

Error Detection Framework for
Complex Software Systems

Antonio Bovenzi,
Domenico Cotroneo,
Roberto Pietrantuono

Università di Napoli Federico II
Via Claudio 21, 80125, Naples, Italy

+39 0817683874

{antonio.bovenzi, cotroneo,
roberto.pietrantuono}@unina.it

Gabriella Carrozza
SESM SCARL

Via Circumvallazione Esterna di
Napoli, 80014

Giugliano in Campania, Naples, Italy
+390818180650

gcarrozza@sesm.it

ABSTRACT
Software systems employed in critical scenarios are increasingly
large and complex. The usage of many heterogeneous components
causes complex interdependencies, and introduces sources of non-
determinism, that often lead to the activation of subtle faults. Such
behaviors, due to their complex triggering patterns, typically
escape the testing phase. Effective on-line monitoring is the only
way to detect them and to promptly react in order to avoid more
serious consequences. In this paper, we propose an error detection
framework to cope with software failures, which combines
multiple sources of data gathered both at application-level and
OS-level. The framework is evaluated through a fault injection
campaign on a complex system from the Air Traffic Management
(ATM) domain. Results show that the combination of several
monitors is effective to detect errors in terms of false alarms,
precision and recall.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Error
handling and recovery, monitors, diagnostics.

General Terms
Measurement, Reliability, Experimentation

Keywords
Monitoring, Error Detection, Critical Systems

1. INTRODUCTION
In complex software systems errors occur resulting from software
faults lying into the code and activated by triggering conditions
that strongly depend on the propagation patterns among
components and on the execution environment. The presence of
residual faults i.e., of faults that escape pre-operational testing
campaigns and get activated only during the system execution,
often results in errors that cannot be foreseen ahead of runtime. In

large and complex systems the activation of these faults causes
very subtle propagation patterns that are difficult to identify, due
to the complex dependencies among components, and among
different layers (e.g., OS, middleware, virtual machines). This
hampers the process of detection, and -then- of faults diagnosis
and system recovery. A suitable way for detecting errors in these
system is to built a knowledge base of the system runtime
behavior, as much accurate as possible, to be exploited during
system operational life for error detection. However, it is very
hard to create this knowledge a priori, and even harder to
formalize it.

To tackle these objective, we need to consider two major issues: i)
where can we get the necessary information from, in a cost-
effective manner ii) what kind of information do we need?

This paper presents an anomaly-based framework for error
detection in critical software systems able to exploit the
information available while the system is still in its development
phase for gaining the necessary knowledge on the system
behavior, accurately and inexpensively. Specifically, the
framework relies on the idea of i) describing the system behavior
with a combination of application-level and OS-level variables,
and ii) of collecting their values during the testing phase, in order
to drive the detection at runtime with the availability of a
reference behavior description, obtained with minimal training
overhead.

Critical systems typically foresee a quite intensive testing activity,
from which the detection framework has the possibility to learn
the system behavior under different perspectives. In particular,
during tests, the framework learns both the desired, expected
behavior of the system, which acts as reference nominal behavior,
and the system failing behavior, i.e., the typical dynamics
occurring when the test case executions fail. The former behavior
is acquired while executing functional system testing, which
generates executions representing the expected system behavior,
and/or while executing other kinds of testing terminating with
negative outcomes (i.e., successful executions). The latter is
especially learned during the robustness and stress test campaigns,
(which are usually carried out in critical systems to verify the
system’s ability to react to unpredictable inputs/loads), and, in
general, during the execution of test cases resulting in a failure.
Behavior is described through multiple variables to capture both
the communications among software modules at application-level,
and dynamics occurring at OS-level. Such variables are monitored
in case of the expected behavior, as well as in case of failing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EWDC '11, May 11-12, 2011, Pisa, Italy
Copyright 2011 ACM 978-1-4503-0284-5/11/05... $10.00

behavior. On this base, we build the system behavioral model,
which constitutes the reference to be considered at runtime. To
implement the approach, we designed a framework. The
framework distinguishes two phases: i) a knowledge base
acquisition phase, where data about the software under test is
extracted to model the correct and failing behavior of the system;
ii) a run-time phase, where the acquired knowledge is used to
observe the runtime behavior, and to raise alarms when it deviates
from the expected one, or it is similar to an already experienced
(class of) failing behavior (i.e., it is very likely that the system is
going to fail). Based on the kind of alarms raised from the
framework, and on the confidence score assigned to the revealed
anomaly, the user infers the causes, and applies proactive actions
accordingly. The framework is experimented in the context of
real-world ongoing prototypes in the domain of Air Traffic
Management (ATM) via a fault injection campaign. Results show
that the combination of application-level and OS-level monitors is
effective to detect failures in terms of precision, recall, false
alarms, and with negligible impact on performance.

