
FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 1

Deliverable D3.3: “Models-based Process Definition”

ICEBERG

How to estimate costs of poor quality in a Software QA

project: a novel approach to support management decisions

Industry-Academia Partnerships and Pathways (IAPP)

Call: FP7-PEOPLE-2012-IAPP

The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement n°324356

Deliverable No.: 3.3

Deliverable Title: ICEBERG models-based process

Organisation

name of lead

Contractor for this

Deliverable:

UAH

Author(s): Pasqualina Potena, Luis Fernández

Participant(s) Cigdem Gencel, Roberto Pietrantuono, Carmen Pagés

Work package

contributing to

the deliverable:

WP3

Task contributing

to the deliverable:

3.1 and 3.2

Total Number of

Pages

106

Formattato: Spagnolo
(internazionale)

Formattato: Spagnolo
(internazionale)

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 2

Deliverable D3.3: “Models-based Process Definition”

Table of Versions

Version Date Version Description Contributors

1.0 June 2015 First draft for review Pasqualina Potena

and Luis Fernandez

3.0 July 2015 Working draft for changes by DEISER and CINI Pasqualina Potena

and Luis Fernandez

4.0 and

5.0

September

2015

Reviewed by DEISER and CINI Roberto Pietrantuono

and Cigdem Gencel

6.0 October

2015

Final draft for formal approval Pasqualina Potena,

Luis

Fernandez,Roberto

Pietrantuono and

Cigdem Gencel

7.0 3rd

November

2015

Official final versión of deliverable 3.3 All partners

8.0 16th

November

2015

Official final versión of deliverable 3.3 with

small changes to guarantee consistency to

deliverable 3.2 v2.

Pasqualina Potena,

Luis Fernandez,

Carmen Pagés,

Roberto Pietrantuono

and Cigdem Gencel:

reviewed by all

partners

Formattato: Tipo di carattere:
(Predefinito) Times New Roman

Formattato: Allineato a sinistra

Formattato: Tipo di carattere:
(Predefinito) Times New Roman

Formattato: Inglese (Regno Unito)

Formattato: Tipo di carattere:
(Predefinito) Times New Roman

Formattato: Italiano (Italia)

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 3

Deliverable D3.3: “Models-based Process Definition”

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION ... 5

3 A GENERIC MODELS-BASED PROCESS AND DECISION MAKING FRAMEWORK

 7

4 OPTIMAL ALLOCATION OF TESTING RESOURCES ... 4036

5 OPTIMAL REGRESSION FUNCTIONAL TESTING ... 7368

6 ARCHITECTURAL DECISION-MAKING ... 8984

7 CONCLUSIONS .. 10196

8 REFERENCES ... 10297

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 4

Deliverable D3.3: “Models-based Process Definition”

1 EXECUTIVE SUMMARY

The aim of D3.3 of the ICEBERG project “Model-based Process Definition” is to

extend the deliverable D3.1 [1] by providing a more detailed presentation of the

model-based decision making process and the generic framework, which have

been under development in the ICEBERG project. In particular, we describe raw

measurement/prediction models that would help in determining the cost of quality

(and not-quality) and allow making best decisions for the trade-off between cost

and quality, as well as a generic process definition for how to utilize such models

in industrial settings.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 5

Deliverable D3.3: “Models-based Process Definition”

2 INTRODUCTION

The goal of our work is to assist project managers and quality managers in

making informed decisions during software development and maintenance.

Informed decision-making requires collecting and analyzing quantitative data and

providing the resultant information in an understandable way to decision makers.

Such assistance requires not only evaluating the dimensions of the well-

known project management iron triangle, which are cost (e.g. cost to correct a bug

during testing, or the cost of testing per unit testing-effort expenditures), time (e.g.

time to detect and fix a bug), and quality (e.g. level of reliability), but also

understanding the nature of interactions and tradeoffs among them to be able to

make better decisions under different constraints.

In this document, first, we present the generic models-based decision

making framework and process, which have been under development in the

ICEBERG project during the last three work packages. Then, in the following

chapters, we also provide three different instantiation of the models-based process

defined for making various quality management decisions.

The following aspects characterize the novelty of each of these instantiation:

 Optimal Allocation of Testing Resources. We developed an automated

optimization process for dynamically allocating testing resources to

software modules (functionalities) based on trade-offs among software

quality, cost, and schedule/time requirements. We also explicitly consider

uncertainty in the testing process in order to evaluate the robustness

of the testing resource allocation.

In particular, our approach helps to: (i) select (and use) Software

Reliability Growth Models (SRGMs) in order to make the software testing

process more effective; and (ii) handle parameters uncertainty, which, as

shown through our real world software project, plays a critical role in

accurately describing a testing resource allocation process. It is well

known that SRGMs sometimes show good performance in terms of

predictability of the software reliability, but sometimes they do not. In this

work, we show that the handling of uncertainty is a key factor for a

trustworthy prediction of the reliability of a software system, and leads an

optimization model to a more precise (and less pessimistic) estimation of

the system reliability, as well as to a more effective and efficient testing

resource allocation activity.

 Optimal Regression Functional Testing. Based on the generic models-

based decision making process, we proposed an automated prioritization

approach for large software systems that embeds the “code churn”

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 6

Deliverable D3.3: “Models-based Process Definition”

measure. Code churn represents a measure of the amount of code change

taking place within a software system over time. Thus, we propose to use

code-coverage measures (produced by static code analysis) by considering

software system evolution metrics (extracted from system’s change

history).

 Architectural Decision Making. We developed an automated approach

for making architectural decisions. Specifically, our focus is on (i)

modeling and analysis of QoS tradeoffs of a software architecture based on

optimization models, and (ii) definition of framework for supporting the

software architects/maintainers. Thereby, we support software

architects/maintainers to manage the interactions and conflicts between

requirements, between design decisions, and between requirements and

design decisions. The support includes automatic detection (by model

checking techniques) of interactions and conflicts mostly in the part of the

architecture design decisions and propagation of interaction between

different levels. Our approach also allows producing the space of possible

feasible architectural solutions obtained by instantiating parametric design

decisions. Each solution is computed taken into account the specification

constraints associated with the design decisions and the known

interactions and conflicts between concrete design options.

This document is organized as follows: In Chapter 3, we present the

generic decision making framework and models based process of the ICEBERG

project; in Chapter 4 we discuss in detail the optimal testing resources allocation

process.; in Chapter 5 we present the optimal regression functional testing process

using coverage and churn metrics; in Chapter 6, we introduce the architectural

decision making process. Finally in Chapter 7, we present the conclusions of this

work package.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 7

Deliverable D3.3: “Models-based Process Definition”

3 A GENERIC MODELS-BASED PROCESS AND DECISION
MAKING FRAMEWORK

In the previous work packages of the ICEBERG project, a comprehensive

literature review and an industrial survey were carried out to identify the state of

the art on:

 Quality management and decision-making needs of software

companies,

 Commonly used software tools and commonly collected measures for

time, cost and quality

 Potential analysis techniques, methods and tools that could be used for

analyzing tradeoffs between cost, time and quality

These were altogether provided a basis when defining a generic models-

based process (see Figure 1Figure 1) and quality decision making framework (see

Figure 2) for software companies.

We based the generic process on ISO/IEC 15939 Standard on Software

Measurement Process so as to enable companies to be able to use the decision-

making framework integrated with their measurement processes. The Models

Based Decision Making Process provides a concrete support to software

companies when planning their measurement process.

FIGURE 1: A GENERIC MODELS BASED DECISION MAKING PROCESS DEFINITION

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 8

Deliverable D3.3: “Models-based Process Definition”

By following the steps of this process, the generic decision making

framework could be instantiated for a supporting the companies for their specific

decision making needs.

FIGURE 2: A GENERIC DECISION MAKING FRAMEWORK AND ITS ENVIRONMENT

The generic decision making framework comprises a Model Builder, a

Model solver and a Database. Primary inputs to this framework include for

example, (i) system models (e.g., an UML-based architectural model composed of

a Component Diagram, Sequence Diagrams, and a Deployment Diagram), (ii)

causes of quality decision-making, and (iii) dependencies among quality

decisions, defects issues, cost factor and schedule factor. In particular, we

identify: (i) quality decisions (and causes), and (ii) schedule/time/cost-related

properties.

The Model Builder generates the analysis model (e.g optimization model)

in the format accepted from the solver. The Model solver processes the model

received from the builder and produces the results, which consist of a set of

quality decisions. It suggests, for example, how to design (or re- design) the

software architecture in order to minimize the costs while keeping the software

quality within a given threshold. In addition, the model, for example, could also

suggest the best shift allocations to people in order to achieve the required level of

software quality. The inferences and relationships detected for this model should

be created by defining and applying the most appropriate methods for data

analysis. Any combination of quality decisions may have a considerable impact

on the cost, time and software quality. Therefore, the optimization model aims to

quantify such impact in order to suggest the best quality decision, which

minimizes the costs while satisfying the schedule/time, and quality constraints.

In order to achieve the right tradeoff among schedule/time constraints,

software qualities and costs requirements, the quality decisions should involve the

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 9

Deliverable D3.3: “Models-based Process Definition”

evaluation of new alternatives to the current (i) software application level (e.g., by

the configuration of software components, the introduction of new components

into the system, etc.) and (ii) project management level (e.g., the shift allocations

to people). A decision, for example, taken for modifying a system functionality

may be good for the satisfaction of a certain level of software quality, but at the

same time it may require a high cost for implementing static code analysis (e.g.

tools, new processes, training, etc.). A major challenge is then finding the best

balance among many different competing and conflicting constraints.

 For these multi-attribute problems, there is usually no single global

solution, and the generation and evaluation of quality decisions alternatives can be

error-prone and lead to suboptimal decisions, especially if carried out manually by

system architects or maintainers.

 In order to address such problems, we investigate the application of: (1)

SBSE search methodologies (e.g., genetic algorithms, evolutionary algorithms and

other metaheuristics) and, (2) the multi-objective optimization, where objectives

represent different properties (e.g., cost, time and other software quality-related).

Specifically, a set of solutions is devised, called Pareto optimal solutions or Pareto

front, each of which assures a tradeoff between the conflicting constraints. In

other words, while moving from one Pareto solution to another, there is a certain

amount of sacrifice in one objective(s) to achieve a certain amount of gain in the

other(s). Each point of a Pareto curve would be a chain of quality decisions

(leading changes either to the application level or the project management level)..

As shown in Figure Figure 3Figure 3, a decision-making framework is

characterized by input parameters, output parameters, and techniques (e.g.,

optimization models, algorithms) to make the decisions.

FIGURE 3: A GENERIC DECISION MAKING FRAMEWORK

Below, we provide some examples, which show how to use the models-

based process when creating an instant of the decision-making framework for

specific decision-making needs. The details of these models are presented in the

next chapters: Chapter 4, Chapter 5 and Chapter 6.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 10

Deliverable D3.3: “Models-based Process Definition”

3.1 AN EXAMPLE DECISION MAKING FRAMEWORK FOR OPTIMAL
ALLOCATION OF TESTING RESOURCES

In this section, we present the framework we developed for making

decisions on how to allocate testing resources (see Figure 4). The details of the

model are given in Chapter 4.

A primary input to this framework is represented, for example, by from (i)

the SRGMs chosen to represent the testing process of the system functionalities,

(ii) defect data collection used, for example, to estimate parameters specific to

debuggers (e.g., the average amount of bugs that a debugger can fix per man-day),

and (iii) requirements on the time and cost of testing (such as on the total amount

of testing-effort eventually consumed).

 FIGURE 4: AN EXAMPLE FRAMEWORK FOR TESTING RESOURCES ALLOCATION

 The Model builder, through a Parameter Specification module, gets input

model parameters. After receiving the parameters’ specification, the Model

builder generates the optimization model in the format accepted by a solver (such

as the combination of the NSGA-II algorithm and the MC simulation).

 The Model solver processes the optimization model received from the

builder and produces the results, which consist, for example, of the testing-effort

allocation (i.e., the amount of testing-effort to be performed for the system

functionalities) and bug assignment allocation (i.e., the amount of bugs assigned

to each of the debuggers).

Inputs

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 11

Deliverable D3.3: “Models-based Process Definition”

The inputs required to implement the defect analysis approach for quality

decision support are the ones typically collected in a bug-tracking tool. Depending

on the details tracked about the defects, several analyses can be carried out.

The minimum requirement is the Date and time of the defect (or, more

generically, issue) detection and effort measures (e.g., man-months for

implementation and man-months for testing).

Optionally, the method can take as input: Defect Priority, Defect Severity

(impact), Defect Detection Phase (i.e., Design Review, Code Review, Unit

Testing, Integration testing ,…), the Defect Type (according to some

classification, such as IBM ODC, HP), Age of the code module (e.g., new, base,

rewritten, re-fixed), Defect Trigger, Defect Source (in-house, outsourced, library,

…), Reproducibility (e.g., always or not always reproducible).

These input parameters can be used for deriving quality vs. effort

indicators, and for identifying problems and criticalities in the lifecycle (e.g.,

phase/activity/team causing low index value).

Table 1 summarizes the potential inputs to the model. This is a superset,

meaning that different analyses can be done depending on the input information.

TABLE 1: MODEL’S POTENTIAL INPUTS

Source Measure Category Measures

Bug Repository Defect Severity/Reproducibility/Priority, Defect

Triggering (and/or activity that made the

defect surface, e.g., code review, inspection,

unit testing, workload/stress testing,

concurrency testing, operational usage),

Defect Detection Phase, Supposed Defect

Injection Phase, Fixing time, Defect fixing

Phase, Defect Type, Defect Impact, Defect

mode (wrong, missing), defect source,

source age, work/Rework

Source Code

Repository

Product Size Measures (LoC, #Req, Function

Points), Complexity metrics (McCabe,

Halstead’s), Source File metrics, code

churn/change metrics, version

Personnel through

time sheets or other

records

Process

Testing effort (e.g., man-months dedicated

to testing)

T Maximum threshold given to the delivery

time of the system.

Note that some of the specified analyses are also detailed in the subsequent

sections, being this defect analysis model at higher level. Table 2 summarizes the

potential outputs of the model.

With a greater detail, Table 3 summarizes the analyses that can be done by

joining more input information pieces, and their output depending on the

information recorded by the tester and/or the person in charge of fixing a defect

(with minimum requirement being only the detection time and date with effort

measures). The analysis that we will carry out will depend on the availability of

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 12

Deliverable D3.3: “Models-based Process Definition”

such information in the case studies. The analysis are intended as “statistical”

analysis, with output always accompanied by a “confidence level” indication (e.g.,

a given metric value is greater than another, with 95% of confidence).

TABLE 2: MODEL’S POTENTIAL OUTPUTS

Decision Type Description
Release policy Quality (reliability) analysis/assessment and time

to get a given quality
How much effort to invest? From the analysis of the testing process (test

efficacy, efficiency) and of the product quality

(detected/expected defects) with respect to the

effort devoted so far, decide on investing more or

less resources
Whether to change the current process

based on defect data and if so, how?
Analysis of defects per

severity/reproducibility/priority, of

detection/injection phase, of defect triggering

phase and activity, defect type, in order to identify

mismatch (expected vs actual patterns)
Testing effort allocation Prediction of defective modules from code/process

metrics
Whether to improve the debugging

process and/or development process
Analysis of the bug fixing time, defect type, defect

impact, defect source, defect source age,

prediction of defective modules from code/process

metrics to focus design efforts, analysis of defect

features to get feedback on implementation

TABLE 3: INPUT-OUTPUT MATRIX DESCRIBING THE POSSIBLE ANALYSES AND OUTPUTS IN

RELATION TO PROVIDED INPUTS

Input Info Joined with: Type of Analysis Output Info

On detection,

tester will

record:

Opening Time Reliability Analysis Estimate of Expected Defects, Estimate

of (expected) Reliability (i.e., non-failure

probability), Estimate of Residual Defects

(Both during testing and during

operational phase)

 Release Policy

Analysis

Decisions on "When to stop testing, when

to release", "What is the quality, under

the current testing process, expected at

the end of testing"

 Size measures:

LoC, #Req,

Function Points

"Normalized"

reliability analysis

Estimated Expected Defects Density,

Estimated Expected Residual Defects

Density

 Effort measures:

testing effort

(e.g., man-

months)

Test Efficacy and

Efficiency Analysis

Test maturity (%): detected defects so far

over the total expected defects, Test

Efficiency: defect detection rate, Test

Efficiency: percentage detection

efficiency (progress in terms of "test

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 13

Deliverable D3.3: “Models-based Process Definition”

maturity increase" per effort unit), Test

Efficiency: relative efficiency in terms of

"effort units (e.g., man-weeks) required to

achieve a maturity of x%"

 Defect severity/

reproducibility

severity/

reproducibility

analysis;

Cross-analysis with

the previous ones

Defects per category: "which

implementation has higher severe defects

in the average? what is the trend of high-

severe defects per implementation item?

Do testers of different implementation

use the same criteria to assign severity?

Which testing activity exposes the most

severe defects? Which percentage of

"not-always reproducible" defects is

found during testing and which

percentage during operation (high-cost

defects)? What testing activity exposes

the "not-always" reproducible defects?

Defect

Triggering

(and/or

activity)

 V&V Analysis Identification of critical phases of testing

(e.g., function review, code review,

testing) and operational conditions in

which defects are found (during testing or

at runtime); Identification of critical

environmental conditions (e.g., high

workload-stress greatly contributing to

expose defects); "Signature" of testing

techniques with respect to defects they

are able to find (how many, of what type,

of what impact in terms of severity)

Defect

Detection

Phase

 V&V (Phase)

Analysis

Identification of critical phases of testing

- analysis of expected detection phase vs.

actual detection phase; "Delay" and cost

analysis of testing - thus cost analysis

referred to defects that should have been

detected earlier

Supposed

Defect

Injection

Phase

 Development and

V&V Analysis;

Defect Flow

Analysis

Development Phase Analysis - which

phase introduces more defects (and of

what type, impact); Defect flow analysis:

analysis of the latency (and cost) required

to detect defects (for how many phases

the defect flows and survives); analysis of

V&V activities vs. latency

On fixing,

debugger will

record:

Fixing time Fixing process

(debug) analysis

Efficacy: percentage of closed (or

pending) defects; Efficiency; mean time

to fix

 Fixing process

evolution over time

Efficacy and Efficiency over time;

Continuity of the process over time;

homogeneity of the process (e.g.,

peakedness and skew of the fixing time

distribution)

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 14

Deliverable D3.3: “Models-based Process Definition”

 Defect severity/

priority/

reproducibility

Fine-grained Fixing

process analysis

(analyse potential

causes for

experienced time to

fix)

Previous metrics normalized per average

severity (have more severe defects

required more time to be fixed)?; priority

analysis (have defects at higher priority

been fixed earlier?) ; reproducibility:

have "not-always reproducible" been

actually more difficult to fix (thus

justifying higher Time to fix)?

Actual

working Time

 Detailed Fixing

process (debug)

analysis; Latency

Analysis

Analysis of the bug tracking tool usage (it

is expected a small difference between

actual and recorded time to fix); Latency

analysis: when the actual fixing work

starts with respect to the claimed time;

percentage of actual time over recorded

time

Defect fixing

Phase

 Detailed Fixing

process (debug)

analysis

When the defect has been fixed w.r.t.

when it was to expected to be fixed (cost

analysis like "detection vs. injection"

analysis: in this case it is "correction vs.

detection")

Defect Type Development

Analysis

"Signature" of defect types over the

development phases: expected vs.

experienced defect. Analysis of patterns

of defect types vs. development phases in

which they have been injected. Cross-

analysis with many previous and

following attributes: defect type vs.

trigger, vs. V&V activities, vs. impact,

vs. source , vs. age, vs. target; type-based

defect prediction (see below)

Defect Impact Development and

V&V Impact

Analysis

Crossed analysis with: development

phases, V&V phases and activities, defect

type and triggers, and others…

Defect Mode

(missing,

wrong)

 Detailed

Development and

V&V Analysis

As above, differentiated per "missing"

defects and "wrong" defects; feedback to

developers

Source (in-

house,

outsourced,

library)

 "Source Defect"

Analysis

How many defects per source item type

(in-house, outsources); crossed analysis

with previous attributes

Source Age

(new, base,

rewritten,

refixed)

 "Source Age"

Analysis

Age is intended the age of the code

affected by the defect as development

history: base code from the previous

release, new code from the current

release, rewritten code or refixed code.

This allows analysing the impact of

reusing code, of regression bugs, of

writing completely new code, of using a

baseline. Crossed analysis with previous

attributes makes sense also.

Target of the Code-defect How many defect (density) per target;

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 15

Deliverable D3.3: “Models-based Process Definition”

fix (e.g.,

source file)

Relationship

Analysis

how target (metrics) are related to

defectiveness

Version Defect Pattern

Evolution across

versions; release

policy analysis

How defects (type, trigger, impact,

age,…) evolves across versions; how

releases relate to defects found in

operation; how releases are related to

fixing (e.g., release train effect)

Work-rework Regression

Likelihood

Analysis

How many defects are opened during a

re-work; likelihood of introducing

regression bugs; crossed analysis with

triggers (environmental conditions in

which defects surface)

More

advanced

analysis. For

internal

quality and

prediction

Size and

complexity

metrics; CVS

metrics (code

churns, etc.)

 Code-defects

Relationship;

Defect Prediction

Empirical models to build predictors of

defectiveness in modules; can be

customized per defect type

Requirements,

design-,

organizational

metrics

 Process metrics-

defects

Relationship;

Defect Prediction;

Detailed phase

analysis (relation

between phases

metrics and defects)

How metrics at each level are related to

defects; this can be specialized per phase

(e.g.,: how requirements metrics are

related to, and can predict, defects of a

given type, or defects injected in

requirements phase, …)

Description of

the defect;

notes;

discussions;

number of

state changes

in the report,

…

 Communication;

Topic analysis,

semantic analysis

Relating communication patterns (length

of discussion, topics inside, number of

participants to the discussion) with time

to fix

Test Effort per

component

 Optimal test effort

allocation

Allocate effort to projects with higher

expected defectiveness

In Chapter 4, we discuss how to estimate these parameters by using

information collected with a bug-tracking tool (e.g., Jira). We have also

instantiated the optimization model for the fault correction with the bug

assignment activity prediction, but its elements (e.g., cost function and reliability

constraints) combined with the method for uncertainty analysis could be re-used

in another phase of the testing process. This adoption may require specializing

(appropriately modifying) the model in order to capture typical aspects of the new

phase. Testing-effort allocation prediction under testing-effort time/cost and

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 16

Deliverable D3.3: “Models-based Process Definition”

reliability constraints with uncertain model parameters, for example, could be

used for enhancing existing approaches (discussed in Section 4) for scheduling

developers/testers to activities to be performed to fix a bug repository.

In Table 4Table 4 and Table 5Table 5, we discuss in detailed examples for

the testing model which we discussed in deliverable D3.1 [1]. In particular, we

summarize inputs and outputs of these models.

TABLE 4: MODELS’ INPUTS

Model Input Reference

Release planning For each component, Opening time of defects

ddiscovered during testing (and/or during

operation).

D3.1 – 7.1

Debugging analysis for

improved release planning

Input data are the same as the release planning

model, as this model is based again on SRGM,

augmented by data on closing time of the issues,

being the model conceived to include the impact

of debugging.

D3.1 – 7.2

Resources allocation For this model, the required inputs come from

the bug-tracking repository from which the

opening times of defects that are detected during

testing are used to build the SRGMs online.

From these, given a testing budget (as further

input) that managers want to spend for testing,

the allocation is performed dynamically, at any

time the tester wants, by using the prediction of

residual number of defects expected in each

component.

D3.1 – 8.1

TABLE 5: MODELS’ OUTPUTS

Model Output Reference

Release planning Prediction of the optimal time to release, given a

quality to achieve

D3.1 – 7.1

Debugging analysis for

improved release planning

Prediction of the optimal time to release, given a

quality to achieve and analysis of debugging

causes

D3.1 – 7.2

Resources allocation The amount of effort to allocate to each system’s

components/modules in order to minimize the

expected number of residual defects

D3.1 – 8.1

Table 6Table 6 below presents how input information could be represented

in a database.

