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1 EXECUTIVE SUMMARY 
 

The aim of D3.3 of the ICEBERG project “Model-based Process Definition” is to 

extend the deliverable D3.1 [1] by providing a more detailed presentation of the 

model-based decision making process and the generic framework, which have 

been under development in the ICEBERG project. In particular, we describe raw 

measurement/prediction models that would help in determining the cost of quality 

(and not-quality) and allow making best decisions for the trade-off between cost 

and quality, as well as a generic process definition for how to utilize such models 

in industrial settings.  
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2   INTRODUCTION 
 

The goal of our work is to assist project managers and quality managers in 

making informed decisions during software development and maintenance. 

Informed decision-making requires collecting and analyzing quantitative data and 

providing the resultant information in an understandable way to decision makers.  

Such assistance requires not only evaluating the dimensions of the well-

known project management iron triangle, which are cost (e.g. cost to correct a bug 

during testing, or the cost of testing per unit testing-effort expenditures), time (e.g. 

time to detect and fix a bug), and quality (e.g. level of reliability), but also 

understanding the nature of interactions and tradeoffs among them to be able to 

make better decisions under different constraints.  

In this document, first, we present the generic models-based decision 

making framework and process, which have been under development in the 

ICEBERG project during the last three work packages. Then, in the following 

chapters, we also provide three different instantiation of the models-based process 

defined for making various quality management decisions.  

 

The following aspects characterize the novelty of each of these instantiation: 
 

 

 Optimal Allocation of Testing Resources. We developed an automated 

optimization process for dynamically allocating testing resources to 

software modules (functionalities) based on trade-offs among software 

quality, cost, and schedule/time requirements. We also explicitly consider 

uncertainty in the testing process in order to evaluate the robustness 

of the testing resource allocation. 
 

In particular, our approach helps to: (i) select (and use) Software 

Reliability Growth Models (SRGMs) in order to make the software testing 

process more effective; and (ii) handle parameters uncertainty, which, as 

shown through our real world software project, plays a critical role in 

accurately describing a testing resource allocation process. It is well 

known that SRGMs sometimes show good performance in terms of 

predictability of the software reliability, but sometimes they do not. In this 

work, we show that the handling of uncertainty is a key factor for a 

trustworthy prediction of the reliability of a software system, and leads an 

optimization model to a more precise (and less pessimistic) estimation of 

the system reliability, as well as to a more effective and efficient testing 

resource allocation activity.  

 

 

 Optimal Regression Functional Testing. Based on the generic models-

based decision making process, we proposed an automated prioritization 

approach for large software systems that embeds the “code churn” 
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measure. Code churn represents a measure of the amount of code change 

taking place within a software system over time. Thus, we propose to use 

code-coverage measures (produced by static code analysis) by considering 

software system evolution metrics (extracted from system’s change 

history).  

 

 Architectural Decision Making. We developed an automated approach 

for making architectural decisions. Specifically, our focus is on (i) 

modeling and analysis of QoS tradeoffs of a software architecture based on 

optimization models, and (ii) definition of framework for supporting the 

software architects/maintainers. Thereby, we support software 

architects/maintainers to manage the interactions and conflicts between 

requirements, between design decisions, and between requirements and 

design decisions. The support includes automatic detection (by model 

checking techniques) of interactions and conflicts mostly in the part of the 

architecture design decisions and propagation of interaction between 

different levels. Our approach also allows producing the space of possible 

feasible architectural solutions obtained by instantiating parametric design 

decisions. Each solution is computed taken into account the specification 

constraints associated with the design decisions and the known 

interactions and conflicts between concrete design options. 

 

This document is organized as follows: In Chapter 3, we present the 

generic decision making framework and models based process of the ICEBERG 

project; in Chapter 4 we discuss in detail the optimal testing resources allocation 

process.; in Chapter 5 we present the optimal regression functional testing process 

using coverage and churn metrics; in Chapter 6, we introduce the architectural 

decision making process. Finally in Chapter 7, we present the conclusions of this 

work package. 
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3 A GENERIC MODELS-BASED PROCESS AND DECISION 
MAKING FRAMEWORK 

 

In the previous work packages of the ICEBERG project, a comprehensive 

literature review and an industrial survey were carried out to identify the state of 

the art on: 

 Quality management and decision-making needs of software 

companies,  

 Commonly used software tools and commonly collected measures for 

time, cost and quality 

 Potential analysis techniques, methods and tools that could be used for 

analyzing tradeoffs between cost, time and quality 

 

These were altogether provided a basis when defining a generic models-

based process (see Figure 1Figure 1) and quality decision making framework  (see 

Figure 2) for software companies.  

We based the generic process on ISO/IEC 15939 Standard on Software 

Measurement Process so as to enable companies to be able to use the decision-

making framework integrated with their measurement processes.  The Models 

Based Decision Making Process provides a concrete support to software 

companies when planning their measurement process.  

 

 

FIGURE 1: A GENERIC MODELS BASED DECISION MAKING PROCESS DEFINITION 
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By following the steps of this process, the generic decision making 

framework could be instantiated for a supporting the companies for their specific 

decision making needs.  

 

 

FIGURE 2: A GENERIC DECISION MAKING FRAMEWORK AND ITS ENVIRONMENT 

    

The generic decision making framework comprises a Model Builder, a 

Model solver and a Database. Primary inputs to this framework include  for 

example, (i) system models (e.g., an UML-based architectural model composed of 

a Component Diagram, Sequence Diagrams, and a Deployment Diagram), (ii) 

causes of quality decision-making, and (iii) dependencies among quality 

decisions, defects issues, cost factor and schedule factor. In particular, we 

identify: (i) quality decisions (and causes), and (ii) schedule/time/cost-related 

properties.    

The Model Builder generates the analysis model (e.g optimization model) 

in the format accepted from the solver. The Model solver processes the model 

received from the builder and produces the results, which consist of a set of 

quality decisions. It suggests, for example, how to design (or re- design) the 

software architecture in order to minimize the costs while keeping the software 

quality within a given threshold.  In addition, the model, for example, could also 

suggest the best shift allocations to people in order to achieve the required level of 

software quality. The inferences and relationships detected for this model should 

be created by defining and applying the most appropriate methods for data 

analysis. Any combination of quality decisions may have a considerable impact 

on the cost, time and software quality. Therefore, the optimization model aims to 

quantify such impact in order to suggest the best quality decision, which 

minimizes the costs while satisfying the schedule/time, and quality constraints. 

In order to achieve the right tradeoff among schedule/time constraints, 

software qualities and costs requirements, the quality decisions should involve the 
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evaluation of new alternatives to the current (i) software application level (e.g., by 

the configuration of software components, the introduction of new components 

into the system, etc.) and (ii) project management level (e.g., the shift allocations 

to people). A decision, for example, taken for modifying a system functionality 

may be good for the satisfaction of a certain level of software quality, but at the 

same time it may require a high cost for implementing static code analysis (e.g. 

tools, new processes, training, etc.). A major challenge is then finding the best 

balance among many different competing and conflicting constraints.  

   For these multi-attribute problems, there is usually no single global 

solution, and the generation and evaluation of quality decisions alternatives can be 

error-prone and lead to suboptimal decisions, especially if carried out manually by 

system architects or maintainers.  

   In order to address such problems, we investigate the application of: (1) 

SBSE search methodologies (e.g., genetic algorithms, evolutionary algorithms and 

other metaheuristics) and, (2) the multi-objective optimization, where objectives 

represent different properties (e.g., cost, time and other software quality-related). 

