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Abstract

Event stream processing has recently emerged as a popular paradigm for imple-

menting high-volume distributed (near-)real time data processing applications.

Several open source systems are today available, supporting the development of

such applications, many of which developed with the technologies of the Apache

Software Foundation. These so called stream processors are long-running com-

plex software systems which may be affected by software aging, a well-known

phenomenon among operation engineers, consisting of a progressive increase in

the failure rate or in performance degradation of a software system over time.

We address the problem of identifying symptoms and sources of software

aging in the Apache Storm event stream processing system; this helps to iden-

tify proper strategies to prevent or mitigate anomalous behaviors in production

environments. To this aim, we present an experimental study investigating ag-

ing manifestations in a popular system, namely Apache Storm. Results show

that Storm presents anomalous behaviors in long runs, which prevent some

topologies from working continuously. These can be attributed to software ag-

ing, due to Storm internal resource management mechanisms influenced by the

garbage collector and the memory assigned to worker processes. We discuss the

aging-related Apache Storm behaviors, and we experiment rejuvenation actions,

showing that they are actually able to remove them.
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1. Introduction

Event stream processing (ESP) has recently emerged as a popular paradigm

for implementing high-volume data processing applications. While traditional

data processing models use to persist data to databases and then execute queries

on the stored data, ESP applications perform complex queries on incoming

streams of data to produce timely results in reaction to events observed in the

processed data [1].

The development of ESP applications is supported by so called distributed

real time stream processing systems, i.e., software technologies capable of de-

ploying tasks (which are part of the stream processing application) over a cloud

architecture or in general in a distributed execution environment. Stream pro-

cessing systems find application in many fields, including real time analytics,

online machine learning, continuous computation. One powerful such system is

Apache Storm [2], a free and open-source platform, able to interoperate with

lots of technologies belonging to the Apache ecosystem. Storm is used by many

big companies - including Yahoo! and Twitter - for advanced real time dis-

tributed computation. Stream processing systems usually run for very long

time; therefore, they may be affected by software aging.

Software aging is a phenomenon consisting of the performance degradation

or of the increase of the failure rate of a program as it executes [3]. This is usually

due to the accumulation of errors that leads the system-internal environment to

a state in which such errors are propagated, causing the so-called aging-related

failures [4]. Its common causes are memory leaks, data corruption accrual,

unreleased file locks, round-off errors accumulation, unterminated threads, file-

space fragmentation. Software aging has been demonstrated to affect many

complex long-running systems, such as web servers [5], operating systems [7],

and even safety-critical systems [8]. Software aging is usually a consequence of

software faults, referred to as aging-related bugs – a class of faults may cause

failures only after a long period of execution [4].
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Software rejuvenation was proposed as a means to prevent or at least delay

aging-related failures, hence to mitigate the impact of aging [9] [10]. In its sim-

plest form, rejuvenation involves stopping and subsequently restarting the whole

software application or parts of it, in a preventive manner. This allows removing

the accrued error conditions, by refreshing software internal state. A number

of rejuvenation techniques, at various level of granularity (concerning the entire

system or even small parts of it), are now available, including: garbage collec-

tion, flushing of kernel system structure, preemptive rollback, re-initialization of

data structures, memory defragmentation, micro-reboot, virtual machines-level

rejuvenation [3]. Algorithms are also available for the optimal scheduling of

rejuvenation, i.e. for the problem of when to apply rejuvenation [3].

This paper investigates symptoms and effects of software aging phenomena

in the popular stream processing technology Apache Storm. Along with other

compatible software, such as Apache Kafka (a distributed publish-subscribe

messaging system) and ZooKeeper (a distributed configuration/synchronization

system), Storm is widely used to set up ESP infrastructures. The investigation

is based on experiments with a workload generator as test application, and

measurements are taken to detect aging. The data gathered about memory

consumption, throughput and the workload itself are analyzed to discover evi-

dences of software aging afflicting the considered stream processing technology.

Besides actually revealing aging phenomena, the experiments allow to spot po-

tential causes of the observed anomalies, attributable to the garbage collection

and to memory management. This in turn allows to propose and experiment a

software rejuvenation solution.

The rest of the paper is organized as follows. Section 2 provides a descrip-

tion of ESP and of the most popular distributed stream processors. Section 3,

describes in more detail the software aging phenomenon and the problems of de-

tection and rejuvenation. Section 4 shows the hardware/software test-bed used

for the experiments. Section 5 presents and discusses the experimental results.

Finally, conclusions and directions of future work are presented in Section 6.
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2. Event Stream Processors

Event stream processors are software platforms capable of manipulating un-

bounded streams of data, usually fed through sockets or publish/subscribe data

distribution systems. Typically, messages are processed as soon as they arrive;

parallel computations are achieved by distributing messages among multiple

nodes. Messages in a stream can be collected within a temporal window to

provide an output that is a function of more messages. The operation on mes-

sages include buffering, join, merge and aggregation. Several platforms are cur-

rently available; the most popular open-source ones include Tand Storm, Spark

Streaming, Samza and Flink, all developed by the Apache Software Foundation.

According to [2], Storm is: “a free and open source distributed real-time

computation system, which makes it easy to reliably process unbounded streams

of data, doing for real-time processing what Hadoop did for batch processing.

It can be used with any programming language”. Various stream sources (e.g.,

queuing and databases technologies) can be plugged into Storm. Thanks to the

Trident framework [11], it is also able to perform micro-batching operations,

treating messages in a stream as batches gathered within temporal windows.

Spark Streaming [12] is not strictly categorized as a stream processor, as

it actually performs micro-batch processing, yet it works with unbounded data

streams. It does not provide latencies as low as those of Storm, while its per-

formances are comparable to Trident.

As for Samza [13], the main difference with Storm lies in that Samza needs

YARN [14]. YARN (Yet Another Resource Negotiator) is a cluster resource

manager supporting the separation of the Hadoop Distributed File System

(HDFS) from MapReduce, thus granting other system access to HDFS. Samza

has a parallelism model which is simpler yet less configurable than Storm. Com-

putation entities in the workflow need to be connected using the Apache Kafka

publish/subscribe messaging system (Section 2.3).

Finally, Flink is a general-purpose platform for distributed stream and batch

data processing [15], capable of running in standalone mode. It is fully compat-
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ible with Hadoop (YARN, HDFS). According to the benchmarking performed

by Yahoo!, Flink and Storm show similar performance and latency [16].

2.1. Apache Storm

The architecture of the Apache Storm stream processor [17] is based on the

following entities (Fig. 1):

• A Topology is a directed acyclic graph, with nodes representing computa-

tions and edges data exchanges. Nodes are spouts or bolts;

• Tuples are ordered lists of (untyped) values produced by nodes. Storm

needs to know how to serialize values to transfer tuples among nodes;

• Streams are unbounded sequences of tuples sent from a node to another.