TABLE 6: MODEL’S INPUTS AND THE DATABASE

Model Input Database

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 17

Deliverable D3.3: “Models-based Process Definition”

Release planning For each component, opening time

of defects discovered during testing

(and/or during operation).

The tab The table Issue and the relationship

Issue-Version allow to obtain

information related to opening time

of defects discovered during

testing. Moreover, relationships in

the database allow to get

information related to the

components, products, projects and

companies associated with a

certain issue.

Debugging analysis

for improved release

planning

Input data are the same as the release

planning model, as this model is

based again on SRGM, augmented

by data on closing time of the issues,

being the model conceived to

include the impact of debugging.

Similarly to the previous decision

model, Information related to

issues can be found in the database.

Resources

allocation

For this model, the required inputs

come from the bug tracking

repository from which the opening

times of defects that are detected

during testing are used to build the

SRGMs online. From these, given a

testing budget (as further input) that

mangers want to spend for testing,

the allocation is performed

dynamically, at any time the tester

wants, by using the prediction of

residual number of defects expected

in each component.

Other than the information of the

previous two decision modes,

information related to the

components (modules) can be also

found. Such information can be

obtained by using the tables

Version, Component and Product

involved in the relationship

Version-Component.

Figure 5Figure 5 shows the information in and out of the testing decision

frameworks listed in Table 4Table 4 and Table 5Table 5.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 18

Deliverable D3.3: “Models-based Process Definition”

FIGURE 5: INPUTS AND OUTPUTS TO THE DECISION MAKING FRAMEWORK

3.2 AN EXAMPLE ARCHITECTURAL DECISION MAKING
FRAMEWORK

Below is an example framework we developed for making decisions on

architecture (see Figure 6Figure 6). The details of the model are given in Chapter 6.

FIGURE 6: AN EXAMPLE DECISION MAKING FRAMEWORK FOR ARCHITECTURAL DECISIONS

In Table 7Table 7 and Table 8Table 8 we discuss examples of architectural

decisions models, which we have discussed in the deliverable D3.1 [1]. In particular,

we summarize inputs and outputs of the models.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 19

Deliverable D3.3: “Models-based Process Definition”

TABLE 7: MODELS INPUTS

Model Input Reference

Build-or-buy decisions

models

Average number of invocations of a software

component, number of existing software

components, maximum number of COTS

instances available for each component, number

of existing software components, minimum

threshold given to the reliability on demand of

the system, maximum threshold given to the

delivery time of the system, cost of a component

instance, delivery time of a component instance,

unitary development cost (time) of a component

instance, average time required to perform a test

case of the instance, testability of a component

instance.

D3.1 – 6.2

Quantifying the influence of

failure repair/mitigation costs

Average number of invocations of an elementary

service across all considered interaction

scenarios, minimum threshold given to the

reliability on demand of the system, number of

nominal services, maximum number of service

implementations available for purchase by

providers for each nominal service, cost of the

service instance, probability of failure on

demand of a service instance, unitary

development cost of an in-house service,

testability of an in-house instance.

D3.1 – 6.2.1

Optimization of adaptation

plans with cost and quality

tradeoff

Set of new requirements that induce changes in

the structural and behavioral architecture of the

software system, set of actions that address a

certain requirement, average number of

invocations of an elementary service, average

number of invocations of a new service, number

of elementary software services, set of

alternative instances for an existing service, cost

of a service instance, reliability (availability) on

demand of a service instance, response time of a

service instance, set of new available services,

cost of a new service, reliability (availability) on

demand of a new service, response time of a

new service, minimum threshold given to the

reliability (availability) on demand of the

system, maximum threshold given to the system

response time.

D3.1 – 6.3

TABLE 8: MODEL’S OUTPUTS

Model Output Reference

Build-or-buy decisions

models

Build-or-buy decisions for each component and

the amount of unit testing to be performed on

each in-house developed component

D3.1 – 6.2

Quantifying the influence of

failure repair/mitigation costs

Build-or-buy decisions for each service

(component as a service) and the amount of unit

D3.1 – 6.2.1

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 20

Deliverable D3.3: “Models-based Process Definition”

testing to be performed on each in-house

developed service. The solution of the set of

optimization models can give insights on

the service composition that best fit the

requirements considering an explicit cost

model and the possibility to define repair

actions to improve the system reliability.

Optimization of adaptation

plans with cost and quality

tradeoff

The model suggests a new system

architecture. A new architecture is, thus,

obtained by modifying both its structure and

its behavior. Specifically, in order to modify

the software structure, the model replaces

existing software services with different

available services and/or embeds new

software services into the system With

respect to the changes in the system

behavior, it modifies the system scenarios

(represented, for example, as BPEL

processes) by removing or introducing

interactions between existing services

and/or between existing and new services.

D3.1 – 6.3

Table 9Table 9 describes how input information of the architectural decision

frameworks can be represented in a database.

TABLE 9: MODEL’S INPUTS AND THE DATABASE

Model Input Database

Build-or-buy decisions

models

Average number of invocations of

a software component, number of

existing software components,

maximum number of COTS

instances available for each

component, number of existing

software components, minimum

threshold given to the reliability on

demand of the system, maximum

threshold given to the delivery time

of the system, cost of a component

instance, delivery time of a

component instance, unitary

development cost (time) of a

component instance, average time

required to perform a test case of

the instance, testability of a

component instance.

Information related to existing and

new components can be found in

the database. In particular, for

each component instance

(represented with tables Version-

Component) data are stored. Its

information (e.g., related to the

delivery time or average time

required to perform a test case)

are stored in the relationship

Metric-Version. Input data

inserts by users are related to the

number of components, minimum

threshold given to the reliability

on demand of the system,

maximum threshold given to the

delivery time of the system.

Quantifying the

influence of failure

repair/mitigation costs

Average number of invocations of

an elementary service across all

considered interaction scenarios,

minimum threshold given to the

reliability on demand of the

Similarly to the previous model,

information related to services can

be found in the database. In

particular, for each service

instance (represented with tables

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 21

Deliverable D3.3: “Models-based Process Definition”

system, number of nominal

services, maximum number of

service implementations available

for purchase by providers for each

nominal service, cost of the service

instance, probability of failure on

demand of a service instance,

unitary development cost of an in-

house service, testability of an in-

house instance.

Version-Component) data are

stored. Its information (e.g.,

related to the cost of the service

instance, probability of failure on

demand) are stored in the

relationship Metric-Version.

Input data inserts by users are

related to the number of services,

minimum threshold given to the

reliability on demand of the

system.

Optimization of

adaptation plans with

cost and quality

tradeoff

Set of new requirements that

induce changes in the structural

and behavioral architecture of the

software system, set of actions that

address a certain requirement,

average number of invocations of

an elementary service, average

number of invocations of a new

service, number of elementary

software services, set of alternative

instances for an existing service,

cost of a service instance,

reliability (availability) on demand

of a service instance, response time

of a service instance, set of new

available services, cost of a new

service, reliability (availability) on

demand of a new service, response

time of a new service, minimum

threshold given to the reliability

(availability) on demand of the

system, maximum threshold given

to the system response time.

Information related to existing and

new services can be found in the

database. In particular, for each

service instance (represented with

tables Version-Service) data are

stored. Its information (e.g.,

related to the reliability,

availability) are stored in the

relationship Metric-Version.

Input data inserts by users are

related to the number of services,

minimum threshold given to the

reliability (availability) on

demand of the system, maximum

threshold given to the system

response time.

Figure 7Figure 7, Figure 8Figure 8 and Figure 9Figure 9 show the inputs and

outputs of the architectural decision frameworks listed in the above tables.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 22

Deliverable D3.3: “Models-based Process Definition”

FIGURE 7: INFORMATION IN AND OUT OF THE BUILD-OR-BUY DECISION MODEL

FIGURE 8: INFORMATION IN AND OUT OF THE QUANTIFYING THE INFLUENCE OF FAILURE

REPAIR/MITIGATION COSTS MODEL

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 23

Deliverable D3.3: “Models-based Process Definition”

FIGURE 9: INFORMATION IN AND OUT OF THE OPTIMIZATION OF ADAPTATION PLANS WITH

COST AND QUALITY TRADEOFF MODEL

3.3 AN EXAMPLE REGRESSION TESTING DECISION FRAMEWORK

In this section, we present the example framework we developed for

making decisions on regression testing (see Figure 10Figure 10). The details of the

model are provided in Chapter 5.

FIGURE 10: AN EXAMPLE DECISION MAKING FRAMEWORK FOR REGRESSION TESTING

In Table 10, Table 11 and Table 12 we discuss examples of regression

decision models. In particular, we summarize inputs and outputs of the models.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 24

Deliverable D3.3: “Models-based Process Definition”

TABLE 10: MODEL’S INPUTS

Model Input Reference

Regression test suite

prioritization

Test cases, analysis of code coverage is

collected for each of the version of a

software product, Churn metrics are

collected for each of the version of a

software product (e.g., Cyclomatic

Complexity, number of added or modified

LOC).

More details can be

found in Section 5.2

TABLE 11: MODEL’S OUTPUTS

Model Output Reference

Regression test suite

prioritization

Test cases prioritization. More details can be found in Section

5.2

TABLE 12: MODEL’S INPUTS AND THE DATABASE

Model Input DB

Regression test suite

prioritization

Test cases, analysis of code

coverage is collected for each of the

version of a software product, Churn

metrics are collected for each of the

version of a software product (e.g.,

Cyclomatic Complexity, number of

added or modified LOC).

Similarly to the architectural

decision models, information

related to components can be found

in the database. In particular, for

each component instance

(represented with tables Version-

Component) data are stored.

Figure 11Figure 11 shows the information in and out of the regression

testing decision framework listed in the above tables.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 25

Deliverable D3.3: “Models-based Process Definition”

FIGURE 11: INFORMATION IN AND OUT OF THE REGRESSION TESTING MODEL

3.4 DATA GATHERING

In this section, we provide more information for the database, which is to

be designed and implemented for collecting the data required by the decision-

making models. The ER scheme can be found in deliverable D3.2.

The following diagram illustrates the process of creating the database.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 26

Deliverable D3.3: “Models-based Process Definition”

FIGURE 12: THE PROCESS OF DATABASE CREATION

The data collected from the industrial scenarios (provided by our industrial

partners) will be used for populating the database, as sketched in Figure 13.

FIGURE 13: THE PROCESS OF DATABASE POPULATION

Information can be categorized in three main categories:

 Metrics

 Products

 Defects

a) Metrics

Figure 14 shows the ER schema related to Metrics information.

FIGURE 14: ER SCHEMA RELATED TO METRICS

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 27

Deliverable D3.3: “Models-based Process Definition”

Table Metric. This table encompasses the software metrics. In the deliverable

D2.2, a quite extensive list of software metrics can be found. Example of metrics

is LOC (number of lines of code). Different metrics can be used for different

software versions and for different projects. Moreover, two versions of the same

components may have different values for the same metric.

The following table summarizes the data related to code churn, which are used for

populating the database.

TABLE 13: CODE CHURN METRICS

Classification Type Characteristic Name Description Feasibility UM

Change Process Schedule HOURS Time in hours to

develop/maintain the

software system.

 number

Change Process Frequency REVISI

ONS

Number of revisions

of a file

good number

Change Process Frequency REFACT

ORINGS

Number of times a

file has been

refactored

good number

Change Process Frequency BUGFIX

ES

Number of times a

file was involved in

bug-fixing

good number

Change Process Size AUTHO

RS

Number of distinct

authors that checked

a file into the

repository

 number

Change Process Size LOC_A

DDED

Sum over all

revisions of the lines

of code added to a

file

 number

Change Process Size MAX_L

OC_AD

DED

Maximum number of

lines of code added

for all revisions

 number

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 28

Deliverable D3.3: “Models-based Process Definition”

Change Process Size AVE_

LOC_A

DDED

Average lines of

code added per

revision

 number

Change Process Size LOC_DE

LETED

Sum over all

revisions of the lines

of code deleted from

a file

 number

Change Process Size MAX_L

OC_DEL

ETED

Maximum number of

lines of code deleted

for all revisions

 number

Change Process Size AVE_LO

C_DELE

TED

Average lines of

code deleted per

revision

 number

Change Process Size CODEC

HURN

Sum of (added lines

of code – deleted

lines of code) over

all revisions

 number

Change Process Size MAX_C

ODECH

URN

Maximum

CODECHURN for

all revisions

 number

Change Process Size AVE_C

ODECH

URN

Average

CODECHURN per

revision

 number

Change Process Size MAX_C

HANGE

SET

Maximum number of

files committed

together to the

repository

 number

Change Process Size AVE_C

HANGE

SET

Average number of

files committed

together to the

repository

 number

Change Process Size AGE Age of a file in

weeks (counting

backwards from a

specific release)

 number

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 29

Deliverable D3.3: “Models-based Process Definition”

Change Process Size WEIGH

TED_AG

E

∑ 𝐴𝑔𝑒(𝑖) × 𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)𝑁

𝑖=1

∑ 𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)𝑁
𝑖=1

(Pg.42 Doc. D2.2)

 number

Change Resour

ce

Effort PERSON

-HOUR

Cost per hour to

develop/maintain the

software system.

high euro

Change Resour

ce

Effort PERSON

-DAYS

Cost per day to

develop/maintain the

software system.

high euro

Change Resour

ce

Cost MONEY Money value (per

hour/day/week/mont

h) average or

differentiated by

employee.

high euro

Source Product Size MB Megabyte high number

Source Product Size FP Function Point high number

Source Product Structure WMC Weighted Method

Count

high number

Source Product Structure DIT Depth of Inheritance

Tree

high number

Source Product Structure RFC Response For Class high number

Source Product Structure NOC Number Of Children high number

Source Product Structure CBO Coupling Between

Objects

high number

Source Product Structure LCOM Lack of Cohesion in

Methods

high number

Source Product Structure FAN_IN Number of other

classes that reference

the class

high number

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 30

Deliverable D3.3: “Models-based Process Definition”

Source Product Structure FAN_O

UT

Number of other

classes referenced by

the class

high number

Source Product Structure NOA Number of attributes high number

Source Product Structure NOPA Number of public

attributes

high number

Source Product Structure NOPRA Number of private

attributes

high number

Source Product Structure NOAI Number of attributes

inherited

high number

Source Product Size LOC Number of lines of

code

high number

Source Product Structure NOM Number of methods high number

Source Product Structure NOPM Number of public

methods

high number

Source Product Structure NOPRM Number of private

methods

high number

Source Product Structure NOMI Number of methods

inherited

high number

Source Product Structure AHF Attribute Hiding

Factor

high percentag

e

Source Product Structure MIF Method Inheritance

Factor

high percentag

e

Source Product Structure AIF Attribute Inheritance

Factor

high percentag

e

Source Product Structure MHF Method Hiding

Factor

high percentag

e

Source Product Structure POF Polymorphism Factor high percentag

e

Source Product Structure COF Coupling Factor high percentag

e

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 31

Deliverable D3.3: “Models-based Process Definition”

Source Product Structure SIX Specialisation Index

per Class

high percentag

e

Source Product Structure CCN Cyclomatic

complexity

high number

Source Product Structure LOCM4 Lack Of Cohesion of

Methods version 4

high number

Source Product Structure Package

tangle

index

cyclical

dependencies

between packages

and files

 percentag

e

Source Product Size PLOC Number of physical

lines of code

high number

Source Product Size LLOC Number of logical

lines of code

high number

Source Product Structure NOC Number of class high number

Source Product Structure NOP Number of packages high number

Source Product Structure NOF Number of files high number

Source Product Structure BRANC

HES

Number of branches

(for all if and switch

statements)

high number

Table Tool. This table encompasses the tools for metrics evaluation (e.g., the

Sonar tool). A raw list of these tools can be found in the deliverable D2.2. A tool

can be used to collect several metrics. Therefore, there is a relationship N:N

between the tables Metric and Tool.

Examples of tools are shown below in Table 14.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 32

Deliverable D3.3: “Models-based Process Definition”

TABLE 14: EXAMPLE TOOLS

Name Description YearFirst

Version

YearLast

Version

Jdepend JDepend traverses Java class file

directories and generates design

quality metrics for each Java

package. JDepend allows you to

automatically measure the quality

of a design in terms of its

extensibility, reusability, and

maintainability to manage package

dependencies effectively.

2006 2014

JCSC JCSC is a powerful tool to check

source code against a highly

definable coding standard and

potential bad code. It is a highly

configurable checking tool for

your Java source code. It checks

the compliance to a defineable

coding standard like naming

conventions and code structure.

Also signs of bad coding, potential

bugs are found.

2002 2005

QALab QALab consolidates data from

Checkstyle, PMD, FindBugs and

Simian and displays it in one

consolidated view. QALab keeps a

track of the changes over time,

thereby allowing you to see trends

over time. You can tell weather the

number of violations has increased

or decreased - on a per file basis,

or for the entire project. It also

plots charts of this data.

2006 2006

CKJM CKJM calculates Chidamber and

Kemerer object-oriented metrics

by processing the bytecode of

compiled Java files. The program

calculates for each class the

following metrics: weighted

methods per class, depth of

inheritance tree, number of

children, coupling between object

classes, response for a class, lack

of cohesion in methods, afferent

couplings and number of public

methods

2005 2012

Panopticode The Panopticode project provides

a standardized format for

describing the structure of

software projects and integrates

metrics from several tools into that

2007 2007

Commento [CG1]: These are not

complete?

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 33

Deliverable D3.3: “Models-based Process Definition”

format. Reporting options provide

correlation, historic analysis, and

visualization. Panopticode uses

Tree Maps to display the code

complexity and coverage.

Same Same is a tool to find duplicate

lines in multiple text files. Very

useful to find and fix copy-and-

paste programming. It has been

designed to be simple, portable,

and fast.

 2001

FindBugs It uses static analysis to look for

bugs in Java code. Potential errors

are classified in four ranks:

scariest, scary, troubling and of

concern. This is a hint to the

developer about their possible

impact or severity.

2007 2015

JavaNCSS JavaNCSS is a simple command

line utility which measures two

standard source code metrics for

the Java programming language.

The metrics are collected globally,

for each class and/or for each

function. It can optionally present

its output with a little graphical

user interface.

1997 2009

PMD/CPD PMD is a source code analyzer. It

finds common programming flaws

like unused variables, empty catch

blocks, unnecessary object

creation, and so forth. It supports

Java, JavaScript, PLSQL, Apache

Velocity, XML, XSL.

CPD is a copy-paste-detector.

CPD finds duplicated code in Java,

C, C++, C#, PHP, Ruby, Fortran,

JavaScript, PLSQL, Apache

Velocity, Ruby, Scala, Objective

C, Matlab, Python, Go.

2002 2015

Xradar XRadar is an open extensible code

report tool currently supporting all

Java based systems. The batch-

processing framework produces

HTML/SVG reports of the systems

current state and the development

over time - all presented in tables

and graphs. It gets results from

several open source projects and a

couple of in house grown projects

and presents the results as massive

unified html/svg reports.

2008 2009

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 34

Deliverable D3.3: “Models-based Process Definition”

Checkstyle Checkstyle is a development tool

to help programmers write Java

code that adheres to a coding

standard. It automates the process

of checking Java code. It is highly

configurable and can be made to

support almost any coding

standard. It can find class design

problems, method design

problems. It also has the ability to

check code layout and formatting

issues.

2007 2015

Sonar It is an open source platform for

continuous inspection of code

quality. Offers reports on

duplicated code, coding standards,

unit tests, code coverage, complex

code, potential bugs, comments

and design and architecture.

Records metrics history and

provides evolution graphs and

differential views.

2007 2015

Classycle Classycle's Analyser analyses the

static class and package

dependencies in Java applications

or libraries. It is especially helpful

for finding cyclic dependencies

between classes or packages.

Classycle's Dependency Checker

searchs for unwanted class

dependencies described in a

dependency definition file.

Dependency checking helps to

monitor whether certain

architectural constrains are

fulfilled or not.

2003 2014

Jlint Jlint will check your Java code and

find bugs, inconsistencies and

synchronization problems by

doing data flow analysis and

building the lock graph. Jlint is

extremely fast - even on large

projects, it requires only one

second to check all classes. It is

easy to learn and requires no

changes to the class files.

2004 2011

Sonar

Plugins

Sonar includes several plugins

such as language plugins, plugins

for developer tools, governance,

integration, autentication and

authorization, additional metrics,

SCM engines, external analizers,

visualization, reporting, etc.

2014 2015

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 35

Deliverable D3.3: “Models-based Process Definition”

Squale Assists developers in improving

the code of their projects. Helps

project managers to meet quality

requirements for their applications.

Gives top-managers dashboards to

monitor the overall health of their

information system. Works on

enhanced quality models. Helps

assessing software quality and

improving it over time.

2009 2011

JaCoCo JaCoCo is an open source toolkit

for measuring and reporting Java

code coverage. It offers line and

branch coverage. JaCoCo

instruments the bytecode while

running the code. To do this it runs

as a Java agent, and can be

configured to store the collected

data in a file, or send it via TCP.

2009 2015

Relationship Tool-Metric. This relationship is used for obtain metrics values. In

particular, this relationship can be obtained from Table 19 of the deliverable D2.2.

For example, the JaCoCo tool (see Section 6) provides code coverage metrics.

Table Qualitymodel. This table encompasses quality models, for example ISO

9126 (see Deliverable 2.2). A tool may be related to one (or more) quality models.

Therefore, there is a relationship N:N between the tables Qualitymodel and Tool.

Examples of quality models are:

Name Description

ISO 9126 International standard for the evaluation of software

quality. Its fundamental objective is to address some of the

well known human biases that can adversely affect the

delivery and perception of a software development

project.The standard is divided into four parts: quality

model, external metrics, internal metrics and quality in use

metrics. It has been replaced by ISO/IEC 25010:2011

ISO 25010 This quality model determines which quality

characteristics will be taken into account when evaluating

the properties of a software product. The considered

characteristics are: functional suitability, performance

efficiency, compatibility, usability, reliability, security,

maintainability and portability.

SQUALE It is inspired by the ISO 9126 standard and introduces a

new level for the assessment of practices in the hierarchy

of factors, criteria, and measures. It allows one to

determine the quality of a project and control its

evolution during the maintenance of a project,

preventing deterioration. The Squale model stresses bad

quality instead of averaging the quality in order to quickly

focus on the wrong parts. It uses a set of measures

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 36

Deliverable D3.3: “Models-based Process Definition”

combined into practices using formulae which take into

account company standards and project technical

specificity. Practice weights are customized with

respect to these overall constraints.

SIG It is based on best practices and defined standards, such as

ISO/IEC 25010. The SIG model offers an efficient, simple

and structured way to gain objective insight in the quality

of performance by evaluating both the process and the

product. The result is a score from one to five stars, where

more stars correspond to a higher quality. One of the key

aspects of the model is ‘observability’, a property that

discusses to what extent performance characteristics in a

system can be measured and assessed.

Relación Tool-QualityModel. This relationship is derived by applying the quality

models.

Entity Functionalfeature. This table encompasses the tasks that metric tools

perform (e.g., the Data acquisition task). In the deliverable D2.2, a description of

the main tools’ tasks is provided. A tool can perform one or more tasks. A specific

task can be performed by more than one tool. Therefore, there is a relationship

N:N between the tables Tool and Functionalfeature.

First, it is populated the following table:

Name Description

Data acquisition Set of methods and techniques for obtaining necessary data for

measurement

Analysis of measures Ability to store, retrieve, manipulate and perform data analysis

Data presentation Formats to generate the obtained documentation

Relationship Tool-FunctionalFeature. This relationship can be obtained from

Table 20 of deliverable D2.2.

b) Products

Figure 15 shows the ER schema related to Products information.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 37

Deliverable D3.3: “Models-based Process Definition”

FIGURE 15: ER SCHEMA RELATED TO PRODUCTS

Table Domain. This table collects information related to the application domain

of the company (e.g, medical, telecommunications, financial, which are the

ICEBERG project’s scenarios application domain).

