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Abstract—The reuse of Open Source Software (OSS) for safety-
critical systems is seen with interest by industries, such as
automotive, medical, and aerospace, as it enables shorter time-to-
market and lower development costs. However, safety certification
demands to supply evidence about OSS quality, and a gap
analysis is needed to assess if the cost to produce certification
evidence is worthwhile.

This paper presents an empirical study on an open-source
RTOS (RTEMS). The study investigates the relationship between
software complexity and the effort to achieve a high test coverage,
which is one of the most impacting activity for certification.
The objective is to figure out if, and to what extent, it is
possible to predict such effort preventively, by looking at software
complexity metrics. This would enable a preliminary screening
and benchmarking of OSS items, supporting strategic decision
making. The study shows that combining metrics with classifiers
can achieve a good prediction accuracy.

Index Terms—Real-Time OS; Open Source Software; Effort
prediction; Testing; Safety Certification; Software Complexity
Metrics

I. INTRODUCTION

Open Source Software (OSS) has attracted much industrial
interest over the last decades, and has enabled new business
models. Companies can share OSS code not in their core
business, and focus their efforts on value-added products and
services. Moreover, customers can benefit from reduced costs
and time-to-market, community and professional support, li-
cense flexibility, increased number of suppliers, market inno-
vation, and avoid vendor lock-in. For these reasons, industries
in safety-critical domains, such as automotive, medical, and
aerospace are considering the adoption of OSS components
[1], [2], [3], [4]. Examples are operating systems (OS), image
processing libraries, development tools, middleware and data
management software [5], [6], [7].

Despite the benefits and the large availability of OSS
components, safety certification poses new, and still open,
challenges for OSS. Certification requires evidence about the
software development process, to show that software functions
have been carefully designed, implemented and verified with
safety concerns in mind. Given their importance to safety
certification, this evidence is planned at the beginning of the
software lifecycle. However, in most cases OSS components
are not developed for safety-critical contexts, and lacks cer-
tification evidence: therefore, before reusing OSS, developers

must perform a gap analysis to determine whether certification
requirements are fulfilled, and must close any pending gap by
supplying the missing evidence.

As an example of how challenging can be to reuse OSS
in safety-critical systems, we can consider the case of the
DO-178B recommendations for the avionic domain [8]. These
recommendations allow the reuse of “previously-developed
software”, provided that safety evidence is produced from
alternative sources such as development data, service history,
additional testing, reverse engineering, and wrappers [9], [10,
chap. 24]. However, this can take a significant amount of time
and resources.

The reuse of OSS would be simpler if companies knew how
much effort is needed before undertaking the task of producing
safety evidence:

• A company could decide whether to go for OSS compo-
nents if the effort to produce evidence is small enough, or
otherwise it could develop its own component in-house;

• If several alternative OSS components are available (for
example, different OS with similar functionalities), the
company could select the one that requires less effort to
produce safety evidence;

• The company could allocate an appropriate amount of
time and resources to produce safety evidence.

Predicting the certification effort for OSS components is
thus an important challenge. In the framework of this general
objective, this paper considers the problem of predicting the
testing effort for OSS components: the goal is to estimate in
advance how much testing effort, in terms of amount and size
of test cases, is needed to achieve a high statement coverage,
which is a typical requirement imposed by safety standards.

We present an empirical analysis in the context of a well-
known open-source real-time OS (RTOS), namely RTEMS
[11]. We analyze, from a retrospective point of view, the
test cases that were developed for RTEMS, and we evaluate
how much testing effort has been spent for achieving a high
statement coverage for this RTOS. Moreover, we propose an
approach, based on software complexity metrics and machine
learning, to predict the testing effort. We evaluate this approach
on RTEMS, by predicting which components of RTEMS
require a high testing effort. The experimental analysis shows
that high-effort components cannot trivially be predicted by a



simple visual analysis of software complexity metrics, and that
combining several metrics with machine learning can achieve
a good prediction accuracy.

The paper is structured as follows. In sections II and III,
we provide background and an architectural analysis of the
RTEMS case study, and on the software complexity metrics
used in this study. In section IV, we analyze the test cases
and the testing effort for RTEMS. In section V, we describe
the effort prediction approach. In section VI, we present
experimental results. Section VII discusses related work. The
paper concludes with section VIII.

II. THE RTEMS CASE STUDY

RTEMS (Real Time Executive for Multiprocessor system)
is an open-source real-time operating system, which has been
developed by the OAR Corporation since the late 1980s. It
was designed for embedded systems and provides a high
performance environment for real-time applications in safety-
critical domains (military systems, medical devices, space
flight and so on). Well-known projects that adopted RTEMS
are the Herschel and Planck satellites of the European Space
Agency (ESA), and the Mars Rover Curiosity of the National
Aeronautics and Space Administration (NASA).

It is worth mentioning that the ESA and the NASA, with the
support of several contractors and the RTEMS developers com-
munity [12], [13], [14], [15], invested a significant effort for
the space qualification of RTEMS. Space qualification means
that this RTOS has been thoroughly revised, documented, and
tested according to the guidelines of certification standards.
When the RTOS is integrated in a safety-critical system,
the evidence produced by these efforts are re-used to ease
the safety certification process of the system. Qualification
activities for RTEMS included the improvement of the testing
toolchain; code re-engineering, in order to improve testability
and remove dead code; and the addition of several new test
cases, in order to achieve a high test coverage.

This RTOS supports both Ada and C applications, and sev-
eral standard APIs (Application Programming Interface), in-
cluding POSIX, ARINC 653, and ITRON. It has been ported to
several processor families (including ARM, Intel x86, MIPS,
PowerPC, Atmel AVR, and several others). It is a feature-rich
RTOS, including: multitasking capabilities; homogeneous and
heterogeneous multiprocessor systems; event-driven, priority-
based, and preemptive scheduling; optional rate monotonic
scheduling; intertask communication and synchronization; pri-
ority inheritance; responsive interrupt management; dynamic
memory allocation. In this paper, we refer to version 4.11.