Specifically, a set of solutions is devised, called Pareto optimal solutions or Pareto 

front, each of which assures a tradeoff between the conflicting constraints. In 

other words, while moving from one Pareto solution to another, there is a certain 

amount of sacrifice in one objective(s) to achieve a certain amount of gain in the 

other(s). Each point of a Pareto curve would be a chain of quality decisions 

(leading changes either to the application level or the project management level).. 

As shown in Figure Figure 3Figure 3, a decision-making framework is 

characterized by input parameters, output parameters, and techniques (e.g., 

optimization models, algorithms) to make the decisions.  

 

 

 
FIGURE 3: A GENERIC DECISION MAKING FRAMEWORK 

 

Below, we provide some examples, which show how to use the models-

based process when creating an instant of the decision-making framework for 

specific decision-making needs. The details of these models are presented in the 

next chapters: Chapter 4, Chapter 5 and Chapter 6. 
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3.1 AN EXAMPLE DECISION MAKING FRAMEWORK FOR OPTIMAL 
ALLOCATION OF TESTING RESOURCES 

 

In this section, we present the framework we developed for making 

decisions on how to allocate testing resources (see Figure 4). The details of the 

model are given in Chapter 4. 

A primary input to this framework is represented, for example, by from (i) 

the SRGMs chosen to represent the testing process of the system functionalities, 

(ii) defect data collection used, for example, to estimate parameters specific to 

debuggers (e.g., the average amount of bugs that a debugger can fix per man-day), 

and (iii) requirements on the time and cost of testing (such as on the total amount 

of testing-effort eventually consumed). 

 

 

 FIGURE 4: AN EXAMPLE FRAMEWORK FOR TESTING RESOURCES ALLOCATION 

 

   The Model builder, through a Parameter Specification module, gets input 

model parameters. After receiving the parameters’ specification, the Model 

builder generates the optimization model in the format accepted by a solver (such 

as the combination of the NSGA-II algorithm and the MC simulation). 

  The Model solver processes the optimization model received from the 

builder and produces the results, which consist, for example, of the testing-effort 

allocation (i.e., the amount of testing-effort to be performed for the system 

functionalities) and bug assignment allocation (i.e., the amount of bugs assigned 

to each of the debuggers). 

 

 

 

 

 

Inputs 
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The inputs required to implement the defect analysis approach for quality 

decision support are the ones typically collected in a bug-tracking tool. Depending 

on the details tracked about the defects, several analyses can be carried out.  

The minimum requirement is the Date and time of the defect (or, more 

generically, issue) detection and effort measures (e.g., man-months for 

implementation and man-months for testing).  

Optionally, the method can take as input: Defect Priority, Defect Severity 

(impact), Defect Detection Phase (i.e., Design Review, Code Review, Unit 

Testing, Integration testing ,…), the Defect Type (according to some 

classification, such as IBM ODC, HP), Age of the code module (e.g., new, base, 

rewritten, re-fixed),  Defect Trigger, Defect Source (in-house, outsourced, library, 

…), Reproducibility (e.g., always or not always reproducible).  

These input parameters can be used for deriving quality vs. effort 

indicators, and for identifying problems and criticalities in the lifecycle (e.g., 

phase/activity/team causing low index value). 

Table 1 summarizes the potential inputs to the model. This is a superset, 

meaning that different analyses can be done depending on the input information.  

 

TABLE 1:   MODEL’S POTENTIAL INPUTS 

 

Source Measure Category Measures  

Bug Repository Defect  Severity/Reproducibility/Priority, Defect 

Triggering (and/or activity that made the 

defect surface, e.g., code review, inspection, 

unit testing, workload/stress testing, 

concurrency testing, operational usage), 

Defect Detection Phase, Supposed Defect 

Injection Phase, Fixing time, Defect fixing 

Phase, Defect Type, Defect Impact, Defect 

mode (wrong, missing), defect source, 

source age, work/Rework 

Source Code 

Repository 

Product Size Measures (LoC, #Req, Function 

Points), Complexity metrics (McCabe, 

Halstead’s), Source File metrics, code 

churn/change metrics, version 

Personnel through 

time sheets or other 

records 

Process 

 

Testing effort (e.g., man-months dedicated 

to testing) 

 

T  Maximum threshold given to the delivery 

time of the system. 

 

Note that some of the specified analyses are also detailed in the subsequent 

sections, being this defect analysis model at higher level. Table 2 summarizes the 

potential outputs of the model. 

With a greater detail, Table 3 summarizes the analyses that can be done by 

joining more input information pieces, and their output depending on the 

information recorded by the tester and/or the person in charge of fixing a defect 

(with minimum requirement being only the detection time and date with effort 

measures). The analysis that we will carry out will depend on the availability of 
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such information in the case studies. The analysis are intended as “statistical” 

analysis, with output always accompanied by a “confidence level” indication (e.g., 

a given metric value is greater than another, with 95% of confidence).  

 

TABLE 2:   MODEL’S POTENTIAL OUTPUTS 

Decision Type  Description 
Release policy Quality (reliability) analysis/assessment and time 

to get a given quality 
How much effort to invest? From the analysis of the testing process (test 

efficacy, efficiency) and of the product quality 

(detected/expected defects) with respect to the 

effort devoted so far, decide on investing more or 

less resources 
Whether to change  the current process 

based on defect data and if so, how? 
Analysis of defects per 

severity/reproducibility/priority, of 

detection/injection phase, of defect triggering 

phase and activity, defect type, in order to identify 

mismatch (expected vs actual patterns) 
Testing effort allocation Prediction of defective modules from code/process 

metrics 
Whether to improve the debugging 

process and/or development process 
Analysis of the bug fixing time, defect type, defect 

impact, defect source, defect source age, 

prediction of defective modules from code/process 

metrics to focus design efforts, analysis of defect 

features to get feedback  on implementation 

 

 

TABLE 3: INPUT-OUTPUT MATRIX DESCRIBING THE POSSIBLE ANALYSES AND OUTPUTS IN 

RELATION TO PROVIDED INPUTS 

Input Info  Joined with: Type of Analysis Output Info 

On detection, 

tester will 

record: 

   

Opening Time  Reliability Analysis Estimate of Expected Defects, Estimate 

of (expected) Reliability (i.e., non-failure 

probability), Estimate of Residual Defects 

(Both during testing and during 

operational phase) 

  Release Policy 

Analysis 

Decisions on "When to stop testing, when 

to release", "What is the quality, under 

the current testing process, expected at 

the end of testing" 

 Size measures: 

LoC, #Req, 

Function Points 

"Normalized" 

reliability analysis 

Estimated Expected Defects Density, 

Estimated Expected Residual Defects 

Density 

 Effort measures: 

testing effort 

(e.g., man-

months) 

Test Efficacy and 

Efficiency Analysis 

Test maturity (%): detected defects so far 

over the total expected defects, Test 

Efficiency: defect detection rate, Test 

Efficiency: percentage detection 

efficiency (progress in terms of "test 
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maturity increase" per effort unit), Test 

Efficiency: relative efficiency in terms of 

"effort units (e.g., man-weeks) required to 

achieve a maturity of x%" 

 Defect severity/ 

reproducibility 

severity/ 

reproducibility 

analysis;  

Cross-analysis with 

the previous ones 

Defects per category: "which 

implementation has higher severe defects 

in the average? what is the trend of high-

severe defects per implementation item? 

Do testers of different implementation 

use the same criteria to assign severity? 