Table Enterprise. An occurrence of this table represents an organization

responsible for the software development or maintenance. Data privacy is

considered by using appropriates measures (e.g., by inserting names of scenarios

as ScenarioM, ScenarioT, ScenarioF).

Table Product. A software product is a component that results of a composition of

one or more components. There is a hierarchy/aggregation relationship between a

product and a component. For each product, information related to its providers

are stored.

Table Component and Table Version. A component is a self-contained

deployable software module containing data and operations, which

provides/requires services to/from other components. Different versions may be

available for one component. A component version is a specific implementation

of a component. A component version can be involved in different software

product versions and in others component versions. Defects are related to

products, components or component’s versions. For each scenario, information of

its components (and the related versions) are stored (e.g., number of bugs, issues,

etc).

Relationship Version-Version. This relationship is used to determine the

structure of a product. In particular, the decomposition of components/versions in

sub-components (versions) is modelled.

Relationship Metric-Version. This relationship is used to determine metric

values of the component versions.

Relationship Metric-Component. This relationship is used to determine metric

values of the components.

c) Defects

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 38

Deliverable D3.3: “Models-based Process Definition”

Figure 16 shows the ER schema related to Defects information.

FIGURE 16: ER SCHEMA RELATED TO DEFECTS

Table Project. Data related to specific activities, which a software company

conduced for developing a project, are stored. Such information is collected with

respect to the scenarios. For example, for the ScenarioT, it is stored information

related to two products developed in two different projects. Generic projects (for

developing or maintain a software systems) are created, which can be used to

insert data of new further scenarios.

Relationship Product-Project. This relationship allows obtaining information

related to the products and the projects (i.e., project specific activities).

Relationship Metric-Project. This relationship allows to obtain metrics related to

a single project. More specifically, if a project is related to one product, then

metrics values of the product will be stored. The current version of the project is

also stored.

Table Resource. This table encompasses the people involved in the different

activities. Several people may be involved in the same trigger. For each activity,

the working hours of the people can be stored (assuring later analysis of

cost/effort data). In particular, for each scenario, information related to the people

involved are stored. Data will be stored by appropriating adopting privacy

mechanisms (e.g., for people name will be used a nickname).

Table Lifecycle. This table is related to the software life cycle. Different phases

are typically involved in a software life cycle, such as the requirements, design,

and testing phases.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 39

Deliverable D3.3: “Models-based Process Definition”

Table Issue. This table encompasses defects, which have been detected or fixed

(see deliverable D3.1 for more details). One defect can be associated to one

version of a software component. For each scenario, information related to the

issues found during testing activities (or at operational time) will be stored. For

example, opening time (and closing time) of the issue will be collected. Other data

are related to the severity, priority, type of bug, or the current state of the issue

(e.g., opened, closed, and assigned).

Relationship Issue-Version. A defect impact (affected and/or fixed) to one or

more versions of a software component. This information is stored with respect to

each of the scenarios.

Relationship Issue-Issue. A defect may occur again even after the defect is fixed.

The reopen defect issue has to be related to the original defect.

Table Trigger. This table encompasses the work tasks to be performed to address

an issue’s occurrence, such as the execution of a test case. A defect (related to the

Issue entity) may be detected during the execution of a trigger (e.g., during the

testing activity) or may be fixed by a trigger. If a scenario does not provide details

about triggers, then a generic trigger is created in order to store data. For each

project, attributes for its triggers will be stored (e.g., NumTotal, NumPassed, and

NumFailed).

Relationship Trigger-Resource. Information related to people involved in the

single projects (and their specific triggers) will be stored.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 40

Deliverable D3.3: “Models-based Process Definition”

4 OPTIMAL ALLOCATION OF TESTING RESOURCES

 The allocation of testing resources of large software systems is a complex

task, mostly because it requires models that encompass the composition of test

process properties into system properties. As software is used more and more in

business-critical and safety-critical applications, it is important to prevent the

realization of software with poor software quality. The reliability of a large-scale

software system is given by the composition of system functionalities (modules,

sub-systems, etc) reliabilities; therefore, the system reliability is a function of the

detection ability of the testing process of each of the system functionalities

(modules, sub-systems, etc).

Typically project managers’ decisions span from the identification of the

most important system functionalities (e.g., the ones with the biggest safety

impact, or the largest financial impact on users) through resource scheduling to

staff assignment [2]. In fact, the majority of software projects today are embedded

in dynamic contexts, where requirements, environment assumptions, and usage

profiles continuously change. Therefore, in the last few years, development

processes have primarily focused on the maintenance phase, due to the frequent

changes required by software after the deployment phase. In this work, we focus

on resource allocation, which is highly relevant in testing process, and is typically

a time-consuming and tedious task. It is well worth optimizing the allocation

scheme [3]: although testing resources can be allocated in rather simple ways (e.g.

average allocation, random allocation, and proportional allocation), an optimal

allocation scheme may lead to significant improvement in terms of the reliability

of a software system [4].

Any combination of testing allocation decisions may have a considerable

impact on the cost, time and software quality. For these multi-attribute problems,

there is usually no single global solution, and the generation and evaluation of

alternatives can be error prone and lead to suboptimal decisions, especially if

carried out manually by test/project managers. Therefore, tools that support

decisions strictly related to meet quality/time requirements, while keeping the

costs within a predicted budget, would be very helpful to the project managers’

tasks.

The presence in the market of standard off-the-shelf components/services

has drastically changed in the last decade the development process of large-scale

systems. Mission-critical large-scale systems, for example, are developed in a

highly modular way, adopting a strong component-based approach to foster reuse

and a build-by integration approach [5]. Although several approaches have been

introduced in the last few years to address these issues, the tradeoff analysis

among quality, cost, and time has not yet been studied enough. In fact, very

generic criteria are typically applied in the practice, such as allocating resources

driven by requirements (e.g., testing a component until all requirements have been

tested at least once), or driven by the size (more testing to bigger modules).

Sometimes, intuition drives testing choices: based on experience, a tester may

deem one functionality (software module) more “critical” than another, therefore

deserving more testing. As there may be relevant differences among

functionalities (modules) in terms of quality e.g., because they come from

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 41

Deliverable D3.3: “Models-based Process Definition”

different teams (internal or external in case of outsourcing), or they are based on

different programming paradigms - their defectiveness can vary significantly [6].

The tradeoff analysis results may be strongly affected by parameter

uncertainties; in fact, the software testing activity is fraught with a not negligible

uncertainty relates to values of parameters such as operational profile, the

expected number of initial faults, the fault detection rate per unit testing-effort

(SRGMs input), fault fixing time, etc. The propagation of this uncertainty on the

objective function and the constraints should be analyzed. Typically, existing

works perform the sensitivity analysis of optimal resource allocation problems

[7], [8] with respect to those parameters deemed critical, such as the expected

initial faults, the fault detection rate and cost of correcting an error in testing and

operational phase on the optimum allocation. Because parameters are estimated

based on the available data (e.g., parameters of a SRGM are estimated based on

the available failure data, which is often sparse [7]), their estimation only

represent approximations of parameters. As a consequence, parameter estimation

plays a critical role in accurately describing testing resource allocation process

through optimization models.

The goal of our work is to assist test/project managers in the decisions on

how to effectively distribute the resources available for testing. Such assistance

aims to take into account several quality attributes of the testing process, i.e., cost

(such as that one to correct a bug during testing, or the cost of testing per unit

testing-effort expenditures), time (e.g., the time to detect and fix a

bug/defect/fault1), and reliability. In particular, we explicitly consider uncertainty

in the testing process in order to evaluate the robustness of the testing resource

allocation. Robustness refers to the ability to tolerate uncertainty in the intrinsic

input parameters of the testing process. We deal with input parameter

uncertainties, and model each uncertain parameter as a random variable whose

variability is characterized by its continuous or discrete distribution. We present a

Monte Carlo (MC) simulation-based approach to systematically assess the

robustness of a resource allocation alternative despite its uncertainty. MC is a

well-assessed method for uncertainty analysis. Examples of its adoption can be

found in different areas of the scientific literature. Its effectiveness and efficiency

have, for example, already been demonstrated in the works [9] [10] for handling

parameter uncertainties in the performance (and reliability) modeling and analysis

process of software architectures.

More specifically, we provide an automatic optimization process for

dynamically allocate testing resources to software modules (functionalities) based

on trade-offs among software quality, cost, and schedule/time requirements.

Dynamic refers to the ability of using testing data (i.e., bug reports2) as they

become available, exploiting them to adjust performance online, and robust with

respect to variations during testing and volatility of planning time’s assumptions.

Our approach consists in formalizing the decision problem in terms of system

quality and testing cost/time requirements, to elicit and represent uncertainties as

probability distributions, to simulate the impact of resource allocation alternatives

1 The term fault (defect/bug) is preferred in the fault tolerance (software engineering) community; here, we

use them as synonymous.
2 A bug report is also called a ticket, an issue, an incident, a fault (defect) report, a maintenance request, etc.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 42

Deliverable D3.3: “Models-based Process Definition”

on system quality and testing cost/time through MC simulations, and to shortlist a

set of alternatives using Pareto-based multi-objective optimization techniques.

Our optimization method combines the application of both metaheuristic

search techniques and MC simulations. In particular, we have chosen to adopt

evolutionary algorithms because they have been reported to perform better than

some other techniques used for solving the testing resource allocation problem (as

remarked in [3]). These types of metaheuristic algorithms possess the strong

capability of global search, and are usually not very sensitive to initial solutions.

On the contrary, these characteristics represent drawbacks that are common

among the alternative approaches adopted for solving testing allocation problem.

Evolutionary techniques’ effectiveness has also been demonstrated on a large

spectrum of problems in the reliability optimization field, such as resource

management and task partition in grid systems, redundancy allocation, and

reliability optimization of weighted voting systems [3].

In a limited testing budget (and time), an important challenge to address is

a tradeoff between (i) allocating resources to functionalities (software modules)

where testing will have the highest detection power, and (ii) maximizing the

number of bugs that can be fixed in available time. This challenge stems from our

experience in testing industrial health care systems, in collaboration with our

partner. This problem is currently relevant for our industrial partner in particular,

and the health care domain in general due to its high variability in requirements

and design. In fact, medical procedures and uncertainty in patient behaviors

require stochastic analysis, and complex decisions under uncertainty are notably

made about the cost-effectiveness of new medical treatments based on the results

of clinical trials [11].

In summary, our main contributions are:

 An approach implemented as an optimization framework for dynamically

modeling: (i) fault detection and correction processes of systems

functionalities (modules) through the SRGMs that best fit the actual

testing data, (ii) testing cost/time constraints, and (iii) parameter-specific

uncertainties phenomenons. So that the systems functionalities (modules)

with shorter time (budget) are tested and that reveled bugs are fixed

earlier.

 The maximization of the testing process’s effectiveness by predicting the

fault correction process as a function of the bug assignment process. More

specifically, we predict the ability of the debuggers/testers to correct

faults. We use bug reports (collection of fixed and not-fixed bugs) in order

to predict debugging performance. In fact, the scheduling of debuggers to

bug-fixing activities should not be performed only during system testing,

when a new bug is reported and has to be assigned to a

developer/debugger for fixing it (see the typical steps of a bug-tracking

system such as Bugzilla [12]). If the bug assignment would be limited to

the testing activity’s execution, then it would be difficult to find bug-fix

solutions that are relevant to a given testing situation (e.g., that exactly

match the budget and time requirements). We claim that the bug

assignment (typically a time-consuming and tiresome process in large

software projects [13]) may be a key factor for a trustworthy prediction of

the fault correction process of the single functionalities (software

modules), as well as of the reliability of the whole system.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 43

Deliverable D3.3: “Models-based Process Definition”

In Sections 4.1 and 4.2, we present an overview of the dynamic testing resource

allocation framework; in Section 4.3 we provide the formulation of the

optimization model that represents the core of our approach; in Section 4.4 the

achieved results on the Medical Company scenario (see Deliverable D2.2 [95])

are presented; Section 4.5 introduces related work and discusses the novelty of our

contribution.

4.1 OPTIMAL TESTING RESOURCE ALLOCATION PROCESS

We defined a process, which helps in dynamically allocating testing

resources to software functionalities. Dynamic refers to the ability of using testing

data as they become available, exploiting them to adjust performance online, and

robust with respect to variations during testing and volatility of planning time’s

assumptions.

The defined process is based on a multi-objective optimization model

combined with a Montecarlo simulation strategy, aiming to maximize the quality

of a given software (i.e., in terms of number of detected and corrected faults),

based on the trade-offs among system reliability, testing time, and

testing/debugging cost.

We hereafter denote the three objectives to be pursued as: FCO (Fault

correction process’ Effectiveness Objective), to maximize; TTO (Testing Time

Objective), to minimize; TCO (Testing-effort Cost Objective), to minimize. The

output of our process is a solution (i.e., individual in the NSGA-II terminology)

providing (i) the testing effort to be spent for each system functionality, (ii) the

number of debuggers being assigned to each functionality, (iii) the hours of each

debuggers to the functionalities. A solution is also characterized by the fitness,

i.e., the triple composed by the values of FCO, TTO, and TCO that are obtained

by the solution.

In the following, we provide a high-level overview of the proposed

process.

 SRGM Construction. The first phase of the process is obtaining the module-

level SRGMs
3
 that characterize the testing progress of each functionality.

Differently from previous work on SRGMs-based allocation (e.g., [4], [30],

[107], [108], [30]), we do not assume any prior specific SRGM, but we infer

the most suitable for each functionality.

More important, the process includes the possibility to dynamically select the

best SRGMs during testing as fault detection data become available, whenever

historical data are unavailable or unreliable. The steps of the SRGM

construction are shown in Figure 17.

3
 For this work, a module is a functionality: in the following , the two terms are used as

synonymous if not differently specified.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 44

Deliverable D3.3: “Models-based Process Definition”

FIGURE 17: HIGH-LEVEL TESTING RESOURCE ALLOCATION PROCESS OVERVIEW

 Data Gathering. Let F denote the set of functionalities to test. At the

beginning of the process application, i.e., t0, there are two possible cases

for a given functionality: i) historical data about testing conducted on that

functionality are available (or testing data of another system including the

same functionality, or also testing of a previous version of that

functionality) ii) no previous data are available.

In the former case the data (in particular, the fault detection times) can be

used to fit an SRGM for the functionality among a list of SRGMs. In the

latter case, i.e., without any additional information to prioritize the testing

efforts at t0, the initial resource allocation is done uniformly to all

functionalities: once the testing starts, the new data can be progressively

used to fit the SRGMs.

It should be observed that the former case allows running the optimal

allocation before the beginning of the testing activities; however, it

requires historical data. The latter case uses the data generated during the

ongoing testing process (hence, more accurate), but the optimal allocation

algorithm can be run only when enough data are available to build the

SRGMs. Running the optimal allocation dynamically during testing

(possibly, several times) yields to more accurate results, but might be less

useful if run too late (since the suggested allocation would apply just to the

remaining testing time) [5].

 Validity check. To assign a SRGM to a functionality, a validity check is

performed to evaluate if data (either historical data or collected during

testing) can be fitted in a satisfactory way. Each functionality is fitted by

means of every available SRGM among a set of SRGMs the tester wish to

try. Fitting is performed by means of the EM algorithm [14], which

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 45

Deliverable D3.3: “Models-based Process Definition”

provides the best fitting parameters for a given dataset and SRGM. On

each SRGM, it is run a goodness of fit (GoF) test, by means of the one-

sample Kolmogorov-Smirnov (KS) test (with 95% confidence level) for

comparison of samples with a reference probability distribution. If the test

is satisfied for at least one SRGM, it means that the testing dataset can be

said, with 95% of confidence, to come from that SRGMs distribution.

Once the validity check is passed, we have, in general, a set of SRGMs

that satisfy the KS test for one given functionality; these are said to be

statistically valid SRGMs. Among them, the best one will be selected

according to the next step3.

 SRGM selection. The input to this step is the set of statistically valid

SRGMs for each functionality. They are compared in terms of fitting

ability and the best one is selected. We adopt a common goodness-of-fit

measure based, the Akaike Information Criterion (AIC). The SRGM

model with the lowest AIC value is preferred, denoting the minimal

information loss that we incur by selecting that model. This way, each

functionality is assigned with the best fitting SRGM based on real testing

data.

 Parameters Specification. The second phase of our process deals with the

specification of parameters, and the management of the uncertainty.

Parameters are split into deterministic and uncertain. Deterministic parameters

(e.g., desired threshold of reliability, available testing budget, cost of a tester

and a debugger per hour) do not need any preliminary treatment. Uncertain

parameters (e.g., SRGM parameters, average fixing time, usage profile) are

treated by means of a Montecarlo-based strategy aimed at providing the

robustness of the solution against the variability of the parameters.

Examples of uncertain parameters (other parameters are listed in the following

Section) are the SRGM ones. Their values are, in fact, derived by fitting a

dataset, and represent just one of the potential set of values tied to the specific

“instance” of data observed from testing – namely, repeating testing on that

functionality would give different results, as testing is a random process.

Uncertainty is addressed by considering the value of a parameter as a sample

of a probability distribution, similarly to works on architectural solution

optimization [9], [10]. The parameters are considered as random variables,

whose variability is characterized by their continuous or discrete distribution:

the value of a specific instance is considered a deterministic sample drawn

from the distribution of the parameter. The so-specified parameters with

uncertainty are the inputs for the next phase, namely the robust optimization.

 Robust Optimization. The third phase is the robust optimization process,

further detailed in Figure 18. The framework includes two modules: a Model

Builder and a Model solver.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 46

Deliverable D3.3: “Models-based Process Definition”

The Model builder generates the optimization model based on the

deterministic and uncertain parameters; the Model solver processes the model

and produces the Pareto-front solutions, which consist in the testing-effort

allocation and the assignment of debuggers (and hours) to each system

functionality.

The workflow of the Model Solver (here implemented through the NSGA-II

algorithm and the MC simulation) is shown in Figure 19.

The algorithm starts with a set of solutions, which represent the initial

candidates (i.e., the initial population of the search) - Generating Initial

Population step.

At each iteration, recombination and mutation operators are applied to produce

ne individuals. The fitness of the solution is evaluated by handling parameters

uncertain via MC simulation, with respect to the three objectives, i.e.: i) the

expected number of faults that will be detected and corrected by adopting that

solution, ii) the testing and debugging cost that will be sustained, and iii) the

time to complete the testing activity. The most promising individuals are

selected (i.e., Evaluating Individuals in Figure 19) by the metaheuristic. Then,

new candidates are generated from the current population (i.e., Generating

New Population in Figure 19), until the stop criteria are satisfied4.

Embedding MC simulation within the metaheuristic allows generating robust

solutions: the output is not a point solution (where the impact of the input

parameters uncertainty on the solution is unknown), but interval, i.e., range of

solutions that reflect the possible variability of the optimal solution depending

on the variability of the uncertain input parameters. As a result, the tester can

select a solution based on more or less conservative criteria (e.g., taking the

solution on the lower bound of the 95% confidence interval of the mean of one

objective, such as the number of corrected faults).

In the following section, we first describe the MC-based strategy to

manage the uncertainty and produce robust solutions. Then, we detail the

objective functions of the model and the constraints.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 47

Deliverable D3.3: “Models-based Process Definition”

FIGURE 18: THE ROBUST OPTIMIZATION FRAMEWORK AND ITS ENVIRONMENT

FIGURE 19: HIGH-LEVEL (NSGA-II AND MC-BASED) MODEL SOLVER OVERVIEW

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 48

Deliverable D3.3: “Models-based Process Definition”

4.2 TESTING-EFFORT ALLOCATION EVALUATION UNDER
UNCERTAINTY

In general, system engineering disciplines (and in particular, software testing) are

fraught with different types of uncertainties. Software testing, like other

development activities (e.g., the design process [15]), is in fact human intensive

and thus introduces uncertainties. Software testing uncertainties may affect the

development effort and should therefore be accounted for in the test plan [16].

Testing activities are related to the planning and enactment, where enactment

includes test selection, test execution, and test result checking. The majority of

these activities concern with human behavior (such as test result checking is

highly routine and repetitious and thus are likely to be error-prone if done

manually [16]). Test enactment is in fact inherently uncertain, since only

exhaustive testing in an ideal environment guarantees total confidence in the

testing process and its results. However, an ideal testing scenario is infeasible in

practice for all but the most trivial software systems. Instead, multiple factors

exist that introduce software testing uncertainties [17]. Uncertainty can in fact

arise from different sources including external factors not directly related to the

behavior of humans in testing activities, such as the usage of the system from end-

users.

Different types of uncertainty can thus be faced during the testing process.

Example of uncertainty sources is related to the system specification.
4

 For

example, information on the software system to be tested may be incomplete, such

as (some) scenarios, describing the system’s dynamics, might not be available (or

sufficiently detailed) [18].

The importance and the need of handling uncertainty in software testing is also

pointed out by [19]. In particular, the work identifies a set of requirements for

adequate uncertainty handling in testing, and outlines the lack of: (i) richer testing

frameworks to handle input parameters uncertainty (i.e., specify input distribution

instead of discrete inputs), (ii) probabilistic oracles to handle uncertainty

associated to the system behavior (i.e., due to misbehaviors and incorrect outputs),

and (iii) richer models to deal with system and environment uncertainty.

In this work package, we dealt with the uncertainty affecting the parameters

involved in the resource allocation process. The uncertainty is mainly dependent

on estimation of the parameters inferred from observed data (e.g., parameters of

the SRGMs, average fixing time), or that cannot be accurately evaluated when no

enough information is available (e.g., the usage profile of the system

functionalities).

We face this problem by combining MC simulation and metaheuristic search in

order to assess the robustness of a solution against uncertainty. Our strategy

leverages its basics from recent research done in different areas, i.e., software

4 Notice that this uncertainty source corresponds to the type of uncertainty related to system models, i.e., all

sorts of approximation and modeling uncertainties of a design process [15].

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 49

Deliverable D3.3: “Models-based Process Definition”

architecture quality (e.g., performance and reliability), optimization under

uncertainty [109], [110]. Robustness is the ability to tolerate uncertainty in the

input parameters. Such as indicated in Figure 19, the search space exploration is

achieved by enhancing metaheuristic techniques (the NSGA-II algorithm in

particular) with MC simulation for uncertainty analysis. Again, we represent the

uncertainty of the parameters by probability distributions to simulate the impact of

solution alternatives on objective functions through MC simulations, and to

shortlist a set of alternatives using Pareto-based multi-objective optimization

techniques.

The approach to evaluate the objective functions in a robust way is depicted by

Figure 20. The three objective functions (FCO, TTO, TCO) for a given solution

are evaluated by simultaneously considering the uncertainty of all the parameters.

The samples are generated based on the probability distribution associated with

each uncertain input parameter, and the fitness (as well as the constraints) for the

candidate solutions are re-computed for each sample.

Statistical analysis on the fitness values (collected at each MC run) is performed,

so as to provide solutions with a desired statistical confidence. In the following

pargarpahs, we detail the steps as shown in Figure 20.

FIGURE 20: EVALUATION OF TESTING RESOURCE ALLOCATION’S RELIABILITY (TESTING

TIME AND COST) UNDER UNCERTAINTY

4.2.1 Specification of Uncertain Parameters

The uncertain parameters in the testing resource allocation process are categorized
as follows::

 System-specific parameters. This category includes the parameters related

to the detection and correction process, which are dependent on the

features of the system (functionalities) under test. These are the parameters

of the debug-aware SRGMs of each of functionality, i.e.: (i) the expected

number of initial faults; (ii) the parameters of the detection rate per

remaining fault function; (iii) the parameters of the correction rate per

pending fault function .