The architecture of RTEMS is composed by two main
layers: the Resource Managers, and the Core (Figure 1). The
Core consists of Handlers, that is, collections of routines
for scheduling, dispatching, object management and other
basic functions. These Handlers are not meant to be used
by applications; instead, the Managers provide higher-level
primitives for accessing and controlling resources, by using
the functions provided by the Core. RTEMS is modular, and

allows the user to configure which Managers to include at
build time, in order to reduce memory consumption.

Fig. 1. The RTEMS architecture.

Since RTEMS, like any OS, includes several heterogeneous
parts with distinct features and responsibilities (such as mem-
ory management, task management, etc.), we divide it in a set
of components. We analyze components as separate entities,
and investigate the relationship between the testing effort and
the nature of the component under test. Each component (listed
in Table I) exposes an API, which is exercised by a set of
test cases. Each component includes a Manager, and one or
more Handlers that are related to the Manager, according to the
architecture and documentation of RTEMS (e.g., we group the
Manager and the Handlers that provide task-related functions).

The test cases are available on the RTEMS source code
repository. Each test case is a C program, that consists of one
or more source files. Typically, it has a source file that contains
an Init (initialization) procedure, and one or more files with
a definition of RTEMS tasks, which invoke the functions of
RTEMS Managers and (indirectly) the Core Handlers used by
the Managers. For example, the test case in Figure 2 creates
and executes a set of tasks, including a task called TA1; in
turn, this task calls a routine of the Task Manager, namely
rtems task self.

A test case is compiled and linked to RTEMS, obtaining
a binary executable. The executable is then loaded on the
execution environment (in our case, the QEMU emulator),
and executed. RTEMS provides a set of tools to automate the
execution of test cases, and the generation of test reports. We
adopt the QEMU-Couverture framework [16] to analyze the
coverage of test cases. This framework is non-intrusive and
does not change neither the source nor binary code of the
program. Instead, the QEMU emulator is modified to collect
an execution trace. The trace is analyzed off-line and mapped
back to the original source code, by using the source-to-
object-code mapping information provided by the debugging
information in the executable program.



TABLE I
COMPONENTS ANALYZED IN THIS STUDY. A COMPONENT INCLUDES A
MANAGER AND ONE OR MORE HANDLERS FROM THE RTEMS CORE.

Component Managers and Handlers
Task Task Manager, Thread Handler, Thread States

Handler, Context Handler.

Event Event Manager, Event Handler.

Clock Clock Manager, Time Of Day Handler, Times-
tamp, Watchdog Handler.

Message Message Manager, Message Queue Handler.

Initialization Initialization Manager, System State Handler.

Interrupt Interrupt Manager, ISR Handler.

Semaphore Semaphore Manager, Semaphore Handler, Mutex
Handler, API Mutex, Handler, RWLock Handler,
Spinlock Handler.

Barrier Barrier Manager, Barrier Handler.

User Extensions User Extension Manager, User Extension Han-
dler.

Dual Ported Memory Dual Ported Memory Manager, Address Handler.

Fatal Error Fatal Error Manager, Internal Error Handler.

Region Region Manager, Thread Queue Handler, Heap
Handler.

Rate Monotonic Rate Monotonic Manager, Scheduler Handler,
Bitfield Handler, Priority Handler.

I/O I/O Manager.

Signal Signal Manager.

Partition Partition Manager.

API Extension API Extension Handler.

Timer Timer Manager.

Memory Management Stack Handler, Protected Heap Handler,
Workspace Handler.

Low Level Services RedBlack Tree Handler, Helpers, Chain Handler.

III. SOFTWARE COMPLEXITY METRICS

In this paper, we analyze the testing effort needed to achieve
a high coverage of RTEMS components (according to Table I),
and we investigate the relationship between testing effort and
software complexity metrics of the components under test. The
metrics considered in this paper are summarized hereafter1.
We include several metrics that, in the past, turned out to be
correlated with bug density in complex software [17]:

Lines of code: The number of lines of code is probably
the simplest software metric, but despite its simplicity, there
is often a confusion about which parts of the code should
be counted (comments, declarative parts etc.). We consider a
common definition of this metric, given by [18]: “A line of
code is any line of program text that is not a comment or
blank line, regardless of the number of statements or frag-
ments of statements on the line. This specifically includes all
lines containing program headers, declarations, and executable
and non-executable statements”. We consider both the total

1Metrics are computed using the Understand tool: http://www.scitools.com/
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init.c 31/03/16 19:14

rtems_task Init(
  rtems_task_argument argument
)
{

  // ... omissis ...

  status = rtems_task_create(
    rtems_build_name( 'T', 'A', '1', ' ' ),
    1,
    RTEMS_MINIMUM_STACK_SIZE * 2,
    RTEMS_INTERRUPT_LEVEL(31),
    RTEMS_DEFAULT_ATTRIBUTES,
    &id
  );
  directive_failed( status, "rtems_task_create of TA1" );

  status = rtems_task_start( id, Task_1_through_3, 1 );

  // ...
}

Page 1 of 1

task1.c 31/03/16 19:13

rtems_task Task_1_through_3(
  rtems_task_argument index
)
{
  rtems_time_of_day time;
  rtems_status_code status;
  rtems_interval    ticks;
  rtems_name        name;

  status = rtems_object_get_classic_name( rtems_task_self(), &name );
  directive_failed( status, "rtems_object_get_classic_name" );

  ticks = TOD_MILLISECONDS_TO_TICKS( index * 5 * 1000 );

  while( FOREVER ) {
    status = rtems_clock_get_tod( &time );
    directive_failed( status, "rtems_clock_get_tod" );

    if ( time.second >= 35 ) {
      puts( "*** END OF TEST 1 ***" );
      rtems_test_exit( 0 );
    }

    put_name( name, FALSE );
    print_time( " - rtems_clock_get_tod - ", &time, "\n" );

    status = rtems_task_wake_after( ticks );
    directive_failed( status, "rtems_task_wake_after" );
  }
}

Fig. 2. Example of a test case in RTEMS.

number of lines of code in a component (CountLineCode)
and the average number per function within the component
(AvgCountLineCode).

