
Online Monitoring of Software System Reliability

R. Pietrantuono∗, S. Russo∗†, K. S. Trivedi‡
∗Dipartimento di Informatica e Sistemistica, Università degli studi di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.
†Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Ed. 1, Via Cinthia, 80126, Naples, Italy.

‡Department of Electrical and Computer Engineering, Duke University,Durham, NC 27708.

Email: {roberto.pietrantuono,stefano.russo}@unina.it, kst@ee.duke.edu

Abstract—Reliability is one of the major concerns for software
engineers. The increasing size of software systems and their
inherent complexity - which is essentially related to the intricate
interdependencies among many heterogeneous components - pose
serious difficulties to its assessment and assurance. The actual
system runtime behavior is difficult to forecast during the
development phase, and just relying upon sound design and
testing techniques is often not sufficient to deliver highly reliable
systems. In order to guarantee high reliability, system behavior
needs to be monitored at runtime and its reliability needs to
be periodically estimated during operation, taking into account
both structural/static and behavioral/dynamic information. In
this paper, we propose an online reliability monitoring approach,
which combines static reliability modeling and dynamic analysis
to periodically evaluate system reliability trend during operation.
Its usage is illustrated by a prototype implementation and a case-
study.

I. INTRODUCTION

Software is known to be the main source of system failures
and as one of the weakest link in system reliability. Assessing
software reliability is of paramount importance for mission-
228critical systems. Engineers need to have quantifiable evi-
dence to evaluate software reliability, and, if required, to adopt
proper actions aiming at assuring a desired reliability level.
However, this is not a trivial issue. Understanding and man-
aging software is increasingly difficult, due to the increasing
size of systems, the heterogeneity of their components, and
the intricate interdependencies and interactions among them.
Indeed, software architects and developers, make increasing
use of OTS (off-the-shelf) software items (including Operating
Systems, third-party libraries and virtual machines) to build
their systems, even in critical contexts, in order to cope with
the huge systems dimension and complexity. However, though
this leads to significant improvement as for time-to-market
constraints, their heterogeneity, the unknown interactions side-
effects and their incomplete specifications inevitably lead
to intricate interconnections and subtle dependencies, posing
tricky issues that traditional methods for assessment need to
cope with. Such issues, exacerbated by the still debated nature
of software faults, make system runtime behavior difficult to
forecast based on testing, and make it very tough to carry out
accurate assessments of dependability attributes.
As other dependability attributes, reliability is usually esti-
mated in the development phase in a static way, by using

modeling techniques that are assumed to be representative also
of the runtime phase. By adopting this approach, a stochastic
model of the system is developed and solved analytically or
via discrete-event simulation. The result allows one to predict
the attribute of interest. In the case of software reliability, the
assessment is often done during the testing phase, e.g., by
collecting interfailure times and by fitting a model. However,
this kind of estimation does not allow one to deal with the
described issues, since runtime behavior is neglected. The
result may be not accurate, due to the necessary simplifying
assumptions that undermine the model representativeness in
the real operational environment, and that need to be made
when real operational data are not available.

While this inaccuracy can be accepted when the estima-
tion is performed to implement optimal release (and testing)
policies, it cannot be accepted when it is used as a basis
to apply proper actions aiming at preventing runtime system
failures (e.g., unneeded actions are applied or, even worse,
needed actions may be not applied). We believe that the actual
reliability of an operational system has to be regarded as
depending on two complementary features: (i) its structure,
determined by system components, their reliability and their
interdependencies, and (ii) its runtime behavior, which can be
significantly different from the one observed during testing.
Thus, reliability assessment in the development phase does
not suffice, if we want to provide accurate estimations and
implement reliability assurance policies.
On the other hand, just using operational data, without a model
that is able to give preliminary estimates, has several shortcom-
ings: (i) first, to provide confident results, we should wait for
several system failures to get sufficient data; this would prevent
proactive actions from being applied before such failure data
are available. (ii) Second, model-based approaches are able to
provide a preliminary estimate, even if not accurate, before the
operational phase starts. (iii) Third, the usage of models allows
for suitable analyses, that may be useful to evaluate individual
component behavior, their interactions and their impact on
overall system reliability.

In this paper, we attempt to bring together these two
extremes. We propose a method to carry out runtime reliability
estimation, based on a preliminary modeling phase followed
by a refinement phase, where real operational data are used to
counterbalance potential errors due to model simplifications.



To give accurate estimates, the proposed solution aims to
integrate and exploit modeling power with representativeness
of real operational data. The basic idea is to utilize an
architecture-based software reliability model together with
a dynamic analysis tool in order to (i) give a preliminary
estimate when software is released (i.e., after testing) and
then (ii) to continuously refine the model at runtime on the
basis of information that becomes available as the system
execution proceeds. A prototype version of the monitoring
system is implemented, that is initially trained with the refer-
ence model and the preliminary reliability estimation, and then
uses operational data to compute the online reliability level.
The prototype is evaluated on a case-study consisting of an
application in the field of queuing systems simulation.

II. BACKGROUND AND RELATED WORK

A. Reliability Evaluation

Reliability can be evaluated by using several approaches,
generally classified into two categories: model-based and
measurements-based. Each of them shows different peculiar-
ities, which determine the suitability of the method for the
analysis of a specific system aspect. Model-based approaches
are widely used for reliability evaluation of complex soft-
ware/hardware systems. They are based on the construction
of a model that is a “convenient” abstraction of the system,
with enough level of detail to represent the aspects of interest
for the evaluation. A number of modeling approaches have
appeared in the literature:

1) compositional approaches (e.g., [1], [2], [3], [4]), where
the system model is constructed in a bottom-up fashion.
The models representing parts of the system are built in
isolation, and then composed via suitable operators and
composition rules;

2) decomposition/aggregation approaches (e.g., [5], [6],
[7], [8]), where the overall model is divided into sim-
pler and more tractable sub-models, and the measures
obtained from their solution are then aggregated to
compute those concerning the overall model;

3) derivation of dependability models from high-level spec-
ification, e.g. from UML design (e.g., [9]).

