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ABSTRACT 
Software systems employed in critical scenarios are increasingly 
large and complex. The usage of many heterogeneous components 
causes complex interdependencies, and introduces sources of non-
determinism, that often lead to the activation of subtle faults. Such 
behaviors, due to their complex triggering patterns, typically 
escape the testing phase. Effective on-line monitoring is the only 
way to detect them and to promptly react in order to avoid more 
serious consequences. In this paper, we propose an error detection 
framework to cope with software failures, which combines 
multiple sources of data gathered both at application-level and 
OS-level. The framework is evaluated through a fault injection 
campaign on a complex system from the Air Traffic Management 
(ATM) domain. Results show that the combination of several 
monitors is effective to detect errors in terms of false alarms, 
precision and recall. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Error 
handling and recovery, monitors, diagnostics. 

General Terms 
Measurement, Reliability, Experimentation 

Keywords 
Monitoring, Error Detection, Critical Systems 

1. INTRODUCTION 
In complex software systems errors occur resulting from software 
faults lying into the code and activated by triggering conditions 
that strongly depend on the propagation patterns among 
components and on the execution environment. The presence of 
residual faults i.e., of faults that escape pre-operational testing 
campaigns and get activated only during the system execution, 
often results in errors that cannot be foreseen ahead of runtime. In 

large and complex systems the activation of these faults causes 
very subtle propagation patterns that are difficult to identify, due 
to the complex dependencies among components, and among 
different layers (e.g., OS, middleware, virtual machines). This 
hampers the process of detection, and -then- of faults diagnosis 
and system recovery.  A suitable way for detecting errors in these 
system is to built a knowledge base of the system runtime 
behavior, as much accurate as possible, to be exploited during 
system operational life for error detection. However, it is very 
hard to create this knowledge a priori, and even harder to 
formalize it.  

To tackle these objective, we need to consider two major issues: i) 
where can we get the necessary information from, in a cost-
effective manner ii) what kind of information do we need? 

This paper presents an anomaly-based framework for error 
detection in critical software systems able to exploit the 
information available while the system is still in its development 
phase for gaining the necessary knowledge on the system 
behavior, accurately and inexpensively. Specifically, the 
framework relies on the idea of i) describing the system behavior 
with a combination of application-level and OS-level variables, 
and ii) of collecting their values during the testing phase, in order 
to drive the detection at runtime with the availability of a 
reference behavior description, obtained with minimal training 
overhead.  

Critical systems typically foresee a quite intensive testing activity, 
from which the detection framework has the possibility to learn 
the system behavior under different perspectives. In particular, 
during tests, the framework learns both the desired, expected 
behavior of the system, which acts as reference nominal behavior, 
and the system failing behavior, i.e., the typical dynamics 
occurring when the test case executions fail. The former behavior 
is acquired while executing functional system testing, which 
generates executions representing the expected system behavior, 
and/or while executing other kinds of testing terminating with 
negative outcomes (i.e., successful executions). The latter is 
especially learned during the robustness and stress test campaigns, 
(which are usually carried out in critical systems to verify the 
system’s ability to react to unpredictable inputs/loads), and, in 
general, during the execution of test cases resulting in a failure. 
Behavior is described through multiple variables to capture both 
the communications among software modules at application-level, 
and dynamics occurring at OS-level. Such variables are monitored 
in case of the expected behavior, as well as in case of failing 
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behavior. On this base, we build the system behavioral model, 
which constitutes the reference to be considered at runtime. To 
implement the approach, we designed a framework. The 
framework distinguishes two phases: i) a knowledge base 
acquisition phase, where data about the software under test is 
extracted to model the correct and failing behavior of the system; 
ii) a run-time phase, where the acquired knowledge is used to 
observe the runtime behavior, and to raise alarms when it deviates 
from the expected one, or it is similar to an already experienced 
(class of) failing behavior (i.e., it is very likely that the system is 
going to fail). Based on the kind of alarms raised from the 
framework, and on the confidence score assigned to the revealed 
anomaly, the user infers the causes, and applies proactive actions 
accordingly.  The framework is experimented in the context of 
real-world ongoing prototypes in the domain of Air Traffic 
Management (ATM) via a fault injection campaign. Results show 
that the combination of application-level and OS-level monitors is 
effective to detect failures in terms of precision, recall, false 
alarms, and with negligible impact on performance. 