Apart from the very first nodes in a topology, which read from the external

data sources, any node can accept more than one stream as input;

• Spouts are stream sources; they listen for incoming messages from external

sources, and forward them, without performing computation, as their role

is solely to emit tuples to the next type of nodes, i.e., the bolts;

• Bolts are entities which receive tuples, perform computations, and emit

tuples. Tuple transformations include filtering, aggregation, and join;

• Stream grouping defines the way (tasks) the tuples are sent among bolts

and spouts instances.
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Spout&

Bolt&A&

Bolt&A&

Bolt&A&

Bolt&B&

Bolt&B&

Bolt&B&

Bolt&C&
External&&
Sources&
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Tuples&

Tuples&

Figure 1: A Storm topology.
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Figure 2: Apache Storm architecture.

2.2. Apache Storm architecture

The Storm architecture (Fig. 2) includes three core components: Nimbus,

Supervisor and ZooKeeper:

• Nimbus [18] is a daemon which distributes the components of a topology

onto computing nodes, assigns tasks to them, and monitors possible fail-

ures. It allows also to control the topologies life-cycle, providing means to

start/kill/activate/deactivate and re-balance them. The master nodes of

a Storm cluster are those running a Nimbus instance. Nimbus is designed

to be “fail-fast”, meaning that it self-destructs whenever any unexpected

situation is encountered. Its state is kept in ZooKeeper or on disk; it is

therefore suited for running under supervision, that is, by using a tool

capable of restarting it whenever it crashes. In most cases, the Nimbus

failure is temporary and it is restarted by the supervisor tool. However,

in situations like a master node disk failure, Nimbus fails and becomes

unreachable. Under these circumstances, the topologies keep running

normally, but no new topology can be submitted. Moreover, the exist-
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ing topologies cannot be killed/deactivated/activated, and if a Supervisor

fails it cannot be reassigned, resulting in performance degradation or even

topology failures. This is the reason why, starting from Storm version

1.0.0, Nimbus can be instantiated on more than one node [18], as shown

in Fig. 2. This is possible thanks to ZooKeeper, that includes an election

mechanism to select a leader instance. When the Nimbus leader fails,

ZooKeeper starts an election to decide which survivor has to take its role.

• Supervisor is a fail-fast and stateless daemon managed by the Nimbus

leader. It is enabled to instantiate and monitor worker processes respon-

sible for the topologies execution, and to restart failed worker processes.

If the worker process continuously fails to reboot and is unable to send

heartbeat messages, Nimbus reschedules the worker. Finally, no worker

processes are affected by the failure of Nimbus or Supervisor.

• ZooKeeper [19] is a framework providing centralized services for maintain-

ing configuration information, naming, distributed synchronization and

group membership. ZooKeeper supports coordination of distributed pro-

cesses through a shared hierarchical name-space, implemented by a stan-

dard file system kept in memory, in order to assure high throughput and

low latencies. Within Storm, ZooKeeper is used to achieve coordination

between Nimbus and Supervisor nodes, and to monitor their states.

The user interface (StormUI) provides a tool to monitor a cluster in production.

A Storm topology is characterized by three main components: worker pro-

cesses, executors and tasks [20]. Each topology can include several worker pro-

cesses. A worker process runs one or more components of a topology (i.e., spouts

or bolts). Each topology component is assigned one or more executors, which

perform data processing tasks. Each computational node can includes one or

more worker processes. These three parameters can be configured in order to

obtain a defined parallelism degree. Finally, the number of executors and of

worker processes can be changed run-time to perform a topology re-balance.
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Internal queue-based messaging mechanisms enable communication among

executors within a worker process (intra-worker communication), as well as

among worker processes belonging to the same topology (inter-worker commu-

nication). Each executor has its own incoming and outgoing queues.

In order to achieve an inter-topology communication, external messaging

system, such as Kafka or RabbitMQ, must be adopted, as shown in Fig. 3.
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Figure 3: Storm topology communication.

2.3. Apache Kafka

Apache Kafka [21] is a scalable and distributed publish-subscribe messaging

platform, used to develop real-time data pipelines and streaming applications.

Like most publish-subscribe systems, Kafka manages feeds of messages in topics.

A topic is a category (or feed name) of published messages. Topics can be

partitioned and replicated across multiple nodes. Each partition is an ordered

and immutable sequence of messages that is continually appended to a commit

log. A sequential ID number uniquely identifies each message in a partition.

The Kafka cluster retains all published messages for a configurable time interval.

Messages by a producer are appended to a topic partition in the order they are

sent. Consumer see messages in the order they are stored in the log.
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3. Software Aging

Software aging is a phenomenon often affecting long-running systems, con-

sisting of the gradual increase of the failure rate and/or decrease of performance

during execution. It is due to the accumulation of erroneous conditions in the

system state or to the consumption of resources, such as physical memory [4].

It can be attributed to “elusive” software bugs, i.e., bugs (e.g., memory leaks)

that, when triggered, do not immediately cause a software failure, but manifest

only after some time, making the system to slowly degrade its performance and

eventually fail. These bugs are usually subtle or expensive to expose and re-

move during testing and debugging, as their manifestation may require a long

time [22]. Several types of systems have been shown to suffer from software

aging, including: web servers [5, 6], operating systems [7], web applications [23],

the Java Virtual Machine [24], data base management systems [25], cloud com-

puting [26] and virtualization environments [27], data centers [28].

Software aging effects can be detected by means of aging indicators [4],

typically, system variables that can be directly measured and related to aging.

Examples are: system resources usage, such as free physical memory, used swap

space, file and process tables size, or user-perceived performance indicators, like

response time or throughput. Many studies address the problems of the detection

and of the prediction of the Time To Aging Failure (TTAF), within which a

preventive action should be taken. The main strategies to estimate when the

system will become unavailable due to aging are [3]: model-based, where analytic

models are used to describe the phenomenon and to estimate the TTAF based on

estimated parameters; measurement-based, where observed field data are used

to infer the real trend of aging that is occurring, and predict the TTAF; hybrid

techniques, where field data are used to feed analytical models.

Model-based techniques can be applied to a wide range of systems, and they

may provide more general findings than measurement-based approaches. How-

ever, they can be less effective, since they have some simplifying assumptions,

such as the one that the distributions characterizing the system behavior (e.g.,
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the time-to-failure distribution) are known. Measurement-based studies fore-

cast software aging based on direct measurements (e.g., on time series analysis

and machine learning), and provide empirical data about software aging phe-

nomena. Their advantage is that software aging forecasting can adapt to the

current condition of the system (e.g., the current operational profile, which may

not have been foreseen before operation), and can accurately predict the occur-

rence of aging phenomena. On the other hand, measurement-based approaches

may be not easily generalizable to other systems, since they exploit aspects re-

lated to the nature of the considered system. Hybrid models try to combine

both techniques, feeding models online by field data.

As it is often too expensive to fix aging-related bugs during testing, or even

infeasible if bugs are within third-party code, libraries or within the OS itself, the

typical countermeasure is a runtime proactive fault tolerance technique named

software rejuvenation. Rejuvenation was defined in [9] as the preemptive rollback

of continuously running applications to prevent failures in the future. It removes

aging effects and prevents aging-related failures, without requiring knowledge

of the location of aging-related bugs, or even the very fact of their existence.