When the model is required to capture and analyze the
attributes of interest from the architectural point of view (i.e.,
considering the system as components and their interactions),
architecture-based models are sought. With the advent of
object-oriented and component-based systems, these models
have increasingly been adopted for performance and reliability
evaluation [10], [11], [12], [13]. The software architecture is
usually extracted from design, source code or even object code,
and the level of decomposition (i.e., component granularity)
is defined depending on the needs. Architecture-based models
are categorized as [14]:
• State-based models, that use the control flow graph to

represent software architecture; they assume that the
transfer of control among components has a Markov
property, modeling the architecture as a Discrete Time

Markov Chain (DTMC), a Continuous Time Markov
Chain (CTMC) or semi Markov Process (SMP).

• Path-based models, that compute the system reliability
considering the possible execution paths of the program.

• Additive-models, where the component reliabilities are
modeled by non-homogeneous Poisson process (NHPP)
and the system failure intensity is estimated as the sum
of the individual components failure intensities.

In this work we adopt a state-based model to represent
the software architecture. Models, in general, are very useful
for their ability to abstract from unnecessary details, and
allow to suitably analyze the architecture, to pinpoint perfor-
mance/reliability bottlenecks, and to compare design alterna-
tives without physical implementation. However, they may be
not accurate enough, when the input parameter values are not
representative of the real system behavior. A measurements-
based approach may allow for more accurate results: it is based
on real operational data (from the system or its prototype) and
the usage of statistical inference techniques. It is an attractive
option for assessing an existing system or prototype, and
constitutes an effective way to assess the efficiency of fault
tolerance mechanisms and to obtain the detailed characteri-
zation of the system behavior (or parts of it) in presence of
faults. However, since real data are needed, it is not always
possible to apply this approach. Moreover, just relying on
measurement-based approach does not yield insight into the
complex dependencies among components, and does not allow
system analysis from a more general point of view. It is
often more convenient to make measurements at the individual
component/subsystem level rather than on the system as a
whole, and then to feed them in a model [15]. Although the
most of papers use either the model-based or the measurement-
based approach, some papers use a combined approach, even
if not producing results in an online manner [16], [17]. An
online monitoring system combining both the approaches is in
[18], [19]. but it addresses system availability evaluation. The
approach proposed in this paper focuses on online autonomic
reliability management, by combining both the model-based
and the measurements-based evaluation methods.

B. Dynamic analysis

In order to evaluate the system reliability at runtime, we
need a way to describe not only the system architecture (that
is a static description), but also its dynamic behavior. The
most attractive option is to monitor the execution, to analyze
the resultant execution traces and give a description of the
observed behavior (i.e., a behavioral model). The usage of
dynamic analysis tools seems to be the best solution for this.
Dynamic analysis aims to give information about the system
by analyzing its execution traces. It attempts to overcome
the static analysis limitations, (where all the source code is
analyzed in order to verify some property of interest), such as
the difficulty to cope with large dimensions, with the extreme
dynamism of systems and with the use of OTS items (where
the source code is often not available). There are several
dynamic analysis tools (e.g., [20], [21], [22], [23]). For our



purpose, we rely on one of the most successful inferential
engines, that is Daikon [23]. Daikon is a tool that aims to
infer likely invariants 1 from execution traces. In particular, it
focuses on Input/Output (I/O) invariants, that are invariants
on exchanged argument values at the entry/exit point of a
function, by considering more than 160 invariant templates.
An example of such invariants over a single variable x may
be the relation a < x < b; whereas an invariant involving
two variables may require them to respect the relation x < y
(see [23] for a list of invariants inferred by Daikon). In
order to build invariants, Daikon starts with a set of syntactic
constraints for the monitored variables, and incrementally
considers the input values. At each step, it eliminates the
constraints violated by the value to obtain a set of constraints
satisfied by all inputs. Statistical considerations allow Daikon
to identify constraints that are verified incidentally (this is an
important feature for our purpose, as detailed in the following
sections). In particular, invariants are identified by:

1) Instrumentation, execution and monitoring of the appli-
cation;

2) Recording of the I/O (Input/Output) behaviors;
3) Determination of the invariants, by the analysis of the

collected traces. The monitored variables are combined
with each other to form Boolean expressions to be
compared with the actual observed execution values and
potential invariants are generated by attempting to infer
possible relations among the variables.

Daikon identifies invariants at specific points of the program;
we are interested in using it for deriving constraints on
exchanged argument values in the I/O flow among components
(i.e., at their interfaces). This will be useful in the runtime
phase.

III. THE MONITORING SYSTEM

The goal of the proposed monitoring approach is to give
an estimate of the actual runtime reliability, RONLINE , to
be compared with the expected reliability, REXP , estimated
at the end of the testing phase by the model. If the runtime
reliability is lower than the expected reliability for a given
threshold quantity Thr, an alarm is triggered. This indicates
that the probability of system failure at time t is greater than
expected. The basic idea is to utilize an architecture-based
model together with a dynamic analysis tool at runtime to
evaluate the online system reliability, by using the model fed
by operational data. Runtime estimation aims at removing
errors introduced by the assumptions of the model built in
the testing phase. In particular, we used an absorbing DTMC
as architecture-based model, which describes the software
components as states and the flow of control among them
as transition probabilities [10][11].Other architecture-based
models could be used, without loss of generality. The usage
of architecture-based models (rather than other kinds of reli-
ability estimation models) is required to have a fine-grained

1An invariant is a property in a program, described by a relation, that must
be always true

description of the system, where the contribution of individual
component reliability and of their interactions to the overall
reliability can be clearly distinguished. This allows us to
adjust the estimation in the runtime phase by independently
adjusting the estimations of components reliability and the
values describing the interactions among them.

Fig. 1: The Monitoring Process

Figure 1 outlines the process. The first step requires en-
gineers to establish component granularity and, as a con-
sequence, identify components to be represented as states
of a DTMC. Then, during the testing execution, data about
components behavior and visits among components are col-
lected and used to feed the DTMC model parameters, as
detailed in the next subsections. During operation, the system
is monitored in order to detect differences between the real
runtime behavior and the behavior observed in the testing
phase; data collected are used to adjust values describing
interactions among components and their individual reliability.
By using the same DTMC model as in the testing phase,
updated with adjusted values, a refined reliability estimate
is obtained, reflecting the system current behavior. In the
following, both phases are detailed.