2. RELATED WORK
Error detection is crucial to recognize that something unexpected
has occurred in the system. It can be addressed at different levels,
from the hardware (e.g., machine check, division by zero, etc.), to
the upmost level, i.e., the application. In any case, its aim is to
detect errors before they propagate to other different
component(s), and eventually lead the system to failure. Error
detectors can be implemented, as local or remote modules, within
software components, or at their outputs. Based on the type of
interaction error detection strategies can be grouped into:
component-initiated, query-based or log-based techniques.
Component-initiated techniques trust on the component, which
provides some information specifying if the requested services
could not be satisfied [5]. For instance, exceptions can be signaled
by a component when its error detection mechanisms detect an
invalid service request, i.e., an interface error.

Query-based techniques rely on the presence of an external
module, which is in charge of querying the monitored component,
to discover latent errors [6].

Log-based techniques consist in examining the log files produced
by the components, in order to figure out the system behavior by
correlating different events [7].

These techniques belong to direct detection strategies: they try to
infer the system’s health by directly querying it, or by analyzing
events it is able to produce (e.g., logs, exceptions). However,.
before a failure occurs, the activated fault may lead the
system/component to exhibit anomalous behaviors. For these
reasons, anomaly-based detection approaches have been
conceived for detection. They aim to compare normal behavior
with the observed one, and reveal anomalous runs of the system.
Thus, unlike the previous ones, these approaches, which can be
labeled as indirect detection strategies, infer the system’s health
by monitoring system parameters and their interactions with the
environment.

Indirect techniques have been especially adopted for intrusion
detection systems. In [10] the execution of a program is
characterized by tracing patterns of invoked system calls. System
call traces produced during the operational phase are then
compared with nominal traces to reveal intrusions. A similar
approach is adopted in [9], which provides detection facilities for
large-scale distributed systems running legacy code. The monitors
are designed to observe the exchanged messages among the

entities of the distributed system, which are then used to deduce a
runtime state transition diagram executed by all the entities in the
system. An anomaly-based strategy is also in [8], which exploits
hardware performance counters and IPC (Inter Process
Communication) signals to monitor the system behavior, and to
detect possible anomalous conditions. Other solutions, such as
[11], are based on statistical learning approaches. They extract
recurrent execution patterns (using system calls) to model the
application under nominal conditions, and to classify run-time
behaviors as normal or anomalous.

Our framework falls into the category of anomaly-based detection
techniques, because it attempts to reveal anomalous behavior at
runtime with respect to the learned behavior. The framework
builds on our previous work [12] on hang detection, where we
adopted OS-level variables to describe the nominal behavior and
detect hang failures. With respect to the described previous works,
our framework relies on a combined description of the system
behavior via multiple variables both at application-level and at
OS-level. The aim is to monitor interactions among application
components, as well as interactions between application and OS
layers. A key step of the approach is also the usage of information
provided during the testing phase for learning the system
behavior. Not only the nominal, expected behavior is learned, but
also failing behaviors, i.e., those behaviors leading the system to
(several classes of) failure. This “detection-oriented testing”
allows improving the overall effectiveness by carrying out an
efficient training phase.