2. RELATED WORK 
Error detection is crucial to recognize that something unexpected 
has occurred in the system. It can be addressed at different levels, 
from the hardware (e.g., machine check, division by zero, etc.), to 
the upmost level, i.e., the application. In any case, its aim is to 
detect errors before they propagate to other different 
component(s), and eventually lead the system to failure. Error 
detectors can be implemented, as local or remote modules, within 
software components, or at their outputs. Based on the type of 
interaction error detection strategies can be grouped into: 
component-initiated, query-based or log-based techniques. 
Component-initiated techniques trust on the component, which 
provides some information specifying if the requested services 
could not be satisfied [5]. For instance, exceptions can be signaled 
by a component when its error detection mechanisms detect an 
invalid service request, i.e., an interface error.  

Query-based techniques rely on the presence of an external 
module, which is in charge of querying the monitored component, 
to discover latent errors [6]. 

Log-based techniques consist in examining the log files produced 
by the components, in order to figure out the system behavior by 
correlating different events [7]. 

These techniques belong to direct detection strategies: they try to 
infer the system’s health by directly querying it, or by analyzing 
events it is able to produce (e.g., logs, exceptions). However,. 
before a failure occurs, the activated fault may lead the 
system/component to exhibit anomalous behaviors. For these 
reasons, anomaly-based detection approaches have been 
conceived for detection. They aim to compare normal behavior 
with the observed one, and reveal anomalous runs of the system. 
Thus, unlike the previous ones, these approaches, which can be 
labeled as indirect detection strategies, infer the system’s health 
by monitoring system parameters and their interactions with the 
environment.  

Indirect techniques have been especially adopted for intrusion 
detection systems. In [10] the execution of a program is 
characterized by tracing patterns of invoked system calls. System 
call traces produced during the operational phase are then 
compared with nominal traces to reveal intrusions. A similar 
approach is adopted in [9], which provides detection facilities for 
large-scale distributed systems running legacy code. The monitors 
are designed to observe the exchanged messages among the 

entities of the distributed system, which are then used to deduce a 
runtime state transition diagram executed by all the entities in the 
system. An anomaly-based strategy is also in [8], which exploits 
hardware performance counters and IPC (Inter Process 
Communication) signals to monitor the system behavior, and to 
detect possible anomalous conditions. Other solutions, such as 
[11], are based on statistical learning approaches. They extract 
recurrent execution patterns (using system calls) to model the 
application under nominal conditions, and to classify run-time 
behaviors as normal or anomalous.  

Our framework falls into the category of anomaly-based detection 
techniques, because it attempts to reveal anomalous behavior at 
runtime with respect to the learned behavior. The framework 
builds on our previous work [12] on hang detection, where we 
adopted OS-level variables to describe the nominal behavior and 
detect hang failures. With respect to the described previous works, 
our framework relies on a combined description of the system 
behavior via multiple variables both at application-level and at 
OS-level. The aim is to monitor interactions among application 
components, as well as interactions between application and OS 
layers. A key step of the approach is also the usage of information 
provided during the testing phase for learning the system 
behavior. Not only the nominal, expected behavior is learned, but 
also failing behaviors, i.e., those behaviors leading the system to 
(several classes of) failure. This “detection-oriented testing” 
allows improving the overall effectiveness by carrying out an 
efficient training phase. 

3. THE DETECTION FRAMEWORK 
3.1 Failure Mode Assumptions 
This work focuses on crash failures, i.e., unexpected termination 
(e.g., due to run-time exceptions), and on hang failures, i.e., the 
system no longer provides its services or services are delivered 
unacceptably late. As for hang failures we further distinguish in 
active and passive hang. The former occurs when a process is still 
running but other processes may no longer perceive its activity, 
because one of its threads, if any, consumes CPU cycles 
improperly. The latter occurs when a process (or one of its 
threads) is indefinitely blocked, e.g., it waits for shared resources 
that will never be released (i.e., it encounters a deadlock). Hangs 
might be either silent or non-silent. In the former case it 
compromises the communication capabilities of the process, e.g., 
it cannot reply to heartbeats. In the latter case, the process is still 
able to communicate, even if the service is not delivered properly. 
In complex systems it is hard to tell whether a process is currently 
subject to a passive hang, because it can be deliberately blocked 
waiting for some work to be performed (e.g., when pools of 
threads are used in multi-threaded server processes). Difficulties 
are also encountered with active hangs, because a process (thread) 
can deliver late heartbeat response, due to stressing workload and 
working conditions. 