Note that components granularity, which defines how the
system is decomposed, is an analysis choice. Engineers have
to decide whether to represent the system as a large number
of small components, or as a small number of large units. 2

A. Modelling phase

Once the level of decomposition is decided, the system is
represented by an absorbing DTMC (suitable for terminating
applications). To represent the application as a DTMC, we
consider its control flow graph. Assuming that an application
has n components, with the initial component indexed by 1
and the final component by n, DTMC states represent the

2In the context of architecture-based analysis a component is intended as a
logically independent unit performing a well-defined function [11]. Choosing
many small components allows a more accurate identification of those
parts that mostly affect reliability, but leads to difficulties in measurements,
parameterization and solution; while using few large components leads to
easier computations with the risk of neglecting important details about the
internal structure.



components and the transition from state i to state j represents
the transfer of control from component i to component j,
with the associated transition probabilities. The goal of the
DTMC model is to represent how system reliability depends
on components reliability and on their interactions.
Transition probabilities can be used to compute the expected
number of times a component is visited during an execution.
These values are also known as Visit Counts [24]. To compute
them, a possible way is the following: the one-step transition
probability matrix of an absorbing DTMC with n states and
m absorbing states is partitioned as:

P =
(

Q C
0 I

)
(1)

where Q is an (n-m) by (n-m) stochastic submatrix (with at
least one row sum < 1), I is an m by m identity matrix, 0
is an m by (n -m) matrix of zeroes and C an (n-m) by m
matrix. Then, if we denote with P k the k − step transition
probability matrix (where the entry (i,j) of the submatrix Qk is
the probability of arriving in the state sj from the state si after
k steps), it can be shown [24] that the so-called fundamental
matrix M is obtained as

M = (I−Q)−1 = I +Q+Q2+ . . .+Qk + . . . =
∞∑

k=0

Qk (2)

Denoting with Xi,j , the number of visits from the state i to
the state j before absorption, it can be shown that the expected
number of visits from state i to state j, i.e., vi,j = E[Xi,j], is
the mi,j entry of the fundamental matrix. Thus, the expected
number of visits starting from the initial state to the state j is:

v1,j = m1,j (3)

We denote visit counts with Vj = v1,j . They are particularly
useful to describe the usage of each component in the applica-
tion control flow. After having built the model, the next step
is about the collection of information needed to feed input
parameters, and thus to give a preliminary reliability estimate.
This information is gathered during the testing phase.

In particular, two kinds of data are needed: (i) data about
component failures that have to be used to estimate their
reliability; (ii) data about control flow among components (i.e.,
the number of times the control flows from a component to
another, also known as execution counts [10]) to compute tran-
sition probabilities and then the visit counts. As for component
reliability, it can be estimated by using the following formula:

Ri ≈ 1− lim
ni→∞

fi

ni
(4)

where fi is the number of failures of component i and ni

is the number of executions of component i in N randomly
generated executions. To give a correct estimate with this
method, authors in [11] explain that when a failure occurs
during the executions, the corresponding fault has not to be
removed (i.e, the system has not to be altered during the
measurement). Thus, other than test cases (where faults are
instead removed), this method requires additional executions

to be run. However, we can take advantage of these executions,
because by profiling them we can further collect data for
building a more robust model (e.g., we obtain more data
about transitions among components and data for the adopted
dynamic analysis technique), as detailed in the next sections.
An alternative method could employ a software reliability
growth model (SRGM), built by using interfailure times, fitting
a failure intensity model, and by taking its values at the end
of the testing phase.

As for visit counts computation, we need to obtain the
Execution counts. They can be inferred by profiling the
test cases execution (with a tool like gprof 3, or by an-
alyzing the output of the adopted dynamic analysis tool,
i.e., Daikon), from which the number of transfers from a
component to another can be derived (e.g., gprof reports the
number of times each function has been visited, as well as
the calling function). Transition probabilities are estimated as
ExecutionCountsi,j /

∑
j ExecutionCountsi,j . From transition

probabilities, visit counts are obtained as described above.
By using the DTMC model and the estimated parameters, the
system reliability is computed as described in [10], i.e.:

E[R] ≈
n∏
i

E[RX1,i

i ] = (
n−1∏

i

R
E[X1,i]
i )Rn = (

n−1∏
i

RVi
i )Rn

(5)
where X1,i denotes he number of visits from the state 1
to the state i before absorption and E[X1,i] is the expected
number of visits to component i (X1,n is always 1 for the
final component n), i.e., the visit counts (Vi). Second-order
architectural effects can also be considered as in [25] for more
accurate result. The described DTMC model, that will be used
also in the runtime phase, gives a preliminary estimate of
system reliability. However its accuracy depends on how the
assumptions it relies on are verified. In particular, what affects
the accuracy of the theoretical estimation given in the eq. 5,
may be summarized by the following assumptions:
• First-order Markov chain (this assumption affects the visit

counts estimation, since the control flow transitions from
a particular component are assumed to not depend on the
path taken to reach this component);

• Components fail independently and component failure
leads to the system failure (it is a conservative assump-
tion, that leads to an underestimation; a correlated failure
adds to the failure probability of individual components);

• When every kind of reliability model is applied in the
testing stage, the underlying assumption is that test cases
execution does not reflect the real operational profile
(even if Pasquini et al. [26] shown that the impact of
the operational profile estimation error is not high).

B. Runtime Phase

To overcome these limitations, the runtime refinement phase
is based on the following observations: the error between the

3GNU gprof. Available from: www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html.



reliability estimated by the model and the actual reliability
may be due (as a consequence of the assumptions made) to
(i) the estimation error of expected visit counts, and (ii) the
error made by assigning a reliability value to components on
the base of collected data coming from testing; in this case the
error is due to the difference in the “behavior” caused by the
non-correspondence between the real operational profile and
the test cases execution. The runtime monitoring system will
refine the estimation by observing the real behavior. As for the
first type of error, we need to monitor the interactions among
components in order to record real “visits” among them, by
collecting the execution counts, and coming to an estimate of
Vi values as described in the previous section.