3. THE DETECTION FRAMEWORK
3.1 Failure Mode Assumptions
This work focuses on crash failures, i.e., unexpected termination
(e.g., due to run-time exceptions), and on hang failures, i.e., the
system no longer provides its services or services are delivered
unacceptably late. As for hang failures we further distinguish in
active and passive hang. The former occurs when a process is still
running but other processes may no longer perceive its activity,
because one of its threads, if any, consumes CPU cycles
improperly. The latter occurs when a process (or one of its
threads) is indefinitely blocked, e.g., it waits for shared resources
that will never be released (i.e., it encounters a deadlock). Hangs
might be either silent or non-silent. In the former case it
compromises the communication capabilities of the process, e.g.,
it cannot reply to heartbeats. In the latter case, the process is still
able to communicate, even if the service is not delivered properly.
In complex systems it is hard to tell whether a process is currently
subject to a passive hang, because it can be deliberately blocked
waiting for some work to be performed (e.g., when pools of
threads are used in multi-threaded server processes). Difficulties
are also encountered with active hangs, because a process (thread)
can deliver late heartbeat response, due to stressing workload and
working conditions.

3.2 Overall Framework Description
The detection framework is designed to address complex and
distributed software systems. The efficacy of the detector depends
basically from i) the capacity to uncover errors, ii) from the
detection latency and iii) from the false alarm rate. For instance a
perfect detector would uncover all the errors with no delays and
no false positives.

Assuring software dependability in such kind of systems is
typically coped with fault removal techniques in the development
phase, most commonly software testing techniques, and with fault
tolerance mechanisms during operation, which relies on error

detection ability and error treatment: typically the planning and
implementation of these activities proceed quite independently.
Thus, our first aim is to exploit information produced during the
testing phase, that in critical systems is intensive, in order to learn
the system’s behavior. In this way, there is no need for a tailored
full training phase, because most of the training is carried out
during testing. Hence, this guarantees a training that is i) more
efficient, by reducing the effort for learning, and ii) more accurate
in the reproduction of the real operational conditions (indeed, this

is a crucial goal during critical systems testing), yielding
expectedly better behavior description. The overview of the
proposed approach is in Figure 1. A set of monitors is in charge of
collecting information during testing, in order to build behavioral
models. Thus, during this phase, which can be seen as a training,
two kinds of reference models will be constructed: one
representing the nominal behavior, and the other representative of
the failing behavior.

We represent the behavioral model by means of a set of relations
Ri for each variable i (denoted as “indicator”), which have to hold
at runtime (for correct behavior models) or that should never
occur at runtime (for failing behavior models). For instance the
relations Ri for an indicator i may be a range of values in which
the indicator must be included at runtime, or an event (e.g., null
return value of a method) that should never occur.

Indicators will be monitored during the execution of all the test
cases: if the execution results in the expected outcome, the
observed indicator values are used to improve the description of
the correct nominal behavior. Whereas, if the test case execution
results in a failure, the observed indicator values and the failure
mode could be used to populate the failing behavioral model.
Failing behaviors are classified by failure modes F1…Fk, and a
behavioral sub-model (i.e., a set of relations) is associated with
each observed failure mode. Typically, the correct behavior has
more chances to be learned during the functional system tests,
whereas the failing behavior during the robustness/stress test
campaigns, which aim making the system fail.

Indicators are monitored again at runtime and if there is an
anomaly with respect to the inferred relations Ri of correct
behavior, an alarm is triggered by the monitor of the indicator i.
Similarly, if monitors observe a relation similar to that inferred for
failing behavior model, an alarm is triggered. Alarms generated

by monitors of indicators feed the “combination” block, which
combines them by means of the Bayesian Rule and evaluates a
final score indicating the risk of actual failure, as explained in
Section 3.5.

3.3 Definition of Indicators and Behavioral
Relations
Once the overall approach is defined, the second relevant point is
identifying the set of variables we need to describe the system’s
behavior, i.e., the indicators. We cannot rely on single kind of
information, but we need a description based on multiple
indicators, which have to depict the system behavior from
different perspectives, while keeping at the same time the
monitoring overhead low. We identified the following sources of
information, some of them taken from the literature [13][14],
describing the behavior both at application level and at OS level:
1) Interactions pattern among modules, describing how

modules are expected to communicate with each other;

2) Input/Output invariants describing the relations holding in
the exchanged parameter values among modules (or functions
inside the same module);

3) OS-level information for the expected behavior, including
task scheduling times, waiting and holding times in critical
sections, I/O throughput;

4) Interactions patterns among modules and I/O invariants in
failing conditions, to be related with the classes of failures
observed during robustness/stress tests;

5) OS-level information in case of failing behaviors, such as
system calls error code, process and threads exit codes.