The objective of rejuvenation is to avoid - or at least postpone - aging-related

failures, and reduce the overall downtime and related cost. It has to be applied

carefully, assuring that the downtime cost due to rejuvenation (during which an

application may be unavailable) is lower than the cost of unscheduled downtime

due to failures that would occur otherwise.

Rejuvenation strategies aim at determining when and how to perform re-

juvenation. The software aging analysis techniques mentioned for determining

the expected TTAF are used for the purpose of rejuvenation schedule, i.e. the

planning of when to rejuvenate during execution. As for how to rejuvenate,

application-specific actions can be applied, i.e., techniques that take advan-

tage of special feature of the application domain or architecture, or application-

generic actions, i.e., techniques that restart the system or its parts and that

are not specific to a particular class of systems, classified in [29] as: application

restart, OS reboot, virtual machine monitor and restart, and cluster fail-over.
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4. Stream processing test application

4.1. Overview

The experimental stream processing application has been designed to be

simple and realistic. Simple means that the application does neither perform

complex processing, nor uses any sophisticated external components. This re-

duces the chance of introducing any aging bug in the test program itself, so

that the possible presence of aging could not be attributed to it. Moreover,

the application itself has been tested in order to increase the confidence in its

correctness. This is a similar approach as in past studies [24]. Realistic means

that the application processes a real workload, rather than a synthetic one.

The application (Fig. 4) consists of three processing steps, each implemented

by a topology. The communication among different topologies is managed by

the publish/subscribe messaging subsystem, provided by Apache Kafka. The

design choice of having each processing step implemented by a topology is com-

mon among developers of stream processing topologies. In fact, introducing

a messaging layer among logically separated topologies allows improving fault

tolerance, if the messaging system is enabled to store messages on disk. For the

purpose of this study, it also simplifies the detection and diagnosis of a possible

aging phenomenon. The next subsections provide a description of each topology.
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Figure 4: The experimental application.
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4.2. Feed stream topology

The first component is the wikipedia-feed-stream-topology, shown in

Fig. 5. It connects the application to the Wikipedia Internet Relay Chat (IRC)

server at the address irc.wikimedia.org:6667, joining all IRC channels of incom-

ing messages (e.g., #en.wikipedia, #it.wikipedia, #de.wikipedia, etc.). This

operation is done by the feedStreamerSpout, which uses an out-of-the-box and

IRC library. The messages coming from the IRC server are pushed into a FIFO

queue. Storm calls the nextTuple() method of the feedStreamerSpout to pop a

message out of the FIFO queue, and sends it to the feedWriterKafkaBolt. This

bolt writes the message in a Kafka topic named wikipedia-feed-raw-data, so

that it can be processed by the next topology.

feedStreamer)
Spout)

feedWriter)
Ka0aBolt) wikipedia5feed5raw5data)

Figure 5: The wikipedia-feed-stream-topology component.

As the application has been developed with the main purpose of stress test-

ing Storm, the wikipedia-feed-stream-topology can be used to increase the

workload, by setting a parameter named message replication factor (MRF). It

ensures that a message stored in the FIFO queue is not popped out until it is

emitted a number of times equal to MRF.

4.3. Feed parsing topology

The second topology (Fig. 6) processes the messages coming from the IRC

server, which include the last modifications made to a Wikipedia page, users

login, new accounts creation, abuses, and so on. Such messages provided by

the feedStreamerKafkaSpout have a precise format, which is parsed by the

feedParserBolt. The information gathered through this process is then con-

verted to a JSON message and stored in a Kafka topic (named wikipedia-feed-

parsed-data) by the parsedFeedWriterKafkaBolt.
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Figure 6: The wikipedia-feed-parse-topology component.

4.4. Feed statistics topology

The last topology provides statistics on the parsed messages, computed by

gathering them in temporal windows of 10 seconds. This is accomplished by the

tumbling window bolt feed-StatsCalculatorBolt (Fig. 7). Incoming mes-

sages are provided by the Kafka spout parsedFeedReaderKafka, which reads

the data in the wikipedia-feed-parsed-data topic, written by the wiki-

pedia-feed-parse-topology. As feedStatsCalculatorBolt can be config-

ured with more tasks, incoming messages might be distributed among tasks

in a wrong way: if the stream grouping is not chosen appropriately, messages

belonging to the same channels (e.g., #it.wikipedia) could be assigned to differ-

ent tasks, thus making the statistics incorrect. For this reason, the component

feedStatsPreprocessorBolt has been connected to the feedStatsCalcula-

torBolt to provides messages to its tasks in the proper way, by using fields

grouping. The last bolt feedStatsWriterKafkaBolt writes the statistics in a

topic named wikipedia-feed-stats.
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data-
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Preprocessor-

Bolt-
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Figure 7: The wikipedia-feed-stats-topology component.
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5. Experiments

5.1. Testbed

The server used for the experiments is a desktop PC equipped with an Intel

Core i7 CPU (2.8 GHz), 4 GB RAM and a 500 GB SATA-3 hard disk. Initially,

the system is reset and a fresh installation of the debian-8.4.0-netinst OS (64

bit) is done. The graphical interface and auxiliary software are not activated.

In this way, it is ensured that there are no useless services running in back-

ground. The following programs are installed: (i) Oracle Java Standard Edition

Development Kit 8u91; (ii) Apache Kafka v.0.10.0.0; (iii) Apache ZooKeeper

v.3.4.8; (iv) Apache Storm v.1.0.1; and (v) SSH (for remotely monitoring the

system). The measures of interest related to the system resources usage and to

the user-perceived performance are collected by bash scripts reading from the

/proc filesystem, by using the vmstat utility provided by the OS, and by reading

from Storm logs details about emitted requests and their responses.

5.2. Experiments, metrics, analysis method

We investigate the following research questions:

• RQ1: Does Apache Storm suffer from aging, and, if so, to what extent?

• RQ2: Is Apache Storm subject to software aging phenomena under stress-

ful conditions, and, if yes, to what extent?

• RQ3: How does Apache Storm manage the exhaustion of available mem-

ory under extreme conditions or under its limit (i.e., maximum usable

capacity) conditions?

To address them, four long-running experiments have been designed. The first

two aim at investigating the possible presence of software aging under a real

(unaltered) workload (Experiment 1, Section 5.3) and an amplification of the

real workload by a 10x stress factor (Experiment 2, Section 5.4). The second

two experiments (Section 5.5) investigate how Storm manages the exhaustion of

available memory by considering extreme cases of very high work loads (a 500x
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stress factor in Experiment 3) and under the maximum usable capacity (Exper-

iment 4), zooming into anomalies related to the Storm memory management

mechanisms. A prototypal rejuvenation action is also implemented and tested.

For each experiment, we adopt a measurement-based technique, by gathering

data and analyzing the resulting time series. The analysis is performed both at

system-level (the macroscopic system resources which age) and at process level

(to identify those processes more responsible for resource consumption and user-

perceived performance degradation, if any) – thus in the following we distinguish

global-level and process-level analysis.