Despite this estimation, reliability values of the single
component may be, as stated, affected by the second type of
error. In this case, it is not possible to estimate the actual
value during execution, since, in order to get failure data, the
system should fail (and the estimation does not make sense
anymore). What we propose is (i) to monitor components with
Daikon, that captures the interactions at components interface
level, and builds components behavioral model (inferring I/O
invariants), (ii) and then to detect at runtime deviations from
the defined expected behavior, i.e., violations to the inferred
invariants. Examples of useful invariants are relationships over
exchanged argument values among function calls: over a single
numeric variable (e.g., range limits: x < a; x < b, and
a < x < b, nonzero: x 6= 0, modulus: x mod b = a), and over
two numeric variables (e.g., linear relationship: y = ax + b,
ordering comparison: x < y; x > y;x = y, functions:
y = fn(x)). See [23] for a full description of possible
invariants.

In particular, the built model represents the expected, and
thus supposed “correct”, behavior. Of course, it is an “esti-
mate” of the correct behavior, because the testing does not
cover all the possible correct behaviors. In the operational
phase, if the observed behavior is different from the expected
one, then, it is no longer guaranteed that the system behaves
as in the testing phase and it might fail earlier than expected.
Thus, considering a reliability estimate REXPi for component
i, obtained during the testing, we need to identify a “penalty
function” that properly lowers this value, each time the compo-
nent interacts with other components in unexpected ways (see
next section). The monitoring architecture is depicted in Figure
2. The same DTMC model is used in the testing and in the
operational phase. In the operational phase the monitoring tool
uses real collected data to estimate visit counts and component
reliabilities, updating the model; the monitor is responsible
for triggering alarms when the actual estimated reliability is
lower than the expected reliability. The monitor is also able
to provide some insights into the cause of possible deviating
behaviors, as mentioned in the next section.

IV. ESTIMATING THE RELIABILITY DEGRADATION

In the runtime phase, the online behaviors can be checked
by comparing the current execution trace with the invariants
built in the testing phase. In order to take into account the new

Fig. 2: Monitoring System.

unexpected behaviors that components exhibit, component
reliabilities need to be diminished. However they have to
be diminished in a proper way, since a deviation from the
expected behavior (we call it violation) can represent either an
incorrect behavior or can be a false-positive (i.e., with respect
to the behavior observed during the testing, the deviation is a
new, unexpected, but correct, behavior).
The evaluation of the penalty values to be used to lower
the reliability of components is carried out periodically, at
each time interval T, when the overall reliability estimation is
computed. They aim to estimate the risk associated with the
set of all violations that occurred in the instrumented program
points in the considered time interval, for each component i.
This is the risk of the observed violations to be representative
of incorrect behaviors, we call it Risk Factor (RF). The
higher the risk for component i, the lower its reliability should
be. Risk Factor values depend (i) on how many violations
occurred in the considered period of observation, (ii) on how
many distinct monitored program points (more precisely, the
distinct monitored parameters) experienced violations in the
same period of observation, and (iii) on the robustness of
the built model (i.e., the confidence that can be given to the
built invariants). The first two points are easily computable
by observing the Daikon output. The risk factor (RF) has
to be proportional to them, since the higher is the number
of violations and the number of distinct parameters involved
in a violation, the higher is the risk of incorrect behavior.
These values indicate how different the runtime behavior is
with respect to the expected behavior (observed in the testing
phase).
As for the third point, it is taken into account in the in-
variants construction phase (i.e., in the testing phase). In
that phase, Daikon allows setting a confidence level of the
built invariants, that determines the robustness of invariants
and can significantly impact the probability for a violation
of being a false-positive. It computes, for each invariant,
the probability that the considered property would appear by
chance in a random input. If that probability is smaller than



a user-specified confidence parameter, then the property is
considered non-coincidental and is reported as invariant. It
assumes a distribution and performs a statistical test where the
null hypothesis states that the observed values were generated
by chance from the distribution [23]. If the null hypothesis
is rejected at a certain level of confidence, the observed
values are non-coincidental and the corresponding property
is reported as invariant. For instance, if the probability limit
is set to 0.01, Daikon reports invariants that are no more than
1 percent likely to have occurred by chance. The lower is the
confidence parameter, the more robust is the invariant and the
smaller will be the percentage of false positives in the runtime
phase.

We compute the risk factor as: RFi = #Viola-
tion/#MaxViolation * #DistinctPoints/#MonitoredPoints,
where #MaxViolation is the number of potential violations
that may have occured in the monitored program points (that
is the number of monitored parameters per each occurred
interaction), #DistinctPoints is the number of distinct
exchanged parameters that experienced a violation and
#MonitoredPoints is the total number of distinct monitored
parameters. The so-computed risk factors are used to penalize
the reliability of components, at the step n, as follows:

Rn
ONLINEi = Rn−1

ONLINEi −Rn−1
ONLINEi ∗RFi ∗W (6)

where W is a parameter set by the user in order to establish
“how much” impact the risk factor has on the reliability.
This parameter is set empirically in the tuning phase of the
monitoring system. To set this value, we strongly recommend
to consider the confidence parameter that has been set for the
invariant building phase. Indeed, the smaller is the value of
the confidence parameter, the higher the value of W should
be, because a violation to “robust” invariants are more serious.
In our experiments, we set it to the confidence level adopted
for Daikon, i.e., to 0.01.

Based on the new computed visit counts and reliability
values, the overall system reliability RONLINE is computed
(by eq.5), at regular intervals of time T. When it goes under the
threshold (REXP - Thr) an alarm is triggered. The monitoring
system then shows the differences between ideal values and the
estimated ones (i.e., differences between component reliability
values and between visit counts), from which an indication
about the cause can be also deduced: if the difference relates
to the reliability of a component, then the violations (and thus
the involved methods and parameters) causing it is identified;
if the difference relates to the visit count values, the cause is
inferred from the interaction among involved components.