Anomalies with respect to these indicators occur when the
expected behavior is violated. However, the “expected behavior”,
which is associated with different relations Ri’s, has a different
meaning depending on the indicator.

For the first indicator, i.e., the interaction patterns, the typical
sequence of calls is considered as in [13]; patterns different from
the one built during the testing phase cause an alarm triggering. A
simple interaction invariant is as follow: for the networking
module of the DDS middleware that we experimented (see
Section 4.1 for details), zero or more invocations of the discovery
service represents an invariant, indicated as
networking_discovery* invariant. For OS-level indicators, a range
ri is considered for each indicator i: if values vi of the indicator are
outside the range, an alarm is triggered. The range is determined
by means of static thresholds [Tlvi, Tuvi,], such as the minimum
and maximum observed values minvi and maxvi, computed during
test executions. Relations are therefore Tlvi<vi<Tuvi. For example,
in our application scenario (see Section 4), the timeouts/sec
expired for the holding time of mutex must be in the range [6,10].
As for indicators related to the I/O invariants, the reference values
are built during the invariant construction phase. In this case, the
tool adopted to build invariants (described in the next subsection)
considers several kinds of relation, not only the one requiring a
value to be comprised in a range [rmin, rmax]. For instance, an
invariant may involve two variables, and require them to respect
the relation x < y; similarly, relations observed on three variables,
or on sequence of variables may be reported as invariants. Thus,
an anomalous behavior is signaled when the current values (of one
or more I/O arguments) violate these invariants. For instance,
considering the discovery service an I/O human readable invariant
is: “discoveryReader->partitions contains no nulls”.

Figure 1. The overall approach.

Indicators in the points 4) and 5) refer to the same relations of the
previous points; but observed in failing conditions. Runtime
values should never satisfy those relations.

In order to reduce the occurrence of false-positives in the
detection phase we take into account the bursty behavior of some
OS monitored indicators and the confidence in the evaluation of
I/O invariants. For bursty behavior we mean the sudden
occurrence of some events for a short time period (they then
disappear). To this aim, we adopt the approach defined in [12]
which basically rely on a counting approach: an alarm is triggered
when the indicator is anomalous for C consecutive times.
Moreover, for I/O invariant indicators, a confidence level
associate with invariants can be set in the construction phase (i.e.,
during tests), which influences the probability of an anomaly
value to be a false positive. The lower the confidence parameter,
the higher the likelihood that violations of invariants are true
positives. In our case, the confidence level is set to 0.01, meaning
that the tool reports invariants that are no more than 1% likely to
have occurred by chance. Note that the relations coming from
invariants analysis actually need the availability of the source
code, while the OS-derived relations are completely application
independent.

3.4 Information Collection
We obtain the OS related indicators by means of the monitoring
infrastructure described in [12], which is based on a lightweight
interface for kernel modules to implant probes and register
corresponding probe handlers. Probes are breakpoints inserted
dynamically into the kernel module without modifying the source
code. When a breakpoint is hit, a handler routine is launched to
provide the needed information (e.g., input parameters or return
values of called functions). This does not interfere with program
execution, except for a short overhead (see section 4.2).

Two kinds of invariants have been generated, i.e., interaction and
I/O invariants. Interaction invariants describe the interaction
patterns among components [13], whereas I/O invariants are pre-
condition and post-condition, expressed as Boolean expression, on
exchanged argument values at the entry/exit point of a function
[15]. Invariants are evaluated by means of the analysis of the
collected traces exploiting the Daikon tool [16]. In order to check
at run-time the invariant, we instrumented the most critical parts
of our system, namely the memory and networking management
modules, to identify invariants found during testing. When these
invariants are violated an alarm is triggered.