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 50

Deliverable D3.3: “Models-based Process Definition”

 Parameters specific to the testing-process. This category includes the

parameters related to the testing process and its activities, such as

debuggers aspects (e.g., the average amount of bugs a debugger can fix in

a day).

 Usage profile. The usage profile concerns how users interact with the

system. It roughly expresses how much each functionality is expected to

be used during operations. When available, this information is exploited at

testing time to exercise the system functionalities proportionally to their

expected usage. A simple, but widely adopted, way to express the

operational profile is the relative (percentage) frequency of invocation of

each functionalities (e.g., the call rates of system functionalities).

Call rate estimates can be usually obtained by examining (i) data gathered

during simulation, static profiling, or dynamic profiling; (ii) field data

gathered obtained during runtime monitoring of similar systems (or the

same system in previous versions); (iii) by exploiting domain knowledge

and information provided by the software architecture [20]. It is worth

noting that such estimates are affected by uncertainty that we take into

account.

Uncertain parameters are treated as random variables. Hence, the values of the

parameters are considered as samples of a – continuous or discrete – probability

distribution. Distributions of parameters can be derived in several ways [52], such

as: (i) using the source of the variations, in the cases when the source of

uncertainty is known and can be estimated, (ii) by constructing a histogram, when

a considerable amount of data regarding the parameter behavior are available, (iii)

approximated as a uniform distribution if no information is available and (iv) as a

discrete distribution, when parameters are discrete-valued. Depending on the

available information, any of these methods can be selected to derive a sampling

distribution for each parameter.

We adopt the uniform distribution (UD) in all the cases but one, as we assume the

more general case of no prior knowledge about any parameter. Specifically, the

continuous UD over a range is used for the SRGM parameters about fault

detection process and for the debugger capacity parameters, while a discrete UD

over the set of functionalities is used for the usage profile parameters. For the

SRGM parameters of the fault correction process, we exploit the knowledge

available from the literature, and adopt the exponential distribution, since it has

been shown to well represent the debugging process [111]. In the case of SRGM

parameters, the ranges of the uniform distribution can leverage from the

confidence intervals (e.g., at 95%) of the parameter estimation (e.g., as in [9][10).

For the debugger load capacity, it should be derived from requirements within the

organization, which establishes how many (minimum and maximum) bugs each

debugger can be assigned in a day. As for the usage profile, if no information is

available about which functionality is going to be more used in operation, each

functionality can be assigned the same probability. Finally, as for the correction

process, the mean of the exponential distribution can be estimated by means of

historical data available within a company about the average bug fixing time, as

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 51

Deliverable D3.3: “Models-based Process Definition”

recorded in a bug tracking system; if the information is not available, a domain

expert should assess it.

4.2.2 Sampling of Uncertain Parameters and Solution Evaluation

Samples are drawn from the defined distributions for each of the input parameters.

These are used in the objective functions and constraints of the model in order to

evaluate a candidate solution under the sampled parameter values. The process is

repeated until a desired accuracy is achieved (an iteration is called a MC run). The

output of a MC run is a sample representing one possible fitness value of the

candidate solution (i.e., a triple of values for FCO, TTO and TCO). Criteria for

stopping the simulation and robustly evaluate the candidate solution are explained

hereafter.

Objective functions evaluation under uncertainty. The robust value for the

objective functions from the MC runs could be derived by using two methods [10].

The first method consists in deriving a Probability Density Function (PDF) for each

objective function (i.e., a histogram is constructed for each objective by using

various discretization techniques), and obtaining the robust objective values for a

given confidence. However, this approach is computationally expensive

(considering that it should be repeated for all the individuals). Moreover,

prospective probability distributions for the objective function values need to be

specified a priori.

The alternative method leverages non-parametric or distribution-free statistical

procedures. Specifically, for each candidate solution, it derives descriptive statistics

(e.g. percentiles, mean, variance or confidence bound) for the three objectives from

the observed samples of the MC simulation. To capture the robustness of a

candidate with different degree of tolerance, appropriate percentiles can be used as

robust objectives. In contrast to the PDF-based method, this method does make any

assumption on the probability distribution, being it a non-parametric method, and

are successfully applied in a variety of statistical problems.

We hereafter adopt a non-parametric method. Several options are available

regarding the descriptive statistic to adopt: for instance, selecting the 50th

percentile for all the three objectives means that we consider, for each objective, the

median of the observed samples of the MC simulation, for a given candidate

solution. A more conservative choice is to select the lower/upper bound, namely the

5th or 95th percentiles, depending on whether the objective is to minimize or

maximize. This approximates the bounds of 95% confidence interval. For instance,

if the objective is to maximize (such as in the case of FCO), we consider the lower

bound as robust solution (namely the 5th percentile of observed values); whereas,

for the other two objectives (TTO and TCO), the 95th percentile can be taken as

robust solution.

Dynamic Stopping Criteria. Regardless the percentile chosen, the issue of how

many MC runs (i.e., how many samples) should be performed for an accurate

estimate need to be addressed. We use the notion of dynamic stopping criterion,

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 52

Deliverable D3.3: “Models-based Process Definition”

introduced in [10], in order to monitor the accuracy of the value to estimate (e.g.,

number of faults corrected) and automatically stops the MC simulations when the

number of samples is sufficient to satisfy a predefined error threshold. For

instance, let us consider the objective 1, FCO. Let us denote with f a value of this

objective after one MC run. Several runs of the MC simulation will provide a set

(likely different) values of f, due to the different (uncertain) input parameters’

values sampled at each run (F=f1, f2, …, fN). The goal is to figure out how many

samples are needed (i.e., the size of N) to get an estimate of the desired percentile

of the set F – let us denote it as fperc. The procedure is as follows:

 A minimum of k MC runs are performed. After k repetitions, the desired

percentile is estimated on the collected set (f1,…, ,fk), obtaining the first estimate

of the percentile, fperc_1.

 As the number of runs increases beyond k, further estimates are obtained,

considering samples from the beginning, i.e.: 𝑓𝑝𝑟𝑒𝑐2
 from 𝑓1 … 𝑓𝑘+1 ; 𝑓𝑝𝑟𝑒𝑐3

from 𝑓1… 𝑓𝑘+2;, and so on. The variation of the estimate is monitored for a

sliding windows of size k, as the accuracy of the estimation is a changing

property. Thus, the last k estimates are considered: 𝑓𝑝𝑟𝑒𝑐𝑗
 , 𝑓𝑝𝑟𝑒𝑐𝑗+1

,

…𝑓𝑝𝑟𝑒𝑐𝑗+𝑘
 The statistical significance is calculated for the last k estimates as

in [112]:

𝑒 =
2𝑧

(1−
𝛼
2

)

√𝑘

√�̂�𝑝𝑟𝑒𝑐
2̅̅ ̅̅ ̅̅ ̅−(�̂�𝑝𝑟𝑒𝑐

̅̅ ̅̅ ̅̅ ̅)2

�̂�𝑝𝑟𝑒𝑐
̅̅ ̅̅ ̅̅ ̅ (1)

where e is the relative error, 𝑓 ̅denotes the average of last k estimates, 𝑓2̂̅̅ ̅
is the

mean-square of the last k estimates, is the desired significance of the test and

z refers to the inverse cumulative density value of the standard normal

distribution. The relative error e is checked against a predefined tolerance level

(0.01 in our case): when it is below the threshold the MC runs are stopped, as the

desired accuracy has been achieved.

Robust Optimization. With the MC runs for each candidate solution embedded in

the loop, the search space exploration is achieved by enhancing the metaheuristic

techniques (the NSGA-II, in our case) with the MC method for the analysis of

uncertainty.

For each candidate solution, the fitness value (for each objective) to consider is

the chosen percentile (e.g., the 5th, the 50th, or the 95th percentile). The Pareto-

front concept is enhanced to express the robustness of the solution with respect to

parameters uncertainty. Thus, the dominance notion is slightly modified to

account for this change. For instance, suppose we are considering an objective to

minimize (e.g., the objective 2, namely TTO). In this case, we may want to

consider the upper bound (i.e., 95th percentile of the MC sample set) as

conservative criterion to compare solutions. Then, the Pareto-front concept is

modified as follows.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 53

Deliverable D3.3: “Models-based Process Definition”

Given the minimization of a vector function f of n components 𝑓𝑘, 𝑘 = 1, … , 𝑛 of

of a vector variable x in 𝐷𝑜𝑚 , subject to inequality and equality constraints

(𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1, … , 𝐽 and ℎ𝑘(𝑥) = 0, 𝑘 = 1, … , 𝐾).

Let us denote with f ̅(x) =(𝑓1
̅̅ ̅̅ (𝑥), … , 𝑓�̅�(𝑥)) the upper bound function vector,

(where 𝑓�̅� is the confidence upper bound of 𝑓𝑖 obtained from MC runs). A solution

vector �̅� = {𝑢1̅̅ ̅, … , 𝑢𝑘̅̅ ̅} dominates a vector �̅� = {𝑣1̅̅ ̅, … , 𝑣𝑘̅̅ ̅} , denoted by u̅ ≼ v̅ if

f(̅u) is partially less than f(̅v) , i.e., ∀𝑖 ∈ {1, . . 𝑘} , 𝑓(̅𝑢)𝑖 ≤ 𝑓�̅�(𝑣) ∧ ∃𝑖 ∈
{1, … , 𝑘} : 𝑓(̅𝑢)𝑖 < 𝑓�̅�(𝑣).

Project Constraints evaluation under uncertainty. Figure 7 sketches a high level

view of the proposed approach for evaluating alternative candidates (i.e., testing

resource allocation individuals, see Figure 19) according to the constraints on

reliability (and testing time/cost).

The input of the approach for constraints evaluation is a testing-effort and bug

assignment allocation (an individual of the population of the search). It proceeds

iteratively. At each iteration step, the individual is evaluated according to the

constraints on reliability/time/cost of testing (see Figure 20). Such properties (i.e.,

reliability, cost and time of testing) of one individual are evaluated by

simultaneously considering all the parameters’ uncertainties. In particular,

samples are generated from the probability distributions of uncertain parameters

using the MC method, and the properties are re-calculated for each of these

samples. The output of the constraints evaluation approach, Resij (with j

representing the property identifier), is a descriptive statistic (e.g. percentile,

mean, variance or confidence bound) for the properties (reliability, testing time

and cost) from the observed samples of the MC simulation. Dynamic stopping

criteria are used for determining when a sufficient number of samples for the

associated individual is determined.

FIGURE 21: CONSTRAINTS ON RELIABILITY AND TESTING TIME/COST EVALUATION PROCESS

IN PRESENCE OF UNCERTAIN PARAMETERS

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 54

Deliverable D3.3: “Models-based Process Definition”

Stopping Criteria (Figure 21Figure 21). We have defined the stopping criteria by

exploiting the work in [9] that deals with the model-based performance analysis

(i.e., the satisfaction of certain performance requirements, e.g. response time,

throughput) of software architectures under uncertain parameters. The work

introduced a MC-based approach. In particular, the sampling process is seen as a

Bernoulli experiment where each trial provides a value of 1 or 0 leading to a

Bernoulli distribution with parameter p (which can be estimated using MC

simulations). Stopping criterion has been defined for estimating the value of p

with a tolerance against the inherited uncertainty.

Similarly, we can consider the MC-based evaluation process of constraints

(illustrated in Figure 21), as a Bernoulli experiment where each trial

(corresponding to execution of the evaluation process, see Figure 20) provides a

value of 1 or 0 leading to a Bernoulli distribution with parameter p, i.e., each

execution of the evaluation process has one Boolean indicator representing

whether the trial satisfies reliability (cost and time) requirements. In other words,

a run of our constraint evaluation process corresponds to a sample of the MC-

based process defined in [9].

Thus, the stopping criteria can be defined (by exploiting the ones used in [9]) as

follows:

– A minimum of h executions of the MC-based process (of Figure 20) are

conducted and results are recorded (x1,…,xh). The value of p is estimated as

follows:

�̂� =
∑ 𝑥𝑖

ℎ
𝑖=1

ℎ
 (2)

– The variation of the estimate �̂� = 𝑝1̂, 𝑝2̂, … 𝑝ℎ̂ is monitored for a sliding

window of size h. Only the last h executions of the MC-based process are

monitored, as the accuracy of the estimation is a changing property. The

objective is to detect if sufficient accuracy is obtained.

– The statistical significance is calculated for the last h estimates:

𝑒 =
2𝑧

(1−
𝛼
2

)

√ℎ

√𝑝2̂̅̅̅̅
−(�̅�)2

�̅�
 (3)

where e is the relative error, �̂� is the average of last h estimates, �̂�2 is the mean

square of the last h estimates, 𝛼 is the desired significance of the test and z refers

to the inverse cumulative density value of the standard normal distribution. The

relative error e of the reliability (cost/time) estimate �̂� is checked against a

tolerance level, e.g. 0.005.

Results Interpretation (Figure 21Figure 21). Similar to the performance

robustness of software architectural models [9], the robustness of testing resource

allocations with respect to the requirements on reliability (and testing cost and

time) can be evaluated by systematically analyzing the results, Resij(t) (with j and

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 55

Deliverable D3.3: “Models-based Process Definition”

t representing the property identifier and the run identifier, respectively) of the

MC-based evaluation process runs, and checking if each evaluation process’s run

fulfills the constraints.

We associate to the t-th result, Resij(t), corresponding to the t-th run of the

constraint evaluation process, a fulfillment flag 𝑓𝑅𝑒𝑠𝑖𝑗
(𝑡) which is a binary value

that indicate the satisfaction of the requirements. The robustness of the testing

resource allocation (corresponding to the i-th individual) with respect to the

requirements on reliability (testing time and cost) is defined as follows:

𝑟𝑜𝑏𝑢𝑠𝑡𝑓𝑅𝑒𝑠𝑖,𝑗(𝑡)
= ∑

𝑓𝑅𝑒𝑠𝑖,𝑗(𝑡)

𝑁
𝑁
𝑡=1 (4)

where (i) 𝑟𝑜𝑏𝑢𝑠𝑡𝑓𝑅𝑒𝑠𝑖𝑗(𝑡) is a real value in the [0,1] interval, and (ii) N is the

number of execution of the constraint evaluation process. It is the percentage of

samples that fulfill the requirement(s).

4.3 OPTIMIZATION MODEL FORMULATION

The goal of our optimization model is to find the optimal allocation of testing

resources among K functionalities of a system S to test, and optimal assignment of

bugs to debuggers to maximize the effectiveness of the testing process. “Optimal”

here denotes actions that incur minimum time and cost of testing, and maximum

effectiveness of the fault correction process under minimum reliability and testing

budget constraints.

Table 15 summarizes the symbols used throughout this section. e Section. In the

following, the parameters, variables, constraints, and objective functions are

described.

TABLE 15: MAIN NOTATION ADOPTED

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 56

Deliverable D3.3: “Models-based Process Definition”

4.3.1 Model Parameters

In this section, we describe the main parameters of our optimization model.
5

In this section, we describe the main parameters given as input to the model:

– The time, t0 is the time at which tester decides to run the resource allocation

algorithm. This time can be the beginning of the testing process of the system

under test (when historical data are used for the SRGMs construction) or it can be

any time during the testing process (when online testing data are used to build the

SRGMs). In the latter case, the allocation model can be run several times during

testing (what we called dynamic allocation); thus we refer to t0 as “(re-)iteration”

time.

– Fd&c(t0)k is the number of faults detected and corrected in functionality k after t0

time units.

– When the algorithm has to be run, the SRGMs for each functionality should be

available, according to the phase 1 of the approach. They are characterized by

detection and correction rate functions, denoted as 𝜆𝑘(𝑡), and 𝜇𝑘(t), representing,

respectively, the fault detection rate per undetected fault, and the fault correction

rate per detected but uncorrected fault. Their parameters’ estimation can be coped

with in several ways (e.g., Maximum Likelihood Estimate, Least Square Estimate,

or Expectation Minimization).

5
 For the sake of readability, other parameters are given later in the document.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 57

Deliverable D3.3: “Models-based Process Definition”

– The δk parameter is the average number of hours required to fix a bug, for the

functionality k. It is estimated by querying historical data about bug correction

tracked in the bug repository
6
, such as in [58],, [113], taking the median instead of

the mean when the distribution is highly skewed.

ωk is the probability that the k-th functionality will be invoked:

𝑤𝑘 ≥ 0, ∀𝑘 = 1, … 𝐾 , and ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 . This information can be synthesized

from the operational profile estimation [38], according to either design-time (e.g.,

documentation, simulation, profiling) or execution-time (field data of previous

versions) methods, possibly complimented by expert judgment [114].

– 𝛾𝑘
𝑑 is processing capacity of the debugger d with respect to the functionality k. It

represents the working rate of the debugger on functionality k, expressed as

average number of hours per day that the debugger d is allowed to work t fix bugs

of functionality k.

- 𝐶1
∗, 𝐶2

∗, 𝐶3
∗ are the cost parameters used in the cost-related objective function

(TCO). They represent, respectively: (i) 𝐶1
∗ is the cost per man-day to correct a

bug during testing; (ii) 𝐶2
∗ is the cost per man-day to correct a bug during

operational use (typically 𝐶2
∗> 𝐶1

∗ [7]); and (iii) 𝐶3
∗ is the cost per testing-effort

expenditure unit (e.g., man-hour or man-day) to test a functionality (i.e., hourly or

daily cost of a tester). These parameters are provided as input by the user;

although they could generally have different values for each functionality, we

assume they are the same for each functionality to keep the model simple.

1) α, h, β, A are the parameters of the logistic testing effort function (TEF)

[30][26], which is used to explain how testing effort varies in function of

calendar time. Specifically: α, is the consumption rate of testing-effort

expenditures, (ii) h is a structuring index whose value is larger for better

structured software development efforts, (iii) β is the maximum budget

that has been given on the total amount nof testing-effort that can be

consumed (expressed in man-hours), and (iv) A is a constant parameter.

Although the estimate of these parameters is not the main focus of our

work, as shown in [26], [25], and [24], [22], they may be estimated by the

method of least squares (LSE) or maximum likelihood estimation (MLE).

4.3.2 Variables

This section introduces the decision variables of the optimization model.

The Yk (1 ≤ 𝑘 ≤ 𝐾) variables represent the amount of testing effort (in man-

hours) to perform on each system functionality. It is a decision variable, namely:

solving the model will provide a vector of Yk values, that are the suggested testing

efforts to spent per functionality. A related variable is tk: it is the calendar testing

time (measured, in hours or in days) devoted to test functionality k, and is bound

6
 For simplicity, we assume the average number of hours required to fix a bug of a given functionality k (i.e.,

δk) is the same for each debugger d working on that functionality.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 58

Deliverable D3.3: “Models-based Process Definition”

to the spent testing effort Yk via the TEF: In fact, as the effort is related to testing

time by the TEF, assigning Yk man-hours to k corresponds to assign 𝑡𝑘 = 𝐹−1(𝑌𝑘)

hours, where 𝐹−1 is the inverse of the TEF.

The 𝑥𝑑
𝑘 (1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾) and 𝑁𝑑

𝑘 (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾) variables

are used to predict the correction process of the debugger/tester d with respect to

the functionality k. These are further decision variables. One of the goals of the

model is, in fact, to maximize the number of faults corrected, which is related not

only to the maximization of faults detected, but to how much effectively such

revealed faults are corrected by debuggers. Specifically, the 𝑥𝑑
𝑘 variables are

used to select debuggers for the functionality k; in particular 𝑥𝑘
𝑑 is equal to 1 if

the debugger d is chosen and 0 otherwise. The 𝑁𝑘
𝑑 variables represent the time (in

hours) assigned to the debugger d to work on functionality k in the interval (t0,tk].

Thus, a solution consists of: the Yk variables (1 ≤ 𝑘 ≤ 𝐾) suggesting the optimal

testing effort per functionality, by the 𝑥𝑑
𝑘 (1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾) variables

and, assigning debuggers to functionality, and by the 𝑁𝑑
𝑘 (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)

variables assigning the number of hours of debuggers to functionalities.

4.3.3 Constraints

A first set of most relevant constraints of the model are expressed in Figure 22:

FIGURE 22: MODEL CONSTRAINTS

- For each functionality k, faults detected in the interval (t0,tk] must be fixed.

Equation 1 in Figure 22 expresses that the total time assigned to debuggers

on functionality k must be greater or equal than the expected time to

correct the detected bugs (estimated as mean fixing time per bug

multiplied by the expected number of bugs that will be detected if k is

tested for a time tk). Note that this equation holds if we assume that all

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 59

Deliverable D3.3: “Models-based Process Definition”

detected bugs with the allocated testing resources must be corrected, and

thus assigned to debuggers, whereas the equation should be appropriately

modified if this assumption is relaxed.

- The bug correction process is modeled as a function of the amount of time

(e.g., in hours) required to fix the bugs detected, and as function of the

working time of debuggers. The waiting queues are modeled by

introducing a constraint on the capacity of debuggers. This constraint is

expressed by Equation 2 in Figure 22: for each functionality k, the load of

debugger d due to the assignment of bugs is limited by a function of the

processing capacity of debugger d, (i.e., 𝛾𝑘
𝑑). 𝑁𝑘

𝑑 is greater than 0 only if:

i) the debugger d is allocated to functionality k (𝑥𝑑
𝑘 = 1), ii) a non-zero

testing time tk is allocated functionality k (tk > 0), and, from constraint 1,

iii) at least one bug is expected to be detected during the assigned time tk

(i.e., 𝑚𝑑𝑘
(𝑡0 + 𝑡𝑘) > 𝑚𝑑𝑘

(𝑡0)), assuming 𝛾𝑘
𝑑 > 0 and δ k > 0. This

throughput model is a light-weighted one that favors model solvability. An

explicit management of queues could be introduced, using, for example,

queuing network models explicitly considering a one-to-one mapping

between debuggers and bugs, but at the expense of computational

complexity and understandability.

- Equation 3 of Figure 22 indicates the (possible) constraints defined for

debuggers that must be assigned or cannot be assigned to functionalities

for some reasons, e.g., due to the debugger’s skill level or expertise area.

In these cases, the corresponding variable 𝑥𝑑
𝑘 is forced to be 1 or 0. Note

that, in order to solve incompatibilities or dependencies among debuggers

and/or functionalities, due, for instance, to human factors (skill set, skill

level and availability) or functionality characteristics, additional

constraints can be added as contingent decisions. For example, 𝑥2
1 ≤

𝑥3
2 means that, if the second debugger is selected for the first functionality,

then the third debugger must be selected for the second functionality; 𝑥1
2 ≤

𝑥1
3 means that, if debugger 1 is selected for functionality 2, then he must

also be selected for functionality 3.

- Equation 4 in Figure 22 states that the expected number of cumulative

faults detected in (t0,tk] (namely, if tk = F
−1

(Yk) testing time is assigned to

test k), cannot be greater than the expected number of residual fault in k.

- Equation 5 in Figure 22 expresses a constraint on the maximum effort that

can be allocated. A maximum threshold B is given on the total amount of

testing effort possibly consumed (expressed in man-hours). The test

manager has to distribute a budget B of man-hours among the K

functionalities; the solution suggests that k-th functionality should receive

a testing effort equal to Yk man-hours.

- Finally, Equation 6 of Figure 22 tells that: if there are no available

debuggers for functionality k, then the amount of testing effort allocated to

k (i.e., Yk) will be 0 (since bugs could be detected, but then not corrected).

In other words, if the functionality k receives a certain amount of testing

effort, then one or more debuggers must be assigned to functionality k.

There could be an additional constraint on Yk: if we require that all the

functionalities must be tested, then Yk > 0, 1 ≤ k ≤ K. Similarly, further

requirements by the tester could be seamlessly included as constraints in

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 60

Deliverable D3.3: “Models-based Process Definition”

the model, enabling several extensions; in this work, we keep the model in

its basic form.