V. EXPERIMENTATION

A. Application

We applied the proposed approach by monitoring an ap-
plication for queuing systems simulation, based on javasim4.
As known, queuing theory and queuing networks simulation

4JavaSim is a simulation package available at: http://javasim.codehaus.org/

have a large number of applications, ranging for performance
and dependability analysis to resources allocation in telecom-
munication systems. The developed application performs job
queues simulation according to several models, such as M/M/1
and M/M/n, and periodically reports graphical results to the
user. The latter can, online, evaluate the attributes of interest
(e.g., the block probability trend) and takes proper actions
depending on the results. He can also make modifications to
simulation parameters for each simulation run, thus allowing
an iterative analysis until the desired tuning level is achieved.
Results consist of graphical representations of several statis-
tics, such as the response times for processed jobs, the average
response time trend, the response time distribution, the steady
state probability and the block probability trend.

The application supports two methods for the output anal-
ysis, namely the independent replication method, where the
simulation is repeated n times, using a different random-
number stream and with independent initial conditions for each
run, and the batch means method, where a single, long simula-
tion run is divided into contiguous segments (or batches), each
having length m and treated as an individual observation. To
graphically report results on the user terminal, the application
uses the well-known JFreeChart5 Java library. The block
diagram is depicted in Figure 3. It is composed of three

Fig. 3: Experimental Application.

basic blocks: the Starter block, which is responsible for initial
instantiations (e.g., the queue, the simulation controller), and
accepts simulation parameter settings; the Simulator block,
which performs the actual simulation and collects statistics
of interest, and the Output Updater block, which manages
and formats the results, and plots them on the terminal.
The total size of the case-study application amounts to 5426
Lines of Code (LoC), 37 classes and 236 methods (without
considering the JFreeChart code, which would considerably
increase these numbers). As first step of our approach (see
Figure 1) we identified 12 components in this application,

5JFreeChart is a free Java chart library to develop professional quality
charts. It is available at: http://www.jfree.org/jfreechart/



corresponding to the exercised Java Packages (i.e., we chose
packages as component granularity). They became the states
of a DTMC. Obviously, not all the JFreeChart packages
are used by the rest of the application; thus we considered
only the exercised packages, i.e., those ones “visited” by the
control flow execution. Similarly, the transition probabilities
assignment makes sense only for these packages. Instrumented
components are reported in the first column of Table I.

B. Experimental procedure

Testing Phase. According to the described approach, the
application was instrumented during its system testing. We
generated a test suite of 180 test cases, randomly picking valid
combinations of input parameters (e.g., interarrival time distri-
bution, service time distribution, queue length, number of jobs,
simulation method (independent replication or batch means),
interarrival and service time means). Execution traces were
produced by the Daikon tool, that monitored the application
in the methods entry/exit of the interfaces among components,
and then built the invariants from the observed values. Data
about execution counts (i.e., the number of times the execution
flows from a component to another) were extracted from
execution traces, and used for the visit counts computation
as explained in section III-A.

Reliabilities of single components were computed by equa-
tion 4 and as described in [11]. Hence, at the end of the testing
phase, additional 360 random executions were produced with
the only goal of measuring reliabilities (i.e., if a failure was
detected in these runs, the bug was not removed, as explained
in section III-A). The advantage of this simple method (and
the reason because we preferred it to the SRGM construction)
is that during these executions, we were able to collect further
data for visit counts computation and for invariants generation,
which along with the previous data, improved the accuracy
of these estimates. During the testing session, we fixed in
total 11 bugs. In the additional 360 executions for reliabilities
estimation (i.e., after the testing), just 1 application failure
was experienced, in the Format component, leading to a final
expected reliability for the application of REXP = 0.9972
(computed by eq. 5). It is clear that just using the model-based
approach in the testing phase, where the system is tested for
its intended use, usually leads to overestimation. The task of
dynamic analysis during operational phase is to adjust it, by
taking into account the real behavior that may significantly
differ from the tested one.
Runtime Phase. The threshold value Thr, which determines
the reliability RMIN to be not overcome at runtime, is usually
an application requirement. For these experiments, it was set
to Thr = 0.0027, giving RMIN = REXP − Thr = 0.9945.
This means that when reliability estimate is lower than RMIN ,
an alarm is triggered. The choice of the update interval T
depends, as discussed below, on the desired trade-off between
accuracy and overhead. For these experiments, it was set to
T = 30 seconds. In the second phase, the application was run
and observed by our monitor. Starting from the mentioned
input parameters, we defined equivalence classes. By assuming

a uniform distribution inside each class, we generated three
distinct operational profiles, by assigning distinct occurrence
probability values to each class. Each experiment consists of
an execution randomly picked from the equivalence classes
according to the defined operational profile distribution. Ex-
ecutions are generated from different profiles in order to
average the effect due to three possible distinct usage of the
application. A set of 30 executions per each operational profile
was run. Thus, the monitoring system is evaluated over a total
of 90 executions. Each execution performs a simulation that
may terminate successfully or may fail, due to residual bugs
in the code.

At each time interval T, the prototype monitor (i) traces
the execution counts, and (ii) compares the current execution
values with the built invariants, in order to detect violations
in the monitored points. It produces a list of execution count
values and a list of occurred violations. Violations are detected
in an online manner by the Daikon tool runtime-checker.
By using static information about the instrumentation (i.e.,
the MonitoredPoints value), and by reading the violation list
to obtain the MaxViolation, DistinctPoints and the number
of Violations value, risk factors for each component (and
for each time interval) are computed, as explained in sec-
tion IV (i.e., RFi = #Violation/#MaxViolation * #Distinct-
Points/#MonitoredPoints). Visit counts are instead obtained
from the execution counts list. The weight W was set to
0.01, according to the confidence level assigned to Daikon
invariants.