3.2 Overall Framework Description 
The detection framework is designed to address complex and 
distributed software systems. The efficacy of the detector depends 
basically from i) the capacity to uncover errors, ii) from the 
detection latency and iii) from the false alarm rate. For instance a 
perfect detector would uncover all the errors with no delays and 
no false positives.  

Assuring software dependability in such kind of systems is 
typically coped with fault removal techniques in the development 
phase, most commonly software testing techniques, and with fault 
tolerance mechanisms during operation, which relies on error 



 

 

detection ability and error treatment: typically the planning and 
implementation of these activities proceed quite independently. 
Thus, our first aim is to exploit information produced during the 
testing phase, that in critical systems is intensive, in order to learn 
the system’s behavior. In this way, there is no need for a tailored 
full training phase, because most of the training is carried out 
during testing. Hence, this guarantees a training that is i) more 
efficient, by reducing the effort for learning, and ii) more accurate 
in the reproduction of the real operational conditions (indeed, this 

is a crucial goal during critical systems testing), yielding 
expectedly better behavior description. The overview of the 
proposed approach is in Figure 1. A set of monitors is in charge of 
collecting information during testing, in order to build behavioral 
models. Thus, during this phase, which can be seen as a training, 
two kinds of reference models will be constructed: one 
representing the nominal behavior, and the other representative of 
the failing behavior.  

We represent the behavioral model by means of a set of relations 
Ri for each variable i (denoted as “indicator”), which have to hold 
at runtime (for correct behavior models) or that should never 
occur at runtime (for failing behavior models). For instance the 
relations Ri for an indicator i may be a range of values in which 
the indicator must be included at runtime, or an event (e.g., null 
return value of a method) that should never occur. 

Indicators will be monitored during the execution of all the test 
cases: if the execution results in the expected outcome, the 
observed indicator values are used to improve the description of 
the correct nominal behavior. Whereas, if the test case execution 
results in a failure, the observed indicator values and the failure 
mode could be used to populate the failing behavioral model. 
Failing behaviors are classified by failure modes F1…Fk, and a 
behavioral sub-model (i.e., a set of relations) is associated with 
each observed failure mode. Typically, the correct behavior has 
more chances to be learned during the functional system tests, 
whereas the failing behavior during the robustness/stress test 
campaigns, which aim making the system fail. 

Indicators are monitored again at runtime and if there is an 
anomaly with respect to the inferred relations Ri of correct 
behavior, an alarm is triggered by the monitor of the indicator i. 
Similarly, if monitors observe a relation similar to that inferred for 
failing behavior model, an alarm is triggered. Alarms generated 

by monitors of indicators feed the “combination” block, which 
combines them by means of the Bayesian Rule and evaluates a 
final score indicating the risk of actual failure, as explained in 
Section 3.5. 

3.3 Definition of Indicators and Behavioral 
Relations 
Once the overall approach is defined, the second relevant point is 
identifying the set of variables we need to describe the system’s 
behavior, i.e., the indicators. We cannot rely on single kind of 
information, but we need a description based on multiple 
indicators, which have to depict the system behavior from 
different perspectives, while keeping at the same time the 
monitoring overhead low. We identified the following sources of 
information, some of them taken from the literature [13][14], 
describing the behavior both at application level and at OS level:  
1) Interactions pattern among modules, describing how 

modules are expected to communicate with each other; 

2) Input/Output invariants describing the relations holding in 
the exchanged parameter values among modules (or functions 
inside the same module); 

3) OS-level information for the expected behavior, including 
task scheduling times, waiting and holding times in critical 
sections, I/O throughput; 

4) Interactions patterns among modules and I/O invariants in 
failing conditions, to be related with the classes of failures 
observed during robustness/stress tests; 

5) OS-level information in case of failing behaviors, such as 
system calls error code, process and threads exit codes. 

Anomalies with respect to these indicators occur when the 
expected behavior is violated. However, the “expected behavior”, 
which is associated with different relations Ri’s, has a different 
meaning depending on the indicator. 