We point out explicitly that Experiment 1 uses a real workload, as input

data come dynamically from the actual Wikipedia IRC server channels, while

experiments 2-4 are based on a replication of real data which preserves the

pattern of requests, while mimicking the presence of more users.

The main aging indicators we consider regard both the user-perceived per-

formance (in terms of throughput and latency) and the resource depletion in

terms of real memory consumption. These are the typical aspects considered

in software aging studies [3], and we consider them as direct aging indicators2.

Regarding memory consumption, we consider a summary metric to account for

the caching and buffering effect on the amount of memory consumed:

GlobalMC = TM −MemFree− Cached−Buffers (1)

where TM is the total memory. The page cache contains a copy of recently

accessed files in kernel memory. Since it can get all the free memory not allocated

by the kernel or user processes, its memory consumption is quite large and would

bias the analysis; therefore, it is subtracted from total memory. Buffers also

stores temporary data which can be freed if needed, hence it is subtracted, too.

An increasing trend of the above metric over time is useful to detect software

aging phenomena impacting memory depletion.

2A gradual and monotonic decrease of throughput or increase of latency or of memory
consumption over time is considered a software aging phenomenon.
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The performance indicator is the topology throughput (TT), which is the

metric perceived by the user submitting the tasks to the system. It is the per-

centage of the incoming tuples have been successfully processed by the topology

in a certain time interval. It is measured separately for the three topologies.

The incoming request rate is the number of emitted tuples per second taken at

the first topology, namely the wikipedia-feed-stream-topology. Then, the

throughput is measured in all the three topologies of interest.

Finally, the latency (LAT) is measured for each of the three topologies as

time taken to start processing a request.

As for process-level indicators, the memory consumption metric considered

sums up the resident set size V mRSS - the amount of RAM space in use,

for private and shared areas - and the swapped-out space V mSwap used by

anonymous private data (shared memory swap usage is not included)3:

ProcMC = V mRSS + V mSwap. (2)

Beside these direct aging indicators, we consider further metrics, both at

global level (Table 1) and at process level (Table 2), which are indirect indicators,

as their trends do not necessarily imply the presence of software aging. They

are useful to explain the aging dynamics, and to identify the main contributors

to the direct indicators.

The monitored processes are those at the core of the architecture, namely:

• The Nimbus and Supervisor daemons;

• The Zookeeper and Kafka processes;

• The Storm-ui process, namely, the storm user interface;

• The Redis server, which is a key value store used to implement state

persistence of bolts across a topology;

• The three worker processes instantiating the feed-stream, feed-parse

and feed-stats topologies.

3A recent study has shown, with reference to the web caching proxy Squid, that heap usage
may be a better indicator than the resident set size (RSS) for memory leakage-related aging
[30]. Nonertheless, RSS is typically used for detection of aging related to memory leakage.
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Table 1: Global-level indicators monitored during tests. Data collected from the /proc filesys-
tem (CPUIdle), logs of Storm (for TT and LAT), and through the vmstat utility.

Global-level software aging indicators
Indicator Description

CPUIdle CPU Idle time (seconds per sample)4

NReads/NWrites Number of reads/writes (per sample)
ReadSectors/WrittenSectors Read/Written sectors (per sample)
ReadTime/WriteTime Time spent (in ms) reading/writing from the disk (per sample)
ioTime Time spent (in s) waiting for I/O to complete (per sample)
Swpd Amount of swapped memory
Swap in/out Memory per second swapped in from/out to disk
Block in/out Blocks per second received from/sent to a block device
MemFree Amount of idle memory (KB)
Cached Memory used as cache (KB)
Buffers Memory used as buffers (KB)
Interrupts Interrupts per second, including the clock
ContextSwitches Context switches per second
GlobalMC Global memory consumption (KB)
Throughput Applicative throughout, for the three topologies (%)
Latency Applicative latency, for the three topologies (ms per sample)

Table 2: Process-level indicators monitored during tests. Data collected from
/proc/<PID>/status, /proc/<PID>/smaps and /proc/<PID>/io.

Process-level software aging indicators
Indicator Description
CPU Total CPU time: sum of times spent running non-kernel code,

kernel code, idle, and waiting for IO
VmRSS Resident set size: amount of physical memory (private and shared

pages) the process is currently using
VmSize VM size: Amount of virtual memory available to the application (KB)
VmSwap Swapped-out VM size by anonymous private pages (KB)
PSS Proportional Set Size: private pages plus shared pages each

divided by the n. of sharing processes (KB)
USS Unique Set Size: private pages (KB)
rchar/wchar Number of bytes read/written (per sample) from storage

It is unaffected by whether or not actual physical disk IO was required
(the read might have been satisfied from pagecache)

syscr/syscw Number of read/write system calls (per sample)
read/write bytes Number of real read/written bytes (per sample) from storage
canceled write bytes Number of bytes not written due to page cache truncation (per sample)
ProcessMC Process memory consumption (KB)

Differently from conventional controlled experiments in software aging stud-

ies, we need to consider that the workload is real and variable – only the repli-

cation factor is controlled in experiments 2-4. Workload-dependent analysis

requires not only to compute the trend of the indicators, but also to relate

them to the workload. Indeed, increase of memory consumption or decrease of

throughput may well be due to the load increase, in which case the performance

degradation is not a symptom of software aging – it is an expected behaviour.

However, progressive and continuative depletion of memory and/or decrease of

throughput under a constant or decreasing request rate is symptom of aging.
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To account for this, we act as follows. We adopt the conventional Mann-

Kendall test (MKT) [31] with 95% confidence level to estimate the trends of

aging indicators. The analysis is typically conducted by means of observation

windows, which define time intervals within which to apply MKT. Let us con-

sider one summary indicator for memory consumption (MC), one for through-

put (TT ), one for latency (LAT ), and the incoming request rate (WL). If the

MKT does not detect any trend for at least one of these indicators in the current

observation window, the window is expanded to consider more samples. When

the MKT succeeds for at least one variable, the window slides over; the new

window starts from the first sample just after the previous window.

The effectiveness of the Mann-Kendall test for aging detection has been

investigated in [32]: Machida et al. have shown experimentally that MKT

suffers from high rates of false positives, so it is possible for it to indicate software

aging even where there is no aging. This limitation of MKT can be contrasted by

increasing the amount of data considered in the test, at the cost of increasing the

time to detect aging. Despite its limit, MKT remains the most widely adopted

test to detect aging. However, the choice of the observation window is crucial,

and it has to be performed carefully. In our study, the “sufficiently large” initial

size for the observation window has been defined based on a set of preliminary

tests and a manual inspection results, which suggested setting it as high as 120

minutes, with an expansion factor of 10 minutes.