- Equation 7 reports the constraint on the minimum desired failure intensity

at the end of testing. The estimate of failure intensity of a functionality k is

usually obtained though the SRGM, as it is the derivative of the

cumulative expected number of detected faults, md(t). The estimate is

obtained as:

𝜙𝑘(𝑡𝑘) =
𝑑𝑚𝑑

𝑑𝑡
(𝑡𝑘) (5)

It denotes the expected failure intensity if the model solution assigns a

testing effort Yk to functionality k such that Yk = F(tk) (where F denotes the

TEF), or, similarly, such that: tk = F
−1

(Yk). A maximum threshold, 𝜙∗, is

given to the failure intensity of the overall system as input requirement. In

an average-case scenario, like the one we assume, the failure intensity

constraint is formulated as follows:

∑ 𝜔𝑘𝜙𝑘(𝑡𝑘) ≤ 𝜙∗𝐾
𝑘=1 (6)

In other words, the system failure intensity is weighted by the call rates of

each functionality. In a worst-case scenario, tester may want to require that

all functionalities should satisfy a failure intensity constraint. In this case,

the constraint would be formulated as follows:

𝑚𝑎𝑥𝑘=1…𝐾(𝜙𝑘(𝑡𝑘)) ≤ 𝜙∗ (7)

Finer-grained constraint can be introduced to guarantee threshold limits for

each functionality, i.e.: 𝜔𝑘𝜙𝑘(𝑡𝑘) ≤ 𝜙∗ .

4.3.4 Multi-Objective Function

In this section, we define the three objectives of the multi-objective optimization

problem.

2) Fault correction process’ Effectiveness Objective (FCO) The objective

function to be maximized, as the predicted number of faults corrected

(providing an assessment of the system reliability after the application of

the amount of testing effort, Yk, on each of system functionalities), is given

by:

𝐹𝐶𝑂 = ∑ 𝑚𝑐𝑘
(𝑡0 + 𝑡𝑘)𝐾

𝑘=1 (8)

The solution for the exponential case with logistic TEF is:

𝑚𝑐𝑘
(𝑡0 + 𝑡𝑘) = 𝑒−𝜇𝑘(𝑡0+𝑡𝑘) ∫ 𝑎𝑘

𝑡0+𝑡𝑘

𝑡0

𝜇𝑘𝑒𝜇𝑘𝑠(1 − exp[−𝛽𝑘(𝑌𝑘(𝑡) − 𝑌𝑘(0))])𝑑𝑠

(9)

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 61

Deliverable D3.3: “Models-based Process Definition”

After the application of the amount of testing effort, Yk, the expected

number of faults corrected for the functionality k depends on: the fault

detection rate, related to the testing effort suggested for k, Yk, through the TEF,

and (ii) on the availability of sufficient debugger (hours), regulated by 𝑁𝑑
𝑘 and

𝑥𝑑
𝑘 variables, for the correction of all detected faults at the rate expressed by

𝜇𝑘(𝑡).

3) Testing Time Objective (TTO)

Assuming that the time-depending behavior of the testing-effort (for each of

the system functionalities) is modeled by the generalized logistic testing-effort

function proposed in [26][30], we can compute the testing time for functionality

k can as function of the effort:

𝑡𝑘 = (−
1

𝛼∗ℎ
𝑙𝑛 (

(
𝐵

𝑌𝑘
)ℎ−1

𝐴
)) (10)

where (i) 𝛼 is the consumption rate of testing-effort expenditures in the logistic

testing-effort function, (ii) h is a structuring index whose value is larger for better

structured software development efforts, (iii) B is a maximum threshold that has

been given on the total amount of testing-effort that can be consumed (expressed

in man-hours), and (iv) A is a constant parameter in the logistic testing-effort

function. Although the estimate of these parameters is not the main focus of our

work, as shown in [26], [27], and [28], they may be estimated by the method of

least squares. Moreover, more details on estimation of the budget B can be also

found in [5].

 Assuming that manpower is available to independently test system

functionalities (namely, they can proceed in parallel), the second objective

function is the time minimization for testing the K functionalities:

𝑇𝑇𝑂 = 𝑚𝑖𝑛𝑘=1…𝐾(𝑡𝑘) (11)

Although this assumption could not be too realistic due to the overhead that likely

incurs when a lot of functionalities must be tested, it reflects a common practice in

testing planning. However, as previously discussed to relax such an assumption,

guidelines of existing approaches for the work packages scheduling and staff

assignment problem plan could be exploited.

3) Testing-effort Cost Objective (TCO). The third objective cares about

minimization of cost, which is a measure related to the effort spent but that goes

beyond the mere effort for testing. In agreement with [30], for the functionality k,

the cost of testing effort expenditures during software development and testing

phase, and the cost of correcting errors before and after release, can be expressed

as follows:

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 62

Deliverable D3.3: “Models-based Process Definition”

𝐶𝑜𝑠𝑡𝑘(𝑡) = 𝐶1
∗ (

𝛿𝑘

24
) 𝑚𝑐𝑘

(𝑡) + 𝐶2
∗ (

𝛿𝑘

24
) (𝑚𝑑𝑘

(∞) − 𝑚𝑐𝑘
(𝑡)) + 𝐶3

∗ (
𝑌𝑘

24
) 𝑑𝑡 (12)

where: (i) 𝐶1
∗ (

𝛿𝑘

24
) is the cost per day to correct a bug during testing; (ii) 𝐶2

∗ (
𝛿𝑘

24
)

is the cost of correcting a bug in operational use (typically 𝐶2
∗ > 𝐶1

∗ [31]); and

(iii) 𝐶3
∗ is the cost of testing per unit testing-effort expenditure, expressed in cost

of a man-day (for a tester).
7

This cost model, similar to the one in [30], is a light-weighted one that favors

model solvability. However, it can be enhanced by using well-assessed cost model

from the literature (e.g., COCOMO II model [32]) to increase the result accuracy.

This can be done without essentially changing the overall model structure, but

with the side effect of increasing the solution complexity. To address this, the

guidelines of the COCOMO II-based model defined in [33] for estimating the

development cost of an in-house developed service may be exploited. More

specifically, in [33], the development cost of an elementary software service has

been defined as a function of the testing activity (e.g., the number of tests

performed on a service before delivery). The original COCOMO II model [32]

introduces a software cost function that depends on the size (i.e., the lines of code)

and the type (i.e., simple, intermediate and complex) of software. These two

attributes allows estimating the amount of effort, in terms of person-months,

needed to deliver the software.

𝐶1
∗ , 𝐶2

∗ and 𝐶3
∗ may be estimated in different ways depending on the functionality

type and debugger/tester profile. Details on their estimation can be found in [30].

The work in [30] is focused on cost of software modules, whereas we consider the

cost to test system functionalities. In other words, we consider each of the system

functionalities as software modules.

Therefore, the objective function to be minimized, as the sum of the cumulative

testing-effort costs for all of system functionalities, is given by:

𝑇𝐶𝑂 = ∑ 𝐶𝑜𝑠𝑡𝑘(𝑌𝑘)𝐾
𝑘=1 (13)

4.3.5 Model Summary

Figure 10 summarizes the formulation of our optimization model.

7 Notice that the cost 𝐶3

∗ does not include the costs for the bug-fixing activity. Instead,

these costs are considered in the estimation of the 𝐶1𝑘
∗ parameter.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 63

Deliverable D3.3: “Models-based Process Definition”

FIGURE 23: OPTIMIZATION MODEL FORMULATION

Main assumptions and threats to validity

The usage of SRGMs (with TEF) to model the fault detection and correction

process implies the following assumptions:

– The fault removal process is modeled as a Non-Homogeneous Poisson

process (NHPP), where the mean number of faults detected in the time

interval (t, t + ∆t) by the current testing-effort is proportional to the mean

number of remaining faults in the system at time t.

– Each of the system functionalities are subject to failures at random times

(with independent inter-failure times) caused by the manifestation of

remaining faults in the functionalities.

– System functionalities are autonomous, independently testable. New

functionalities or feature enhancement are not introduced into the code

during testing.

– The relation between testing effort and testing time can be modeled by a

testing effort function (TEF).

– – Each time a failure occurs, the fault that caused it is correctly removed

and no new faults are introduced (i.e., perfect repair). This assumption can

be partially relaxed if we admit, among the set of selectable SRGMs, the

ones modeling the imperfect debugging phenomena.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 64

Deliverable D3.3: “Models-based Process Definition”

We mitigate the SRGM assumptions by enabling, in the formulation, a

module-tailored selection of the best model among a set SRGMs, and by the

possibility, in the process, to fit SRGM with online data (that account for the

effect of such assumptions’ violations). In addition to the SRGM assumptions,

further assumptions are:

- We assume historical information about issue reports is correct: namely,

reporters can correctly distinguish a bug from a feature request, can

correctly identify duplicate bug reports, and we can faithfully approximate

the average bug fixing time (e.g., the δ parameter) as the bug closing

minus the bug opening time.

- Bug fixing time dependence on other basic bug-related features, such as

severity and priority or bug owners and bug types is not considered to

keep the model simple at this stage. Extensions can be implemented for

more accurate but expensive model formulations.

- We assume that (i) debugger manpower is available to independently fix

bugs in system functionalities, and (ii) for each of the Yk man-hours, there

is the same pool of D debuggers. We are working toward relaxing such

assumptions. To this extent, we are investigating how to use the guidelines

of existing approaches (such as the ones of [35]) for the work packages

scheduling and staff assignment problem plan (i.e., the allocation of staff

to teams and the allocation of teams to work packages).

- Although we admit several testing-effort time model, we taken, as specific

example, the generalized logistic testing-effort function, a widely-used

one. It can be replaced by other well-assessed distribution function from

the literature. Although this can be done without changing the model

structure, the effect of other TEFs on solution complexity are not assessed.

- Cost constants are assumed to be known within the company. Such

information is not always easily accessible, and more or less complex

models can be adopted to accurately estimate it, as COCOMO ones. Such

models are out of scope for this paper.

4.4 HEALTH CARE CASE STUDY

In this section we describe the case study that we devised in order to validate the

effectiveness of the approach in dynamic testing resource allocation of industrial

health care software. In particular, we present the achieved results on the Medical

Company scenario (see Deliverable D2.2 [95]) .

 The goal of our experimentation is to evaluate the effectiveness of our

approach in addressing the important challenges related to the tradeoff between (i)

allocating resources to system functionalities where testing will have the highest

detection power, and (ii) maximizing the number of bugs that can be fixed in

available time. To do this, we compared the amount of testing efforts selected by

our approach with the amount of testing efforts selected without explicitly

incorporating bug assignment activities into the fault correction process of each of

the functionalities.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 65

Deliverable D3.3: “Models-based Process Definition”

Random generation of model instances. Starting from the nominal values of the

parameters, we have generated 4 different instances (here also called perturbed

configurations) by randomly changing the following parameters: (i) the total

amount of testing-effort eventually consumed, B; (ii) the average number of hours

required for fixing a bug of the functionality k, 𝛿𝑘 , and the expected number of

initial faults in the functionality k, ak. Specifically, the perturbed configuration

parameters have been varied within 10% of the nominal values, with the exception

of the total amount of testing-effort, B, that has randomly increased of the 10% of

the nominal value.

We have applied on the same case study, our approach and the typical state-of-the

art testing resource allocation approach (e.g., [7], [3]). Our approach is mainly

focused on system functionalities (which we consider as software modules).

Therefore, our model can be compared with existing works by introducing a

mapping of software modules on system functionalities.

The state-of-art problem of testing resource allocation (here also called base

model) typically consists of finding the amount of testing-effort to be performed

for each of the system functionalities
8
 that minimizes the total cost under the

threshold R on the system reliability. Additional decision variables are introduced

in our optimization model to represent in bug-fixing activities to perform for each

system functionalities.

For the experiments, we have used JMetal [37], an object-oriented Java-based

framework aimed at the development, experimentation, and study of

metaheuristics for solving multi-objective optimization problems.
9
 Due to the

stochastic nature of evolutionary algorithms, we have performed 30 independent

runs per algorithm (see [36] for details).

Our comparison between the two approaches can be summarized in three steps.

Step 0: Let us assume that all the debuggers may work four hours a day for each

of the system functionalities.

 For each perturbed configuration (and for the nominal instance), we have solved

two models for R that spans from 0.9 to 0.97. In Figure 24, Figure 25, and Figure
26, we report the obtained results, where each bar indicates, respectively, the

number of corrected faults, the testing time and cost of a model averaged over its

four perturbed configurations and nominal instance. Each group of tree bars -

corresponding to one model - refers to the model’s results with five instances. In

particular, each bar - corresponding to the model solution over the four perturbed

configurations and the nominal one with a fixed value of the threshold R - reports

8
 As remarked above, for sake of comparison, we introduce a one-to-one mapping of system

functionalities on software modules.
9
 jMetal can be obtained freely from http://jmetal.sourceforge.net/.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 66

Deliverable D3.3: “Models-based Process Definition”

the highest, lowest and average number of corrected faults, the testing time and

cost obtained.

FIGURE 24: AVERAGE NUMBER OF CORRECTED FAULTS VS RELIABILITY THRESHOLDS

FIGURE 25: CALENDAR TESTING TIME VS RELIABILITY THRESHOLDS

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 67

Deliverable D3.3: “Models-based Process Definition”

FIGURE 26: COST VS RELIABILITY THRESHOLDS

The results highlight, in general, that the solutions of the base model and our

model do not show discrepancies in case of non-complex search space (i.e., for

simple scheduling of debuggers to fix-activities), in that the average number of

bugs, times and costs of their solutions are only slightly different. Moreover, for a

given model, the times and costs slightly increases while increasing the reliability

threshold R. This can be observed by fixing a value on the x-axis and observing

the values on the curves while growing the threshold R.

Step 1: Let us assume that all the debuggers may work one hour a day for each of

the system functionalities. Then, let us decrease the number of average hours that

a debugger may work in order to complicate the search space.

 We have generated an additional perturbed configuration by randomly varying

the parameters of the nominal values (as done for the Step 0), with the exception

of the total amount of testing-effort, B, that has randomly decreased of the 10% of

the nominal value. We have solved the two optimization models in this new

perturbed configuration for a set of values of reliability bound and the average

number of hours required for fixing a bug of the functionality k, 𝛿𝑘.

 In Figure 14, we report the results obtained by the two models with two

different values of the average number of hours required for fixing a bug of the

functionality k, 𝛿𝑘. The first configuration corresponds to the one of the nominal

instance, whereas the in the second configuration (as shown in Figure 10) we have

increased the average number of hours required for fixing a bug of each of the

functionalities. More specifically, the figures report the obtained results, where

each bar indicates, respectively, the number of corrected faults, the testing time

and cost of a model averaged over its new perturbed configuration.

 Given a graph represented in Figure 27, each group of two bars - corresponding,

respectively, to the base model and our model - refers to the models’ results with

the perturbed configuration. In particular, each bar - corresponding to the model

solution over the configuration with a fixed value of the threshold R - reports the

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 68

Deliverable D3.3: “Models-based Process Definition”

highest, lowest and average number of corrected faults, the testing time and cost

obtained.

FIGURE 27: STEP 1 RESULTS

 For each model, the testing cost usually increases in accordance with the

reliability required by the system (even thought this increase is more evident for

second configuration). Thus, to satisfy the reliability constraint, it is necessary to

allocate a greater amount of testing-effort (in man-hours).

 The results highlight, in general, that the discrepancies between the two models

results starts becoming more evident. In particular, our model starts capture the

variation of corrected bugs, the amount of testing time and cost, while modifying

the bug assignment activities into the fault correction process of each of the

functionalities.

 Step 2: Let us assume that all the debuggers may not work one hour a day for

each of the system functionalities. We study the sensitivity of the solution to the

debugger fixing time values by randomly assigned some of the functionalities to

each debugger. By fixing the reliability threshold R to 0.95, for the second

configuration of the average number of hours required to fix a bug (see Figure

14), the average number of bugs corrected of corrected faults of our model

averaged over its new perturbed configuration (defined in Step 1) decrease from

about 578 to about 544.

 If we increase the average number of hours required to fix a bug of some of the

functionalities (i.e., we set 𝛿1 = 6, 𝛿2 = 5, 𝛿3 =6, 𝛿4 = 6, 𝛿5 = 6, 𝛿6 = 5, 𝛿7 = 6, 𝛿8

= 5), then the average number of bugs corrected of corrected faults of our model

averaged over its new perturbed configuration still decreases from about 544 to

about 481.

4.5 RELATED WORK

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 69

Deliverable D3.3: “Models-based Process Definition”

The work related to our research can be divided into four categories: (i) testing

resource allocation; (ii) selection of SRGMs; (iv) bug assignment; and (iii)

parameters uncertainty.

 Testing Resource allocation. In the last years, several research efforts have

been devoted to allocate testing resources (e.g., [7], [3]). All these approaches

basically provide guidelines to assign appropriate testing resources to a number of

relatively small and independent modules (components), which are tested

independently during module testing phase. Typically, they express the

relationship between reliability and testing resources by using SRGMs. More

specifically, these types of reliability models are used for describing the failure

occurrence and/or fault removal and consequently aid to enhance the software

reliability. Moreover, since failure curves can be either exponential or S-shaped

for different modules, flexible SRGMs have also been considered, for example, as

done in [7]. In particular, the latter uses a flexible SRGM considering testing

effort which, depending upon the values of parameters, can describe either

exponential or S-shaped failure pattern of software modules. Testing-effort

functions (TEFs) have been introduced (e.g., see [29]) to describe the relationship

between the effort expended to test software (e.g., in person-months), and the

physical characteristics of the software, such as LOC, etc. In [38], it is shown how

to incorporate the logistic TEF [39] into both exponential type, and S-shaped

software reliability models. Most SRGMs assume that faults detected during tests

will eventually be removed [38].

This assumption, although common in state-of-the-art approaches, might not be

realistic. However, a class of related papers deals with this imperfect debugging

phenomenon (e.g., see [40], [41], [42]). For example, in [40], general frameworks

are proposed for deriving several software reliability growth models based on a

non-homogeneous Poisson process (NHPP) in the presence of imperfect

debugging and error generation.

 Existing approaches for testing resource allocation basically are based on simple

optimization models (e.g., in [8] two models are presented that minimize the

remaining faults and the amount of testing-effort given the number of remaining

faults, respectively) or multi-objective optimization models, for example,

maximizing reliability, and minimizing testing cost and testing resource consumed

[3]. Different approaches have been adopted such as genetic algorithms in [43], or

the gradient projection method and the dynamic programming (a list of these

types of works can be found in [3]).

 Selection of SRGMs. In the last years the topic of definition, evaluation, and

selection of SRGMs has been largely studied (see, e.g., [44] and [45]).

Comparative analysis of SRGM models have also been performed in term of

goodness of fit, prediction accuracy and correctness, for example, based on failure

data sets containing system test failures data, field and open source software

defects data [46]. However, although SRGM is probably one of the most

successful techniques in the literature, with more than 100 models existing in one

form or another, through hundreds of publications [47], in practice, SRGMs

encounter major challenges. As remarked in [48], the evaluation of the SRGMs’

predictive power in the literature has generally been limited to only the last few

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 70

Deliverable D3.3: “Models-based Process Definition”

data points (typically last 10% of data) [49] [50]. Moreover, as also claimed in

[48], the difficulty of applying SRGMs in industry is compounded with (i) the

lack of studies applied to specific industrial domains [49], and (ii) scarce

guidelines to select the best SRGMs for a given software process/application. In

[48], it has been investigated the application of SRGMs in embedded software

domain. In particular, eight established SRGMs have been evaluated on a number

of large software projects within the embedded software domain from three

different companies.

 Bug assignment. The bug assignment problem, related to triage new arriving

bug reports to the most qualified developer, has in recent years received

increasing attention. An effective bug assignment in large software projects not

only requires significant contextual information about both the reported bugs (and

the pool of available developers), but also is a time-consuming and tiresome

process [13]. Considerable research efforts in the mining software repositories

field have concerned bug prediction.

The bug assignment process has been supported by, for example: (i) exploiting the

application of information retrieval techniques in order to identify the most

appropriate developers [51]; (ii) using expertise models of developers based on

previous bug reports [51] [52] or source code contributions [53] ; (iii) applying a

machine learning algorithm the open bug repository to learn the kinds of reports

each developer resolves [52] ; or (iv) adopting preference elicitation methods to

determine the developer’s preferences for fixing certain types of bugs [54]. In [13],

an auction-based multi-agent mechanism also allows developers to require bugs

from the bug triggers; therefore, they can make decisions based on their

preferences, expertise, and such.

The problem of resource scheduling for bug fixing can be classified as a special

case of the more general resource constrained scheduling problem, which is in

general NP-hard [55]. The effectiveness and efficiency of search-based techniques

have already been demonstrated for different scheduling related software project

management problems (e.g., for project planning in the context of a massive

maintenance intervention [56]). However, the application of search techniques for

implementing an efficient bug repair policy is very much unexplored [55]. In [55],

a genetic algorithm is designed for scheduling developers and testers to bug-fixing

tasks considering both human properties (skill set, skill level and availability) and

bug characteristics (severity and priority). Also, industrial software defect

prioritization techniques, in general, suffer of lack of multi-optimization

techniques [57].

 Another class of related papers deals with automated debugging techniques that

aim to help developers locate and understand the cause of a failure (e.g., [58]). In

particular, statistical-fault-localization techniques have been extensively

investigated (see [58] for an overview on these types of techniques and other

ones like anomaly detection, and experimental debugging). Other papers are

focused on assisting developers in changing programs to fix bugs. For example, in

[59], based on a machine learning technique, a tool has been designed for

computing and reporting a prioritized list of bug-fix suggestions for a given

debugging situation at a program statement that is suspected of being faulty.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 71

Deliverable D3.3: “Models-based Process Definition”

Parameters uncertainty. Other challenges related to the testing allocation are

represented by parameters uncertainty. In fact, software testing activity is fraught

with a not negligible uncertainty relates to values of parameters such as

operational profile, the expected number of initial faults, the fault detection rate

per unit testing-effort (SRGMs input), fault fixing time, etc. Several research

efforts have also been spent in order to deal with parameters’ uncertainty in

software quality domain (e.g., in component reliability estimates [60], or in the

performance modeling and analysis process [9]) adopting, for example, a robust

optimization approach [10], or a bayesian approach [61]. Moreover, for example,

fuzzy mathematical methods have been used to represent the uncertainty

parameters (e.g., as done in [62]) of an alternative architecture. The fuzzy

paradigm has also been used in [63], wherein it is addressed uncertainty involved

in estimated parameters of SRGM in imperfect debugging environment.

Therefore, although there is a growing interest in handling uncertainty, in practice,

uncertainty of all the parameters of a software testing activity is not typically

addressed.

With respect to the state-of-art, the following major aspects characterize the

novelty of the approach:

 This is the first work (to the best of our knowledge) that enables

practitioners to maximize the effectiveness of the testing activity using an

optimization framework, which allows dynamically to model: (i) fault

detection and correction processes of systems functionalities (modules)

through the SRGMs that best fit the actual testing data, (ii) testing

cost/time constraints, and (iii) parameter-specific uncertainties

phenomenons. So that the systems functionalities (modules) with shorter

time (budget) are tested and that reveled bugs are fixed earlier.

 We have explicitly considered the bug assignment activity in the fault

correction process (typically not done in the existing works). In particular,

this work has showed that (for a large software system) the bug

assignment may be a key factor for a trustworthy prediction of the fault

correction process of the single functionalities (software modules), as well

as of the reliability of the whole system.

 The proposed approach does not rely on a specific development process or

testing practice (e.g., in testing unit).

 We have provided guidelines for practitioners. We have provided support

for their testing allocation decisions based on cost, time, and software

quality. In particular, our approach helps to: (i) select (and use) SRGMs in

order to make the software testing process more effective; and (ii) handle

parameters uncertainty, which, as shown through our real world software

project, plays a critical role in accurately describing testing resource

allocation process. More specifically, we have shown that the handling of

uncertainty is a key factor for a trustworthy prediction of the reliability of

a software system, and leads an optimization model to a more precise (and

less pessimistic) estimation of the system reliability, as well as to a more

effective and efficient testing resource allocation activity. It is well known

that SRGMs sometimes show good performance in terms of predictability

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 72

Deliverable D3.3: “Models-based Process Definition”

of the software reliability, but sometimes they do not. This fact may be, in

particular, caused by insufficient information on how the software has

been developed, maintained, and operated [64].