Cyclomatic complexity: It indicates the program control
flow complexity, as defined by McCabe in [19]. It measures
the number of independent paths in the control graph of the
program. We consider the overall complexity of the compo-
nent (Cyclomatic) and the average complexity per function
(AvgCyclomatic).

Halstead’s metrics [20]: These metrics are based on the
number of paths in the code and the number of operands and
operators, respectively. We hypothesize that they are connected
to test effort, since the latter may be proportional to the
complex structures of a program. Halstead’s metrics consider:

• n1: the number of distinct operators.
• n2: the number of distinct operands.
• N1: the total number of operators.
• N2: the total number of operands.

Variables and constants in the source code are considered
operands. Operators include all the punctuation marks, arith-
metic symbols, keywords (e.g., if, while, etc.), special symbols
and functional names. The following metrics are then derived:

• n=n1+n2: the program vocabulary.
• N=N1+N2: the program length.
• V=N log2n: the program volume, it could be considered

the required bit to represent the program.



• D=(n1/2)(N2/n2): the program difficulty.
• E=D · V: the programming effort. Halstead derives also

the time T needed to write a program, assuming that the
number S of mental discriminations per second that a
human can do is known: T=E/S, where S is estimated to
be between 5 and 20, and to be 18 for programming.

We consider the total and the average over functions of each
of these metrics per component.

FanOut: this metric indicates the degree of coupling among
modules of a modularized software system [21]. In particular,
it specifies the number of modules called by the module
under investigation. Typically, the modules with a high FanOut
are the ones on the highest layers of the design structure.
The component-level (FanOut) and the average over functions
(AvgFanOut) is considered.

FanIn: this metric is also a measure of the degree of
coupling among software modules [21]. It is a count of
all other modules that call the module under investigation.
Usually, the modules with a high FanIn are small modules
which do some simple task needed by a lot of other modules.
Again, the component-level (FanIn) and the average over
functions (AvgFanIn) is considered.

IV. ANALYSIS OF TEST COVERAGE

Our analysis requires to quantify the efforts needed to test
software components. Ideally, the testing effort is represented
by the amount of time and of resources that are spent on
testing activities, to reach a given testing goal (e.g., achieving
high statement coverage). These activities include the design
of test inputs and of test oracles, the preparation of a test
execution environment, the development of test case program,
the interpretation of results, the iterative refinement of test
cases, etc.. Unfortunately, quantifying the efforts behind these
activities is difficult, especially for OSS projects, which follow
a distributed and decentralized development process. However,
intuition suggests that the higher the quantity and the size of
the test cases of a component, the higher the amount of effort
that has been spent for testing that component. Therefore, we
consider the following two indicators as proxies for quantify-
ing the testing effort: the number of test programs (Ntests),
and the number of lines of test code (TestLoC). The number
of lines of code is widely used in software engineering, such
as in COCOMO [22] and FPA [23], to estimate the software
development effort. Moreover, the number of test cases is
often used in studies about test coverage, such as [24]. The
definition of line of test code is the same of section III, where
the program is a test case (such as in Figure 2).

We study the relationship between testing effort, and the
coverage that results from the testing effort. However, we do
not limit the analysis to the coverage obtained from the full test
suite, for two reasons. The first reason is that some of the test
cases in the test suite can be redundant, that is, the test suite
may include test cases that are not strictly required towards
the goal of covering the code (for example, test cases may
overlap each other, and they may have been introduced for the
sake of additional confidence about the tested component). The

second reason is that the test suites often do not all achieve full
coverage (e.g., 100% statements), and different test suites of
different components may have achieved a different coverage
of components’ code. In order to make comparisons between
the test suites (and the testing effort behind them) of different
components, we would need to have the same coverage level.

Therefore, we obtain a more comprehensive characterization
of the test suite of each component. We analyze how the
coverage of the component grows as more and more test
cases are added in the test suite. By analyzing the trend
of the coverage growth (e.g., by fitting a model), we can
estimate how much effort is needed to achieve a fixed coverage
goal. For example, if the component is easy-to-test, then the
coverage quickly grows even with a small test effort (e.g.,
using few and/or small test cases). We identify the relation
between testing effort and coverage, we perform the following
steps (starting from k = 1 to k = n):

1) We consider the possible (unordered) subsets of test
cases with cardinality k, among the n test cases of the
test suite of the component.

2) We compute the average cumulative test coverage that
would be obtained by executing k test cases.

3) We estimate the effort for developing k test cases, by
computing average number of lines of code of k test
programs.

To explain the above steps, we refer to a hypothetical
example of Figure 3 of a component test suite with three test
cases (t1, t2, t3). The three test cases have, respectively, 10,
30, and 65 LoC, and achieve a coverage equal to 15%, 35%,
and 55% of the component. Therefore, the average size of a
test suite with k = 1 test cases is 35 LoC (i.e., the average
of the three test cases), and the average coverage of k = 1
test cases is 35%. If we consider k = 2, we have again three
possible combinations: < t1, t2 >; < t1, t3 >; < t2, t3 >.
In this example, the average size of a pair of test case is 70
LoC (i.e., the average of the sums of pairs of test cases), and
the average coverage is 56%. For k = 3, we have only one
possible combination: the test suite size is 105 LoC, and the
cumulative coverage is 75%.