For the first indicator, i.e., the interaction patterns, the typical 
sequence of calls is considered as in [13]; patterns different from 
the one built during the testing phase cause an alarm triggering. A 
simple interaction invariant is as follow: for the networking 
module of the DDS middleware that we experimented (see 
Section 4.1 for details), zero or more invocations of the discovery 
service represents an invariant, indicated as 
networking_discovery* invariant. For OS-level indicators, a range 
ri is considered for each indicator i: if values vi of the indicator are 
outside the range, an alarm is triggered. The range is determined 
by means of static thresholds [Tlvi, Tuvi,], such as the minimum 
and maximum observed values minvi and maxvi, computed during 
test executions. Relations are therefore Tlvi<vi<Tuvi. For example, 
in our application scenario (see Section 4), the timeouts/sec 
expired for the holding time of mutex must be in the range [6,10]. 
As for indicators related to the I/O invariants, the reference values 
are built during the invariant construction phase. In this case, the 
tool adopted to build invariants (described in the next subsection) 
considers several kinds of relation, not only the one requiring a 
value to be comprised in a range  [rmin, rmax]. For instance, an 
invariant may involve two variables, and require them to respect 
the relation x < y; similarly, relations observed on three variables, 
or on sequence of variables may be reported as invariants. Thus, 
an anomalous behavior is signaled when the current values (of one 
or more I/O arguments) violate these invariants. For instance, 
considering the discovery service an I/O human readable invariant 
is: “discoveryReader->partitions contains no nulls”. 

 
Figure 1. The overall approach. 

 



 

 

Indicators in the points 4) and 5) refer to the same relations of the 
previous points; but observed in failing conditions. Runtime 
values should never satisfy those relations. 

In order to reduce the occurrence of false-positives in the 
detection phase we take into account the bursty behavior of some 
OS monitored indicators and the confidence in the evaluation of 
I/O invariants. For bursty behavior we mean the sudden 
occurrence of some events for a short time period (they then 
disappear). To this aim, we adopt the approach defined in [12] 
which basically rely on a counting approach: an alarm is triggered 
when the indicator is anomalous for C consecutive times. 
Moreover, for I/O invariant indicators, a confidence level 
associate with invariants can be set in the construction phase (i.e., 
during tests), which influences the probability of an anomaly 
value to be a false positive. The lower the confidence parameter, 
the higher the likelihood that violations of invariants are true 
positives. In our case, the confidence level is set to 0.01, meaning 
that the tool reports invariants that are no more than 1% likely to 
have occurred by chance. Note that the relations coming from 
invariants analysis actually need the availability of the source 
code, while the OS-derived relations are completely application 
independent. 

3.4 Information Collection 
We obtain the OS related indicators by means of the monitoring 
infrastructure described in [12], which is based on a lightweight 
interface for kernel modules to implant probes and register 
corresponding probe handlers. Probes are breakpoints inserted 
dynamically into the kernel module without modifying the source 
code. When a breakpoint is hit, a handler routine is launched to 
provide the needed information (e.g., input parameters or return 
values of called functions). This does not interfere with program 
execution, except for a short overhead (see section 4.2).  

Two kinds of invariants have been generated, i.e., interaction and 
I/O invariants. Interaction invariants describe the interaction 
patterns among components [13], whereas I/O invariants are pre-
condition and post-condition, expressed as Boolean expression, on 
exchanged argument values at the entry/exit point of a function 
[15]. Invariants are evaluated by means of the analysis of the 
collected traces exploiting the Daikon tool [16].  In order to check 
at run-time the invariant, we instrumented the most critical parts 
of our system, namely the memory and networking management 
modules, to identify invariants found during testing. When these 
invariants are violated an alarm is triggered. 

3.5 Multi-index Anomaly Detection 
As shown in Figure 1, each monitor triggers an alarm in case of 
anomalies that could potentially result in a system failure. As 
suggested by intuition, combining several alarms from different 
sources allows detecting more errors and increasing detection 
quality, if compared to single monitors. Indeed, monitors are 
designed to tailor particular class of errors that they will detect 
better than others. Hence, anomalies resulting from errors that get 
undetected for a specific monitor, are likely to be detected by 
another monitor. Outputs of the monitors are therefore fed to a 
combination block in charge of combining, in a unique “risk 
value”, information coming from single monitors, and issuing a 
detection event (see Figure 1) if such value is greater than a given 
threshold Th. Starting from this detection event and on the alarms 
received from single monitors the most proper countermeasures 
can be triggered. 
Correlation is based on the Bayes rule that combines information 
coming from new events with the existing knowledge about the 

occurrence of a given event. Let us denote with F the “fault 
activation” event, with a the vector containing the alarms of all 
the monitors (each value ai is 1 if an alarm is triggered, 0 
otherwise); the probability of the activation of a fault once 
observed a vector a is: 
 

     (1) 

 
Where P(a|F) represents the probability of detection, being the 
number of occurrences of a under faulty execution over the total 
number of vectors collected, whereas P(a|¬F) is the probability of 
false alarms (i.e., the occurrences of a in faulty-free executions). 
The a priori probability of having a system in the “error” state can 
be either estimated as T/MTTF (i.e., the detection period over the 
Mean Time To Failure) if previous field data exist (e.g., data of a 
previous version of the system), or assumed by the literature. In 
our experiments, we assumed P(F) = 10-6 from a literature 
empirical study [18]. 