C. Results

For illustrative purpose, Table I shows the reliability values
for one of the experiments (the experiment number 4). It
reports the estimated values for visit counts (Vi), risk factors
(RFi), components reliability (Ri), and the total reliability
(the last row) per each time interval. Components reliability
at a given interval is obtained by equation 6 (hence using RFi

values), whereas the total reliability value at each time interval
is computed by equation 5 (hence using Vi and Ri values).
Reported values show how the total reliability progressively
decreases, except from the fourth interval, where it slightly in-
creases. This phenomenon occurred in many experiments, and
it is due to changes in the types of performed operations that
may occur during one experiment. For instance, the experiment
may initially exercise some components, and after some point
it may start exercising other different components, generating
different visit count values and violations, which cause the
reliability estimate to increase. In the reported case, it is
possible to note a progressive change in the visit count values,
which basically increase during the five intervals in those
components responsible for formatting results and plots graphs
(such as org.jfree.chart.plot or org.jfree.chart.ChartFrame or
Format), whereas decrease in components dealing with initial
simluation data and with the actual computation (such as
ObjectInitializer or Setup, that are progressively less visited).
In this experiment an alarm is triggered in the third interval,
since the estimated reliability went under the minimum value



TABLE I: Component reliabilities and risk factors for the first three intervals in the experiment number 4. Vi values are visit counts to component i; RFi

values are risk factors, and Ri values are component reliabilities.

Interval Ti 1 2 3 4 5

Components Vi RFi Ri Vi RFi Ri Vi RFi Ri Vi RFi Ri Vi RFi Ri

org.jfree.chart 1.46 0.0250 0.99975 1,42 0.0140 0.99961 1.49 0.0080 0.99953 1.39 0.0040 0.99949 1.37 0.0090 0.99940
org.jfree.data 0.64 0.0130 0.99987 0.66 0.0090 0.99978 0.85 0.0080 0.99970 0.86 0.0020 0.99968 0.37 0.0070 0.99961
org.jfree.chart. 0.66 0.0510 0.99949 0.58 0.0050 0.99944 0.67 0.0130 0.99931 0.71 0.0020 0.99929 0.85 0.0030 0.99926
renderer.xy
org.jfree.chart.axis 0.54 0.0520 0.99948 0.51 0.0140 0.99934 0.56 0.0090 0.99925 0.58 0.0010 0.99924 1.02 0.0020 0.99922
org.jfree.chart.plot 0.32 0.0080 0.99992 0.34 0.0110 0.99981 0.37 0.0550 0.99926 0.52 0.0010 0.99925 1,21 0.0010 0.99924
org.jfree.chart. 0.41 0.0040 0.99996 0.49 0.0045 0.99991 0.49 0.0005 0.999915 0.78 0.0020 0.99989 1 0.0020 0.99987
ChartFrame
ObjectInitializer 1.72 0.0210 0.99979 0.44 0.0300 0.99949 0.42 0.0350 0.99914 0.21 0.0060 0.99908 0.1 0.0050 0.99903
Setup 1.39 0.0200 0.99980 0.98 0.0250 0.99955 0.89 0.1371 0.99818 0.34 0.0120 0.99806 0.19 0.0261 0.99780
Simulator 1.79 0.0740 0.99926 1.82 0.0020 0.99924 1.91 0.0010 0.99923 1.88 0.0020 0.99921 0.86 0.0020 0.99919
Collector 0.78 0.0250 0.99975 0.52 0.0440 0.99931 0.49 0.0180 0.99913 0.78 0.0030 0.9991 1.12 0.0020 0.99908
Format 0.75 0.1180 0.99882 0.29 0.0200 0.99862 0.48 0.0140 0.99848 0.72 0.0040 0.99844 1.05 0.0260 0.99818
Plotter 0.78 0.0120 0.99988 0.71 0.0050 0.99983 0.69 0.0010 0.99983 0.81 0.0040 0.99978 1.21 0.0060 0.99972

Total Reliability 0.9958 0.9956 0.9931 0.9933 0.9921

TABLE II: Results referring to experiments that caused an alarm triggering

Test Case # Lowest Estimated Reliability False Alarms
3 0.9939 Yes
4 0.9921 No
9 0.9941 No
19 0.9943 Yes
20 0.9936 Yes
21 0.9927 No
32 0.9944 Yes
36 0.9936 Yes
41 0.9939 Yes
52 0.9942 Yes
66 0.9932 No
71 0.9944 Yes
73 0.9939 Yes

that we set to RMIN = 0.9945.
Table II reports the list of all the executions in which an

alarm has been triggered by the monitor. Per each execution,
the lowest reliability value estimated by the tool is reported
(column 2) and a label indicating if the alarm triggering(s)
turned out to be a false-positive (i.e., the execution terminated
successfully) or not (i.e., the application actually failed). 28
out of 90 executions reported violations with respect to the
built invariants. In 13 cases (the ones reported in Table II),
the estimated reliability went under the threshold, causing
the monitoring system to trigger an alarm. The low values
were caused by violations detected for various components;
however, this did not always indicate a failure-causing fault.
As may be seen, just in 4 of these cases the system actually
failed; 9 cases were tagged as false-positive, since, although
alarm triggering, the application completed the task without
failing. In these experiments, other than the mentioned 4
failures, the application failed in one more experiment, but
without any alarm triggering. This means that in 4 cases
the predicted failures could be avoided, by applying proper
proactive actions, but in one case the monitor failed to trigger
an alarm (i.e., a false-negative occurred).
Table III reports synthetic results of the experimental cam-
paign. For each operational profile: column 1 reports the

TABLE III: Results per Operational Profile

Operational Failures False-negatives False-positives
Profile
Profile 1 3 0 3 of 6
Profile 2 1 0 2 of 3
Profile 3 1 1 4 of 4

number of experienced failures (5 in total), column 2 reports
the number of false-negatives (i.e., the number of times a
failure occurred without any alarm triggering); column 3
reports the number of false positives (i.e., the number of times
an alarm is triggered but the application did not fail, that is
9 of 13 alarm generation in total). It is finally interesting to
observe the online reliability estimate in the five cases when
the system failed. Figures 4, 5 and 6 show the reliability
estimation trends, for several intervals of observations until
the failure occurrence, and per each operational profile.