The coverage contribution of k test cases is strictly depen-
dent on “which tests” are taken to construct a subset. We avoid
this dependency (that could potentially bias the results) by
considering several possible combinations of k test cases, and
we compute the average of both the coverage and the size of
the possible combinations of k test cases.

Figures 4, 5, 6, 7, and 8 show the cumulative test coverage
as a function of the amount of test cases, in terms of number
of lines of code. As showed in Figure 3, there is one data point
(the average test cases size, and cumulative test coverage) for
each cardinality k.

These plots point out that test coverage quickly increases
with the initial tests, then the growth gradually slows down.
The test cases exhibit diminishing returns as the amount of
the tests is increased: this is an usual phenomenon in software
testing, since the core paths of the software are easily covered
by few test cases, while the remaining paths (that represent
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Fig. 3. Example of test complexity metrics and test coverage.

Fig. 4. Test coverage as a function of the amount of test case LoCs (Task,
Clock, Semaphore, Partition).

corner cases of the program) each require specific test cases
to covered them. The test coverage converges to a high per-
centage (90% or higher) for almost all RTEMS components.
The amount of tests to converge to a high percentage ranges
between 1 kLoC (for example, Initialization, Message, and
Barrier) to about 10 kLoC (for example, Clock and Task).
However, achieving 100% coverage for some components
(again, Clock and Task) can take a significant effort (between
20 and 30 kLoC) due to diminishing returns.

From the analysis of these plots, there are few components
that seem to be much more difficult to test than other compo-
nents, since they require a higher amount of test cases. Ideally,
it would be useful to identify these “difficult” components
before performing any testing activity. However, predicting the

Fig. 5. Test coverage as a function of the amount of test case LoCs
(Initialization, Event, Dual Ported Memory, Region).

Fig. 6. Test coverage as a function of the amount of test case LoCs (Message,
Barrier, User Extensions, Additional Low-Level Services).

Fig. 7. Test coverage as a function of the amount of test case LoCs (Interrupt,
Signal, Fatal Error, Low-Level Memory Management).

testing effort is a challenging task, since a cursory inspection
of software complexity metrics does not reveal the difficult-
to-test components. This can be seen in Figures 9 and 10,



Fig. 8. Test coverage as a function of the amount of test case LoCs (Timer,
I/O, Rate Monotonic).

which show, for each RTEMS component, respectively the
distribution of the number of LoC and of the cyclomatic
complexity of functions in the component. The complexity
metrics for difficult-to-test components (such as Clock and
Task) are similar to other, easier-to-test components (such as
Dual Ported Memory and Event). Thus, these components
cannot be identified only by a visual analysis or by setting
a “cautionary” threshold on some software complexity metric.
This result can be explained by observing that in complex
software, such as RTEMS (which is a concurrent software,
and provides a rich set of inter-dependent features and data
structures), the testing effort is not only influenced by the
number of lines of code or paths, and these metrics do not
immediately point out the tricky parts of the system.

Fig. 9. Distribution of number of Lines of Code (LoC) of functions of RTEMS
components.

Fig. 10. Distribution of cyclomatic complexity of functions of RTEMS
components.

V. PREDICTION APPROACH

The previous analysis provided insights on the testing
effort for a RTOS. We found that several components require
similar testing efforts (roughly 1 kLoC of test code), but few
components require an order of magnitude higher amount of
effort (roughly 10 kLoC of test code). We also found that
components have differences in terms of software complexity
metrics, but difficult-to-test components cannot be identified
by a simple visual analysis of these metrics. In the following,
we address this problem by combining software complexity
metrics using statistical prediction models.

A. Effort estimation as a statistical prediction problem

To estimate the testing effort, two approaches are possible.
The first approach is to use a classifier to discriminate between
difficult-to-test components and the remaining ones. This type
of statistical prediction provides a categorical indication of
the testing effort for a software component, which can be
used for decision making. For example, components that
exhibit a “high” difficulty can be assigned to teams with more
resources or better skills; or an equivalent component with
“low” difficulty could be preferred instead of a difficult one.

The second approach is to use regression to get a quan-
tification of the expected testing effort, such as to predict the
number of test cases or the amount of testing code. This type
of prediction provides a numerical indication of the testing
effort. For example, the components can be rated according
to the predicted effort indication; or, the amount of resources
can be proportional to the predicted effort indication.

Both these approaches build a model from a training
set of samples (for which both the prediction outcome and
the attributes of the samples are known), using a learning



Fig. 11. Example of computation of test effort (in LoC) required to achieve
90% coverage.

algorithm. The model can make predictions for new samples
outside the training set (for which only the attributes are
known). In our context, a sample represents a component under
test; the attributes are the software complexity metrics of the
component; the prediction outcome is either the class of effort
(for classification) or a numerical indication (for regression).

For regression, we consider two alternative effort indicators
as dependent variable, namely the amount of testing code (in
terms of number of lines of code of test programs), and the
number of test programs. As for classifiers, we need to divide
the components among a set of classes. Again, we consider the
number of lines of test code and the number of test programs,
and classify the components using thresholds.

In order to apply a classifier to RTEMS, we introduce two
classes. The choice of using two classes is based on the
previous results, where we observed that many components
require a similar testing effort, while few components require
a much higher effort.