In a window with at least one trend, the following cases are of interest:

• There is an increasing trend in WL and an increasing trend in MC and/or

a decreasing one in TT and/or an increasing trend in LAT . We consider

this a non-aging behaviour, since the decrease is somehow “expected”

because of the workload increase;

• There is no trend or a decreasing trend in WL and an increasing trend

in MC and/or a decreasing trend in TT and/or an increasing trend in

LAT . We consider this behaviour a potential aging phenomenon, as the

behaviour is not “expected” in that window, because of the increase of the
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workload. The large minimum size of the window minimizes the chance

that this behaviour is due to the “history” of previous windows. Of course,

if two or all of the three indicators (MC, TT , LAT ) have an aging trend,

the likelihood that there is an actual aging occurring is higher.

All the other cases do not give clues about possible aging (i.e., if neither MC nor

TT nor LAT have aging trends, then we conclude that there is no aging in that

window). We count how many times, in a given experiment, the above cases

happen. This approach allows investigating how much the workload affects

the memory growth, the topologies throughput and their latency. Thus, for

instance, suppose that the MKT test is applied over 50 time windows across

all the time series. Consider the case of the MC aging indicator. if the MKT

applied to the MC series notifies an increasing trend AND the MKT applied

to the input WL series, in the same time windows, notifies a decreasing or no

trend, we count a potential aging behaviour. If, in the mentioned example, this

happens 10 times, then we note a percentage of 20% for the MC indicator,

meaning that in 20% of cases there has been a potential aging phenomenon

related to the memory consumption.

5.3. Experiment 1 (RQ1)

5.3.1. Global-level analysis

The first experiment addresses research question RQ1; it consists in a rela-

tively long-running test of 72 hours. The message replication factor is set to 1 –

i.e., the workload is left unmodified - and the sampling period is 1 minute. The

workload occurring during the experimental period is showed in Fig. 8.

Figures 9-15 show the global memory consumption, the throughput and la-

tency of the three involved topologies. A workload-independent analysis – i.e.,

looking for a global trend over the entire time series – highlights a trend on mem-

ory consumption (2.28 KB/minute), and no trend in the throughput indicators

(none of the trends is significant at 95%, or it is 0 with confidence greater than

95%). At latency level, there is a very slight trend for the feed-stream topology
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Figure 8: The input workload, test 1

(amounting to 1.58e-09 ms increase per request) and for the feed-parse topol-

ogy (6.12e-10 ms increase per request). The per process analysis will highlight

if this is somehow associated with the memory consumption at process level.

Table 3 lists the results of the workload-dependent correspondence analysis:

it shows the percentage of time the aging indicators have a trend concordant or

discordant with the workload trend. The highest percentage is in the latency

indicator of the feedstats topology, which in 36.11% of the cases shows a trend

together with a decreasing (or no) trend of the WL. The global trend of the entire

time series is negative (and very small); thus, despite there are windows where

latency increases unexpectedly, the phenomenon is to be considered negligible

(indeed, there is no impact on throughput). The other indicator with a relatively

high percentage is for memory consumption, whose trend is increasing in 38.89%

of the observation windows, along with a non-increasing WL trend in 27.78% of

the cases. The global trend for MC is 2.28 KB per minute.

Figure 9: Global memory consumption, test 1
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Figure 10: Throughput of wikipedia-feed-stream-topology, test 1. (Y-axis scale: 0-100).

Figure 11: Throughput of wikipedia-feed-parse-topology, test 1 (Y-axis scale: 98-100).

Figure 12: Throughput of wikipedia-feed-stats-topology, test 1 (Y-axis scale: 99-100).
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Figure 13: Latency per request of wikipedia-feed-stream-topology, test 1.

Figure 14: Latency per request of wikipedia-feed-parse-topology, test 1.

Figure 15: Latency per request of wikipedia-feed-stats-topology, test 1.

Table 4 lists the global trend for each remaining indirect indicator, if sig-

nificant with p-value < 0.05 (it is considered zero otherwise). There is a slight

trend in the disk writing operations, whereas the CPU- and memory-related

indicators confirm the stable behaviour of Storm under the considered load.
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Table 3: Correspondence analysis between workload and aging indicators, test 1. Percentage of
occurrence of trends in the aging indicator (row) in correspondence to the WL trend (column)

WL Trend Increasing, decreasing No or decreasing
Aging Trend or no WL trend WL trend

(Independent of WL)

Increasing MC 38.89% 27.78%

Decreasing TT
13.89% (stream topology) 8.33% (stream topology)
8.33% (parse topology) 2.78% (parse topology)
5.55 % (stats topology) 5.55% (stats topology)

Increasing LAT
25% (stream topology) 25% (stream topology)
22.22% (parse topology) 16.67% (parse topology)
41.67% (stats topology) 36.11% (stats topology)

Increasing MC AND Decreasing TT
2.78% 2.78%
0.00% 0.00%
0.00% 0.00%

Increasing MC AND LAT
5.56% 5.56%
2.78% 0.00%
22.22% 19.44%

Decreasing TT AND Increasing LAT
0.00% 0.00%
5.56% 2.78%
2.78% 2.78%

ALL: Increasing MC 0.00% 0.00%
AND Decreasing TT 0.00% 0.00%
AND Increasing LAT 0.00% 0.00%

Table 4: Global trend and WL-aging, test 1.

Indicator Trend
Global-level Aging Indicators (Indicator’s um per minute – e.g., KB/min for GlobalMC)

Direct indicators
GlobalMC 2.28e+0
TT stream 0.0e+0
TT parse 0.0e+0
TT stats 0.0e+0
LAT stream 1.58e-9
LAT parse 6.12e-10
LAT stats -3.71e-9

Indirect indicators
CPUIdle 2.4e-3
NReads/NWrites 0.0e+0/9.33e-3
ReadSectors/WrittenSectors -2.41e+0/4-44e+0
ReadTime/WriteTime 1.17e+0/3.93e+0
ioTime 4.38e-4
Swpd 0.0e+0
Swap in/out -9.14e-4/-2.5e-3
Block in/out 1.10e-3/5.63e-2
MemFree 9.19e-1
Cached -2.07e+0
Buffers 3.25e-1
Interrupts 2.78e-2
ContextSwitches 2-84e-2

5.3.2. Process-level analysis

We analyze now the direct aging indicators for each process over the entire

time series. Then, the relation of the process aging indicator ProcMC with the

workload is considered. Table 5 summarizes the results.
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Table 5: Global trend (indicator um per minute) of process-level indicator, and WL-MC
correspondences. Trends not significant at p− value <0.05 are set to 0.0e+0.