Fig. 4: Online estimated reliability from operational profile 1

In the first graph (i.e., executions generated from the first
operational profile), the application failed three times. In the
second and third graph, the application failed once. One of
these executions (the number 83) caused the mentioned false-
negative. In the experiment 4, 21 and 66, the alarm is triggered
in the time intervals immediately before the actual failure,
while in the experiment number 9, the alarm is triggered three



Fig. 5: Online estimated reliability from operational profile 2

Fig. 6: Online estimated reliability from operational profile 3

time intervals before the actual failures, but the estimated
reliability goes over RMIN in the two time intervals before
the final failure. A prudent choice is to apply proactive actions
as soon as an alarm is triggered (this choice, of course,
depends on user needs), as for instance carrying out a hot
component replacement, a process migration, a checkpointing,
a reconfiguration or a suspend operation. Another point to
note is that in four out of five experiments, the reliability
values have been noticed to increase after some points, for
the reasons already explained (i.e., changes in visits to the
involved components).

Summarizing, in four of the represented cases the significant
number of violations caused reliability to be estimated under
RMIN , correctly triggering an alarm, since the application
failed in the subsequent intervals. In all the other cases, either
violations were not sufficient to trigger an alarm or they caused
a false alarm. In the experiment number 83, the low number
of violations and the nearly unchanged visit counts caused
the reliability estimate to remain always over RMIN before
the application failure, causing a false-negative. The false-
negatives can be more or less dangerous depending on the
application. In some cases, a conservative choice could be
made, by setting the threshold Thr to a lower value. For
instance, setting Thr to 0.0017 would have caused more false-
positives, but no false-negative. The choice of Thr depends
on the specific application and user requirements (e.g., for a
critical system, it may be desirable to have no false-negatives,
hence, Thr will by very low).

VI. OVERHEAD

The proposed approach introduces overhead both in the
testing phase and in the runtime phase. The main part of of the
overhead is due to the invariants computation (that includes the
execution trace production and the actual invariants inference),
carried out in the testing phase by the tool that we adopted,
i.e., Daikon. In [23] Daikon’s authors analyze this cost as
a function of three factors: i) it is linear in the number of
potential invariants at a program point. Actually, since most
invariants are soon discarded, time is linear in the number of
true invariants, which is a small constant in practice. ii) It
is linear in the number of times a program point is executed
(i.e., linear to test suite size), and iii) linear in the number of
instrumented program points (that is proportional to the size
of the program). In order to reduce the overhead, we did not
instrument each method, but only the methods of components
interface. It could be further reduced to few critical points
if the total overhead is judged to be too high. In our case,
Daikon took 2283” (i.e., about 38’) , to build such invariants
from execution trace file produced by the 180 test cases. It
is worth to point out that this cost is, in general, highly
variable depending on the tool configuration and on the actual
values taken by the instrumented variables during executions,
as stated by Daikon’s authors. The cost of the testing phase,
even if accounting for the greatest part of the overhead, is an
“offline” cost, that has to be incurred once for all.

A further contribution has to be considered in the runtime
phase. Before the execution, the application is instrumented
with the tool runtime-checker of the Daikon tool suite in order
to detect violations in an online manner (which are appended
to a list, but without any writing to files). The instrumented
application has been experienced to run slightly slower than
the non-instrumented one (in the average, it run 1.04 slower).
In addition to this overhead, the time needed to compute
equation 5 has to be considered. It includes the time to read
the execution counts list and violations list (not from files)
and to compute risk factors and visit counts value. This time
is negligible compared with the other contributions (it was
never greater than 0.26 seconds). The runtime overhead and its
predictability may be very important in real time applications,
because they determine the responsiveness of the system. In
our experiments, it turned out to be reasonably low. This time
is tightly related to the number of invariants to check, and such
a dependence may be important for predictability: the number
of invariants is known in advance and hence it can be used
for predicting purpose.

It is finally worth to point out that these results are limited
to our case study; however, as suggested in [27] several
actions can be taken to reduce instrumentation and invariants
computation cost. The most suitable solutions are (i) reducing
the number of instrumented points, (ii) reducing the number of
executions, (iii) reducing the number of variables. One more
discussion point is about the choice of T. Longer intervals
reduce the overhead contribution due to the computation of
reliability, but also implies less frequent evaluations, causing



greater risks. T has to be regulated based on the desired trade-
off between accuracy and overhead. For instance, consider
the case of experiment 9, with T = 45” and T = 1 minute,
respectively. With T = 45”, the estimation at the 6th interval
(i.e, after 4’ 30”) would correspond to the estimation at the
9th interval with T = 30”. The estimated value would probably
be lower than the value estimated with T = 30”, since more
violations would be taken into account with T = 45”, in the
time between 3’ 45” and 4’ 30” (with T = 30, the interval
is between 4’ to 4’ 30”). More violations means a higher
risk factor and thus a lower estimate. Hence, in this case
nothing would change. However, in the second case, with T
= 1 minute, the last reliability evaluation would correspond to
the 8th interval of the case with T = 30”, and would account
for violations between minute 3 and 4. This case (i.e., the
estimate at the 8th interval) was estimated to be over RMIN ;
with T = 1 minute, the total number of violations between
the minute 3 and 4 is higher than with T = 30” (and, as a
consequence, lower reliability), but the total reliability could
not decrease under RMIN , not causing any alarm triggering.
Since the application failed before the reliability evaluation at
the 5th minute (it failed between minute 4.5 and 5), no alarm
would be triggered in this case. This suggests that T cannot
be too high, since less frequent evaluations can cause higher
risk.

VII. CONCLUSION AND FUTURE WORK

We presented an online reliability monitoring approach that
takes advantage of static modeling and dynamic analysis to
give continuous estimation of the system reliability. A proto-
type implementation was experimented and preliminary results
show the benefits brought by the combination of modeling
and operational data usage. Experiments also highlighted the
issues that need to be addressed in the future. In particular, we
need to explore new solutions to reduce the number of false
positives, hence to improve the accuracy, and to provide the
system with the ability to automatically learn the violations
that did not result in a failure, in order to differently evaluate
them when they re-appear. Moreover, we plan to explore other
architecture-based modeling approaches, such as Stochastic
Petri Nets (SPN), to also consider concurrent systems. Finally,
the effectiveness of the monitoring system would improve if
the choice of the threshold value were done adaptively. The
monitoring system should learn by itself and then adapt the
threshold value based on the acquired experience. We aim to
do this in the future, by combining the proposed approach with
other online diagnosis mechanisms (e.g. [28]).