To assign components to classes, we consider the test effort
(respectively, number of lines of test code, and number of test
cases) needed to achieve 90% coverage. We do not use the
effort to achieve 100% coverage, since the final test coverage
of some components is less than 100%, and the achieved
test coverage is not the same for all components. The 90%
coverage threshold is a relatively high coverage level, and
represents a significant part of the effort spent for testing.
Moreover, in the case of RTEMS, most of components achieve
this level of coverage. We only excluded the Low Level
Memory Management Services and Semaphore components
from the analysis, since the former had a very small number
of test cases, and the latter does not reach 90% coverage.

To get the test effort required for 90% coverage, we fitted
the curves of the cumulative test coverage (Figures 4, 5, 6, 7,
and 8), and computed the testing effort at 90%. For example,
Figures 11 and 12 show the fitting for the Task component
with respect to the number of lines of test code, and of the
number of test programs, and the estimated testing effort to
reach 90% statement coverage of the component (respectively,
13,290 LoC and 45 test programs).

Finally, we split components in two classes, according to

Fig. 12. Example of computation of test effort (in number of test programs)
required to achieve 90% coverage.

TABLE II
DEFINITION OF EFFORT CLASSES, USING THE NUMBER OF LINES OF TEST

CODE.

Component Effort 2-Classes (50%) 2-Classes (75%)
Task 13290 BigEffort BigEffort

Clock 9037 BigEffort BigEffort

Region 7406 BigEffort BigEffort

Message 6272 BigEffort BigEffort

Rate Monotonic 6155 BigEffort LittleEffort

Timer 5791 BigEffort LittleEffort

Interrupt 5148 BigEffort LittleEffort

I/O 4487 BigEffort LittleEffort

Event 3450 LittleEffort LittleEffort

Dual Ported Memory 2933 LittleEffort LittleEffort

Signal 2629 LittleEffort LittleEffort

Partition 2232 LittleEffort LittleEffort

Fatal Error 1640 LittleEffort LittleEffort

Low-Level Services 1443 LittleEffort LittleEffort

User Extensions 978,2 LittleEffort LittleEffort

Initialization 627,8 LittleEffort LittleEffort

Barrier 488,3 LittleEffort LittleEffort

the testing effort spent to achieve 90% coverage. Tables II
and III rate the components with respect to the number of
lines of test code, and to the number of test programs. We
consider two possible thresholds to identify difficult-to-test
components, namely 50% (i.e., half of the components are
labelled as difficult) and 75% (i.e., the top quarter of the
components are labelled as difficult). These classes represent
the datasets on which we will evaluate the effectiveness of
classifiers at predicting the testing effort.

B. Prediction algorithms

Regarding binary classification, the following machine
learning algorithms are considered.

Naive Bayes (NB): this classifier estimates a posteriori
probability of the hypothesis H (e.g., “a module is prone
to require high effort”), given that an evidence E has been



TABLE III
DEFINITION OF EFFORT CLASSES, USING THE NUMBER OF TEST

PROGRAMS.

Component Effort 2-Classes (50%) 2-Classes (75%)
Task 45 BigEffort BigEffort

Clock 28 BigEffort BigEffort

Region 19 BigEffort BigEffort

Rate Monotonic 16 BigEffort BigEffort

Timer 13 BigEffort LittleEffort

Interrupt 8 BigEffort LittleEffort

Message 7 BigEffort LittleEffort

Low-Level Services 6 BigEffort LittleEffort

Fatal Error 5 LittleEffort LittleEffort

Initialization 4 LittleEffort LittleEffort

I/O 4 LittleEffort LittleEffort

Event 4 LittleEffort LittleEffort

Signal 4 LittleEffort LittleEffort

User Extensions 4 LittleEffort LittleEffort

Partition 3 LittleEffort LittleEffort

Dual Ported Memory 3 LittleEffort LittleEffort

Barrier 2 LittleEffort LittleEffort

observed. The evidence E consists of any piece of information
that is collected and analyzed for classification purposes.
Many sources of information are typically considered, which
correspond to the features of interest, e.g., complexity metrics
in our case. Let Ei be a software complexity metric. A
fundamental assumption of a Naive Bayes classifier is that
each feature Ei is conditionally independent of any other
feature Ej , j 6= i. Given this assumption, the a posteriori
probability can be obtained as:

P (H|E) =

[∏
i

P (Ei|H)

]
P (H)

P (E)
(1)

since P (E|H) can be obtained from the product of P (Ei|H).
This assumption is apparently oversimplifying, since features
usually exhibit some degree of dependence among each other.
Nevertheless, the Naive Bayes classifier performs well even
when this assumption is violated by a wide margin [25], and
it has been successfully adopted in several domains [26].

Bayesian network (BayesNet): it is a directed acyclic
graph model representing a set of random variables (i.e., the
graph nodes) and their conditional dependency (i.e., the graph
edges). In a Bayesian network, each node is associated with a
conditional probability distribution that depends on its parents.

The joint probability distribution for a set of random vari-
ables X1, . . . , Xn of the Bayesian network is expressed as:

P (X1, . . . , Xn) =
∏n

i=1
P (Xi|Xi−1, . . . , X1) =∏n

i=1
P (Xi|Xi’s parents)

(2)

Equation 2 can be used to compute the probability of a
hypothesis H represented by a node of the network, given
the conditional probability distributions of each node, and
given a set of observed values. In this study, nodes repre-
sent complexity metrics and the hypothesis is “a component
requires a big testing effort”. A Bayesian network is a more
accurate model than a naive Bayes classifier, since it makes
weaker assumptions about independence of random variables:
in a Bayesian network, the structure of the network and
the conditional probability distributions can model complex
relationships between random variables. On the other hand,
it is considerably more complex to build than a naive Bayes
classifier. In this work, we consider a common algorithm to
build Bayesian networks, namely K2 [26].