Processes
Indicator Nimbus Superv Zook Kafka Storm-ui

CPU -5.74e-4 0.0e+0 2.73e-4 -3.08e-2 0.0e+0
VmSize 0.0e+0 0.0e+0 0.0e+0 -7.45e+0 0.0e+0
VmRSS 1.60e+0 -1.03e+1 -7.47e+0 -2.49e+1 -1.78E+1
VmSwap 2.23e+1 1.27e+1 8.30e+0 3.27e+1 1.61e+1
PSS 0.0e+0 -1.06e+1 -7.59e+0 -2.49e+1 -1.70e+1
USS 0.0e+0 -1.07e+1 -7.67e+0 -2.50e+1 -1.72e+1
rchar -1.65e-1 -1.66e+1 2.73e+0 -3.24e+4 0.0e+0
wchar 6.35e-1 0.0e+0 2.45e+0 -3.23e+4 5.59e-2
syscr 3.7e-3 0.0e+0 2.5e-3 -1.73e+1 0.0e+0
syscw 5.6e-3 0.0e+0 0.0e+0 -1.10e+1 0.0e+0
readB 1.70e+0 -2.37e+0 0.0e+0 0.0e+0 -5.54e+0
writeB 3.69e+0 0.0e+0 0.0e+0 -2.28e+4 0.0e+0
cancWriteB 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0
ProcMC 4.01e+0 1.17e+0 1.09e+0 2.09e+0 -1.46e+0

% of time slots where WL is not increasing and ProcMC is increasing
ProcMC -WL 30.56% 16.67% 16.67% 33.33% 27.78%
(%slots)

Indicator Redis stream-top parse-top stats-top

CPU 0.0e+0 5.87e-2 -1.5e-1 3.17e-2
VmSize 0.0e+0 0.0e+0 1.80e-1 2.08e+0
VmRSS 0.0e+0 1.10e+1 2.36e+1 -1.11e+1
VmSwap 0.0e+0 0.0e+0 1.31e+1 1.68e+1
PSS 0.0e+0 1.07e+1 2.36e+1 -1.12e+1
USS 0.0e+0 1.08e+1 2.36e+1 -1.14e+1
rchar 5.17e-1 -3.02e+1 -8.61e+3 0.0e+0
wchar 0.0e+0 -4.8e+3 -1.32e+4 2.96e+0
syscr 0.0e+0 -7.37e+0 -1.09e+1 0.0e+0
syscw 0.0e+0 -6.72e+0 -3.67e+0 0.0e+0
readB 0.0e+0 -2.29e+0 0.0e+0 -2.51e+1
writeB 0.0e+0 -2.92e+0 -5.48e+0 -2.52e+1
cancWriteB 0.0e+0 0.0e+0 0.0e+0 0.0e+0
ProcMC 0.0e+0 1.26e+1 3.52e+1 4.47e+0

% of time slots where WL is not increasing and ProcMC is increasing
ProcMC -WL 0.0% 52.77% 25% 38.89%
(%slots)

It is worth noting the relevant contribution in absolute terms of the feed-

stream and feed-parse topologies to the memory consumption (these had also

the trend on Latency). Considering the correspondence with a non-increasing

workload, the main processes are the above two topologies, followed by core

components Kafka and Nimbus. These trends are however insufficient to cause

the entire system to age in a noticeable way, as highlighted by the analysis in

the previous Section.

5.4. Experiment 2 (RQ2)

The second experiment addresses research question RQ2, investigating if the

aging behaviour changes under a workload by an order of magnitude heavier.

The replication factor is set to 10.
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5.4.1. Global-level analysis

The workload during the experimental period is shown in Fig. 16.

Figure 16: The input workload, test 2.

Figures 17-23 show the global memory consumption, the throughput and

latency of the three topologies. A workload-independent analysis – of a global

trend over the entire time series - highlights a remarkable trend in the memory

consumption, amounting to an increase of 451 KB per minute compared to

the previous case; the throughput, however, is still unaffected (namely, Storm

manages to serve incoming requests), but the latency of the responses has a

positive global trend amounting to an increase of 11 ms per request for the last

output topology, wikipedia-feed-stats-topology (first part of Table 7).

Table 6 lists the results of the workload-dependent correspondence analysis:

it shows the percentage of times the aging indicators have a concordant or

discordant trend with the input workload trend (i.e., the request rate).

Figure 17: Global memory consumption, test 2.
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Figure 18: Throughput of wikipedia-feed-stream-topology. (Y-axis scale: 90-100.)

Figure 19: Throughput of wikipedia-feed-parse-topology. (Y-axis scale: 99-100.)

Figure 20: Throughput of wikipedia-feed-stats-topology. (Y-axis scale: 97.5-100.)

The results show that there is not a high percentage of observation windows

where the aging indicators show aging trends. This means that the trends have

a decreasing/increasing pattern (with a pattern that, visually, seems to be the

opposite one of the workload), but, considering the entire time series, the overall

trends are increasing. Moreover, in the windows where such an aging trend is

present (visually, from hour 15 to 39), the WL has in most cases a non-increasing

trend (namely, what we defined an aging situation).
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Figure 21: Latency per request of wikipedia-feed-stream-topology, test 2.

Figure 22: Latency per request of wikipedia-feed-parse-topology, test 2.

Figure 23: Latency per request of wikipedia-feed-stats-topology, test 2.
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Table 6: Correspondence analysis between workload and aging indicators, test 2. Percentage of
occurrence of trends in the aging indicator (row) in correspondence to the WL trend (column)

WL Trend Increasing, decreasing No or decreasing
Aging Trend or no WL trend WL trend

(Independent of WL)

Increasing MC 27.78 % 16.67 %

Decreasing TT
5.55% (stream topology) 5.55% (stream topology)
0.0% (parse topology) 0.0% (parse topology)
0.0 % (stats topology) 0.0% (stats topology)

Increasing LAT
27.78% (stream topology) 27.78% (stream topology)
38.89 % (parse topology) 27.78% (parse topology)
22.22% (stats topology) 16.67% (stats topology)

Increasing MC AND Decreasing TT
2.78% 2.78%
0.0% 0.0%
0.0 % 0.0%

Increasing MC AND LAT
2.78% 2.78%
2.78 % 0.0 %
5.56 % 5.55%

Decreasing TT AND Increasing LAT
0.0% 0.0%
0.0% 0.0%
0.0% 0.0 %

ALL: Increasing MC 0.0% 0.0%
AND Decreasing TT 0.0% 0.0 %
AND Increasing LAT 0.0% 0.0%

Table 7 reports, for both direct and indirect indicators, the global trend, if

it is significant with p-value < 0.05 (it is considered equal to zero otherwise).

The indicators highlight a positive significant trends on disk activity (writing

activity), as well as the contribution to memory trend given by the cache and

buffers. There seems to be no stress at CPU level.

Table 7: Global trend and WL-aging, test 2

Indicator Trend
Global-level Aging Indicators (Indicator’s um per minute – e.g., KB/min for GlobalMC)

Direct indicators
GlobalMC 4.51e+3
TT stream 0.0e+0
TT parse 0.0e+0
TT stats 0.0e+0
LAT stream 0.0e+0
LAT parse -2.68e-7
LAT stats 1.11e+1

Indirect indicators
CPUIdle 1.30e-3
NReads/NWrites 0.0e+0/3.20e-3
ReadSectors/WrittenSectors 0.0e+0/2.27e-1
ReadTime/WriteTime 0.0e+0/9.92e-2
ioTime 0.0e+0
Swpd 0.0e+0
Swap in/out 0.0e+0/2.61e-3
Block in/out -8.98e-4/0.0e+0
MemFree -2.58e+2
Cached 8.26e+1
Buffers 9.50e+1
Interrupts -1.30e-1
ContextSwitches -1.31e-1
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5.4.2. Process-level analysis

Table 8 summarizes the results at process level, considering both the aging

indicators over the entire time series, and then the relation of the process aging

indicator ProcMC with the workload.