 We have instantiated the optimization model for the fault correction with

the bug assignment activity prediction, but its elements (e.g., cost function

and reliability constraints) combined with the method for uncertainty

analysis could be re-used in another phase of the testing process. This

adoption may require specializing (appropriately modifying) the model in

order to capture typical aspects of the new phase. Testing-effort allocation

prediction under testing-effort time/cost and reliability constraints with

uncertain model parameters, for example, could be used for enhancing

existing approaches (such as that one in [55]) for scheduling

developers/testers to activities to be performed to fix a bug repository.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 73

Deliverable D3.3: “Models-based Process Definition”

5 OPTIMAL REGRESSION FUNCTIONAL TESTING

 Regression testing is the process of validating modified software to provide

confidence that (i) the changed parts of the software behave as intended, and (ii)

the unchanged parts have not been adversely affected by the modifications [65].

 Research in regression testing has seen a flourish in the past years, in particular

in the fields of new approaches, tools, and techniques to reduce the cost of reusing

the test suite that was used to test the original version of the software. A quite

extensive list of these approaches can be found in [66] and [67]. However, the key

tasks of testing cost reduction methods are commonly: (i) regression test selection

- selecting subset of existing test cases to run on the modified software (e.g., [68],

[69], [70], and [71]); (ii) regression test suite minimization - reducing the test suite

size to a minimal subset to maintain the same level of coverage as the original test

suite; and (iii) regression test suite prioritization - finding an ideal order of test

cases according to some criteria, such that test cases with higher priority are

executed earlier than ones with lower priority [72].

Although used extensively in industry, regression testing is challenging from both

a process management as well as a resource management perspective. In fact,

putting the proposed techniques into practice has been a challenge [72].

In Section 5.1, we introduces related work. In Section 5.2, we present an overview

of our approach.

5.1 RELATED WORK

In the last years the topic of software testing has been studied in several

communities and from different perspectives (see, e.g., [73] for a look into

architecture-based testing techniques, or the survey in [74] of methodologies for

automated software test case generation).

In particular, a lot of research efforts has been spent for regression testing (e.g. see

survey [66]). In this work, we focus on regression test suite prioritization, which is

highly relevant in general to industry (and in particular, for our industrial partner).

Therefore, hereafter, we review works appearing in the literature dealing with

regression testing prioritization.

 Several techniques have been introduced for using test execution information to

prioritize test cases. In [75], a comparison of such techniques, aimed to evaluate

their ability to improve rate of fault detection, has been performed by conducting

several empirical studies. More specifically, three categories of techniques have

been considered, i.e., techniques ordering test cases based on their (i) total

coverage of code components, (ii) coverage of code components not previously

covered, and (iii) estimated ability to reveal faults in the code components that

they cover. Several new controlled experiments and case studies have been

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 74

Deliverable D3.3: “Models-based Process Definition”

performed in [76]. In particular, building on results presented in [75] and focusing

on the goal of improving rate of fault detection, the authors in [76] have addressed

additional questions (e.g., related to the techniques’ effectiveness when targeted at

specific modified versions, or the trade-off between the fine granularity and

coarse granularity prioritization techniques).

Research effort has been also devoted for defining metrics to quantify and

compare the rates of fault detection of test suites [77], [78]. In [79], a more

general metric has been defined for measuring rate of fault detection that accounts

for varying test case and fault costs.

Another class of related papers deals with prioritization techniques that are driven

by requirements with higher priority, or operate in the presence of time constraints

(e.g., [80], [81], [82] discussed below).

 In [80], a regression testing approach is proposed, where test cases are

prioritized such that the test cases for requirements with higher priority are

executed earlier during system test. In particular, four factors (i.e., requirements

volatility, customer priority, implementation complexity, and fault proneness) are

used to analyze and assign value to each requirement.

 The work in [81] presents initial results of an empirical study on using historical

test execution data to prioritize test case selection in a constrained regression

testing process. In particular, the work evaluates how several RTS techniques

perform under severe time and resource constraints.

 In [82], it is presented a regression test prioritization technique that uses a

genetic algorithm to reorder test suites in light of testing time constraints.

The genetic algorithms (to determine the most effective order) have also been

leveraged in [83]. Specifically, this work proposes a method of cost-cognizant test

case prioritization based on the use of historical records, which are gathered from

the latest regression testing.

 A comparison of search algorithms for regression test case prioritization, based

on code coverage (including block coverage, decision (branch) coverage, and

statement coverage) has also been performed in [84]. More specifically, the work

presents results from an empirical study of the application of several greedy,

metaheuristic, and evolutionary search algorithms to six programs, ranging from

374 to 11,148 lines of code for three choices of fitness metric.

 Several coverage-based test case prioritization techniques have been developed,

which typically use either a total strategy or an additional strategy. In [85], it is

proposed a unified test case prioritization approach that encompasses both the

total and additional strategies. The work has also proposed extensions to enable

the use of differentiated probabilities that test cases can detect faults for methods

and the use of static coverage information as well as dynamic.

There was previous work, which has exploited the combination of code coverage

analysis and the change impact analysis. For example, in [86], a procedure level

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 75

Deliverable D3.3: “Models-based Process Definition”

coverage regression test based on change-based test selections method has been

experimentally applied to an open source web browser engine project WebKitit.

Moreover, the work also experimented test case prioritization strategies (based on

changes) to reduce the testing time when the selection is too large.

 Approaches for particular types of applications (such as for software product

lines [87]) or testing strategies (e.g., model-based testing [88]) have also been

introduced, as well as the use of methods (e.g., information retrieval ones [89])

have been exploited, for example, in order to address coverage profiling overhead

(in terms of time and space) and potential problems associated with the

imprecisions of static program analysis. Research effort has also been done for

improving regression testing in continuous integration development environments

[90]. In particular, the work in [90] has introduced two regression testing

techniques (for testing selection and prioritization, respectively) that use readily

available test suite execution history data to determine what tests are worth

executing and executing with higher priority.

5.2 OVERVIEW OF OUR APPROACH

A representation of the high-level workflow of the proposed approach is presented

in Figure 28.

FIGURE 28: HIGH-LEVEL APPROACH OVERVIEW

Our approach is mainly based on the analysis of code coverage and code churn,

which is collected for each of the version of a software product. Such information

is stored in a database, our implementation makes use of eXist-db database, which

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 76

Deliverable D3.3: “Models-based Process Definition”

is an open source NoSQL database and application platform built on XML

technology.
10

 Coverage information is collected by a JaCoCo agent, an open source toolkit for

measuring and reporting Java code coverage.
11

 A JaCoCo report is a xml

document having the structure depicted in Figure 29.

FIGURE 29: OUTPUT OF THE JACOCO TOOL: CODE COVERAGE ANALYSIS

10

 The eXist-db database can be obtained freely from [91].

11
 The JaCoCo tool can be obtained freely from [92].

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 77

Deliverable D3.3: “Models-based Process Definition”

 Churn metrics are collected by CodeChurn Tool. It is a proprietary tool of

ASSIOMA.net [93], which exploits the Sonar tool [94] for metrics evaluation.

More details on the churn code metrics and the Sonar tool can be found in

Deliverable D2.2 [95]. A CodeChurn report is a xml document having the

structure depicted in Figure 30.

FIGURE 30: OUTPUT OF THE CODE CHURN TOOL: CODE CHURN ANALYSIS

In Section 5.2.1, we provide more details on the JaCoCo tool’s output, whereas in

Section 5.2.2, we describe in more detail the Code Churn tool’s output. Finally, in

Section 5.2.3, we give an overview of the Metric/Prioritization module, which

represents the core of our approach.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 78

Deliverable D3.3: “Models-based Process Definition”

5.2.1 The JaCoCo Tool

 The JaCoCo tool provides code coverage analysis in Java VM based

environments. It is based on Bytecode instrumentation; therefore it is very helpful

in situations where the source code is not available.

 As illustrated in Figure 29, the JaCoCo tool allows to collect coverage analysis at

different level of granularity, resulting in the following coverage measures.

 Instructions, namely single Java byte code instructions. In particular,

instruction coverage is related to the amount of code that has been

executed or missed.

 Branches for all if and switch statements. In particular, the total number of

such branches in a method are counted so as to determine the number of

executed or missed branches.

 The Cyclomatic Complexity is estimated for each non-abstract method,

classes, packages, and groups.

 Lines. Coverage information for individual lines are calculated for the

class files that have been compiled with debug information. In particular,

if at least one instruction that is assigned to a certain source line has been

executed, then the source line is considered executed.

 Methods. A non-abstract method contains at least one instruction, and is

considered as executed when at least one instruction has been executed.

Notice that constructors and static initializers are also counted as methods,

because JaCoCo is based on Bytecode instrumentation.

 Classes. If at least one the methods of a certain class has been executed,

then the class is considered as executed.

More details on the tool can be found in [92]. The supported reports formats are

HTML, XML, and CSV. In our implementation, we have chosen the XML

format.

An extensive list of code coverage tools for java can be found in [96].

5.2.2 The Code Churn Tool

 As illustrated in Figure 30, the Code Churn tool allows collecting churn code

analysis at different level of granularity. In particular, the tool evaluates the (i)

Total added, modified and deleted LOC, and (ii) Cyclomatic complexity.

5.2.3 Metric/Prioritization Module

 A primary input to the Metric/Prioritization Module is represented by an XML-

based structure collecting churn metrics and coverage metrics. In fact, for each of

the test case, churn metrics and coverage metrics are joined in a common structure

depicted in Figure 31. More specifically, the XML output files of the JaCoCo tool,

related to the code coverage analysis, and Code Churn tool, are merged. To this

extend, we have exploited the proprietary RaptorXML tool, which is a hyper-fast

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 79

Deliverable D3.3: “Models-based Process Definition”

XML and XBRL processor. A 30-day trial version of RaptorXML can be

downloaded from [97].

FIGURE 31: OUTPUT OF THE RAPTORXML TOOL: MERGING OF THE COVERAGE AND CHURN

ANALYSIS

The data models of the JaCoCo tool (see Figure 29) and the Code Churn Tool (see

Figure 30) are precisely the ones used in eXist-db database.

Table 16 and Table 17 summarize, respectively, the input and the output of the

Metric/Prioritization module. Specifically, the Metric/Prioritization Module

processes the XML-based structures, and assigns priority to the test cases. Priority

assignment involves applying a function that seeks to capture the relationship

among the test cases, the code coverage, and the churn analysis. The goal of the

prioritization we are interesting in is that of considering in order of relevance (a)

tests case potentially covering changed parts of the product (b) test cases which

guarantee the best coverage. Specifically, we have introduced two parametric

algorithms inspired on standard Total statement coverage prioritization and the

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 80

Deliverable D3.3: “Models-based Process Definition”

Additional variant. Details on the implementation of these algorithms can be

found in the next section.

TABLE 16: INPUT OF THE METRIC/PRIORITIZATION MODULE

Source Data Type Description

User Source code of system

versions

 (java code)

Our approach is mainly based

on the analysis of code

coverage and code churn,

which is collected for each of

the version of a software

product. Such information is

stored in a database, our

implementation makes use of

eXist-db database, which is an

open source NoSQL database

and application platform built

on XML technology.

User Test cases Test cases to prioritize

JaCoCo tool Coverage information Analysis of code coverage is

collected for each of the

version of a software product.

Specifically, coverage

information is collected by a

JaCoCo agent, an open source

toolkit for measuring and

reporting Java code coverage.

CodeChurn Tool Code churn analysis Churn metrics are collected by

CodeChurn Tool. It is a

proprietary tool of

ASSIOMA.net, which exploits

the Sonar tool for metrics

evaluation

 TABLE 17: OUTPUT OF THE METRIC PRIORITIZATION MODULE

Decision Description

Test cases prioritization A primary input to the Metric/Prioritization

Module is represented by an XML-based

structure collecting churn metrics and coverage

metrics (obtained, respectively, with JaCoCo

and CodeChurn tool). In fact, for each of the test

case, churn metrics and coverage metrics are

joined in a common structure. More specifically,

the XML output files of the JaCoCo tool, related

to the code coverage analysis, and Code Churn

tool, are merged. To this extend, we have

exploited the proprietary RaptorXML tool,

which is a hyper-fast XML and XBRL

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 81

Deliverable D3.3: “Models-based Process Definition”

processor.

The Metric/Prioritization Module processes the

XML-based structures, and assigns priority to

the test cases. Priority assignment involves

applying a function that seeks to capture the

relationship among the test cases, the code

coverage, and the churn analysis. The goal of the

prioritization we are interesting in is that of

considering in order of relevance (a) tests case

potentially covering changed parts of the

product (b) test cases which guarantee the best

coverage.

5.2.4 Test prioritization

5.2.4.1 Churn Coverage Prediction Prioritization

 In this section we consider predictive prioritization techniques which exploit

both coverage and churn information. In this case we do not consider bursts but

focus our attention only on the two last versions Vm-1 and Vm of a sequence of

versions 〈𝑉1, … , 𝑉𝑚〉. In this case we assume that tests have been already executed

on Vm-1 (i.e. coverage metrics are available on that version) but have not yet

executed on version Vm for which only churn data are available.

 The challenge of predictive prioritization is that of estimating a good

prioritization of test cases for version Vm by exploiting churn data and coverage

data collected for version Vm-1.

 The goal of the prioritization we are interesting in is that of considering in order

of relevance (a) tests case potentially covering changed parts of the product (b)

test cases which guarantee the best coverage. To this purpose we propose suitable

adaptations of two well-known prioritization techniques, namely the Total

Statement coverage prioritization and the Additional Statement Coverage

Prioritization.

 Actually, we introduce two parametric algorithms inspired on standard Total

statement coverage prioritization and the Additional variant. This algorithms

exploit structured coverage information for test cases referred in the following as

coverage increment. Intuitively, the coverage increment of a test case depends on

the current state of coverage and gives the contribution of coverage split into three

components: the contribution for changed parts, for deleted parts and for

unchanged parts. By introducing suitable ordering criteria for coverage increments

we are able to define variants of the prioritization algorithm.

Let M(V) be a coverage report for the version V of a product, namely a .xml

structure recording the coverage information after the execution of a (possibly

empty) set of test case. With M0(V) we denote the initial coverage report

corresponding to the execution of an empty set of test cases. For a test T, a version

V and a coverage report M(V) let be Inc(T,M) be the quadruple 〈𝐶, 𝐷, 𝑈, 𝑇〉 where

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 82

Deliverable D3.3: “Models-based Process Definition”

 C is the number of instructions of methods that will change w.r. to version

V coveredby the execution of T and uncovered in M(V);

 D is the number of instructions of methods that will be deleted w.r. to

version V covered by the execution of T and uncovered in M(V);

 U is the number of instructions of methods that will remain unchanged

w.r. to version V covered by the execution of T and uncovered in M(V).

 𝐼𝑛𝑐(𝑇, 𝑀) gives the coverage increment with respect to the coverage report M

after the execution of the test case T. Such a tuple is called coverage increment

tuple. Notice that is 𝐼𝑛𝑐(𝑇, 𝑀0) precisely the tuple 〈𝐶(𝑉, 𝑇), �⃗⃗⃗�(𝑉, 𝑇) , �⃗⃗⃗�(𝑉, 𝑇), 𝑇〉

. For a set of test cases Z, 𝑀𝑎𝑥𝐼𝑛𝑐≼(𝑍, 𝑀) gives the test case in Z which

guarantees the greatest coverage increment among all the test cases in Z, namely

𝑀𝑎𝑥𝐼𝑛𝑐(𝑍, 𝑀) is the test case 𝑇 ∈ 𝑍such that 𝐼𝑛𝑐(𝑇, 𝑀) = 𝑚𝑎𝑥�̅�∈𝑍{𝐼𝑛𝑐(�̅�, 𝑀)}

where max is computed with respect to the parametric ordering of quadruples ≼

 Let us consider now the Churn Total Statement Coverage Prioritization. The

pseudocode is reported in Figure 32.

FIGURE 32: ALGORITHM 1: CHURN TOTAL STATEMENT COVERAGE PRIORITIZATION

 The Churn Total Coverage Prioritization can be easily obtained by ordering

under the parametric ordering ≼ the coverage increment tuples of all the

considered test cases (the function Test applied to a sequence of coverage

increment tuples simply gives the sequence of projection of the test name

component of each tuple).

 The standard Total instruction coverage prioritization (which do not consider

churn information) can be defined by considering the ordering ≺ defined as

follows

〈𝐶, 𝐷, 𝑈〉 ≺𝑆𝑡 〈𝐶′, 𝐷′, 𝑈′〉 iff 𝐶 + 𝐷 + 𝑈 ≤ 𝐶′ + 𝐷′ + 𝑈′

 In [98] some prioritization criteria sensitive to churn are introduced. For instance,

the General strategy is intended to cover most procedures besides the changed

ones under the assumption that test cases with higher overall coverage are better.

The opposite of General is the Specific strategy which is intended to cover least

procedures besides the changed ones. The specific strategy selects those test cases

first which cover little outside of the changes. In our setting we can define

analogous strategies working at the granularity level of instructions instead of

granularity level of methods. For instance, the principles of the general strategy

can be enforced by the following ordering ≼𝐺𝑒𝑛 defined as follows

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 83

Deliverable D3.3: “Models-based Process Definition”

On the opposite, the principles of the specific strategy can be enforced by the

following ordering ≺𝑆𝑝𝑒𝑐 defined as follows

 Finally, we consider a kind of ordering ≼𝑙𝑒𝑥 which prioritize first the coverage

of changed parts if relevant and than that of coverage of unchanged part if the

coverage increment of changed parts can be considered equivalent (a kind of

’lexicographic order between coverage of changed parts and coverage of

unchanged parts). The definition of the ordering ≼𝑙𝑒𝑥 depends on a parameter

𝛼 ≥ 0 which used to determine when the amount of coverage can be considered

equivalent.

 The ordering ≺𝐿𝑒𝑥 defined as follows

 Let us consider now the Churn Additional Coverage Prioritization. The

pseudocode is reported in Figure 33.

FIGURE 33: ALGORITHM 2: CHURN ADDITIONAL STATEMENT COVERAGE PRIORITIZATION.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 84

Deliverable D3.3: “Models-based Process Definition”

The function 𝐴𝑑𝑑𝐶𝑜𝑣𝑒𝑟(𝑇, 𝑀) gives as a result a coverage report obtained by

adding to M the coverage information of test case T.

5.2.4.2 Backward Churn Prioritization

 In the previous section we have considered algorithms for predictive (forward)

prioritization which has to be considered in absence of coverage information for

changed parts. If the test cases have been executed at least once in the last version

Vm the prioritization can be recomputed taking into account also coverage

information. In this case we can consider the same strategies seen for predictive

prioritization with a slight modification of the concept of coverage increment

tuple called backward coverage increment tuple.

 For a test T, a version V and a coverage report M(V) let be 𝐼𝑛𝑐𝐵(𝑇, 𝑀) be the

quadruple 〈𝐶, 𝐴, 𝑈, 𝑇〉 where

 C is the number of instructions of methods changed in V w.r. to the

previous version covered by the execution of T and uncovered in M(V);

 A is the number of instructions of methods added in V w.r. to the previous

version covered by the execution of T and uncovered in M(V);

 U is the number of instructions of methods unchanged in V w.r. to the

previous version covered by the execution of T and uncovered in M(V).

 𝐼𝑛𝑐𝐵(𝑇, 𝑀) gives the coverage increment with respect to the coverage report M

after the execution of the test case T.

Notice that the backward coverage increment tuple simply replaces the coverage

of methods which will be deleted with the coverage of methods which are added.

In this case 𝐼𝑛𝑐𝐵(𝑇, 𝑀0) is precisely the tuple〈�⃖�(𝑉, 𝑇), �⃗⃗⃗⃖�(𝑉, 𝑇) , �⃗⃗⃖�(𝑉, 𝑇), 𝑇〉. For

backword increment coverage tuple, the analogous of ≺𝑆𝑡 , ≺𝐺𝑒𝑛, ≺𝑆𝑝𝑒𝑐 and ≺𝐿𝑒𝑥,

written ≺𝑆𝑡 𝐵, ≺𝐺𝑒𝑛𝐵, ≺𝑆𝑝𝑒𝑐𝐵 and ≺𝐿𝑒𝑥𝐵, respectively, by simply replacing in the

definitions the metrics deleted methods with the metrics of added methods.

 Therefore, a predictive (forward) prioritization can be used to suggest the first

regression test for a new version. A backward prioritization can be used for the

next stages (after the first). The backward prioritization allows in addition to

check the predictive power of forward prioritization. The idea is that a good

prediction should be very similar to the ordering of test output by a backward

prioritization.

 To measure the distance of two prioritizations (two orderings of the same set of

test cases) we shall consider, for instance, the following definition. A

prioritization of a test suite TC is an bijective function 𝑝𝑟: 𝑇𝐶 → {1, … , |𝑇𝐶|}

(intuitively pr(T) gives the position of the test 𝑇 ∈ 𝑇𝐶 in the prioritization). Given

two prioritizations pr1 and pr2 for TC with = n, the distance of two prioritizations

is given by

Notice that the distance of two equal prioritization is 0. The constant
2

|𝑇𝐶|2 gives an

upper bound for the greatest possible distance.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 85

Deliverable D3.3: “Models-based Process Definition”

5.2.5 Experimental Results

 For the experiments we have considered SIR [99], a repository of software-

related artifacts meant to support rigorous controlled experimentation with

program analysis and software testing techniques, and education in controlled

experimentation. For the experimentation we have considered Java products

having a meaningful number of lines of code, of versions and cardinality of test

suit. The chosen products are SIENA and ANT whose attributes are depicted in

Table 18. Siena (Scalable Internet Event Notification Architecture) is an Internet-

scale event notification middleware for distributed event-based applications

deployed over wide-area networks, responsible for selecting notifications that are

of interest to clients (as expressed in client subscriptions) and then delivering

those notifications to the clients via access points [100]. The associated test suite

guarantees a complete method coverage (not a complete statement coverage). Ant

is a Java-based build tool supplied by the open source.

TABLE 18: CASE STUDIES

In Table 19 and Table 20, we report the churn metrics provided by the tool

ChurnTool (we consider eight versions for both Siena and Ant).

TABLE 19: CHURN METRICS FOR ANT

TABLE 20: CHURN METRICS FOR SIENA

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 86

Deliverable D3.3: “Models-based Process Definition”

Analysis of the results

 In order to show the effectiveness of the combination of coverage and churn

information we here illustrate the results that we have obtained from the

prioritization which optimizes either coverage or coverage of changed parts in the

next software version.

 For the Ant and Siena systems, we have prioritized the test cases by using

coverage and churn information. More specifically, for a version Vk, we have

prioritized the test cases by using the relationship among the test cases, the code

coverage, and the churn analysis.

 The experiments were run on a Ubuntu Linux 12.04 workstation equipped with

a Intel Core i7 (2 MB of cache memory and 8 GB RAM DDR3).

 InFigure 34, we report the obtained results for the Siena system. For each

version, we have prioritized the test cases, and estimated the coverage of changed

parts of the first 50, 150, 250, and 350 test cases of its prioritized test suite. Each

bar indicates the number of instructions (i.e., single Java byte code instructions) of

changed parts covered by the test cases. Therefore, we have measured the

predictive power of test cases as a function of the changed parts. To sake of

comparison, we have also estimated the coverage of the whole test suite.