Which testing activity exposes the most 

severe defects? Which percentage of 

"not-always reproducible" defects is 

found during testing and which 

percentage during operation (high-cost 

defects)? What testing activity exposes 

the "not-always" reproducible defects?  

Defect 

Triggering 

(and/or 

activity) 

 V&V Analysis Identification of critical phases of testing 

(e.g., function review, code review, 

testing) and operational conditions in 

which defects are found (during testing or 

at runtime); Identification of critical 

environmental conditions (e.g., high 

workload-stress greatly contributing to 

expose defects); "Signature" of testing 

techniques with respect to defects they 

are able to find (how many, of what type, 

of what impact in terms of severity) 

Defect 

Detection 

Phase 

 V&V (Phase) 

Analysis 

Identification of critical phases of testing 

- analysis of expected detection phase vs. 

actual detection phase; "Delay" and cost 

analysis of testing - thus cost analysis 

referred to defects that should have been 

detected earlier  

Supposed 

Defect 

Injection 

Phase 

 Development and 

V&V Analysis; 

Defect Flow 

Analysis 

Development Phase Analysis - which 

phase introduces more defects (and of 

what type, impact); Defect flow analysis: 

analysis of the latency (and cost) required 

to detect defects (for how many phases 

the defect flows and survives); analysis of 

V&V activities vs. latency 

On fixing, 

debugger will 

record:  

   

Fixing time  Fixing process 

(debug) analysis 

Efficacy: percentage of closed (or 

pending) defects; Efficiency; mean time 

to fix 

  Fixing process 

evolution over time  

Efficacy and Efficiency over time; 

Continuity of the process over time; 

homogeneity of the process (e.g., 

peakedness and skew of the fixing time 

distribution) 
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 Defect severity/ 

priority/ 

reproducibility 

Fine-grained Fixing 

process analysis 

(analyse potential 

causes for 

experienced time to 

fix)  

Previous metrics normalized per average 

severity (have more severe defects 

required more time to be fixed)?; priority 

analysis (have defects at higher priority 

been fixed earlier?) ; reproducibility: 

have "not-always reproducible" been 

actually more difficult to fix (thus 

justifying higher Time to fix)? 

Actual 

working Time 

 Detailed Fixing 

process (debug) 

analysis; Latency 

Analysis 

Analysis of the bug tracking tool usage (it 

is expected a small difference between 

actual and recorded time to fix); Latency 

analysis: when the actual fixing work 

starts with respect to the claimed time; 

percentage of actual time over recorded 

time 

Defect fixing 

Phase 

 Detailed Fixing 

process (debug) 

analysis 

When the defect has been fixed w.r.t. 

when it was to expected to be fixed (cost 

analysis like "detection vs. injection" 

analysis: in this case it is "correction vs. 

detection") 

Defect Type  Development 

Analysis 

"Signature" of defect types over the 

development phases: expected vs. 

experienced defect. Analysis of patterns 

of defect types vs. development phases in 

which they have been injected. Cross-

analysis with many previous and 

following attributes: defect type vs. 

trigger, vs. V&V activities, vs. impact, 

vs. source , vs. age, vs. target; type-based 

defect prediction (see below) 

Defect Impact  Development and 

V&V Impact 

Analysis 

Crossed analysis with: development 

phases, V&V phases and activities, defect 

type and triggers, and others… 

Defect Mode 

(missing, 

wrong) 

 Detailed 

Development and 

V&V Analysis 

As above, differentiated per "missing" 

defects and "wrong" defects; feedback to 

developers 

Source  (in-

house, 

outsourced, 

library)  

 "Source Defect" 

Analysis  

How many defects per source item type 

(in-house, outsources); crossed analysis 

with previous attributes 

Source Age 

(new, base, 

rewritten, 

refixed) 

 "Source Age" 

Analysis 

Age is intended the age of the code 

affected by the defect as development 

history: base code from the previous 

release, new code from the current 

release, rewritten code or refixed code. 

This allows analysing the impact of 

reusing code, of regression bugs, of 

writing completely new code, of using a 

baseline. Crossed analysis with previous 

attributes makes sense also.  

Target of the  Code-defect How many defect (density) per target; 
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fix (e.g., 

source file) 

Relationship 

Analysis 

how target (metrics) are related to 

defectiveness 

Version  Defect Pattern 

Evolution across 

versions; release 

policy analysis  

How defects (type, trigger, impact, 

age,…) evolves across versions; how 

releases relate to defects found in 

operation; how releases are related to 

fixing (e.g., release train effect ) 

Work-rework  Regression 

Likelihood 

Analysis 

How many defects are opened during a 

re-work; likelihood of introducing 

regression bugs; crossed analysis with 

triggers (environmental conditions in 

which defects surface) 

More 

advanced 

analysis. For 

internal 

quality and 

prediction 

   

Size and 

complexity 

metrics; CVS 

metrics (code 

churns, etc.) 

 Code-defects 

Relationship; 

Defect Prediction 

Empirical models to build predictors of 

defectiveness in modules; can be 

customized per defect type 

Requirements, 

design-, 

organizational 

metrics 

 Process metrics-

defects 

Relationship; 

Defect Prediction; 

Detailed phase 

analysis (relation 

between phases 

metrics and defects)  

How metrics at each level are related to 

defects; this can be specialized per phase 

(e.g.,: how requirements metrics are 

related to, and can predict, defects of a 

given type, or defects injected in 

requirements phase, …) 

Description of 

the defect; 

notes; 

discussions; 

number of 

state changes 

in the report, 

… 

 Communication; 

Topic analysis, 

semantic analysis 

Relating communication patterns (length 

of discussion, topics inside, number of 

participants to the discussion) with time 

to fix 

Test Effort per 

component 

 Optimal test effort 

allocation 

Allocate effort to projects with higher 

expected defectiveness 

 

In Chapter 4, we discuss how to estimate these parameters by using 

information collected with a bug-tracking tool (e.g., Jira). We have also 

instantiated the optimization model for the fault correction with the bug 

assignment activity prediction, but its elements (e.g., cost function and reliability 

constraints) combined with the method for uncertainty analysis could be re-used 

in another phase of the testing process. This adoption may require specializing 

(appropriately modifying) the model in order to capture typical aspects of the new 

phase. Testing-effort allocation prediction under testing-effort time/cost and 
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reliability constraints with uncertain model parameters, for example, could be 

used for enhancing existing approaches (discussed in Section 4) for scheduling 

developers/testers to activities to be performed to fix a bug repository.  

In Table 4Table 4 and Table 5Table 5, we discuss in detailed examples for 

the testing model which we discussed in deliverable D3.1 [1].  In particular, we 

summarize inputs and outputs of these models. 

 

TABLE 4: MODELS’ INPUTS  

Model Input Reference 

Release planning For each component, Opening time of defects 

ddiscovered during testing (and/or during 

operation). 
 

D3.1 – 7.1 

Debugging analysis for 

improved release planning 

Input data are the same as the release planning 

model, as this model is based again on SRGM, 

augmented by data on closing time of the issues, 

being the model conceived to include the impact 

of debugging. 

D3.1 – 7.2 

Resources allocation For this model, the required inputs come from 

the bug-tracking repository from which the 

opening times of defects that are detected during 

testing are used to build the SRGMs online. 

From these, given a testing budget (as further 

input) that managers want to spend for testing, 

the allocation is performed dynamically, at any 

time the tester wants, by using the prediction of 

residual number of defects expected in each 

component. 