ACKNOWLEDGMENT

This work has been partially supported by the project ”CRITICAL
Software Technology for an Evolutionary Partnership” (CRITICAL-
STEP, http://www.critical-step.eu), Marie Curie Industry-Academia
Partnerships and Pathways (IAPP) number 230672, within the context
of the Seventh Framework Programme (FP7).

REFERENCES

[1] Y. Dai, Y. Pan, X. Zou, A Hierarchical Modeling and Analysis for Grid
Service Reliability, IEEE Trans. on Computers, vol. 56, 681-691, 2007.

[2] M. Rabah and K. Kanoun, Performability evaluation of multipurpose
multiprocessor systems: the “separation of concerns” approach, IEEE
Trans. on Computers, vol. 52, 223-236, 2003.

[3] Trivedi, K. Wang, D. Hunt, D.J. Rindos, A. Smith, W.E. Vashaw, B.,
Availability Modeling of SIP Protocol on IBM c©WebSphere c©, Proc. of
the 14th IEEE Pacific Rim Intl. Symposium on Dependable Computing,
2008, 323-330.

[4] W. E. Smith, K. S. Trivedi, L. A. Tomek, J. Ackaret, Availability analysis
of blade server systems, Ibm Systems Journal, vol. 47, no. 4, 2008.

[5] G. Ciardo and K. S. Trivedi, Decomposition Approach to Stochastic
Reward Net Models, Performance Evaluation, vol. 18, 37-59, 1993.

[6] J. B. Dugan, Automated Analysis of Phase-Mission Reliability, IEEE
Transaction on Reliability, vol. 40, 45-52, 1991.

[7] D. Daly, W. H. Sanders, A connection formalism for the solution of large
and stiff models, 34th Annual Simulation Symposium, 2001, 258-265.

[8] I. Mura and A. Bondavalli, Markov Regenerative Stochastic Petri Nets
to Model and Evaluate the Dependability of Phased Missions, IEEE
Transactions on Computers, vol. 50, 1337-1351, 2001.

[9] J. P. Ganesh, and J. B. Dugan: Automatic Synthesis of Dynamic Fault
Trees from UML System Models, Proc. of the IEEE Int. Symposium on
Software Reliability Engineering, (ISSRE), 243-256, 2002.

[10] S. Gokhale, W. E. Wong, J.R. Horganc, K. S. Trivedi, An analytical
approach to architecture-based software performance and reliability
prediction, Performance Evaluation, vol. 58, issue 4, 391-412, 2004.

[11] K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, Comparison of
architecture-based software reliability models, Proc. of the IEEE Intl.
Symposium on Software Reliability Engineering, 22- 31, 2001.

[12] S. Gokhale, M.R. Lyu, K.S. Trivedi, Reliability simulation of
component-based software systems, Proc. of the IEEE Intl. Symposium
on Software Reliability Engineering (ISSRE ’98), pp. 192-201, 1998.

[13] W.Wang, Y.Wu, M.H. Chen, An architecture-based software reliability
model, Proc. of the Pacific Rim Dependability Symposium, 1999

[14] K. Goseva-Popstojanova and K. S. Trivedi, Architecture-based approach
to reliability assessment of software systems, Performance Evaluation,
vol. 45, issue 2-3, 179-204, 2001.

[15] Garzia, M.R., Assessing the Reliability of Windows Servers, Proc. of
IEEE Dependable Systems and Networks, (DSN-2002).

[16] D. Tang, R.K. Iyer, Dependability Measurement and Modeling of a
Multicomputer System, IEEE Trans. on Computers, 42(1), 62-75, 1993

[17] D.Long, A.Muir, R.Golding, A Longitudinal Survey of Internet Host
Reliability, Proc. of the 14th Symp. on Reliable Distributed Systems.

[18] Kesari Mishra, K.S. Trivedi, Model Based Approach for Autonomic
Availability Management, Proc. of the Intl. Service Availability Sympo-
sium, Helsinki , Finlande, 2006 , vol. 4328, 1-16

[19] Haberkorn, M. Trivedi, K., Availability Monitor for a Software Based
System, Proc. of the 10th IEEE High Assurance Systems Engineering
Symposium, 2007. HASE ’07, 21-328

[20] V. Dallmeier, C. Lindig, A. Wasylkowski, A. Zeller, Mining Object
Behavior with ADABU, Proc. of the 2006 Intl. workshop on Dynamic
systems analysis, Intl. Conference on Software Engineering, 17 - 24.

[21] B. Schmerl, D. Garlan, H. Yan, Dinamically Discovering Architectures
with DiscoTect, Proc. of the joint meetings of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 2005, 103 - 106

[22] Sudheendra Hangal, Monica S Lam, Tracking Down Software Bugs
Using Automatic Anomaly Detection, Proc. of the 24th IEEE Intl.
Conference on Software Engineering, 2002. ICSE 2002. pp. 291- 301

[23] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically
discovering likely program invariants to support program evolution,
IEEE Transactions on Software Engineering, vol. 27, 2001, 99-123.

[24] Trivedi, K.S. “Probability and Statistics with Reliability, Queuing and
Computer Science Applications,” John Wiley and Sons, 2001.

[25] V.S.Sharma, K.S.Trivedi, Quantifying software performance, reliability
and security: An architecture-based approach, The Journal of Systems
and Software, vol. 80, Issue 4. 493-509, April 2007.

[26] A. Pasquini, A. N. Crespo, P. Matrella, Sensitivity of reliability growth
models to operational profile errors vs testing accuracy, IEEE Transac-
tion on Reliability, vol. 45, 531-540, 1996.

[27] The Daikon Invariant Detector, http://groups.csail.mit.edu/pag/daikon/
[28] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,

Threshold-based mechanisms to discriminate transient from intermittent
faults, IEEE Transactions on Computers, 49(3), pp. 230-245, 2000.