Table 8: Global trend (Indicator’s um per minute) of process-level indicator, and WL-MC
correspondences. Trends not significant at p− value¡0.05 are set to 0.0e+0.

Processes
Indicator Nimbus Superv Zook Kafka Storm-ui

CPU -5.1e-3 0.0e+0 0.0e+0 -1.84e-2 -6.43e-4
VmSize 0.0e+0 0.0e+0 0.0e+0 0.0e+0 1.97e+0
VmRSS 1.87e+2 -1.74e+0 -3.01e+0 -6.22e+1 -4.02e+0
VmSwap 0.0e+0 0.0e+0 0.0e+0 7.18e+1 0.0e+0
PSS 1.90e+2 2.70e-1 1.64e-2 -6.03e+1 -1.14e+0
USS 1.89e+2 -1.31e-1 -5.62e-1 -6.04e+1 -1.85e+0
rchar 2.57e+0 0.0e+0 9.43e+0 0.0e+0 0.0e+0
wchar 0.0e+0 1.11e-2 12.14e+0 0.0e+0 3.62e-2
syscr 0.0e+0 0.0e+0 1.50e-3 0.0e+0 0.0e+0
syscw 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0
readB 0.0e+0 0.0e+0 0.0e+0 -1.23e+3 0.0e+0
writeB -2.21e+0 0.0e+0 8.92e+0 0.0e+0 0.0e+0
cancWriteB 0.0e+0 0.0e+0 0.0e+0 0.0e+0 0.0e+0
ProcMC 1.91e+2 -1.74e+0 -2.36e+0 3.14e+0 -4.02e+0

% of time slots where WL is not increasing and ProcMC is increasing
ProcMC -WL 47.06% 17.65% 27.78% 50.00% 22.22%
(%slots)

Indicator Redis stream-top parse-top stats-top

CPU 0.0e+0 -4.85e-2 -2.31e-1 1.27e-1
VmSize 0.0e+0 4.98e-1 0.0e+0 0.0e+0
VmRSS -3.74e-1 3.11e+0 -3.29e+1 3.16e+1
VmSwap 0.0e+0 0.0e+0 2.60e-3 0.0e+0
PSS 0.0e+0 3.45e+0 -3.20e+1 4.59e+0
USS -1.23e-2 3.02e+0 -3-23e+1 4.00e+0
rchar 1.22e+0 0.0e+0 0.0e+0 -1.30e-3
wchar 0.0e+0 0.0e+0 0.0e+0 6.22e+0
syscr 0.0e+0 0.0e+0 0.0e+0 -3.73e-1
syscw 0.0e+0 0.0e+0 0.0e+0 -1.2e-3
readB 0.0e+0 0.0e+0 0.0e+0 0.0e+0
writeB 0.0e+0 -2.44e+0 0.0e+0 0.0e+0
cancWriteB 0.0e+0 0.0e+0 0.0e+0 0.0e+0
ProcMC -3.53e-1 3.12e+0 -3.29e+1 3.16e+1

% of time slots where WL is not increasing and ProcMC is increasing
ProcMC -WL 0.00% 50.00% 33.33% 88.89%
(%slots)

In absolute terms, the processes mainly contributing to the aging trend are

Nimbus, where an increasing amount of 191 KB per minute are consumed, and

the last topology, wikipedia-feed-stats-topology. This is in line with the

latency result, suggesting the wikipedia-feed-parse-topology as a bottle-

neck. If we consider the workload-dependent analysis, the percentages of win-

dows where there is an aging trend along with a non-increasing workload of
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wikipedia-feed-parse-topology is as high as the 88.89%. This means that

almost always the memory consumption of wikipedia-feedparse-topology

increases and the WL does not increase. In conjunction with the latency trend

in the same process, this reveals an issue in that process. Secondarily, it is worth

noting the role of Nimbus, with a percentage of 47.06%, and again Kafka, like

in the previous test, where the 50% of times there is an aging behaviour.

5.5. Experiments 3 and 4 (RQ3)

The following two experiments refer to research question RQ3; they inves-

tigate how Storm manages the exhaustion of available memory by considering

extreme cases of very high workloads (Experiment 3) and under the maximum

usable capacity (Experiment 4). We will look at specific anomalies related to

the Storm memory management mechanisms in such situations. A prototypal

rejuvenation action is also implemented and tested.

In Experiment 3, we set the message replication factor to 500, to emulate a

highly stressful condition. As Fig. 24 shows, the wikipedia-feed-stream-to-

pology memory consumption indicator is affected by several drops, correspond-

ing to the times when the topology is reset by Storm. Such a procedure is trig-

gered by Storm each time Nimbus does not receive the worker process heartbeat

within a predefined timeout interval (30 seconds).

At first glance, all these resets happen after the memory consumption grows

beyond a (variable) threshold. Moreover, in many cases there are sudden incre-

ments of the WL, and the memory consumption grows much faster.

By analyzing topology logs, it is possible to notice the presence of many

Full GC operations preceding the topology reset. This is because the workload

is too heavy for the server memory resources, and the garbage collector has to

continuously free the memory. When a Full GC begins, all the other threads are

stopped, so that the operation can be completed as soon as possible. Depending

on the size of the memory and on its level of fragmentation, this procedure takes

considerable time (up to minutes). Besides stopping the topology processing,

this behavior prevents the heartbeat thread from sending its signals to Storm.
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Figure 24: Performance drops of the wikipedia-feed-stream-topology.

This is the reason why Storm kills and restarts the topology - causing a high

number of lost tuples. The stream feeding topology takes minutes to establish

a new connection to all IRC wikipedia server channels. Fig. 25 shows that the

topology downtime is about 3-4 minutes. In the meantime, messages are lost.

Figure 25: Run of the wikipedia-feed-stream-topology before its first reset by Storm.
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Several strategies can avoid this undesirable behavior. An obvious one is to

provide more memory. However, cleaning large memory areas can take a long

time, and the solution may not be adequate. An alternative is to increase the

heartbeat timeout value. But Storm would take longer to detect the failure

of a topology, resulting in unnecessary downtime. A further solution is to dy-

namically change the timeout value based on both the memory consumed and

the workload. This is however not practicable, because the timeout value is set

when Storm is launched – a modification of its source code would be required.

We opted for the replication of the stream feeding topology, to replace it

just before it is reset by Storm. The approach consists of simply monitoring the

memory consumption of the topology, checking if it exceed a threshold. Since

a restarted topology takes about 3 minutes to start emitting tuples again, it is

convenient to trigger this failover procedure as soon as a threshold is exceeded.