4. EXPERIMENTS 
4.1 Case-study and Experimental Setup 
In order to investigate the effectiveness of our approach, we have 
conducted an experimental campaign on a prototype developed at 
SESM 1, named SWIM-BOX. 

Case study description 
SWIM-BOX was developed in the framework of the European-
wide initiatives aiming at pursuing global interoperability in the 
Air Traffic Management (ATM) domain, namely the FP6 
European project SWIM-SUIT2. The proposed case study is 
actually a pilot prototype for SWIM, the world recognized 
initiative aiming to enable several ATM stakeholders, i.e., 
airports, airlines, military air defense, Area Control Centers 
(ACC) and Air Navigation Service Providers (ANSP), to 
collaborate by sharing information on a really large scale.  The 
SWIM-BOX is a complex modular Off-The-Shelf-based Java 
application that relies on facilities provided by the application 
server JBOSS3, on data distribution middleware (i.e., OpenSplice 
DDS in the experiments), and on a security manager component 
(see the prototype architecture in Figure 2). 

                                                                    
1SESM s.c.a.r.l. A Finmeccanica company. http://www.sesm.it/ 
2http://www.swim-suit.aero/swimsuit/ 

Figure 2. The SWIM-BOX architecture. 
 
 
Figure 2. The SWIM-BOX architecture 
 



 

 

Experimental setup 

The experimental testbed consists of two legacy entities, named 
the Contributor and the Manager, which collaborate to manage 
Flight Data Plans. Both the Manager and the Contributor run on 
a cluster node equipped with Intel Xeon 2.5 Ghz (4 core) CPU, 
8GB of RAM, running Red Hat Enterprise Edition 5 Operating 
System. The detector has been deployed at each node. 
Manager and Contributor communicate through a networking 
infrastructure. However, we focus on a single node of the system 
to perform detection. 

4.2 Experiments Execution and Results 
Analysis 
This section describes the executed experiments and shows the 
preliminary results. At this stage, the framework implements the 
learning modules for the Models of Correct Behavior (see Figure 
1), by means of indicators both at OS and at application level; 
currently it still does not implement the learning modules for 
Model of Failing Behavior. This should be considered when 
looking at the achieved results because building models of failure 
behavior could improve detector capability, especially in terms of 
coverage (see Section 4.2).  

We executed two sets of experiments: golden runs and faulty 
runs. During golden runs the workload is executed with no 
artificial fault injected, and they have the aim of characterizing the 
correct behavior of the system. Faulty runs consist of the injection 
of a fault and then in the execution of the workload with the goal 
of generating real failure related data. Thus the former allow 
building models used for detection, while the latter let evaluate 
the performance of the detector. 
Monitored data were stored in an online data repository so that 
they can be processed off-line too. 
For golden runs, we exploited “ready-to-use” workloads, which 
were applied to validate the SWIMBOX. Adopted workloads 
differ from message rate (messages/minutes), message burst rate 
(bursts/hours) and message per burst. The target system is the 
same as in the testing phase, except that it is equipped with i) the 
tracing infrastructure to collect OS-Level indicators and with ii) 
daikon tools to collect Application-Level indicators as described 
in section 3.4. Thus, these runs emulate the testing phase.  

During faulty runs, we apply the same workload of golden runs to 
the monitored system, but we also inject faults into some 
components of the data distribution middleware. Referring to the 
fault classes, defined with respect to the Orthogonal Defect 
Classification [4], and to the distribution of software faults 
described in [3], we inject one bug per run using a source code 
mutation technique. The distribution and the type of the injected 
faults are provided in Table 1. In fact, faulty runs emulate system 
failures; they lead  to application hangs (60% of total runs) and 
crashes (20%), and they allow evaluating the performance of the 
detection framework. It is worth to note that that faulty runs that 
did not result in a failure despite of the fault activation were not 
included in the analysis. To estimate how our detection 
framework deviates from the ideal one described in section 3.2, 
we evaluate the following well-know metrics [2]: 
• Precision (P): the ratio of correctly detected anomalies to the 

total of all detections (correct and incorrect detections); 

                                                                                                                 
3http://www.jboss.org/ 

• Recall (R): the ratio of correctly detected anomalies to the total 
of all detectable anomalies (correct detections and not detected); 

• False Alarms rate (FPR): the ratio of incorrectly detected 
anomalies to the total of non-anomalies (correct not detections 
and incorrect detections). 