3.5 Multi-index Anomaly Detection
As shown in Figure 1, each monitor triggers an alarm in case of
anomalies that could potentially result in a system failure. As
suggested by intuition, combining several alarms from different
sources allows detecting more errors and increasing detection
quality, if compared to single monitors. Indeed, monitors are
designed to tailor particular class of errors that they will detect
better than others. Hence, anomalies resulting from errors that get
undetected for a specific monitor, are likely to be detected by
another monitor. Outputs of the monitors are therefore fed to a
combination block in charge of combining, in a unique “risk
value”, information coming from single monitors, and issuing a
detection event (see Figure 1) if such value is greater than a given
threshold Th. Starting from this detection event and on the alarms
received from single monitors the most proper countermeasures
can be triggered.
Correlation is based on the Bayes rule that combines information
coming from new events with the existing knowledge about the

occurrence of a given event. Let us denote with F the “fault
activation” event, with a the vector containing the alarms of all
the monitors (each value ai is 1 if an alarm is triggered, 0
otherwise); the probability of the activation of a fault once
observed a vector a is:

 (1)

Where P(a|F) represents the probability of detection, being the
number of occurrences of a under faulty execution over the total
number of vectors collected, whereas P(a|¬F) is the probability of
false alarms (i.e., the occurrences of a in faulty-free executions).
The a priori probability of having a system in the “error” state can
be either estimated as T/MTTF (i.e., the detection period over the
Mean Time To Failure) if previous field data exist (e.g., data of a
previous version of the system), or assumed by the literature. In
our experiments, we assumed P(F) = 10-6 from a literature
empirical study [18].

4. EXPERIMENTS
4.1 Case-study and Experimental Setup
In order to investigate the effectiveness of our approach, we have
conducted an experimental campaign on a prototype developed at
SESM 1, named SWIM-BOX.

Case study description
SWIM-BOX was developed in the framework of the European-
wide initiatives aiming at pursuing global interoperability in the
Air Traffic Management (ATM) domain, namely the FP6
European project SWIM-SUIT2. The proposed case study is
actually a pilot prototype for SWIM, the world recognized
initiative aiming to enable several ATM stakeholders, i.e.,
airports, airlines, military air defense, Area Control Centers
(ACC) and Air Navigation Service Providers (ANSP), to
collaborate by sharing information on a really large scale. The
SWIM-BOX is a complex modular Off-The-Shelf-based Java
application that relies on facilities provided by the application
server JBOSS3, on data distribution middleware (i.e., OpenSplice
DDS in the experiments), and on a security manager component
(see the prototype architecture in Figure 2).

1SESM s.c.a.r.l. A Finmeccanica company. http://www.sesm.it/
2http://www.swim-suit.aero/swimsuit/

Figure 2. The SWIM-BOX architecture.

Figure 2. The SWIM-BOX architecture

Experimental setup

The experimental testbed consists of two legacy entities, named
the Contributor and the Manager, which collaborate to manage
Flight Data Plans. Both the Manager and the Contributor run on
a cluster node equipped with Intel Xeon 2.5 Ghz (4 core) CPU,
8GB of RAM, running Red Hat Enterprise Edition 5 Operating
System. The detector has been deployed at each node.
Manager and Contributor communicate through a networking
infrastructure. However, we focus on a single node of the system
to perform detection.

4.2 Experiments Execution and Results
Analysis
This section describes the executed experiments and shows the
preliminary results. At this stage, the framework implements the
learning modules for the Models of Correct Behavior (see Figure
1), by means of indicators both at OS and at application level;
currently it still does not implement the learning modules for
Model of Failing Behavior. This should be considered when
looking at the achieved results because building models of failure
behavior could improve detector capability, especially in terms of
coverage (see Section 4.2).

We executed two sets of experiments: golden runs and faulty
runs. During golden runs the workload is executed with no
artificial fault injected, and they have the aim of characterizing the
correct behavior of the system. Faulty runs consist of the injection
of a fault and then in the execution of the workload with the goal
of generating real failure related data. Thus the former allow
building models used for detection, while the latter let evaluate
the performance of the detector.
Monitored data were stored in an online data repository so that
they can be processed off-line too.
For golden runs, we exploited “ready-to-use” workloads, which
were applied to validate the SWIMBOX. Adopted workloads
differ from message rate (messages/minutes), message burst rate
(bursts/hours) and message per burst. The target system is the
same as in the testing phase, except that it is equipped with i) the
tracing infrastructure to collect OS-Level indicators and with ii)
daikon tools to collect Application-Level indicators as described
in section 3.4. Thus, these runs emulate the testing phase.