D3.1 – 8.1 

 

TABLE 5: MODELS’ OUTPUTS  

Model Output Reference 

Release planning Prediction of the optimal time to release, given a 

quality to achieve 

D3.1 – 7.1 

Debugging analysis for 

improved release planning 

Prediction of the optimal time to release, given a 

quality to achieve and analysis of debugging 

causes  

D3.1 – 7.2 

Resources allocation The amount of effort to allocate to each system’s 

components/modules in order to minimize the 

expected number of residual defects 

D3.1 – 8.1 

 

Table 6Table 6 below presents how input information could be represented 

in a database. 

 

 

TABLE 6: MODEL’S INPUTS AND THE DATABASE 

Model Input Database 
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Release planning For each component, opening time 

of defects discovered during testing 

(and/or during operation). 

The tab  The table Issue and the relationship 

Issue-Version allow to obtain 

information related to opening time 

of defects discovered during 

testing. Moreover, relationships in 

the database allow to get 

information related to the 

components, products, projects and 

companies associated with a 

certain issue.   

Debugging analysis 

for improved release 

planning 

Input data are the same as the release 

planning model, as this model is 

based again on SRGM, augmented 

by data on closing time of the issues, 

being the model conceived to 

include the impact of debugging. 

Similarly to the previous decision 

model, Information related to 

issues can be found in the database. 

 

Resources 

allocation 

For this model, the required inputs 

come from the bug tracking 

repository from which the opening 

times of defects that are detected 

during testing are used to build the 

SRGMs online. From these, given a 

testing budget (as further input) that 

mangers want to spend for testing, 

the allocation is performed 

dynamically, at any time the tester 

wants, by using the prediction of 

residual number of defects expected 

in each component. 

Other than the information of the 

previous two decision modes, 

information related to the 

components (modules) can be also 

found.  Such information can be 

obtained by using the tables 

Version, Component and Product 

involved in the relationship 

Version-Component.  

 

 

Figure 5Figure 5 shows the information in and out of the testing decision 

frameworks listed in Table 4Table 4 and Table 5Table 5. 
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FIGURE 5: INPUTS AND OUTPUTS TO THE DECISION MAKING FRAMEWORK 

 

3.2 AN EXAMPLE ARCHITECTURAL DECISION MAKING 
FRAMEWORK 

 

Below is an example framework we developed for making decisions on 

architecture (see Figure 6Figure 6). The details of the model are given in Chapter 6. 

 

 

FIGURE 6: AN EXAMPLE DECISION MAKING FRAMEWORK FOR ARCHITECTURAL DECISIONS 

 

In Table 7Table 7 and Table 8Table 8 we discuss examples of architectural 

decisions models, which we have discussed in the deliverable D3.1 [1].  In particular, 

we summarize inputs and outputs of the models. 
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TABLE 7: MODELS INPUTS 

Model Input Reference 

Build-or-buy decisions 

models 

Average number of invocations of a software 

component, number of existing software 

components, maximum number of COTS 

instances available for each component, number 

of existing software components, minimum 

threshold given to the reliability on demand of 

the system, maximum threshold given to the 

delivery time of the system, cost of a component 

instance, delivery time of a component instance, 

unitary development cost (time) of a component 

instance, average time required to perform a test 

case of the instance, testability of a component 

instance.  

D3.1 – 6.2 

Quantifying the influence of 

failure repair/mitigation costs 

Average number of invocations of an elementary 

service across all considered interaction 

scenarios, minimum threshold given to the 

reliability on demand of the system,  number of 

nominal services,  maximum number of service 

implementations available for purchase  by 

providers for each nominal service, cost of the 

service instance, probability of failure on 

demand of a service instance, unitary 

development cost of an in-house service,  

testability of an in-house instance. 

D3.1 – 6.2.1 

Optimization of adaptation 

plans with cost and quality 

tradeoff 

Set of new requirements that induce changes in 

the structural and behavioral architecture of the 

software system, set of actions that address a 

certain requirement, average number of 

invocations of an elementary service, average 

number of invocations of a new service, number 

of elementary software services, set of 

alternative instances for an existing service, cost 

of a service instance, reliability (availability) on 

demand of a service instance, response time of a 

service instance, set of new available services, 

cost of a new service, reliability (availability) on 

demand of a new service, response time of a 

new service, minimum threshold given to the 

reliability (availability) on demand of the 

system, maximum threshold given to the system 

response time. 

D3.1 – 6.3 

 

TABLE 8: MODEL’S OUTPUTS 

Model Output Reference 

Build-or-buy decisions 

models 

Build-or-buy decisions for each component and 

the amount of unit testing to be performed on 

each in-house developed component 

D3.1 – 6.2 

Quantifying the influence of 

failure repair/mitigation costs 

Build-or-buy decisions for each service 

(component as a service) and the amount of unit 

D3.1 – 6.2.1 
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testing to be performed on each in-house 

developed service.  The solution of the set of 

optimization models can give insights on 

the service composition that best fit the 

requirements considering an explicit cost 

model and the possibility to define repair 

actions to improve the system reliability.  

Optimization of adaptation 

plans with cost and quality 

tradeoff 

The model suggests a new system 

architecture. A new architecture is, thus, 

obtained by modifying both its structure and 

its behavior. Specifically, in order to modify 

the software structure, the model replaces 

existing software services with different 

available services and/or embeds new 

software services into the system With 

respect to the changes in the system 

behavior, it modifies the system scenarios 

(represented, for example, as BPEL 

processes) by removing or introducing 

interactions between existing services 

and/or between existing and new services. 

D3.1 – 6.3 

 

Table 9Table 9 describes how input information of the architectural decision 

frameworks can be represented in a database.  

 

TABLE 9: MODEL’S INPUTS AND THE  DATABASE 

Model Input Database 

Build-or-buy decisions 

models 

Average number of invocations of 

a software component, number of 

existing software components, 

maximum number of COTS 

instances available for each 

component, number of existing 

software components, minimum 

threshold given to the reliability on 

demand of the system, maximum 

threshold given to the delivery time 

of the system, cost of a component 

instance, delivery time of a 

component instance, unitary 

development cost (time) of a 

component instance, average time 

required to perform a test case of 

the instance, testability of a 

component instance. 

Information related to existing and 

new components can be found in 

the database. In particular, for 

each component instance 

(represented with tables Version-

Component) data are stored. Its 

information (e.g., related to the 

delivery time or average time 

required to perform a test case) 

are stored in the relationship 

Metric-Version.   Input data 

inserts by users are related to the 

number of components, minimum 

threshold given to the reliability 

on demand of the system, 

maximum threshold given to the 

delivery time of the system.   

Quantifying the 

influence of failure 

repair/mitigation costs 

Average number of invocations of 

an elementary service across all 

considered interaction scenarios, 

minimum threshold given to the 

reliability on demand of the 

Similarly to the previous model, 

information related to services can 

be found in the database. In 

particular, for each service 

instance (represented with tables 
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system, number of nominal 

services, maximum number of 

service implementations available 

for purchase by providers for each 

nominal service, cost of the service 

instance, probability of failure on 

demand of a service instance, 

unitary development cost of an in-

house service, testability of an in-

house instance. 

Version-Component) data are 

stored. Its information (e.g., 

related to the cost of the service 

instance, probability of failure on 

demand) are stored in the 

relationship Metric-Version.   

Input data inserts by users are 

related to the number of services, 

minimum threshold given to the 

reliability on demand of the 

system. 