Decision tree: it is a hierarchical set of questions that are
used to classify an element. Questions are based on attributes
of elements to classify, such as software complexity metrics
(e.g., “is Cyclomatic greater than 10?”) and are placed as
nodes of the tree. A decision tree is obtained from a dataset
using the C4.5 algorithm [26]. To classify a component, a
metric is first compared with the threshold specified in the root
node of the tree, in order to choose one of the two children
nodes; this operation is repeated for each selected node, until
a leaf is reached.

Logistic regression. Regression models represent the rela-
tionship between a dependent variable and several independent
variables by using a parameterized function. In the case of
logistic regression, the relationship is given by:

P (Y ) =
ec+a1X1+...+anXn

1 + ec+a1X1+...+anXn
(3)

where the features X1, . . . , Xn are independent variables, and
c and a1, . . . , an are parameters of the function. This function
is often adopted for binary classification problems, since it
assumes values within the range [0, 1] that can be interpreted
as probability to belong to a class. The model can be trained
using one of several numerical algorithms: a simple method
consists in iteratively solving a sequence of weighted least-
squares regression problems until the likelihood of the model
converges to a maximum.

Support vector machine (SVM): SVMs were developed
for classification problem by Vapnik in the late 1960s, and are
known for their good generalization and easy adaptation at
modeling non-linear functional relationships. They are based
on the concept of decision planes that define decision bound-
aries. A decision plane is one that separates between a set
of objects having different class memberships. We use the
Weka implementation of the Sequential Minimal Optimization
(SMO) algorithm [27] to train the SVM, which address the
large quadratic programming (QP) problem for SVM training,
by breaking it into a series of smallest possible QP problems.

Besides classification, we applied regression to try pre-
dicting the exact value of the testing effort depending on
complexity metrics. We use the SVM implementation for
regression to this aim. In fact, the original SVM was extended
in 1996 by the introduction of the so-called ε-intensive loss



function [28], introducing the ability of solving linear and non-
linear regression estimation problems. We used the SMOreg
algorithm, which is the Weka implementation of the SMO
algorithm for regression problems.

VI. EVALUATION

We first evaluate the effectiveness of effort prediction based
on classification. We evaluate the ability of a classifier to
correctly predict difficult-to-test components among a set
of “unknown” components, using the k-fold cross-validation
approach [29], [30], with k = 3. In this approach, the dataset
is randomly divided in k folds, where k− 1 folds are adopted
as training set, and the remaining fold is adopted as test set.
This operation is repeated k times, by varying the fold adopted
as test set at each repetition. Moreover, since the evaluation
is influenced by the random split, the k-fold cross-validation
process was repeated 10 times using different random splits.

The quality of prediction is then evaluated by classifying
each sample in the test set using the classifier, and by com-
paring the predicted class with the actual class of the sample.
We compute the following set of performance indicators, that
are commonly adopted in machine learning studies [26]:

• Precision: Percentage of components that are correctly
classified as difficult-to-test (true positives, TP) among
components that are classified as difficult-to-test (both
true positives and false positives, FP):

Precision = TP/(TP + FP ) . (4)

• Recall: Percentage of true positives among all compo-
nents that are actually difficult-to-test (true positives and
false negatives, FN):

Recall = TP/(TP + FN) . (5)

• F-measure: Harmonic mean of precision and recall:

F −measure = (2 · Pr ·Re)/(Pr +Re) . (6)

• Accuracy: Percentage of modules correctly classified
(either as true positives or as true negatives) among all
components in the dataset:

Accuracy = (TP+TN)/(TP+TN+FP+FN) . (7)

Tables IV, V, VI, VII provide the metrics of quality of
prediction for the 5 classifiers, both in the case of the plain
dataset, and in the case of the dataset processed with the
logarithmic transform (“+log”). This transform replaces each
numeric value with its logarithm, and extremely small values
(< 10−6) with ln(10−6). This transformation can improve,
in some cases, the performance of classifiers when attributes
exhibit many small values and a few much larger values [29].
Finally, we adopted the Wilcoxon signed-rank test [31] to as-
sess whether the differences between classifiers are statistically
significant; the best classifiers are highlighted in gray.

TABLE IV
QUALITY OF PREDICTION (EFFORT BY LOC, THRESHOLD AT 50%).

Algorithm Accuracy Precision Recall F-measure
SVM 0.71 0.81 0.71 0.76

SVM+log 0.59 0.59 0.59 0.59

NB 0.71 0.71 0.71 0.71

NB+log 0.59 0.59 0.59 0.59

BayesNet 0.53 0.28 0.53 0.37

BayesNet+log 0.53 0.28 0.53 0.37

DecTree 0.71 0.71 0.71 0.71

DecTree+log 0.71 0.71 0.71 0.71

Logistic 0.59 0.6 0.59 0.59

Logistic+log 0.71 0.71 0.71 0.71

In the first type of prediction, effort classes are based on the
number of lines of test code, with a threshold at 50% (Table II,
“2-classes (50%)”). The quality of prediction (Table IV) was
high in some cases, and comparable to results in previous
literature on effort and defect prediction [29]. The best case
is represented by the SVM classifier, with 0.71 accuracy,
0.81 precision (i.e., 8-out-of-10 components signaled by the
classifier are actually difficult-to-test), and 0.71 recall (i.e.,
3-out-of-10 difficult-to-test components are missed by the
classifier). In the case of Naive Bayes, Decision Trees, and
Logistic with logarithmic transformation, we obtain results
close to the SVM classifier. However, we also get noticeable
differences across classifiers, including cases of poor precision
for Bayesian Networks, and a general decrease of quality with
the logarithmic transform.