During faulty runs, we apply the same workload of golden runs to
the monitored system, but we also inject faults into some
components of the data distribution middleware. Referring to the
fault classes, defined with respect to the Orthogonal Defect
Classification [4], and to the distribution of software faults
described in [3], we inject one bug per run using a source code
mutation technique. The distribution and the type of the injected
faults are provided in Table 1. In fact, faulty runs emulate system
failures; they lead to application hangs (60% of total runs) and
crashes (20%), and they allow evaluating the performance of the
detection framework. It is worth to note that that faulty runs that
did not result in a failure despite of the fault activation were not
included in the analysis. To estimate how our detection
framework deviates from the ideal one described in section 3.2,
we evaluate the following well-know metrics [2]:
• Precision (P): the ratio of correctly detected anomalies to the

total of all detections (correct and incorrect detections);

3http://www.jboss.org/

• Recall (R): the ratio of correctly detected anomalies to the total
of all detectable anomalies (correct detections and not detected);

• False Alarms rate (FPR): the ratio of incorrectly detected
anomalies to the total of non-anomalies (correct not detections
and incorrect detections).

• Latency: the time between fault activation and detection.

Results analysis

We first evaluated performance of the detector by exploiting i)
only one of the indicators, and then ii) the whole set of indicators
evaluated in the testing phase. Table 2 summarizes the
performance of the detector exploiting one indicator per time.
Results coming from the combination of all indicators are shown
in Table 3. We point out that performance is evaluated

Table 2. Detector performance using just one indicator

Indicators FPR P R

TE/sec for Scheduling Processes 50% 48% 18%

TE/sec for write on disk 25% 23% 9%

TE/sec for read on disk 32% 29% 50%

TE/sec for holding mutexes 10% 91% 100%

TE/sec for waiting mutexes 1% 100% 38%

Process creation per second 5% 94% 100%

TE/sec since last socket read/write 23% 81% 100%

Byte/sec read or write on disk 4% 97% 75%

Byte/sec read or write on network
interface

6% 90% 14%

Syscall_err returned per second 8% 60% 20%

I/O-Interaction Invariants 0% 100% 75%

Average 15% 73,9% 54,4%

Table 1. Classes of injected faults
ODC type Fault

Nature Fault Type #

MISSING

MVIV - Missing Variable
Initialization using a Value

MVAV - Missing Variable
Assignment using a Value

MVAE - Missing Variable
Assignment using a Value

3

7

7

ASSIGNMENT

WRONG WVAV - Wrong Value
Assigned to Variable 7

MISSING MIA - Missing IF construct
Around statement 1 CHECKING

WRONG WLEC - Wrong logical
expression used 2

INTERFACE MISSING MPFC – Missing parameter
in function call 1

ALGORITHM

MISSING

MFC - Missing Function Call

MIEB - Missing If construct
plus statement, plus else

before statement

5

1

TOTAL 34

considering different thresholds for the triggering of a detection
event. It is clear that a trade-off should be sought in order to have
a timely detection. We show, by means of a fault injection
campaign, that dependability assessment can leverage data
gathered during testing phase successfully by means of a fault
injection campaign. Precision and Recall dramatically increase
when several indicators are combined, by leaving the detection
latency acceptable. We also performed some quantitative analysis
by measuring the execution time of our application, in order to
evaluate the overhead of the monitored infrastructure. The tracing
infrastructure has an overhead of about 2.5% (see Figure 3), in the
worst case. The overhead of Daikon tool is very heavy during
collection phase (about 25% with our setup) but small, about 5%,
at run-time (when checking for invariants violations is
performed). Reducing the number of program points or variables
can speed up the collection phase for Daikon, even if the
accuracy, in terms of the number of invariants found, gets worse.