FIGURE 34: COVERAGE OF TEST CASE PRIORITIZATION FOR THE SIENA SYSTEM

 In Table 21, we report the detailed results. Each cell reports the resulting number

of instructions of changed parts covered by the test cases for a certain version

(row) and a certain number of test cases (column).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 87

Deliverable D3.3: “Models-based Process Definition”

TABLE 21: COVERAGE FOR SIENA

 Similarly, in Figure 35, we report the obtained results for the Ant system. For

some versions, we have prioritized the test cases, and estimated the coverage of

changed parts of the first 8, 10, 14, 18, and 24 test cases of its prioritized test

suite. Each bar indicates the number of instructions (i.e., single Java byte code

instructions) of changed parts covered by the test cases. To sake of comparison,

we have also estimated the coverage of the whole test suite.

FIGURE 35: COVERAGE OF TEST CASE PRIORITIZATION FOR THE ANT SYSTEM

In Table 22, we report the detailed results. Each cell reports the resulting number

of instructions of changed parts covered by the test cases for a certain version

(row) and a certain number of test cases (column).

TABLE 22: COVERAGE FOR ANT

The results highlight, in general, that the predictive power of test cases (as a

function of the changed parts) almost always increases while increasing the

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 88

Deliverable D3.3: “Models-based Process Definition”

number of selected test cases. For example, for the Siena system (see Figure 34),

the number of instructions of changed parts covered by the test cases (except in

two cases) almost always increases while increasing the number of test cases.

Moreover, the discrepancies among test cases (i.e., their predictive power)

become more evident as the number of changes increases (e.g., for versions with

higher values of code churn metrics), such as for the version V2 of the Siena

system (see Table 21). On the other hand, the predictive power of test cases do not

show discrepancies in case of small increase in the number of test cases or

changes. For example, for a given version of the Ant system, the predictive power

of test cases does not essentially change.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 89

Deliverable D3.3: “Models-based Process Definition”

6 ARCHITECTURAL DECISION-MAKING

The prediction of the software architecture quality supports a large set of

decisions across multiple lifecycle phases that span from design through

implementation-integration to adaptation phase. However, due to the different

amount and type of information available, different prediction approaches can be

introduced in each phase. A major issue in this direction is that Quality of Service

(QoS) attribute cannot be analyzed separately, because they (sometime adversely)

affect each other. Therefore, approaches aimed at the tradeoff analysis of different

attributes have been recently introduced (e.g., reliability vs cost, security vs

performance).

Our work has been focused on modeling and analysis of QoS tradeoffs of a

software architecture based on optimization models. A particular emphasis has

been given to two aspects of this problem: (i) the mathematical foundations of

QoS tradeoffs and their dependencies on the static and dynamic aspects of a

software architecture, and (ii) the automation of architectural decisions driven by

optimization models for QoS tradeoffs. Our major contribution is to show how

effectively optimization modeling techniques can capture relevant aspects of the

architectural decision-making process in different lifecycle phases, thus

representing a very relevant support for the software engineers tasks. We have

also given a tutorial on this topic [101].

In the book chapter [102], in the context of a waterfall development process, we

implement three models: one for the architectural design (i.e. the software

architecture driven model applicable before the release of a system), one for the

implementation/deployment phase (we show how the QoS of a software

architecture depends on the hardware architecture), and one for the maintenance

phase (i.e. the software architecture driven model applicable after the release of a

system). In order to show the usefulness of our approach, we run these models on

an example coming from the domain of medical information systems.

In this chapter, we have also presented a general optimization model that

minimizes the total costs subject to constraints on the level quality of the software

architecture. The model can be adopted in (specialized for) one of the lifecycle

phases by leveraging available information and parameters, the level of detail of

which obviously increases as the development progresses. Then, each specialized

form of the general model can be either separately used and solved, if required in

a certain lifecycle phase, or used in pipeline feeding with each other, as we will

show in our example. In Section 6.1, we report the formulation of this general

optimization model by discussing typical architectural decisions, which can be

supported by using optimization models.

Our work has also been focused on the automation of the support for the

decisions that software architects make after deployment. This approach is based

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 90

Deliverable D3.3: “Models-based Process Definition”

on an optimization model whose solution suggests the “best” actions to be taken

according to a given change scenario (i.e., a set of new requirements that induce

changes in the structural and behavioral aspects of the software architecture).

In particular, in [103], we introduce a framework named SHEPhERd (Software

arcHitecture Evolution based on cost, PErformance and Reliability), which is

composed of a UML case tool, a model builder and a model solver.

SHEPhERd is based on an optimization model that suggests the “best” actions to

be taken upon a certain change scenario arising. A change scenario is a set of new

requirements that induce changes in the structural and behavioral aspects of the

software architecture. In particular, in our model, for each new requirement in a

change scenario we consider different sets of evolution actions (called evolution

plans) that are able to guarantee these new requirements. We aim to obtain a set of

decisions that lead to the definition of a new architecture that minimizes cost,

while keeping the reliability and the response time within certain thresholds. In

Section 6.2, we describe the main features of the SHEPhERd framework.

In Section 6.3, we introduce the SAQO (System Adaptation with Quality

Optimization) framework, which extend the SHEPhERd framework.

6.1 A GENERAL FORMULATION FOR ARCHITECTURAL DECISIONS VS
QUALITY CONSTRAINTS

In this section, we report the general optimization model presented in [102].

The model minimizes the total costs subject to constraints on the level quality of

the software architecture.

 Let 𝑆 = {𝑢1, ⋯ , 𝑢𝑛} be a software architecture made of 𝑛 software units 𝑢𝑖

(1 ≤ 𝑖 ≤ 𝑛) the composition of which results in services that the system offers to

users.

 Since the proposed model may support different lifecycle phases, we adopt a

general definition of software unit: it is a self-contained deployable software

module containing data and operations, which provides/requires services to/from

other elementary elements. A unit instance is a specific implementation of a unit.

For each unit 𝑢𝑖, let 𝐽𝑖 be the set of instances available by vendors and 𝐽�̅� the set of

possible options for developing the instance in-house. Let 𝑢𝑖𝑗 be the 𝑗-th instance

of 𝐽𝑖 ∪ 𝐽�̅� .

 Architectural Decisions. The analysis of the QoS tradeoffs is a broad decision-

making process that consists of a set of actions aiming to modify the static and

dynamic structure of the software architecture. The decisions within the different

life-cycle phases are basically related to the following software actions:

1. Introducing new software units: One or more new software units may be

embedded

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 91

Deliverable D3.3: “Models-based Process Definition”

into the system.
12

 We call 𝑁𝑒𝑤𝑆 the set of new available software units

that can provide different functionalities.

2. Replacing existing unit instances with functionally equivalent ones

available on the market: The employed instance 𝑢𝑖𝑘 of a software unit

𝑢𝑖 may be replaced with an element of the set 𝐽𝑖, i.e., with of the instances

available for it on the market (e.g. a Commercial-Off-The-Shelf (COTS)

component/web service).We assume that all the instances in 𝐽𝑖 are

functionally compliant with 𝑢𝑖𝑘 , i.e., each of them provides at least all

services provided by 𝑢𝑖𝑘 and requires at most all services required by 𝑢𝑖𝑘.

The instances in 𝐽𝑖 may differ from 𝑢𝑖𝑘 for cost and quality attribute (e.g.

reliability and response time).

3. Replacing existing unit instances with functionally equivalent ones

developed in-house: An existing instance of a software unit 𝑢𝑖 may be

replaced with one developed in-house. Developers could opt for different

building strategies resulting in different in-house instances, i.e., the

elements of the set 𝐽�̅�. The values of quality attributes of such optional

instances (e.g., reliability, response time) could vary due to the values of

the development process parameters (e.g. experience and skills of the

developing team).

4. Modifying the interactions among software units in a certain

functionality: The system dynamics may be modified by

introducing/removing interactions among software units within a certain

functionality.

Optimization model formulation.

Model Variables. Let 𝑥𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝐽𝑖 ∪ 𝐽�̅�) be the binary variable that is

equal to 1 if the instance 𝑗 is chosen for the software unit 𝑖, and 0 otherwise.

Moreover, let 𝑧ℎ (1 ≤ ℎ ≤ |𝑁𝑒𝑤𝑆|) be the binary variable that is equal to 1 if the

new software units ℎis chosen and 0 otherwise.

 Let us analyze the system on the base of 𝑝 quality attributes (such as cost,

response time, availability, etc.). Suppose moreover that each attribute of any

software unit depends on the value of parameters 𝛼𝑖
𝑘’s, 𝛽𝑖

𝑘’s, and 𝛾𝑖𝑗
𝑘 ’s, where (i)

the vector 𝛼𝑖
𝑘 describes the (at most) 𝑢 software architecture observable

parameters, e.g., the average number of invocations of a software unit within the

execution scenarios considered for the software architecture, (ii) the vector 𝛽𝑖
𝑘

contains the (at most) 𝑣 hardware observable parameters, e.g., the processing

capacity of the node hosting the software unit, that is measured, for example, as

the average number of instructions per second that the resource can execute, and

(iii) the vector 𝛾𝑖𝑗
𝑘 represents the (at most) 𝑤 features of the implementation of 𝑢𝑖,

e.g., the reliability of the instance used for replacing the existing unit. For the 𝑘

quality attributes of a provided instance, the value of the features 𝛾𝑖𝑗
𝑘 ’s is assumed

to be either given from the software unit provider or estimated from the customer.

12 Notice that such type of action has to be associated to another action that indicates how this unit

interacts with existing units, therefore it modifies the interactions within certain functionalities (see
last type of software action).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 92

Deliverable D3.3: “Models-based Process Definition”

On the contrary, for an in-house developed instance the 𝛾𝑖𝑗
𝑘 ’s can be predicted by

considering variables of the decision planning.

 Let 𝛤𝑘 ∶ ℝ𝑢 × ℝ𝑣 × ℝ𝑤 → ℝ (𝛤�̅� ∶ ℝ𝑢 × ℝ𝑣 × ℝ𝑤 → ℝ) be the

function that, on the base of the above parameters, returns the value of the 𝑘-th

quality attribute (1 ≤ 𝑘 ≤ 𝑝) of an existing (new) software unit. In particular, let

𝛬𝑖𝑗
𝑘 = 𝛤𝑘(𝛼𝑖

𝑘, 𝛽𝑖
𝑘 , 𝛾𝑖𝑗

𝑘) the value of the 𝑘 -th attribute of the provided/in-house

instance 𝑢𝑖𝑗.

 We can represent the value of the 𝑘 -th quality attribute of the 𝑖 -th existing

software unit as a function of the decisional strategy 𝐱:

 𝜃𝑖
𝑘 = ∑ Λ𝑖𝑗

𝑘
𝑗 ∈𝐽�̅� ∪𝐽𝑖

𝑥𝑖𝑗 (1)

 Similarly, we can represent the value of the 𝑘-th quality attribute of the ℎ-th
new software unit as a function of the decisional strategy 𝐳:

 �̅�ℎ
𝑘 = 𝑧ℎΓ̅𝑘 (𝛼𝑖

𝑘, 𝛽𝑖
𝑘, 𝛾𝑖𝑗

𝑘) (2)

 Let 𝐺𝑘: ℝ𝑛 × ℝ|𝑁𝑒𝑤𝑆| → ℝ, with (1 ≤ 𝑘 ≤ 𝑝), be the function that returns the

𝑘-th quality attribute of the whole system on the base of the same attributes of

each existing/new software unit. And let us assume (without loss of generality)

that the values of each quality attribute 𝑘 are constrained strained to be above a
lower threshold value 𝛩𝑘. Assume, moreover, that the cost is the first quality
attribute, i.e., 𝜃𝑖

0 (�̅�𝑖
0) express the cost of the existing (new) software units. Finally,

let 𝐶𝑜𝑠𝑡: ℝ𝑛 × ℝ|𝑁𝑒𝑤𝑆| → ℝ be the cost function of the whole system that clearly
depends on the costs of all the existing (new) software units. Different cost models
could be used to define 𝐶𝑜𝑠𝑡, e.g., it may also include the potential costs of software
unit adaption (i.e. the glueware). The general formulation of the optimization model
for the QoS tradeoffs analysis is given by:

 min 𝐱,𝐳 𝐶𝑜𝑠𝑡(𝜃0, �̅�0) (3)

𝐺𝑘(𝜃0, �̅�0) ≥ 𝛩𝑘 ∀𝑘 = 1 … 𝑝

∑ Λ𝑖𝑗
𝑘

𝑗 ∈𝐽�̅� ∪𝐽𝑖

𝑥𝑖𝑗 = 𝜃𝑖
𝑘 ∀𝑘 = 1 … 𝑝, ∀𝑖 = 1 … 𝑛

𝑧ℎ�̅�𝑘 (𝛼ℎ
𝑘 , 𝛽ℎ

𝑘, 𝛾ℎ
𝑘) = �̅�ℎ

𝑘 ∀𝑘 = 1 … 𝑝, ∀ℎ = 1 … |𝑁𝑒𝑤𝑆|

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 93

Deliverable D3.3: “Models-based Process Definition”

 𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 = 1 … 𝑛, ∀𝑗

= 1 … 𝑝 ∑ 𝑥𝑖𝑗 = 1 ∀𝑖 = 1 … 𝑛

𝑗∈𝐽�̅�∪𝐽𝑖

𝑧ℎ ∈ {0,1} ∀ℎ = 1 … |𝑁𝑒𝑤𝑆|

 Other constraints (e.g., equations to predict 𝛼𝑖
𝑘’s and 𝛽𝑖

𝑘
 ’s)

6.2 THE SHEPHERD FRAMEWORK

In this section, we provide an overview of the SHEPhERd framework [103],

which we have introduced in the context of component-based architectures.

Figure 36 shows the SHEPhERd framework within its working environment. The

framework basically comprises two modules: a Model builder and a Model solver.

FIGURE 36: THE SHEPHERD FRAMEWORK AND ITS ENVIRONMENT

SHEPhERd framework Input. A primary input to the framework is represented

by an UML-based architectural model composed of: (i) a Component Diagram

describing software components and their interconnections, (ii) a set of Sequence

Diagrams describing the possible execution scenarios, and (iii) a Deployment

Diagram describing the platform architecture.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 94

Deliverable D3.3: “Models-based Process Definition”

The system maintainer, through a Monitor module, is able to perceive non-

functional requirement violations in the runtime system. She/he defines evolution

plans for new and/or violated requirements that represent change scenarios. After

receiving an evolution request from the system maintainer, the Model builder

generates the optimization model in the format accepted by a solver (e.g.,

LINGO
13

 that we have used in [103]).

 The Model builder first allows users to annotate the UML diagrams with

additional data that represent the optimization model parameters, such as failure

probabilities of software components, or the processing capacity of the platform

nodes. Then, it transforms the annotated model into an optimization model in the

format accepted from the solver.

SHEPhERd framework Output. The optimization model is processed by the

Model solver, which produces the results, which consist of a set of evolution

actions. It suggests how to adapt both the static and dynamic aspects of the

software architecture. Moreover, the platform architecture is modified by re-

deploying existing components and/or deploying new components on the existing

nodes.

 A new software architecture is obtained by modifying its structure and behavior.

To modify the structure, our approach suggests replacing existing components

with different available instances and/or to introduce new components into the

system. With regard to the system behavior, the model is focused on the system

scenarios (expressed, for example, as UML Sequence Diagrams) by removing or

introducing interaction(s) between existing or new components. The platform

architecture (modeled, for example, with an UML deployment diagram) can also

be modified by re-deploying existing components and/or deploying new

components.

 In [103], the mathematical formulation of the optimization model that

SHEPhERd generates and solves can be found. Details on model formulation can

be found in [103].

 The goal of our optimization model is to find the optimal set of actions needed to

tackle required changes to the software architecture. “Optimal” here denotes

actions that incur minimum cost while guaranteeing a certain level of reliability

and performance.

 The objective function under the main reliability and performance constraints,

plus the constraints on the model variables, represents our optimization model.

The model solution determines the evolution plan to choose for each change

requirement, in order to minimize the software evolution costs under the

reliability and performance constraints.

13

 [Online]. Available: www.lindo.com.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 95

Deliverable D3.3: “Models-based Process Definition”

6.3 THE SAQO (SYSTEM ADAPTATION WITH QUALITY
OPTIMIZATION) FRAMEWORK

In this section, we introduce the SAQO (System Adaptation with Quality

Optimization) framework, which extends the SHEPhERd framework. Figure 24

shows the SAQO framework within its working environment.

 The framework SAQO allows storing the specification of requirements,

architectural decisions, and their interactions in a repository. The internal structure

of the repository is compliant with the metamodel in Figure 25.

SAQO is a complex specification environment adopting the metamodel for the

adaptation space. SAQO allows to:

 Support the software architects/maintainers to maintain the interactions

and conflicts between requirements, between design decisions, and

between requirements and design decisions. The support includes

automatic detection (by model checking techniques) of interactions and

conflicts mostly in the part of the architecture design decisions and

propagation of interaction between different levels.

 Automatically produce the space of possible feasible architectural

solutions obtained by instantiating parametric design decisions. Each

solution is computed taken into account the specification constraints

associated with the design decisions and the known interactions and

conflicts between concrete design options.

 Dynamically adapt a service-based system in an automated manner.

SOQA is based on an optimization model that allows to choose among the

possible solutions (produced in the previous point) the concrete solutions

that minimizes cost, while keeping system qualities (e.g., the reliability

and the response time) within certain thresholds.

 For example, SOQA can be used to suggest the “best” actions to be taken upon

a certain change scenario arising. A change scenario is a set of new requirements

that induce changes in the structural and behavioral aspects of the software

architecture. A new software architecture is obtained by modifying its structure

and behavior. To modify the structure, SOQA suggests replacing existing

elementary services with different available instances and/or to introduce new

services into the system. With respect to the changes in the system behavior, it

modifies the architectural design decisions (represented as parametric BPEL

processes) by removing or introducing interactions between existing services

and/or between existing and new services. The parametric design decision is

instantiated in order to have a space of feasible concrete design decisions and the

best concrete design decision resulting from the optimization phase is suggested.

SAQO framework Input. As shown in Figure 37, the input of our framework is a

parametric BPEL which represents an architectural decision, which has to be

concretized by instantiating the parameters with concrete adaptation decisions.

The concrete decisions which are candidates for instantiation are retrieved in the

repository by exploiting the search expression associated with parameters. The set

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 96

Deliverable D3.3: “Models-based Process Definition”

of candidates are filtered by using constraints (to be defined), interaction and

conflict information. The task is performed by the Concretization module.

The Conflict Analysis module takes in input a design option and produces an

executable specification whose behaviors are checked against invariant and

reachability constraints in a model checking environment (e.g., SPIN
14

).

The PROMELA language
15

, for example, can be used for the executable

specification. Therefore, a BPEL is translated into a PROMELA program and its

behaviours are checked against state and reachability properties. Conflicts and

interactions detected are stored in the repository, and possibly used for complete

the knowledge about interaction and conflicts of stored entities. The output of the

Conflict Analysis module is the adaptation space, namely a set of feasible design

options over which the next step of optimization is taken.

It is a module obtained by integration of the SHEPhERd framework proposed in

[103]. Similar to the SHEPhERd framework, the Optimizer module of the SOQA

framework comprises two main modules: a Model builder and a Model solver (see

previous section for more details)

FIGURE 37: THE SOQA FRAMEWORK AND ITS ENVIRONMENT

14

 http://spinroot.com/spin/whatispin.html

15
 http://spinroot.com/spin/Man/grammar.html

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 97

Deliverable D3.3: “Models-based Process Definition”

6.3.1 The Metamodel

In this section, we describe the metamodel for the adaptation space of service

based applications (see Figure 38).

The metamodel allows to represent: (a) structured requirements with particular

concern on their interactions, conflicts, and conflict resolutions; (b) parametric

and concrete structured design decisions associated with the requirements together

with interactions and conflicts between design solutions; and (c) transformation of

design decisions in order to support the adaptation.

In the following we discuss the main entity of the metamodel related to the (i)

requirement modeling, and (ii) design modeling.

Requirement modeling.

Requirement: A requirement can also be seen as a goal. A goal can be a

functional requirement (hard-goal) or non-functional requirement (softgoal).

According to [104], goals represent stakeholder intentions, which are

manifestations of intent which may or may not be realized. A requirement can be

(recursively) structured into AND/OR composition (sub-) requirements defining

an AND/OR tree like structure. A requirement has a textual description (e.g., a

natural language specification), and a constraint consisting of a formal expression

over attribute-value pairs associated with the entity Requirement. A requirement

may have a number of associated issues.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 98

Deliverable D3.3: “Models-based Process Definition”

FIGURE 38: ADAPTATION SPACE EXPLORATION METAMODEL

Position: For a requirement, the stakeholders may express different positions with

respect to an Issue associated with a requirement. A position provides an

(alternative) solution of an issue. A position may be in conflict with other

positions related to the same issue. A requirement resolution is a requirement

which intends to overcome the conflicts to different positions of the same

requirement. Issues are questions, such as, “how will requirement Ri be satisfied?”,

“what does term ti of Ri mean?”. Remark: this part of the model addresses only

different interpretation of the same requirement and do not address as in [105]

statements of the form “requirements Ri and Rj appear to conflict, how can they be

resolved?” [105]. The solution of this problem is given by possibly associating

Requirement Issue also to an Interaction between requirements. In summary, a

requirement issue can be opened either for different positions with respect to a

requirement or for a conflicting interaction among requirements.

Design Modeling

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 99

Deliverable D3.3: “Models-based Process Definition”

A design issue represents an architectural schema, which is described by a

composite abstract structure, namely a BPEL where parametric services can be

invoked. We use the standard control operation: sequence, while, switch, flow,

invoke. An invocation can take a composite concrete structure or parameter

(abstract).

A design issue has the following attributes:
 Interface Input: It is the set of required services. It is given by an ordered

set of logical names.

 Interface Output: It is the set of provided services. It is given by an

ordered set of logical names.

 Internal Interface Connection: It is the set of interfaces composition of

internal modules. It is given by a set of pairs of the form (M1.Out1,

M2.In2) where M1 and M2 are logical names of the modules of the design

issue, and Out1 is an interface postcondition of M1 and In2 is an interface

precondition of M2. Moreover, we can have pairs of the form (self.In,

M1.In1) and (self.Out, M1.Out1) connecting interface post and

preconditions of the design issue, respectively, with post and preconditions

of an internal node.

 Precondition: A constraint which has to be satisfied to activated the

solution.

 Postcondition: A constraint which is satisfied at the termination of the

execution.

 Invariant: A constraint which is satisfied in each intermediate stable state,

i.e., before

and after the execution of each atomic action.

 Technical Constraints: Technical limitations, for instance, required

technology.

 All the constraints are boolean expression freely constructed with boolean

connectives

over atomic proposition of the form: EntityName.AttributeName op Value,

with op in {>, ≤, ≥, <, =, ≠} . Notice that Design Issue inherits from

Entity the possibility to associate a set of attributes together with their

current values.

 A search attribute in a parameter is a query like string giving the set of

design options to be considered for the instantiation of the parameter (the

parameter domain). Notice that it is not guaranteed that the design options

in the result set are admissible.

A design option is described by a composite concrete structure, namely a BPEL

which allows only concrete invocations (there is no occurrence of parameters).

With reference to the metamodel note that a design option is a special case of a

design issue with no-occurrence of parameters. In the metamodel, we have an

association which binds the Design option with Parameter. An admissible binding

should preserve pre, post, and invariant conditions of Parameters and Design

Options.

A concretization is a simultaneous binding of all of the Parameters of a Design

Issue with a corresponding number of admissible design options. The

concretization is admissible if the pre, post, and invariant conditions of the Design

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 100

Deliverable D3.3: “Models-based Process Definition”

Option are fulfilled and if the individual pre, post, and invariant conditions of each

Design Option continue to hold when they are placed in the context of the Design

Issue.

The pre confl, post confl, inv confl attributes of Concretization report possible

conflicts related to a concretization. The contribution to the possible conflict of

each parameter binding is reported in the pre confl, post confl, inv confl attributes

of the association classes between Concretization and Design Option.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 101

Deliverable D3.3: “Models-based Process Definition”

7 CONCLUSIONS

In this section, we present the overall conclusions of this document in the context

of findings expected and novelty of our contribution.