Optimization of 

adaptation plans with 

cost and quality 

tradeoff 

Set of new requirements that 

induce changes in the structural 

and behavioral architecture of the 

software system, set of actions that 

address a certain requirement, 

average number of invocations of 

an elementary service, average 

number of invocations of a new 

service, number of elementary 

software services, set of alternative 

instances for an existing service, 

cost of a service instance, 

reliability (availability) on demand 

of a service instance, response time 

of a service instance, set of new 

available services, cost of a new 

service, reliability (availability) on 

demand of a new service, response 

time of a new service, minimum 

threshold given to the reliability 

(availability) on demand of the 

system, maximum threshold given 

to the system response time. 

Information related to existing and 

new services can be found in the 

database. In particular, for each 

service instance (represented with 

tables Version-Service) data are 

stored. Its information (e.g., 

related to the reliability, 

availability) are stored in the 

relationship Metric-Version.   

Input data inserts by users are 

related to the number of services, 

minimum threshold given to the 

reliability (availability) on 

demand of the system, maximum 

threshold given to the system 

response time. 

 

 
Figure 7Figure 7, Figure 8Figure 8 and Figure 9Figure 9 show the inputs and 

outputs of the architectural decision frameworks listed in the above tables.  
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FIGURE 7: INFORMATION IN AND OUT OF THE BUILD-OR-BUY DECISION MODEL 

 

 

 

FIGURE 8: INFORMATION IN AND OUT OF THE QUANTIFYING THE INFLUENCE OF FAILURE 

REPAIR/MITIGATION COSTS MODEL 
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FIGURE 9: INFORMATION IN AND OUT OF THE OPTIMIZATION OF ADAPTATION PLANS WITH 

COST AND QUALITY TRADEOFF MODEL 

 

3.3 AN EXAMPLE REGRESSION TESTING DECISION FRAMEWORK 
 

In this section, we present the example framework we developed for 

making decisions on regression testing (see Figure 10Figure 10). The details of the 

model are provided in Chapter 5. 

 

 

FIGURE 10:  AN EXAMPLE DECISION MAKING FRAMEWORK FOR REGRESSION TESTING 

 

In Table 10, Table 11 and Table 12 we discuss examples of regression 

decision models. In particular, we summarize inputs and outputs of the models. 
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TABLE 10: MODEL’S INPUTS 

Model Input Reference 

Regression test suite 

prioritization 

Test cases, analysis of code coverage is 

collected for each of the version of a 

software product, Churn metrics are 

collected  for each of the version of a 

software product (e.g., Cyclomatic 

Complexity, number of added or modified 

LOC).  

 

 

More details can be 

found in Section 5.2 

 

 

TABLE 11: MODEL’S OUTPUTS 

Model Output Reference 

Regression test suite 

prioritization 

Test cases prioritization. More details can be found in Section 

5.2 

 

 

TABLE 12: MODEL’S INPUTS AND THE DATABASE 

Model Input DB 

Regression test suite 

prioritization 

Test cases, analysis of code 

coverage is collected for each of the 

version of a software product, Churn 

metrics are collected for each of the 

version of a software product (e.g., 

Cyclomatic Complexity, number of 

added or modified LOC). 

Similarly to the architectural 

decision models, information 

related to components can be found 

in the database. In particular, for 

each component instance 

(represented with tables Version-

Component) data are stored. 

 

Figure 11Figure 11 shows the information in and out of the regression 

testing decision framework listed in the above tables.  
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FIGURE 11: INFORMATION IN AND OUT OF THE REGRESSION TESTING MODEL 

 

3.4 DATA GATHERING 
 

In this section, we provide more information for the database, which is to 

be designed and implemented for collecting the data required by the decision-

making models. The ER scheme can be found in deliverable D3.2.  

The following diagram illustrates the process of creating the database. 
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FIGURE 12: THE PROCESS OF DATABASE CREATION 

The data collected from the industrial scenarios (provided by our industrial 

partners) will be used for populating the database, as sketched in Figure 13. 

 

 

 

FIGURE 13: THE PROCESS OF DATABASE POPULATION 

     

Information can be categorized in three main categories: 

 Metrics 

 Products 

 Defects 

 

a) Metrics   

Figure 14 shows the ER schema related to Metrics information.  

 

 

FIGURE 14: ER SCHEMA RELATED TO METRICS 
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Table Metric. This table encompasses the software metrics. In the deliverable 

D2.2, a quite extensive list of software metrics can be found. Example of metrics 

is LOC (number of lines of code). Different metrics can be used for different 

software versions and for different projects. Moreover, two versions of the same 

components may have different values for the same metric.  

The following table summarizes the data related to code churn, which are used for 

populating the database. 

TABLE 13: CODE CHURN METRICS 

Classification Type Characteristic Name Description Feasibility UM 

Change Process Schedule HOURS Time in hours to 

develop/maintain the 

software system. 

 number 

Change Process Frequency REVISI

ONS 

Number of revisions 

of a file 

good number 

Change Process Frequency REFACT

ORINGS 

Number of times a 

file has been 

refactored 

good number 

Change Process Frequency BUGFIX

ES 

Number of times a 

file was involved in 

bug-fixing 

good number 

Change Process Size AUTHO

RS 

Number of distinct 

authors that checked 

a file into the 

repository 

 number 

Change Process Size LOC_A

DDED 

Sum over all 

revisions of the lines 

of code added to a 

file 

 number 

Change Process Size MAX_L

OC_AD

DED 

Maximum number of 

lines of code added 

for all revisions 

 number 
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Change Process Size AVE_ 

LOC_A

DDED 

Average lines of 

code added per 

revision 

 number 

Change Process Size LOC_DE

LETED 

Sum over all 

revisions of the lines 

of code deleted from 

a file 

 number 

Change Process Size MAX_L

OC_DEL

ETED 

Maximum number of 

lines of code deleted 

for all revisions 

 number 

Change Process Size AVE_LO

C_DELE

TED 

Average lines of 

code deleted per 

revision 

 number 

Change Process Size CODEC

HURN 

Sum of (added lines 

of code – deleted 

lines of code) over 

all revisions 

 number 

Change Process Size MAX_C

ODECH

URN 

Maximum 

CODECHURN for 

all revisions 

 number 

Change Process Size AVE_C

ODECH

URN 

Average 

CODECHURN per 

revision 

 number 

Change Process Size MAX_C

HANGE

SET 

Maximum number of 

files committed 

together to the 

repository 

 number 

Change Process Size AVE_C

HANGE

SET 

Average number of 

files committed 

together to the 

repository 

 number 

Change Process Size AGE Age of a file in 

weeks (counting 

backwards from a 

specific release) 

 number 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 29 

 

Deliverable D3.3: “Models-based Process Definition” 

Change Process Size WEIGH

TED_AG

E 

 
∑ 𝐴𝑔𝑒(𝑖) × 𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)𝑁

𝑖=1

∑ 𝐿𝑂𝐶_𝐴𝐷𝐷𝐸𝐷(𝑖)𝑁
𝑖=1

 

(Pg.42 Doc. D2.2) 

 number 

Change Resour

ce 

Effort PERSON

-HOUR 

Cost per hour to 

develop/maintain the 

software system. 

high euro 

Change Resour

ce 

Effort PERSON

-DAYS 

Cost per day to 

develop/maintain the 

software system. 

high euro 

Change Resour

ce 

Cost MONEY Money value (per 

hour/day/week/mont

h) average or 

differentiated by 

employee. 

high euro 

Source Product Size MB Megabyte high number 

Source Product Size FP Function Point high number 

Source Product Structure WMC Weighted Method 

Count 

high number 

Source Product Structure DIT Depth of Inheritance 

Tree 

high number 

Source Product Structure RFC Response For Class high number 

Source Product Structure NOC Number Of Children high number 

Source Product Structure CBO Coupling Between 

Objects 

high number 

Source Product Structure LCOM Lack of Cohesion in 

Methods 

high number 

Source Product Structure FAN_IN Number of other 

classes that reference 

the class 

high number 
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Source Product Structure FAN_O

