uses the FMEA Diagram to reason on functional and
structural dependencies of the Component Under Analy-
sis (CUA), which is the component object of FMEA anal-
ysis.

The failure modes involving the CUA are due to the ac-
tivation of internal faults, or to the propagation of fail-
ures from adjacent components. On the left side, the
FMEA Diagram (Fig. 2, see Fig. 9 for an example) shows
the components connected to the CUA, and their fail-
ure modes. The lower side of the diagram specifies the
internal faults of the CUA, that are modeled as behav-
iors. The activation conditions are modeled associating
the failures and faults – which appear, respectively, on
the left and lower side of the diagram – with the CUA’s
failure modes. Additional information can be added to
the diagram, such as the logical condition that must hold
for the failure occurrence, and the probability and sever-
ity of the events. The right side shows the effects of a
failure, namely, which use cases are affected (upper part)
and which requirements allocated to the CUA are violated
(lower part). By looking at FMEA Diagram from left to
right, the analyst easily spots the chains fault, error, fail-
ure for the CUA.

To build a FMEA diagram, the analyst:

1. Places the CUA at the centre of the diagram and
specifies its failure modes based on the use cases on
the right side. In case of too many failures modes,
these can be grouped into subsets and assigned to
ports.

2. Defines the internal faults of the CUA, as one or
more behaviors, adding them in the lower part of the
diagram.

3. Models the activation conditions of the failure
modes, linking, by associations, external failures
and internal faults with the failure modes, and spec-
ifying logical conditions, probability and severity.

4. Models the effects of a failure, linking, by relations,
the failure modes with use cases and requirements
that have been assigned to the CUA, as listed in the
right side of the diagram.

The analysis proceeds bottom-up: each FMEA Diagram
offers a synoptical view of functional and structural el-
ements useful for FMEA from the viewpoint of a sin-
gle component. Once the analyst has augmented models
with FMEA information, the subsequent transformation
(2) and analysis (3) steps of the methodology in Fig. 1
can take place.

4. CASE STUDY

The case study is provided by the EMC2 project3: it is an
embedded system for mixed criticality car applications,
that enables software with distinct safety-critical require-
ments to run concurrently on a multi-core platform.

The system requirements are specified through Use Cases
(Fig. 3). An info-entertainment software runs concur-
rently with a safety-critical in-car emergency call (eCall)
application. This activates assistance in case of accidents,
automatically sending relevant information (e.g., car po-
sition) to rescue services.

The requirements and their dependencies are modeled
with Requirement Diagrams (Fig. 4). For instance, re-
quirement REQ-0305 on the execution of real-time tasks

3Embedded Multi-Core systems for Mixed Criticality applica-
tions in dynamic and changeable real-time environment (www.artemis-
emc2.eu)

Figure 3. Excerpt of Use Case Diagram of EMC2 proto-
type.

Figure 4. Excerpt of SysML Requirements Diagram of
EMC2.

Figure 5. SysML Internal Block Diagram of the EMC2

prototype.

depends on REQ-0121, which requires a preemptive
scheduler.

The system architecture is modeled with the IBD of
Fig. 5. It consists of a real-time operating system (RTOS),
that manages safety-critical tasks and resources running
concurrently on distinct CPU cores, with a commercial
off-the-shelf operating system (Android OS), contained
within a virtualized environment managed by the Hy-
pervisor. The less critical tasks run in user space atop
the RTOS. Finally, the Hypervisor and the RTOS in-
teract with a Board Support Package (BSP) abstracting
hardware-specific services. The RTOS internal structure
(Fig. 6) comprises a Scheduler, and other components
managing Clock, Devices, Resources, and System Calls.
Requirements are allocated to components at this stage.

The FMEA starts with the analysis on the functionalities
of each component. The analyst models component func-
tionalities by means of Use Cases (Fig. 7), based on be-
havioral diagrams, such as the Activity Diagram of Fig. 8.
Note that here Use Cases are abstractions of component
functionalities just in the FMEA perspective.

FMEA Diagrams come into play for conducting the anal-
ysis of failure modes, propagation and effects in a sys-

Figure 6. Internal Block Diagram of the Safety-Critical
RTOS Component.

Figure 7. Use Cases for the SC-RTOS and Scheduler
components.

tematic way. The engineer proceeds in two rounds. In the
first one, (s)he creates one FMEA Diagram for each com-
ponent; based to the CUA functionalities (top-right side),
the analyst defines the CUA failure modes. In the sec-
ond round, once all components’ failure modes have been
specified, the engineer re-examines all diagrams: (s)he
connects the external failure modes and internal faults
with the CUA’s failure modes, and these with their ef-
fects, linking failure modes to requirements (Fig. 9).

The complete final model is analyzed to derive local and
end effects of each failure mode. For instance, let us con-
sider the ClockManager’s failure mode Timer Callbacks
are not handled properly (Fig 9): it propagates to the
Scheduler’s failure mode the priority of RT Tasks is not
respected, that has as local effect the violation of require-
ment REQ-0121 Scheduler must have a preemptive queue
for RT Tasks. By the dependency in Fig. 4, we conclude
the system-level effect of violation of REQ-0300 RT Task
constraints.

5. CONCLUSIONS

In this paper we have described a structured technique for
conducting the initial FMEA steps, when the analyst rea-
sons on design models to identify failure modes, propa-

gation and effects. The technique uses FMEA Diagrams,
a custom type of diagrams we have introduced for sys-
tematic reasoning at component level, based on SysML
system design models.