To the best of our knowledge, this is the first approach implemented as an

optimization framework for dynamically modeling: (i) fault detection and

correction processes of systems functionalities (modules) through the SRGMs that

best fit the actual testing data, (ii) testing cost/time constraints, and (iii)

parameter-specific uncertainties phenomena. So that the systems functionalities

(modules) with shorter time (budget) are tested and that reveled bugs are fixed

earlier. We provide guidelines for practitioners. We provide support for their

testing allocation decisions based on cost, time, and software quality.

We have also proposed an automatic prioritization approach for large software

systems that embeds the “code churn” measure. Specifically, we have provided

support for optimizing regression functional testing with coverage and churn

metrics. Moreover, our work has been also focused on the automation of the

support for the architectural decisions. Specifically, we have focused on the (i)

modeling and analysis of QoS tradeoffs of a software architecture based on

optimization models, and (ii) definition of framework for supporting the software

architects/maintainers. More specifically, we support the software

architects/maintainers to maintain the interactions and conflicts between

requirements, between design decisions, and between requirements and design

decisions. The support includes automatic detection (by model checking

techniques) of interactions and conflicts mostly in the part of the architecture

design decisions and propagation of interaction between different levels. Our

approach also allows producing the space of possible feasible architectural

solutions obtained by instantiating parametric design decisions. Each solution is

computed taken into account the specification constraints associated with the

design decisions and the known interactions and conflicts between concrete

design options.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 102

Deliverable D3.3: “Models-based Process Definition”

8 REFERENCES

[1] Deliverable D3.1, “First measurement/prediction models-based process”,

7th Framework Programme IAPP Marie Curie program for project ICEBERG no.

324356, May 2014.

[2] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:

Multi-objective overtime planning for Software Engineering projects”, In Software

Engineering (ICSE), 2013 35th International Conference on, May 2013.

[3] Zai, K. Tang, and X. Yao, “Multi-Objective Approaches to Optimal Testing

Resource Allocation in Modular Software Systems”, Reliability, IEEE Transactions on,

59(3):563–575, 2010.

[4] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient allocation of testing resources for

software module testing based on the hyper-geometric distribution software reliability

growth model”, In Software Reliability Engineering, 1996. Proceedings., Seventh

International Symposium on, pages 289–298, 1996.

[5] G. Carrozza, R. Pietrantuono, and S. Russo, “Dynamic test planning: a study in an

industrial context”, International Journal on Software Tools for Technology Transfer,

pages 1–15, 2014.

[6] D. Cotroneo, R. Pietrantuono, and S. Russo, “Testing techniques selection based on

ODC fault types and software metrics”, Journal of Systems and Software, 86(6):1613–

1637, 2013.

[7] P. C. Jha, D. Gupta, B. Yang, and P. K. Kapur. Optimal testing resource allocation

during module testing considering cost, testing effort and reliability. Computers &

Industrial Engineering, 57(3):1122–1130, 2009.

[8] C.-Y. Huang and M. Lyu. Optimal testing resource allocation, and sensitivity analysis

in software development. Reliability, IEEE Transactions on, 54(4):592–603, 2005.

[9] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske. Model-based

performance analysis of software architectures under uncertainty. In QoSA, pages 69–78.

ACM, 2013.

[10] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability optimization

with uncertain model parameters. Journal of Systems and Software, 85(10):2340–2355,

2012.

[11] G. Baio, “Bayesian Methods in Health Economics”, Chapman and Hall/CRC, 2012.

[12] The Bugzilla bug tracking tool. [Online]. Available: http://www.bugzilla.org/.

[13] H. Hosseini, R. Nguyen, and M. W. Godfrey, “A Market-Based Bug Allocation

Mechanism Using Predictive Bug Lifetimes”, In 16th European Conference on Software

Maintenance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,

pages 149–158. IEEE Computer Society, 2012.

[14] H. Okamura, Y. Watanabe, and T. Dohi, “An iterative scheme for maximum

likelihood estimation in software reliability modeling”, In Software Reliability

Engineering, 2003. ISSRE 2003. 14th International Symposium on, pages 246–256, 2003.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 103

Deliverable D3.3: “Models-based Process Definition”

[15] H.-G. Beyer and B. Sendhof,. “Robust optimization - a comprehensive survey”,

Computer Methods in Applied Mechanics and Engineering, 196(33-34):3190 – 3218,

2007.

[16] H. Ziv and D. J. Richardson, “Bayesian-network confirmation of software testing

uncertainties”, In Proceedings of the Sixth European Software Engineering Conference

(ESEC), Zurich, pages 22–25, 1997.

[17] H. Ziv and D. J. Richardson, “Constructing Bayesian-network models of software

testing and maintenance uncertainties”, In ICSM, pages 100–. IEEE Computer Society,

1997.

[18] K. Yue., “Generating interesting scenarios from system descriptions”, In Proceeding

of the 1
st
 international conference on Industrial and engineering applications of artificial

intelligence and expert systems, pages 212 – 218, 1988.

[19] S. G. Elbaum and D. S. Rosenblum, “Known unknowns: testing in the presence of

uncertainty”, In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, (FSE-22), 2014, pages 833–836. ACM, 2014.

[20] R. Roshandel, N. Medvidovic, and L. Golubchik, “A Bayesian Model for Predicting

Reliability of Software Systems at the Architectural Level”, In QoSA, pages 108–126,

2007.

[21] S. Raychaudhuri, “Introduction to monte carlo simulation”, In Winter Simulation

Conference, pages 91–100. WSC, 2008.

[22] J. Musa, “Operational profiles in software-reliability engineering”, Software, IEEE,

10(2):14–32, Mar 1993.

[23] O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework for

automated assignment of bugs”, In Program Comprehension, 2009. ICPC ’09. IEEE 17th

International Conference on, pages 297–298, May 2009.

[24] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an empirical

study of commercial software projects. In 35th International Conference on Software

Engineering, ICSE ’13, pages 1042–1051. IEEE / ACM, 2013.

[25] H.-W. Jung and B. Choi. Optimization models for quality and cost of modular

software systems. European Journal of Operational Research, 112(3):613 – 619, 1999.

[26] C.-Y. Huang and M. Lyu, “Optimal release time for software systems considering

cost, testing-effort, and test efficiency”, Reliability, IEEE Transactions on, 54(4):583–

591, 2005.

[27] C.-Y. Huang, S.-Y. Luo, and M. Lyu, “Optimal software release policy based on

cost and reliability with testing efficiency”, In Computer Software and Applications

Conference, 1999. COMPSAC ’99. Proceedings. The Twenty-Third Annual International,

pages 468–473, 1999.

[28] C.-Y. Huang, J.-H. Lo, S.-Y. Kuo, and M. Lyu, “Software reliability modeling and

cost estimation incorporating testing-effort and efficiency”, In Software Reliability

Engineering, 1999. Proceedings. 10th International Symposium on, pages 62–72, 1999.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 104

Deliverable D3.3: “Models-based Process Definition”

[29] S. Yamada, J. Hishitani, and S. Osaki, “Software-reliability growth with a Weibull

test-effort: a model and application”, Reliability, IEEE Transactions on, 42(1):100–106,

Mar 1993.

[30] C. Huang and J. Lo, “Optimal resource allocation for cost and reliability of modular

software systems in the testing phase”, Journal of Systems and Software, 79(5):653–664,

2006.

[31] B. W. Boehm, “Software Engineering Economics”, Prentice Hall PTR, 1st edition,

1981.

[32] I. Sommerville. Software engineering (9th ed.). Addison Wesley, 2010.

[33] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena, “Quantifying the

influence of failure repair/mitigation costs on service-based systems”, In IEEE 24th

International Symposium on Software Reliability Engineering, ISSRE, pages 90–99.

IEEE, 2013.

[34] H. Hemmati, M. Nagappan, and A. E. Hassan, “Investigating the effect of “defect

co-fix” on quality assurance resource allocation: A search-based approach”, Journal of

Systems and Software, (0):–, 2014.

[35] J. Ren, M. Harman, and M. D. Penta, “Cooperative Co-evolutionary Optimization

of Software Project Staff Assignments and Job Scheduling”, Search Based Software

Engineering - Third International Symposium, SSBSE 2011. Proceedings, volume 6956

of LNCS, pages 127–141. Springer, 2011.

[36] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:

Multi-objective overtime planning for Software Engineering projects”, In Software

Engineering (ICSE), 2013.

[37] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal framework for multi-objective

optimization: Design and architecture”, In IEEE Congress on Evolutionary Computation,

pages 1–8. IEEE, 2010.

[38] C.-Y. Huang, S.-Y. Kuo, and M. R. Lyu, “An Assessment of Testing-Effort

Dependent Software Reliability Growth Models”, IEEE Transactions on Reliability,

56(2):198–211, 2007.

[39] F. Parr, “An Alternative to the Rayleigh Curve Model for Software Development

Effort”, Software Engineering, IEEE Transactions on, SE-6(3):291–296, May 1980.

[40] P. Kapur, H. Pham, S. Anand, and K. Yadav, “A Unified Approach for Developing

Software Reliability Growth Models in the Presence of Imperfect Debugging and Error

Generation”, Reliability, IEEE Transactions on, 60(1):331–340, March 2011.

[41] X. Zhang, X. Teng, and H. Pham, “Considering fault removal efficiency in

software reliability Assessment”, Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 33(1):114–120, Jan 2003.

[42] R. Peng, Y. Li, W. Zhang, and Q. Hu, “Testing effort dependent software

reliability model for imperfect debugging process considering both detection and

correction”, Reliability Engineering & System Safety, 126(0):37 – 43, 2014.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 105

Deliverable D3.3: “Models-based Process Definition”

[43] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang, “Optimal Testing-resource Allocation

with Genetic Algorithm for Modular Software Systems”, J. Syst. Softw., 66(1):47–55,

Apr. 2003.

[44] C. Stringfellow and A. A. Andrews, “An Empirical Method for Selecting Software

Reliability Growth Models”, Empirical Softw. Engg., 7(4):319–343, Dec. 2002.

[45] K. Sharma, R. Garg, C. Nagpal, and R. K. Garg, “Selection of Optimal Software

Reliability Growth Models Using a Distance Based Approach”, Reliability, IEEE

Transactions on, 59(2):266–276, June 2010.

[46] N. Ullah, M. Morisio, and A. Vetro, “A Comparative Analysis of Software

Reliability Growth Models using Defects Data of Closed and Open Source Software”, In

Software Engineering Workshop (SEW), 2012 35th Annual IEEE, pages 187–192, Oct

2012.

[47] M. Lyu, “Software Reliability Engineering: A Roadmap. In Future of Software

Engineering”, FOSE ’07, pages 153–170, May 2007.

[48] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding, and

C. Höglund, “Selecting software reliability growth models and improving their predictive

accuracy using historical projects data”, Journal of Systems and Software, 98(0):59 – 78,

2014.

[49] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Torner, “Evaluating

long-term predictive power of standard reliability growth models on automotive

systems”, In Software Reliability Engineering (ISSRE), IEEE 24th International

Symposium on, pages 228–237, Nov 2013.

[50] H. Pham, “Software reliability and cost models: Perspectives, comparison, and

practice”, European Journal of Operational Research, 149(3):475 – 489, 2003.

[51] G. Canfora and L. Cerulo. How software repositories can help in resolving a new

change request. In In Workshop on Empirical Studies in Reverse Engineering, 2005.

[52] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?”, In

Proceedings of the 28
th
 International Conference on Software Engineering, ICSE ’06,

pages 361–370. ACM, 2006.

[53] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-

based expertise model of developers”, In Proceedings of the 6th International Working

Conference on Mining Software Repositories, MSR 2009 (Co-located with ICSE), pages

131–140. IEEE, 2009.

[54] O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework for

automated assignment of bugs”, In Program Comprehension, ICPC ’09. IEEE 17th

International Conference on, pages 297–298, 2009.

[55] J. Xiao and W. Afzal, “Search-based resource scheduling for bug fixing tasks”, In

Search Based Software Engineering (SSBSE), 2010 Second International Symposium on,

pages 133–142, Sept 2010.

[56] G. Antoniol, M. Di Penta, and M. Harman, “Search-based techniques applied to

optimization of project planning for a massive maintenance project”, In Software

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 106

Deliverable D3.3: “Models-based Process Definition”

Maintenance, ICSM’05. Proceedings of the 21st IEEE International Conference on, pages

240–249, 2005.

[57] N. Kaushik, M. Amoui, L. Tahvildari,W. Liu, and S. Li, “Defect Prioritization in

the Software Industry: Challenges and Opportunities”, In Software Testing, Verification

and Validation (ICST), IEEE Sixth International Conference on, pages 70–73, 2013.

[58] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso, “MIMIC: locating and

understanding bugs by analyzing mimicked executions”, In ACM/IEEE International

Conference on Automated Software Engineering, ASE ’14, pages 815–826. ACM, 2014.

[59] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “Bugfix: A learning-based tool to

assist developers in fixing bugs”, In the 17th IEEE International Conference on Program

Comprehension, ICPC, pages 70–79. IEEE Computer Society, 2009.

[60] N.Wattanapongskorn and D.W. Coit, “Fault-tolerant embedded system design and

optimization considering reliability estimation uncertainty”, Reliability Engineering &

System Safety, 92(4):395 – 407, 2007.

[61] D. Doran, M. Tran, L. Fiondella, and S. S. Gokhale, “Architecture-based Reliability

Analysis With Uncertain Parameters”, In SEKE’11, pages 629–634, 2011.

[62] N. Esfahani, K. Razavi, and S. Male, “Dealing with Uncertainty in Early Software

Architecture”, In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering, FSE ’12, pages 21:1–21:4. ACM, 2012.

[63] B. Pachauri, A. Kumar, and J. Dhar, “Modeling optimal release policy under fuzzy

paradigm in imperfect debugging environment”, Information and Software Technology,

55(11):1974 –1980, 2013.

[64] C. Huang and J. Lo, “Optimal resource allocation for cost and reliability of

modular software systems in the testing phase”, Journal of Systems and Software,

79(5):653–664, 2006.

[65] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.

Spoon, and A. Gujarathi, “Regression Test Selection for Java Software”, In Proceedings

of the 16th ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’01, pages 312–326. ACM, 2001

[66] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: a survey”, Softw. Test., Verif. Reliab., 22(2):67–120, 2012.

[67] Z. Anwar and A. Ahsan, “Exploration and Analysis of Regression Test Suite

Optimization”, SIGSOFT Softw. Eng. Notes, 39(1):1–5, Feb. 2014.

[68] C.-T. Lin, K.-W. Tang, C.-D. Chen, and G. Kapfhammer, “tReducing the Cost of

Regression Testing by Identifying Irreplaceable Test Cases”, In Genetic and Evolutionary

Computing (ICGEC), 2012 Sixth International Conference on, pages 257–260, Aug 2012.

[69] M. J. Harrold, D. S. Rosenblum, G. Rothermel, and E. J. Weyuker, “Empirical

Studies of a Prediction Model for Regression Test Selection”, IEEE Trans. Software

Eng., 27(3):248–263, 2001.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 107

Deliverable D3.3: “Models-based Process Definition”

[70] A. Nanda, S. Mani, S. Sinha, M. Harrold, and A. Orso, “Regression testing in the

presence of non-code changes”, In Software Testing, Verification and Validation (ICST),

2011 IEEE Fourth International Conference on, pages 21–30, March 2011.

[71] J. Zheng, L.Williams, and B. Robinson, “Pallino: automation to support regression

test selection for cots-based applications”, In 22nd IEEE/ACM International Conference

on Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia,

USA, pages 224– 233. ACM, 2007.

[72] N. Kaushik, M. Salehie, L. Tahvildari, S. Li, and M. Moore, “Dynamic

Prioritization in Regression Testing”, In Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages 135–138,

2011.

[73] A. Bertolino, P. Inverardi, and H. Muccini, “Software architecture-based analysis

and testing: a look into achievements and future challenges”, Computing, 95(8):633–648,

2013.

[74] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M.

Harman, M. J. Harrold, and P. Mcminn, “An Orchestrated Survey of Methodologies for

Automated Software Test Case Generation”, J. Syst. Softw., 86(8):1978–2001, Aug.

2013.

[75] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing Test Cases For

Regression Testing”, IEEE Trans. Software Eng., 27(10):929–948, 2001.

[76] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test Case Prioritization: A

Family of Empirical Studies”, IEEE Trans. Software Eng., 28(2):159–182, 2002.

[77] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases for

regression testing”, In ISSTA, pages 102–112, 2000.

[78] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritization: an

empirical study”, In Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE

International Conference on, pages 179–188, 1999.

[79] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Incorporating Varying Test

Costs and Fault Severities into Test Case Prioritization. Proceedings of ICSE 2001, 12-19

May 2001, Toronto, Ontario, Canada, pages 329–338. IEEE Computer Society, 2001.

[80] H. Srikanth, S. Banerjee, L. Williams, and J. A. Osborne, “Towards the

prioritization of system test cases”, Softw. Test., Verif. Reliab., 24(4):320–337, 2014.

[81] J.-M. Kim and A. Porter, “A History-based Test Prioritization Technique for

Regression Testing in Resource Constrained Environments”, In Proceedings of ICSE ’02,

pages 119–129. ACM, 2002.

[82] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “TimeAware Test

Suite Prioritization”. In Proceedings of the 2006 International Symposium on Software

Testing and Analysis, ISSTA ’06, pages 1–12. ACM, 2006.

[83] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-cognizant test

case prioritization technique in regression testing”, Journal of Systems and Software,

85(3):626 – 637, 2012.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 108

Deliverable D3.3: “Models-based Process Definition”

[84] Z. Li, M. Harman, and R. Hierons. “Search Algorithms for Regression Test Case

Prioritization. Software Engineering”, IEEE Transactions on, 33(4):225–237, April 2007.

[85] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A Unified Test Case

Prioritization Approach”, ACM Trans. Softw. Eng. Methodol., 24(2):10:1–10:31, Dec.

2014.

[86] J. Jasz, L. Lango, T. Gyimothy, T. Gergely, A. Beszedes, and L. Schrettner., “Code

Coveragebased Regression Test Selection and Prioritization in WebKit”, In Proceedings

of the 2012 IEEE International Conference on Software Maintenance (ICSM), ICSM ’12,

pages 46–55. IEEE Computer Society, 2012.

[87] A. B. Sánchez, S. Segura, and A. R. Cortés, “A Comparison of Test Case

Prioritization Criteria for Software Product Lines”, In Seventh IEEE International

Conference on Software Testing, Verification and Validation, ICST 2014, March 31

2014-April 4, 2014, Cleveland, Ohio, USA, pages 41–50. IEEE Computer Society, 2014.

[88] J. Ouriques, E. Cartaxo, and P. Machado, “On the Influence of Model Structure and

Test Case Profile on the Prioritization of Test Cases in the Context of Model-Based

Testing”, In Software Engineering (SBES), 2013 27th Brazilian Symposium on, pages

119–128, Oct 2013.

[89] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An Information Retrieval

Approach for Regression Test Prioritization Based on Program Changes. In ICSE, 2015.

[90] S. G. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression

testing in continuous integration development environments”, In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

(FSE-22), pages 235–245. ACM, 2014.

[91] The eXist-db database. [Online]. Available:

http://existdb.org/exist/apps/homepage/index.html.

[92] The JaCoCo tool. [Online]. Available: http://www.eclemma.org/jacoco/.

[93] The Code Churn tool. [Online]. Available: http://www.assioma.net/.

[94] The Sonar tool. [Online]. Available: http://www.sonarqube.org/.

[95] Deliverable D2.2, “Validation scenarios and quality parameters”,

7th Framework Programme IAPP Marie Curie program for project ICEBERG no.

324356, April 2014.

[96] R. Lingampally, A. Gupta, and P. Jalote. A Multipurpose Code Coverage Tool for

Java. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on, pages 261b–261b, Jan 2007.

[97] The RaptorXML tool. [Online]. Available: http://www.altova.com/raptorxml.html.

[98] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz,, L. Lango, T. Gyimothy, "Code

coverage-based regression test selection and prioritization in WebKit," Software

Maintenance (ICSM), 2012 28th IEEE International Conference on , vol., no., pp.46,55,

23-28, 2012.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 109

Deliverable D3.3: “Models-based Process Definition”

[99] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact”, Empirical Software

Engineering: An International Journal, 10(4):405–435, 2005.

[100] A. Carzaniga, D. S. Rosenblum, and A. L.Wolf, “Achieving scalability and

expressiveness in an internet-scale event notification service”, In Proceedings of the

Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’00, pages 219–227, New York, NY, USA, 2000. ACM.

[101] V. Cortellessa and P. Potena, “Supporting architectural decisions through software

quality optimization models”, Tutorial at 25th IEEE International Symposium on

Software Reliability Engineering (ISSRE) November 3-6, 2014 (http://issre.net/tutorials).

 [102] P. Potena, I. Crnkovic, F. Marinelli, and V. Cortellessa, “Software Architecture

Quality of Service Analysis based on Optimization Models”, Chapter in Intelligent

Decision Making in Quality Management, Springer (Accepted for pubblication).

[103] V. Cortellessa, R. Mirandola, and P. Potena, “Managing the evolution of a software

architecture at minimal cost under performance and reliability constraints”, Science of

Computer Programming (Elsevier), 98: 439-463 (2015). DOI:

10.1016/j.scico.2014.06.001.

[104] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. do Prado Leite,

“From goals to high-variability software design”, In ISMIS, volume 4994 of LNCS,

pages 1–16. Springer, 2008.

[105] W. N. Robinson and S. Volkov, “Conflict-Oriented Requirements Restructuring”,

In GSU CIS Working Paper 96-15, Georgia State University, Atlanta, GA, 1996.

[106] S. Yamada, T. Ichimori, M. Nishiwaki: Optimal Alloca- tion Policies for Testing-

Resource Based on a Software Reliability Growth Model. Int. Journal of Mathematical

and Computer Modeling. 22(10-12), 295-301 (1995)

[107] M.R. Lyu, S. Rangarajan, A.P.A. van Moorsel: Opti- mal Allocation of Test

Resources for Software Reliability Growth Modeling in Software Development. IEEE

Trans- actions on Reliability, 51 (2), 336-347 (2002)

[108] C.Y. Huang, J.H. Lo, S.Y. Kuo, M.R. Lyu: Optimal Al- location of Testing

Resources for Modular Software Sys- tems. In: Proc. 13th Int. Symposium on

Software Relia- bility Engineering (ISSRE), pp. 129-138 (2002)

[109] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability

optimization with uncertain model parameters. Journal of Systems and Software,

85(10):2340–2355, 2012.

[110] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske. Model-based
perfor- mance analysis of software architectures under uncertainty. In QoSA, pages

69–78. ACM, 2013.

[111] N. F. Schneidewind, “Modelling the fault correction process,” in Pro- ceedings

of the 12th International Symposium on Software Reliability Engineering, 2001, pp.

185–190.

[112] R. Rubinstein and D. Kroese. Simulation and the Monte Carlo method. Wiley-

interscience, 2008.

http://dblp.uni-trier.de/pers/hc/c/Cortellessa:Vittorio
http://dblp.uni-trier.de/pers/hc/m/Mirandola:Raffaela
http://dblp.uni-trier.de/db/journals/scp/scp98.html#CortellessaMP15
http://dblp.uni-trier.de/db/journals/scp/scp98.html#CortellessaMP15

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 110

Deliverable D3.3: “Models-based Process Definition”

[113] G. Carrozza, R. Pietrantuono, and S. Russo, “Defect analysis in mission- critical

software systems: a detailed investigation,” J. Softw. Evol. and Proc., vol. 27, no. 1, pp.

22–49, 2014.

[114] R. Pietrantuono, S. Russo, and K. Trivedi, “Software reliability and testing time

allocation: An architecture-based approach,” Software Engi- neering, IEEE Transactions

on, vol. 36, no. 3, pp. 323–337, May 2010.