UT 

Number of other 

classes referenced by 

the class 

high number 

Source Product Structure NOA Number of attributes high number 

Source Product Structure NOPA Number of public 

attributes 

high number 

Source Product Structure NOPRA Number of private 

attributes 

high number 

Source Product Structure NOAI Number of attributes 

inherited 

high number 

Source Product Size LOC Number of lines of 

code 

high number 

Source Product Structure NOM Number of methods high number 

Source Product Structure NOPM Number of public 

methods 

high number 

Source Product Structure NOPRM Number of private 

methods 

high number 

Source Product Structure NOMI Number of methods 

inherited 

high number 

Source Product  Structure AHF Attribute Hiding 

Factor 

high percentag

e 

Source Product  Structure MIF Method Inheritance 

Factor 

high percentag

e 

Source Product  Structure AIF Attribute Inheritance 

Factor 

high percentag

e 

Source Product Structure MHF Method Hiding 

Factor 

high percentag

e 

Source Product  Structure POF Polymorphism Factor high percentag

e 

Source Product  Structure COF Coupling Factor high percentag

e 
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Source Product  Structure SIX Specialisation Index 

per Class 

high percentag

e 

Source Product Structure CCN Cyclomatic 

complexity 

high number 

Source Product Structure LOCM4 Lack Of Cohesion of 

Methods version 4 

high number 

Source Product Structure Package 

tangle 

index 

cyclical 

dependencies 

between packages 

and files 

 percentag

e 

Source Product Size PLOC Number of  physical 

lines of code 

high number 

Source Product Size LLOC Number of logical 

lines of code 

high number 

Source Product Structure NOC Number of class high number 

Source Product Structure NOP Number of packages high number 

Source Product Structure NOF Number of files high number 

Source Product Structure BRANC

HES 

Number of branches 

(for all if and switch 

statements) 

high number 

 

 

Table Tool. This table encompasses the tools for metrics evaluation (e.g., the 

Sonar tool). A raw list of these tools can be found in the deliverable D2.2. A tool 

can be used to collect several metrics. Therefore, there is a relationship N:N 

between the tables Metric and Tool. 

Examples of tools are shown below in Table 14. 
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TABLE 14: EXAMPLE TOOLS 

Name Description YearFirst

Version 

YearLast

Version 

Jdepend JDepend traverses Java class file 

directories and generates design 

quality metrics for each Java 

package. JDepend allows you to 

automatically measure the quality 

of a design in terms of its 

extensibility, reusability, and 

maintainability to manage package 

dependencies effectively. 

2006 2014 

JCSC JCSC is a powerful tool to check 

source code against a highly 

definable coding standard and 

potential bad code. It is a highly 

configurable checking tool for 

your Java source code. It checks 

the compliance to a defineable 

coding standard like naming 

conventions and code structure. 

Also signs of bad coding, potential 

bugs are found. 

2002 2005 

QALab QALab consolidates data from 

Checkstyle, PMD, FindBugs and 

Simian and displays it in one 

consolidated view. QALab keeps a 

track of the changes over time, 

thereby allowing you to see trends 

over time. You can tell weather the 

number of violations has increased 

or decreased - on a per file basis, 

or for the entire project. It also 

plots charts of this data. 

2006 2006 

CKJM CKJM calculates Chidamber and 

Kemerer object-oriented metrics 

by processing the bytecode of 

compiled Java files. The program 

calculates for each class the 

following metrics: weighted 

methods per class, depth of 

inheritance tree, number of 

children, coupling between object 

classes, response for a class, lack 

of cohesion in methods, afferent 

couplings and number of public 

methods 

2005 2012 

Panopticode The Panopticode project provides 

a standardized format for 

describing the structure of 

software projects and integrates 

metrics from several tools into that 

2007 2007 

Commento [CG1]: These are not 

complete? 
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format. Reporting options provide 

correlation, historic analysis, and 

visualization. Panopticode uses 

Tree Maps to display the code 

complexity and coverage. 

Same Same is a tool to find duplicate 

lines in multiple text files. Very 

useful to find and fix copy-and-

paste programming. It has been 

designed to be simple, portable, 

and fast. 

 2001 

FindBugs It uses static analysis to look for 

bugs in Java code. Potential errors 

are classified in four ranks:  

scariest, scary, troubling and of 

concern. This is a hint to the 

developer about their possible 

impact or severity. 

2007 2015 

JavaNCSS JavaNCSS is a simple command 

line utility which measures two 

standard source code metrics for 

the Java programming language. 

The metrics are collected globally, 

for each class and/or for each 

function. It can optionally present 

its output with a little graphical 

user interface. 

1997 2009 

PMD/CPD PMD is a source code analyzer. It 

finds common programming flaws 

like unused variables, empty catch 

blocks, unnecessary object 

creation, and so forth. It supports 

Java, JavaScript, PLSQL, Apache 

Velocity, XML, XSL.  

CPD is a copy-paste-detector. 

CPD finds duplicated code in Java, 

C, C++, C#, PHP, Ruby, Fortran, 

JavaScript, PLSQL, Apache 

Velocity, Ruby, Scala, Objective 

C, Matlab, Python, Go. 

2002 2015 

Xradar XRadar is an open extensible code 

report tool currently supporting all 

Java based systems. The batch-

processing framework produces 

HTML/SVG reports of the systems 

current state and the development 

over time - all presented in tables 

and graphs. It gets results from 

several open source projects and a 

couple of in house grown projects 

and presents the results as massive 

unified html/svg reports.  

2008 2009 
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Checkstyle Checkstyle is a development tool 

to help programmers write Java 

code that adheres to a coding 

standard. It automates the process 

of checking Java code. It is highly 

configurable and can be made to 

support almost any coding 

standard.  It can find class design 

problems, method design 

problems. It also has the ability to 

check code layout and formatting 

issues. 

2007 2015 

Sonar It is an open source platform for 

continuous inspection of code 

quality. Offers reports on 

duplicated code, coding standards, 

unit tests, code coverage, complex 

code, potential bugs, comments 

and design and architecture. 

Records metrics history and 

provides evolution graphs and 

differential views. 

2007 2015 

Classycle Classycle's Analyser analyses the 

static class and package 

dependencies in Java applications 

or libraries. It is especially helpful 

for finding cyclic dependencies 

between classes or packages. 

Classycle's Dependency Checker 

searchs for unwanted class 

dependencies described in a 

dependency definition file. 

Dependency checking helps to 

monitor whether certain 

architectural constrains are 

fulfilled or not. 

2003 2014 

Jlint Jlint will check your Java code and 

find bugs, inconsistencies and 

synchronization problems by 

doing data flow analysis and 

building the lock graph. Jlint is 

extremely fast - even on large 

projects, it requires only one 

second to check all classes. It is 

easy to learn and requires no 

changes to the class files. 

2004 2011 

Sonar 

Plugins 

Sonar includes several plugins 

such as language plugins, plugins 

for developer tools, governance, 

integration, autentication and 

authorization, additional metrics, 

SCM engines, external analizers, 

visualization, reporting, etc. 

2014 2015 
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Squale Assists developers in improving 

the code of their projects. Helps 

project managers to meet quality 

requirements for their applications. 

Gives top-managers dashboards to 

monitor the overall health of their 

information system. Works on 

enhanced quality models. Helps 

assessing software quality and 

improving it over time. 