We envisage the full integration of FMEA into model-
driven engineering, in particular in the process based
on the V-model, that we have defined and experimented
in industrial collaboration [3][4], for early verification
of RAMS requirements, and to support automation of
FMEA analysis and documentation [1].

ACKNOWLEDGEMENT

This work has been supported by EU with the project CE-
CRIS (“CErtification of CRItical Systems”, www.cecris-
project.eu) Grant Agreement (GA) n. 324334 of the
IAPP programme, and project EMC2 (“EMBEDDED
Multi-Core Systems for Mixed Criticality Application
in Dynamic and Changeable Real-time Environments”,
www.artemis-emc2.eu) of ARTEMIS programme, GA
n. 611420.

REFERENCES

1. Scippacercola, F., Pietrantuono, R., Russo, S. &
Silva, N. (2015). SysML-based and Prolog-
supported FMEA. In Proc. 5rd WoSoCER ‘IEEE
International Workshop on Software Certification’,
IEEE, pp174–181.

2. OMG (2008). Systems Modeling Language
(SysML). www.omg.org/docs/formal/08-11-
02.pdf. Version 1.1.

3. Scippacercola, F., Pietrantuono, R., Russo, S. & Zen-
tai, A. (2015). Model-Driven Engineering of a
Railway Interlocking System. In Proc. 3rd MOD-
ELSWARD ‘International Conference on Model-
Driven Engineering and Software Development’,
SCITEPRESS, pp509–519.

4. Carrozza, G., Faella, M., Fucci, F., Pietrantuono, R.
& Russo, S. (2013). Engineering Air Traffic Con-
trol Systems with a Model-Driven Approach. IEEE
Software, 30(3), 42–48.

5. U.S. DoD. Procedures For Performing A Fail-
ure Mode, Effects And Criticality Analy-
sis. http://src.alionscience.com/pdf/MIL-STD-
1629RevA.pdf.

6. SAE International (2012). Recommended Fail-
ure Modes and Effects Analysis (FMEA)
Practices for Non-Automobile Applications.
http://standards.sae.org/arp5580/.

7. Byteworx. FMEA Software. www.byteworx.com.

8. IHS. FMEA-pro. www.ihs.com/products/fmea-
pro.html.

9. Raytheon Technical Services Com-
pany. ASENT FMEA Software.
www.raytheoneagle.com/asent/fmea.htm.

10. U.S. DoD (1996). MIL-STD-498 Overview and Tai-
loring Guidebook.

11. Hecht, M., Dimpfl, E. & Pinchak, J. (2014). Au-
tomated Generation of Failure Modes and Effects
Analysis from SysML Models. In Proc. 25th ISS-
REW ‘International Symposium on Software Relia-
bility Engineering Workshops’, IEEE, pp62–65.

12. David, P., Idasiak, V. & Kratz, F. (2010). Reli-
ability study of complex physical systems using
SysML. Reliability Engineering & System Safety,
95(4), 431–450.

13. Xiang, J., Yanoo, K., Maeno, Y. & Tadano, K. (2011).
Automatic synthesis of static fault trees from sys-
tem models. In Proc. 5th SSIRI ‘International Con-
ference on Secure Software Integration and Relia-
bility Improvement’, IEEE, pp127–136.

14. Sindre, G. & Opdahl, A. L. (2004). Eliciting secu-
rity requirements with misuse cases. Requirements
Engineering, 10(1), 34–44.

15. Sindre, G. (2007). A look at misuse cases for safety
concerns. In Situational Method Engineering: Fun-
damentals and Experiences, Springer, pp252–266.

16. Stålhane, T. & Sindre, G. (2007). A comparison
of two approaches to safety analysis based on use
cases. In Proc. ER ‘Conceptual Modeling’ (Eds.
Parent, C., Schewe, K.-D., Storey, V., & Thalheim,
B.), Springer, LNCS-4801, pp423–437.

17. Allenby, K. & Kelly, T. (2001). Deriving safety re-
quirements using scenarios. In Proc. 5th RE ‘IEEE
International Symposium on Requirements Engi-
neering’, IEEE, pp228–235.

Figure 8. Activity Diagram of the use case Perform eCall.

«Block»
ClockManager

«FailureMode»
Clock Devices are

not registered

«FailureMode»
Timer Callbacks are
not handled properly

«Block»
ResourceManager

«FailureMode»
Status of the cores is
not observed properly

«Block»
Scheduler

«FailureMode»
The scheduler

cannot be started

«FailureMode»
Impossible to schedule

next process

«Block»
Scheduler

Start Scheduler

Schedule Process

«FailureMode»
Priority of RT Processes

not respected

«FailureMode»
Impossible to change

Process status

«FailureMode»
Processes not

scheduled to the
correct CPU core

«InternalFault»
Software or Memory Fault

«Requirement»
EMC2-REQ-0120 Scheduler

«Requirement»
EMC2-REQ-0121 Scheduler must
have a preempitve queue for RT
tasks

«Requirement»
EMC2-REQ-0122 Manage the state
of processes

«Requirement»
EMC2-REQ-0123 Assign cores
balancing the load

Modify Process Status

Figure 9. FMEA Diagram for the EMC2 Scheduler component.

	Introduction
	Motivations and related work
	Model-driven FMEA
	Case study
	Conclusions