Figure 13 shows an example of decision tree, that was
trained on the full dataset of Table IV. This figure confirms
that the prediction of difficult-to-test components can benefit
from the combination of several software complexity metrics.
In this case, difficult-to-test components are denoted by a high
fan-out, or by a small fan-out and number of lines of code but
high cyclomatic complexity.

BigEffort	  (6)	  

FanOut	  

LoC	  

Cycloma/c	   Li.leEffort	  (7)	  

BigEffort	  (2)	  Li.leEffort	  (2)	  

> 41 ≤ 41 

≤ 16 > 16 

≤ 8 > 8 

Fig. 13. Example of decision tree classifier (effort by LoC, threshold at 50%).

Table V shows the results on a similar analysis, but
performed on the dataset obtained with a threshold of 75%



TABLE V
QUALITY OF PREDICTION (EFFORT BY LOC, THRESHOLD AT 75%).

Algorithm Accuracy Precision Recall F-measure
SVM 0.88 0.9 0.88 0.89

SVM+log 0.82 0.81 0.82 0.81

NB 0.88 0.9 0.88 0.89

NB+log 0.82 0.81 0.82 0.81

BayesNet 0.71 0.68 0.71 0.69

BayesNet+log 0.71 0.68 0.71 0.69

DecTree 0.59 0.68 0.59 0.63

DecTree+log 0.59 0.68 0.59 0.63

Logistic 0.71 0.73 0.71 0.72

Logistic+log 0.71 0.73 0.71 0.72

on the number of lines of test code (Table II, “2-classes
(75%)”). In this case, the set of difficult-to-test components is
smaller. However, it seems that the quality of prediction can
benefit from a more specific selection of the difficult-to-test
components. In this case, the best classifiers were SVM and
Naive Bayes, with a general improvement over the results from
the analogous cases of Table IV. We believe that this result is
due to the distribution the effort across components, in which
the top-25% components exhibit a much higher effort than
the other ones (see Tables II and III). Instead, the components
between the 25% and the 50% of the ranking require a testing
effort that is comparable to the components below the 50% of
the ranking. This distribution makes it difficult for a classifier
to discriminate mid-rank components as difficult-to-test.

Tables VI and VII show the quality of prediction in the case
of effort measured in number of test programs, with a threshold
set respectively on 50% and 75% (Table III). This effort
metric exhibits even better prediction compared to the pre-
vious results. In the best cases (Decision Trees, Naive Bayes,
and Bayesian Networks with logarithmic transformation), the
measures reach 0.94. These results are explained by noting
that the distribution of effort is even more skewed towards
top-25% components, which reflects in a marked distinction
between classes in terms of software complexity metrics.

Finally, we evaluate the quality of effort prediction by
regression. We consider the following evaluation measures:

• The mean and the relative absolute error (MAE and
RAE). The MAE represents the average difference be-
tween the absolute value of a prediction, and the actual
absolute value of the effort. The RAE divides the error
by the absolute value of the effort.

• The mean and the relative root square error (RMSE and
RRSE). The RMSE reflects the quadratic error between
the value of a prediction, and the actual value of the effort.
The RRSE divides the quadratic error by the absolute
value of the effort.

Again, the regression was evaluated with k-fold cross-

TABLE VI
QUALITY OF PREDICTION (EFFORT BY NUMBER OF TEST PROGRAMS,

THRESHOLD AT 50%).

Algorithm Accuracy Precision Recall F-measure
SVM 0.65 0.65 0.65 0.65

SVM+log 0.76 0.78 0.76 0.77

NB 0.94 0.95 0.94 0.94

NB+log 0.76 0.78 0.76 0.77

BayesNet 0.88 0.9 0.88 0.89

BayesNet+log 0.94 0.95 0.94 0.94

DecTree 0.88 0.88 0.88 0.88

DecTree+log 0.88 0.88 0.88 0.88

Logistic 0.59 0.59 0.59 0.59

Logistic+log 0.65 0.65 0.65 0.65

TABLE VII
QUALITY OF PREDICTION (EFFORT BY NUMBER OF TEST PROGRAMS,

THRESHOLD AT 75%).

Algorithm Accuracy Precision Recall F-measure
SVM 0.82 0.81 0.82 0.81

SVM+log 0.82 0.81 0.82 0.81

NB 0.88 0.81 0.82 0.81

NB+log 0.82 0.81 0.82 0.81

BayesNet 0.88 0.88 0.88 0.88

BayesNet+log 0.88 0.88 0.88 0.88

DecTree 0.94 0.94 0.94 0.94

DecTree+log 0.94 0.94 0.94 0.94

Logistic 0.82 0.84 0.82 0.83

Logistic+log 0.76 0.76 0.76 0.76

validation, with k = 3. Table VIII shows the results of the
evaluation. In the case of the prediction of the number of lines
of test code, the average error is higher than 2 kLoC, and the
relative error is close to 87%. In the case of the prediction of
the number of test programs, the average error is higher than
6 test programs, and the relative error is close to 80%. These
are negative results that discourage the adoption of regression
for effort prediction, since the margin of error is comparable
to the absolute value of the actual effort, which would lead
to a high prediction uncertainty. We note that predicting the
absolute value is a much challenging goal than classification,
since prediction is not limited to few classes. This problem
is also common in other prediction contexts [32], [33]: for
example, in defect prediction, it is typically not feasible to
predict the exact number of bugs in software modules, and
the quality of prediction is much higher when it is based on
binary classification (i.e., predicting fault-prone components
among non-fault-prone ones). This evaluation confirms that



this problem also holds for testing effort prediction, and points
out the current limitations and the possibilities for future
improvements in this context.

TABLE VIII
PREDICTION QUALITY WITH REGRESSION.