2009 2011 

JaCoCo JaCoCo is an open source toolkit 

for measuring and reporting Java 

code coverage. It offers line and 

branch coverage. JaCoCo 

instruments the bytecode while 

running the code. To do this it runs 

as a Java agent, and can be 

configured to store the collected 

data in a file, or send it via TCP. 

2009 2015 

 

Relationship Tool-Metric. This relationship is used for obtain metrics values. In 

particular, this relationship can be obtained from Table 19 of the deliverable D2.2. 

For example, the JaCoCo tool (see Section 6) provides code coverage metrics.   

Table Qualitymodel. This table encompasses quality models, for example ISO 

9126 (see Deliverable 2.2). A tool may be related to one (or more) quality models. 

Therefore, there is a relationship N:N between the tables Qualitymodel and Tool.  

Examples of quality models are: 

Name Description 

ISO 9126 International standard for the evaluation of software 

quality. Its fundamental objective is to address some of the 

well known human biases that can adversely affect the 

delivery and perception of a software development 

project.The standard is divided into four parts: quality 

model, external metrics, internal metrics and quality in use 

metrics. It has been replaced by ISO/IEC 25010:2011 

ISO 25010 This quality model determines which quality 

characteristics will be taken into account when evaluating 

the properties of a software product. The considered 

characteristics are: functional suitability, performance 

efficiency, compatibility, usability, reliability, security, 

maintainability and portability. 

SQUALE It is inspired by the ISO 9126 standard and introduces a 

new level for the assessment of practices in the hierarchy 

of factors, criteria, and measures. It allows one to 

determine the quality of a project and control  its  

evolution  during  the  maintenance  of  a  project, 

preventing  deterioration. The  Squale  model  stresses  bad 

quality instead of averaging the quality in order to quickly 

focus on the wrong parts.  It uses a set of measures 
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combined into practices using formulae which take into 

account company standards and project technical 

specificity.  Practice  weights  are  customized  with  

respect  to  these  overall constraints. 

SIG It is based on best practices and defined standards, such as 

ISO/IEC 25010. The SIG model offers an efficient, simple 

and structured way to gain objective insight in the quality 

of performance by evaluating both the process and the 

product. The result is a score from one to five stars, where 

more stars correspond to a higher quality. One of the key 

aspects of the model is ‘observability’, a property that 

discusses to what extent performance characteristics in a 

system can be measured and assessed.  

 

Relación Tool-QualityModel. This relationship is derived by applying the quality 

models. 

Entity Functionalfeature. This table encompasses the tasks that metric tools 

perform (e.g., the Data acquisition task). In the deliverable D2.2, a description of 

the main tools’ tasks is provided. A tool can perform one or more tasks. A specific 

task can be performed by more than one tool. Therefore, there is a relationship 

N:N between the tables Tool and Functionalfeature. 

 

First, it is populated the following table: 

Name Description 

Data acquisition Set of methods and techniques for obtaining necessary data for 

measurement 

Analysis of measures Ability to store, retrieve, manipulate and perform data analysis 

Data presentation Formats to generate the obtained documentation 

 

Relationship Tool-FunctionalFeature. This relationship can be obtained from 

Table 20 of deliverable D2.2. 

 

b) Products 

 

Figure 15 shows the ER schema related to Products information.  
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FIGURE 15: ER SCHEMA RELATED TO PRODUCTS 

 

Table Domain. This table collects information related to the application domain 

of the company (e.g, medical, telecommunications, financial, which are the 

ICEBERG project’s scenarios application domain).  

Table Enterprise. An occurrence of this table represents an organization 

responsible for the software development or maintenance.  Data privacy is 

considered by using appropriates measures (e.g., by inserting names of scenarios 

as ScenarioM, ScenarioT, ScenarioF).  

Table Product. A software product is a component that results of a composition of 

one or more components. There is a hierarchy/aggregation relationship between a 

product and a component. For each product, information related to its providers 

are stored.  

Table Component and Table Version. A component is a self-contained 

deployable software module containing data and operations, which 

provides/requires services to/from other components. Different versions may be 

available for one component. A component version is a specific implementation 

of a component. A component version can be involved in different software 

product versions and in others component versions. Defects are related to 

products, components or component’s versions. For each scenario, information of 

its components (and the related versions) are stored (e.g., number of bugs, issues, 

etc). 

Relationship Version-Version. This relationship is used to determine the 

structure of a product. In particular, the decomposition of components/versions in 

sub-components (versions) is modelled.  

Relationship Metric-Version.  This relationship is used to determine metric 

values of the component versions.  

Relationship Metric-Component.  This relationship is used to determine metric 

values of the components.  

 

c) Defects 
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Figure 16 shows the ER schema related to Defects information.  

 

 

FIGURE 16: ER SCHEMA RELATED TO DEFECTS 

 

Table Project. Data related to specific activities, which a software company 

conduced for developing a project, are stored.  Such information is collected with 

respect to the scenarios. For example, for the ScenarioT, it is stored information 

related to two products developed in two different projects.  Generic projects (for 

developing or maintain a software systems) are created, which can be used to 

insert data of new further scenarios.  

Relationship Product-Project. This relationship allows obtaining information 

related to the products and the projects (i.e., project specific activities).  

Relationship Metric-Project.  This relationship allows to obtain metrics related to 

a single project. More specifically, if a project is related to one product, then 

metrics values of the product will be stored. The current version of the project is 

also stored.  

Table Resource. This table encompasses the people involved in the different 

activities. Several people may be involved in the same trigger. For each activity, 

the working hours of the people can be stored (assuring later analysis of 

cost/effort data).  In particular, for each scenario, information related to the people 

involved are stored. Data will be stored by appropriating adopting privacy 

mechanisms (e.g., for people name will be used a nickname).   

Table Lifecycle. This table is related to the software life cycle. Different phases 

are typically involved in a software life cycle, such as the requirements, design, 

and testing phases.  
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Table Issue. This table encompasses defects, which have been detected or fixed 

(see deliverable D3.1 for more details). One defect can be associated to one 

version of a software component. For each scenario, information related to the 

issues found during testing activities (or at operational time) will be stored. For 

example, opening time (and closing time) of the issue will be collected. Other data 

are related to the severity, priority, type of bug, or the current state of the issue 

(e.g., opened, closed, and assigned).   

Relationship Issue-Version. A defect impact (affected and/or fixed) to one or 

more versions of a software component. This information is stored with respect to 

each of the scenarios. 

Relationship Issue-Issue. A defect may occur again even after the defect is fixed. 

The reopen defect issue has to be related to the original defect. 

Table Trigger. This table encompasses the work tasks to be performed to address 

an issue’s occurrence, such as the execution of a test case. A defect (related to the 

Issue entity) may be detected during the execution of a trigger (e.g., during the 

testing activity) or may be fixed by a trigger. If a scenario does not provide details 

about triggers, then a generic trigger is created in order to store data. For each 

project, attributes for its triggers will be stored (e.g., NumTotal, NumPassed, and  

NumFailed).  

Relationship Trigger-Resource. Information related to people involved in the 

single projects (and their specific triggers) will be stored. 
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4 OPTIMAL ALLOCATION OF TESTING RESOURCES  
 
 

  The allocation of testing resources of large software systems is a complex 

task, mostly because it requires models that encompass the composition of test 

process properties into system properties. As software is used more and more in 

business-critical and safety-critical applications, it is important to prevent the 

realization of software with poor software quality. The reliability of a large-scale 

software system is given by the composition of system functionalities (modules, 

sub-systems, etc) reliabilities; therefore, the system reliability is a function of the 

detection ability of the testing process of each of the system functionalities 

(modules, sub-systems, etc). 