The old topology must be killed just before the new one starts to emit tuples,

so that few messages are lost and no duplicates are produced. A threshold value

is given by the mean (about 700 MB) of the memory time series of Fig. 24. The

procedure is implemented by a ‘restarting agent ’, which periodically monitors

the topology memory consumption. Fig. 26 shows the difference between a

Storm topology restart and one made by our restarting agent. The former takes

a little more than 2 minutes to complete, while the latter takes 30 seconds.

Fig. 27 shows the behavior of wikipedia-feed-parse-topology, which is

reset by Storm in three different occasions. These restarts are much faster than

the wikipedia-feed-stream-topology, as the parsing topology just connects

to Kafka to start emitting tuples. Considering that Kafka ensures the messages

persistence, it may be justified to let Storm decide when a reset is needed. In

this case, the restarting agent could lead to more frequent (and useless) resets.

The wikipedia-feed-stats-topology is reset just once, after it spent a

long time with its memory at the maximum value (Fig. 28). Once again, the

reset is caused by the heartbeat thread, which does not send signals to Nimbus

because of highly frequent Full GCs that overload the system. This topology

turned out to be the most robust one against heavy workloads.

32



Figure 26: Comparison between a Storm-made reset and the restarting agent approach.

Experiment 4 consists of additional tests to identify the message replication

factor that does not overload the topologies. More memory (1 GB instead of

800 MB) is given to each topology, in order to prevent situations like those

illustrated above. Consistently, we do not observe any topology reset. How-

ever, other malfunctions regarding both the wikipedia-feed-stats- and the

wikipedia-feed-parse- topologies came out. In particular, the test shows

sudden breaks of tuples processing, which went undetected by Storm.

Fig. 29 suggests that memory exhaustion is the possible cause of the anomaly.

The GC log files reveal that a Full GC is done a few seconds before the topology

stops working. Moreover, many Full GCs are done (every 30 seconds, approx-

imately), so, once again, the memory given to this topology is not enough.

However, the seriousness of the anomaly is because the problem causes only the

crash of the executors, while the heartbeat thread is still working – so it is a

silent failure. This prevents Storm from revealing the issue and performing a

reset – a highly undesirable behavior. To prove that this behavior is consis-

tent over time, the topology is manually reset; after about the same time (90

minutes), the topology stops processing tuples and Storm does not detect it.
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Figure 27: Emitted tuples, memory consumption and throughput of the wiki-

pedia-feed-parse-topology.

Figure 28: Emitted tuples, memory consumption and throughput of the wikipe-

dia-feed-stats-topology.

The feed-stats topology exhibits a similar behavior (Fig. 30). After about

6 hours, it suddenly stops to process tuples. The GC log files contain similar

information as for the feed-parse topology. This might be due to the Storm

internal communication mechanisms: they are based on external libraries, which
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Figure 29: Tuple processing stopped with the heartbeat enabled.

use the Java Unsafe API, which in turn allows to allocate memory without

invoking the GC (as per default). If confirmed, this hypothesis – to be further

investigated - would mean that the GC collects the unsafely allocated memory,

thus blocking the threads waiting for objects stored in that particular area.

Figure 30: Anomaly behavior of wikipedia-feed-stats-topology.
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A rejuvenation solution consists in adding a mechanism to the proposed

restarting agent, to enable detecting the illustrated anomalies. The agent peri-

odically monitors topology throughput by means of queries to Storm UI. If the

throughput is null within the time interval, the restarting agent checks if the

“logically previous” topology is working. For instance, if the wikipedia-feed-

parsed-data TT is zero, then the restarting agent checks if the one belonging to

the wikipedia-feed-stream-topology is non-zero. In that case, it means that

the feed-parse topology stopped working and must be restarted. A different

situation is when the zero TT is exhibited by the feed-stream topology. This

could be due to three causes: (1) the connection is down, (2) the IRC server

is down, (3) the topology stopped working. The restarting agent can check the

first two conditions: no action is taken if one of them holds. If they are both

false, the topology stopped working and must be reset.

A further approach for avoiding the reset of the topologies makes use of

cloud computing. Storm may be deployed on a cloud infrastructure as illus-

trated in Fig. 31. In this way, when the workload increases, exploiting the

auto-scaling mechanism, the virtual machine hosting the worker processes can

be replicated according to a specified service level agreement [33]. However,

this solution requires a partial change of the application. In particular, the

wikipedia-feed-stream-topology should be removed, since its possible repli-

cation would only lead to doubling the messages written in the wikipedia-feed-

raw-data topic. In any case, the best way for following the cloud computing

approach would be to consider the implementation of auto-scaling mechanisms

directly into Storm.

6. Conclusions

This work has investigated software aging issues in Apache Storm, a popu-

lar event stream processing system. Storm is a robust stream processor: even

under heavy workload, it keeps working at the best of its possibility. In case of

light workloads, Storm yields roughly constant throughput and latency and a
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Figure 31: Proposed solution for the overload problem using cloud computing services.

negligible memory consumption trend. Under heavier workload (real workload

amplified by a factor of 10x), aging turned out to be more evident in terms

of memory consumption, affecting also the user perception in terms of response

latency. Processes of the Storm architecture were also analyzed to pinpoint pos-

sible contributors, revealing the prominent role of some of them such as Kafka

and Nimbus. Further experiments highlighted that the platform is subject to

aging-related anomalous behaviors under extreme workload conditions, wherein

Garbage collection plays a key role, which prevent some topologies from working

continuously and fail silently. For addressing the aforementioned issues, a cloud-

based solution is advocated. We found that in some cases Storm frequently kills

the topologies, which are just doing garbage collection, although they are not

actually dead. It has been shown that these resets are mainly due to the server

lack of memory. Such shortage forces the worker processes GCs to run con-

tinuously in order to free the scarce memory available to the topology. This

prevents the topology heartbeat thread from sending signals to Storm, which

kills it after a certain timeout. In order to solve these problems, a rejuvenation

action based on a restarting agent has been designed, implemented and tested,

and other possible approaches have been discussed.

As specific aging manifestation, a possible Storm vulnerability has been also

highlighted, due to the use of GC when running Java topologies. Such mech-
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anism is well-known and absolutely robust, but since Storm uses it with its

default parameters, in some cases it could not perform as expected. Therefore,

the acknowledged aging-related anomalies could lead to undesirable behaviors

in production environments if not taken into account. Solutions like the pro-

posed restarting agent should be considered or, even better, the mentioned

auto-scaling mechanisms should be implemented directly in Storm.

It is worth to point out that Storm is indeed a complex software – hence,

the tests conducted in this work cover just a portion of all its aspects. For

example, no experiments are made to test the exactly-once message process-

ing mechanisms, or that considers the utilization of synthetic workload (e.g.,

to simulate other workload patterns), which could uncover some other critical

issues in the system. On the other hand, the goal of the presented work was

to run a case study to highlight how aging behavior in Storm can occur and

to give insights into this specific instance of stream processors: indeed, fur-

ther long-running tests need to be run in order to corroborate our findings and

statistically generalize results.
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