• Latency: the time between fault activation and detection. 
 

Results analysis 

We first evaluated performance of the detector by exploiting i) 
only one of the indicators, and then ii) the whole set of indicators 
evaluated in the testing phase. Table 2 summarizes the 
performance of the detector exploiting one indicator per time. 
Results coming from the combination of all indicators are shown 
in Table 3. We point out that performance is evaluated 

Table 2. Detector performance using just one indicator 

Indicators FPR P R 

TE/sec for Scheduling Processes 50% 48% 18% 

TE/sec  for write on disk 25% 23% 9% 

TE/sec  for read on disk 32% 29% 50% 

TE/sec  for holding mutexes 10% 91% 100% 

TE/sec  for waiting mutexes 1% 100% 38% 

Process creation per second 5% 94% 100% 

TE/sec since last socket read/write 23% 81% 100% 

Byte/sec read or write on disk 4% 97% 75% 

Byte/sec read or write on network 
interface 

6% 90% 14% 

Syscall_err returned per second 8% 60% 20% 

I/O-Interaction Invariants 0% 100% 75% 

Average 15% 73,9% 54,4% 

 

Table 1. Classes of injected faults 
ODC type Fault 

Nature Fault Type # 

MISSING 

MVIV - Missing Variable 
Initialization using a Value 

MVAV - Missing Variable 
Assignment using a Value 

MVAE - Missing Variable 
Assignment using a Value 

3 

 

7 

 

7 

ASSIGNMENT 

WRONG WVAV - Wrong Value 
Assigned to Variable 7 

MISSING MIA - Missing IF construct 
Around statement 1 CHECKING 

WRONG WLEC - Wrong logical 
expression used 2 

INTERFACE MISSING MPFC – Missing parameter 
in function call 1 

ALGORITHM 

MISSING 

MFC - Missing Function Call 

MIEB - Missing If construct 
plus statement, plus else 

before statement 

5 

 

1 

TOTAL   34 

 



 

 

considering different thresholds for the triggering of a detection 
event. It is clear that a trade-off should be sought in order to have 
a timely detection. We show, by means of a fault injection 
campaign, that dependability assessment can leverage data 
gathered during testing phase successfully by means of a fault 
injection campaign. Precision and Recall dramatically increase 
when several indicators are combined, by leaving the detection 
latency acceptable. We also performed some quantitative analysis 
by measuring the execution time of our application, in order to 
evaluate the overhead of the monitored infrastructure. The tracing 
infrastructure has an overhead of about 2.5% (see Figure 3), in the 
worst case. The overhead of Daikon tool is very heavy during 
collection phase (about 25% with our setup) but small, about 5%, 
at run-time (when checking for invariants violations is 
performed). Reducing the number of program points or variables 
can speed up the collection phase for Daikon, even if the 
accuracy, in terms of the number of invariants found, gets worse.  

Table 3. Detector performance using all the indicators 

 
  

 
Figure 3. Overhead of the tracing infrastructure 

5. CONCLUSIONS AND FUTURE WORK 
The detection approach presented in this paper shows that 
combining several sources of information that can be learned 
during the testing phase brings to good results in terms of 
precision, recall, false alarms, and latency. The implementation of 
failing behavior learning module is the next step to be carried out 
to further improve these achievements. Moreover, by means of 
invariants, we plan to investigate also the detection of content 
failures [1], other than hang and crash. The so-defined approach 
can be applied either to the overall system, or to one single critical 
component. In both cases, if proper proactive/reactive actions are 
defined in case of anomalies (e.g., for anomalies to each learned 
failure mode), the resulting wrapper would act as a sort of airbag 
for the system/component, since it would prevent it from failing, 
or from failing unexpectedly. The most challenging, and 
promising, idea is to let the detection framework learn from the 
system execution and add a feedback on-line action in charge of 
re-training the detection infrastructure on the basis of past history 
in order to face application or environment changes. This would 
dramatically reduce the false positive rate and increase the 
detection quality over system lifetime. Finally, we plan to 
compare the proposed detection framework different frameworks 
exploiting operational data in order to assess the actual benefit of 
information collection during testing. 
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