Table 3. Detector performance using all the indicators

Figure 3. Overhead of the tracing infrastructure

5. CONCLUSIONS AND FUTURE WORK
The detection approach presented in this paper shows that
combining several sources of information that can be learned
during the testing phase brings to good results in terms of
precision, recall, false alarms, and latency. The implementation of
failing behavior learning module is the next step to be carried out
to further improve these achievements. Moreover, by means of
invariants, we plan to investigate also the detection of content
failures [1], other than hang and crash. The so-defined approach
can be applied either to the overall system, or to one single critical
component. In both cases, if proper proactive/reactive actions are
defined in case of anomalies (e.g., for anomalies to each learned
failure mode), the resulting wrapper would act as a sort of airbag
for the system/component, since it would prevent it from failing,
or from failing unexpectedly. The most challenging, and
promising, idea is to let the detection framework learn from the
system execution and add a feedback on-line action in charge of
re-training the detection infrastructure on the basis of past history
in order to face application or environment changes. This would
dramatically reduce the false positive rate and increase the
detection quality over system lifetime. Finally, we plan to
compare the proposed detection framework different frameworks
exploiting operational data in order to assess the actual benefit of
information collection during testing.

6. ACKNOWLEDGMENTS
This work has ben partially supported by the Italian Ministry for
Education, University, and Research (MIUR) in the framework of

the Project of National Research Interest (PRIN) “DOTS-LCCI:
Dependable Off-The-Shelf based middleware systems for Large-
scale Complex Critical Infrastructures”.

7. REFERENCES
[1] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic

Concepts and Taxonomy of Dependable and Secure
Computing. Trans. Dependable Secure Computing, 2004.

[2] F. Salfner, M. Lenk, M. Malek. A survey of online failure
prediction methods. ACM Computing Surveys, 2010.

[3] J. A. Duraes and H. Madeira. Emulation of software faults: A
field data study and apractical approach. IEEE Trans. on
Software Engineering, 32(11):849–867, 2006.

[4] M.Sullivan, R. Chillarege. Software defects and their impact
on system availability- A study of field failures in operating
systems. 21st Int. Symp. on Fault-Tolerant Computing
(FTCS-21), 2–9, 1991.

[5] Wilfredo, Torres. Software Fault Tolerance: A Tutorial.
NASA Langley Technical Report Server, 2000.

[6] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On
the quality of service of failure detectors. IEEE Trans.
Computing, 51(1):13–32, 2002.

[7] A. Thakur, B. K. Iyer. Analyze-NOW-an environment for
collection and analysis of failures in a network of
workstations. In Proc. of the 7th Intl. Symp. on Software
Reliability Engineering, pp 14, 1996.

[8] L. Wang, Z. Kalbarczyk, W. Gu, R.K. Iyer. Reliability
microkernel: Providing application-aware reliability in the
os. IEEE Transactions on Reliability, 56(4):597–614, 2007.

[9] G. Khanna, P. Varadharajan, S. Bagchi. Automated online
monitoring of distributed applications through external
monitors. IEEE Trans. Dependable Secure Computing,
3(2):115–129, 2006.

[10] S. Forrest, S. A. Hofmeyr, A. SomayaJi, T. A. Longstaff. A
sense of self for unix processes. Security and Privacy, page
120, Washington, DC, USA, 1996. IEEE Computer Society.

[11] S. R. P. Jagadeesh, Chandra Bose, S. H. Srinivasan. Data
Mining Approaches to Software Fault Diagnosis. In Proc. of
the 15th Workshop on Research Issues in Data Engineering:
Stream Data Mining and Applications, pp. 45–52, 2005.

[12] G. Carrozza, M. Cinque, D. Cotroneo, R. Natella. Operating
System Support to Detect Application Hangs. In Proc. of the
BCS 2nd International Workshop on Verification and
Evaluation of Computer and Communication Systems, 2008

[13] L. Mariani, M. Pezzé. Behavior Capture and Test:
Automated Analysis of Component Integration. In Proc. of
the 10th IEEE International Conference on Engineering of
Complex Computer Systems, 2005.

[14] I. Irrera, J. Duraes, M. Vieira, H. Madeira. Towards
Identifying the Best Variables for Failure Prediction Using
Injection of Realistic Software Faults. In Proc. of the 16th
Pacific Rim Int. Symposium on Dependable Computing.

[15] R. Pietrantuono, S. Russo, K. S. Trivedi. Online Monitoring
of Software System Reliability. In Proc. of the 2010
European Dependable Computing Conference.

[16] M.D. Ernst, J. Perkins, P.J. Guo, S. McCamant, C. Pacheco,
M. Tschantz, C. Xiao. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program, 2007.