Proxy of Effort MAE RMSE RAE (%) RRSE (%)
Test LoC 2401.39 2938.61 87.39 87.79

Num. tests 6.55 9.01 80.39 80.58

VII. RELATED WORK

The idea to use software metrics for prediction purpose
is used in many contexts, such as to estimate the software
development effort (COCOMO [22], FPA [23]), to predict
software faulty modules [17], to predict types of faults [34],
[33], etc.. This approach was introduced also in the context of
software systems used in safety critical domains. For instance,
the paper [35] proposes a framework, named PreCertification
Kit (PK), that adopts software metrics to predict if an operating
system could be selected for certification in a safety context. In
order to build the PK, the authors define a reference model of
the OS, they define also some properties (such as coverability,
robustness, spatial and temporal partitioning) that could be
used to establish whether the OS is suitable for the certification
process, and then specify the method to collect the target
values for software metrics. This work also adopts software
metrics to predict features that can support the selection of an
OS for certification in a safety context; hence, it can be seen as
a contribution to the PK. In [36], Nagappan proposes to create
and validate a metric suite, named Software Testing and Relia-
bility Early Warning (STREW), that provides feedback on the
quality of the testing effort and represents an early indicator
of software reliability, for Object-Oriented (OO) languages.
In the literature, there are also attempts to predict the effort
needed to test a software system. The work in [37] shows an
approach based on the Use Case Points (UCP), where the effort
is calculated by a linear combination of several weights: actor
weights, use case weights, and complexity factor weights, but
the author conceived this method for web-based applications,
thus it is not suitable for safety critical domains. In [38],
Aranha and Borba introduce a different approach to the effort
estimation, based on the Execution Points (EPs), which is a
measure for the size and execution complexity of tests, they
derive it from the test specifications. However, the proposed
approach is closely related to mobile application domains,
characterized by limited test automation technology. In [39],
the authors conducted an analysis on two dissimilar industrial
software projects (Avaya and Microsoft), they found in both
cases that the test effort increases exponentially with the
test coverage, using the number of changes to the test case
classes as the proxy of effort. In [24], the authors investigate
the effect of program structure on MC/DC coverage, and
they confirmed the presence of this dependency studying six
systems from the civil avionics domain and two toy examples.

To assess the sensitivity of MC/DC to program structure, they
considered two different implementations (named non-inlined
and inlined) of each software system behaviorally equivalent,
and they measured the coverage for increasing sets of tests (in
a cumulative way). Finally, using the number of test cases as
metric, they noted that the inlined implementation, on average,
needs a greater number of tests to achieve the same level of
coverage than non-inlined implementation. In this work, we
measure coverage information in a cumulative manner, using
an approach almost similar to [24]. We also proposed a proxy
of test effort, but in contrast to [37], [38], [39], it is based
on software metrics. Furthermore, we verified the exponential
relationship between coverage and test effort, according to
[39], and we introduce a methodology to measure and to
predict the test effort.

VIII. CONCLUSION

Open-source is a valuable opportunity to promote software
reuse and to improve the efficiency of software development
in safety-critical domains. However, reusing OSS is a critical
step that requires careful planning, and evidence that a high
level of software quality has been achieved. In this paper, we
considered the problem of predicting the effort to achieve a
high test coverage in OSS software, in terms of number of test
cases and amount of test code, and we considered RTEMS, a
well-known RTOS adopted in safety-critical domains. To this
goal, we leverage several software complexity metrics, that can
be easily collected from a static analysis of the source code,
and that provide insights on the testing efforts for a software
component. We combined these metrics using machine learn-
ing, and got encouraging results on the prediction of difficult-
to-test components through classification algorithms.

We remark that this case study is an initial effort towards
a methodology for predicting the testing effort for OSS. As
any empirical study, further studies are needed to confirm the
feasibility of testing effort prediction in other RTOS and other
kind of OSS components. Moreover, in this work we focused
on statement coverage and on generic indicators of the testing
effort, but other coverage criteria (e.g., branch and condition
coverage) and effort indicators (e.g., component-, system-, or
company- specific indicators) are also possible. The research
field of testing effort prediction for OSS is still open to several
further developments, including the following topics:

• To analyze at a fine-grain the effort required for the
several testing sub-activities, such as: preparing the test
execution environment (either on real hardware, or on
a simulator); writing code for automating test execu-
tion; define test-oracles and test-inputs; collecting and
report coverage information; writing “boilerplate” code
to prepare test execution; remove dead-code, and refactor
difficult-to-cover code in order to improve testability.

• To use testing effort prediction in combination with eco-
nomic models, in order to provide quantitative evaluations
of efforts for decision makers.

• To take into account the nature of sub-activities in effort
prediction. Some of the sub-activities require a fixed



effort (e.g., “preparatory” activities), while other require
a variable amount of efforts depending on factors such as
the goal coverage level, the complexity and size of the
component, etc.

• To analyze the effort for non-functional kinds of testing,
such as stress testing, robustness and fault injection
testing, and performance testing.

• To analyze the efforts for other verification activities
beyond testing, such as code reviews, static and dynamic
analysis, and model checking.

• To take into account in the effort prediction that testing
must not necessarily started from scratch, and that OSS
projects can provide an initial set of test cases and test
tools to improve on.

• To evaluate the accuracy of testing effort prediction on
different kinds of OSS components of potential interest
for safety-critical systems. Examples are image process-
ing libraries, development tools, middleware, and data
management components.

• To benchmark alternative (but functionally similar) OSS
projects, and evaluate the trade-off between the testing
effort and the features and the maturity of alternative
components.

• To investigate the impact of different test coverage cri-
teria on the testing effort and on the accuracy of effort
prediction.

• To improve the accuracy of “numerical” prediction of
the testing effort, by exploring more robust techniques
for data regression.
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