Typically project managers’ decisions span from the identification of the 

most important system functionalities (e.g., the ones with the biggest safety 

impact, or the largest financial impact on users) through resource scheduling to 

staff assignment [2]. In fact, the majority of software projects today are embedded 

in dynamic contexts, where requirements, environment assumptions, and usage 

profiles continuously change. Therefore, in the last few years, development 

processes have primarily focused on the maintenance phase, due to the frequent 

changes required by software after the deployment phase. In this work, we focus 

on resource allocation, which is highly relevant in testing process, and is typically 

a time-consuming and tedious task. It is well worth optimizing the allocation 

scheme [3]: although testing resources can be allocated in rather simple ways (e.g. 

average allocation, random allocation, and proportional allocation), an optimal 

allocation scheme may lead to significant improvement in terms of the reliability 

of a software system [4]. 

Any combination of testing allocation decisions may have a considerable 

impact on the cost, time and software quality. For these multi-attribute problems, 

there is usually no single global solution, and the generation and evaluation of 

alternatives can be error prone and lead to suboptimal decisions, especially if 

carried out manually by test/project managers. Therefore, tools that support 

decisions strictly related to meet quality/time requirements, while keeping the 

costs within a predicted budget, would be very helpful to the project managers’ 

tasks. 

The presence in the market of standard off-the-shelf components/services 

has drastically changed in the last decade the development process of large-scale 

systems. Mission-critical large-scale systems, for example, are developed in a 

highly modular way, adopting a strong component-based approach to foster reuse 

and a build-by integration approach [5]. Although several approaches have been 

introduced in the last few years to address these issues, the tradeoff analysis 

among quality, cost, and time has not yet been studied enough. In fact, very 

generic criteria are typically applied in the practice, such as allocating resources 

driven by requirements (e.g., testing a component until all requirements have been 

tested at least once), or driven by the size (more testing to bigger modules). 

Sometimes, intuition drives testing choices: based on experience, a tester may 

deem one functionality (software module) more “critical” than another, therefore 

deserving more testing. As there may be relevant differences among 

functionalities (modules) in terms of quality e.g., because they come from 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 41 

 

Deliverable D3.3: “Models-based Process Definition” 

different teams (internal or external in case of outsourcing), or they are based on 

different programming paradigms - their defectiveness can vary significantly [6]. 

The tradeoff analysis results may be strongly affected by parameter 

uncertainties; in fact, the software testing activity is fraught with a not negligible 

uncertainty relates to values of parameters such as operational profile, the 

expected number of initial faults, the fault detection rate per unit testing-effort 

(SRGMs input), fault fixing time, etc. The propagation of this uncertainty on the 

objective function and the constraints should be analyzed. Typically, existing 

works perform the sensitivity analysis of optimal resource allocation problems 

[7], [8] with respect to those parameters deemed critical, such as the expected 

initial faults, the fault detection rate and cost of correcting an error in testing and 

operational phase on the optimum allocation. Because parameters are estimated 

based on the available data (e.g., parameters of a SRGM are estimated based on 

the available failure data, which is often sparse [7]), their estimation only 

represent approximations of parameters. As a consequence, parameter estimation 

plays a critical role in accurately describing testing resource allocation process 

through optimization models. 

The goal of our work is to assist test/project managers in the decisions on 

how to effectively distribute the resources available for testing. Such assistance 

aims to take into account several quality attributes of the testing process, i.e., cost 

(such as that one to correct a bug during testing, or the cost of testing per unit 

testing-effort expenditures), time (e.g., the time to detect and fix a 

bug/defect/fault1), and reliability. In particular, we explicitly consider uncertainty 

in the testing process in order to evaluate the robustness of the testing resource 

allocation. Robustness refers to the ability to tolerate uncertainty in the intrinsic 

input parameters of the testing process. We deal with input parameter 

uncertainties, and model each uncertain parameter as a random variable whose 

variability is characterized by its continuous or discrete distribution. We present a 

Monte Carlo (MC) simulation-based approach to systematically assess the 

robustness of a resource allocation alternative despite its uncertainty. MC is a 

well-assessed method for uncertainty analysis. Examples of its adoption can be 

found in different areas of the scientific literature. Its effectiveness and efficiency 

have, for example, already been demonstrated in the works [9] [10] for handling 

parameter uncertainties in the performance (and reliability) modeling and analysis 

process of software architectures. 

More specifically, we provide an automatic optimization process for 

dynamically allocate testing resources to software modules (functionalities) based 

on trade-offs among software quality, cost, and schedule/time requirements. 

Dynamic refers to the ability of using testing data (i.e., bug reports2) as they 

become available, exploiting them to adjust performance online, and robust with 

respect to variations during testing and volatility of planning time’s assumptions. 

Our approach consists in formalizing the decision problem in terms of system 

quality and testing cost/time requirements, to elicit and represent uncertainties as 

probability distributions, to simulate the impact of resource allocation alternatives 

                                                             
1 The term fault (defect/bug) is preferred in the fault tolerance (software engineering) community; here, we 

use them as synonymous. 
2 A bug report is also called a ticket, an issue, an incident, a fault (defect) report, a maintenance request, etc. 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 42 

 

Deliverable D3.3: “Models-based Process Definition” 

on system quality and testing cost/time through MC simulations, and to shortlist a 

set of alternatives using Pareto-based multi-objective optimization techniques. 

Our optimization method combines the application of both metaheuristic 

search techniques and MC simulations. In particular, we have chosen to adopt 

evolutionary algorithms because they have been reported to perform better than 

some other techniques used for solving the testing resource allocation problem (as 

remarked in [3]). These types of metaheuristic algorithms possess the strong 

capability of global search, and are usually not very sensitive to initial solutions. 

On the contrary, these characteristics represent drawbacks that are common 

among the alternative approaches adopted for solving testing allocation problem.  

Evolutionary techniques’ effectiveness has also been demonstrated on a large 

spectrum of problems in the reliability optimization field, such as resource 

management and task partition in grid systems, redundancy allocation, and 

reliability optimization of weighted voting systems [3]. 

In a limited testing budget (and time), an important challenge to address is 

a tradeoff between (i) allocating resources to functionalities (software modules) 

where testing will have the highest detection power, and (ii) maximizing the 

number of bugs that can be fixed in available time. This challenge stems from our 

experience in testing industrial health care systems, in collaboration with our 

partner. This problem is currently relevant for our industrial partner in particular, 

and the health care domain in general due to its high variability in requirements 

and design. In fact, medical procedures and uncertainty in patient behaviors 

require stochastic analysis, and complex decisions under uncertainty are notably 

made about the cost-effectiveness of new medical treatments based on the results 

of clinical trials [11]. 

 

In summary, our main contributions are: 

 An approach implemented as an optimization framework for dynamically 

modeling: (i) fault detection and correction processes of systems 

functionalities (modules) through the SRGMs that best fit the actual 

testing data, (ii) testing cost/time constraints, and (iii) parameter-specific 

uncertainties phenomenons. So that the systems functionalities (modules) 

with shorter time (budget) are tested and that reveled bugs are fixed 

earlier. 

 The maximization of the testing process’s effectiveness by predicting the 

fault correction process as a function of the bug assignment process. More 

specifically, we predict the ability of the debuggers/testers to correct 

faults. We use bug reports (collection of fixed and not-fixed bugs) in order 

to predict debugging performance. In fact, the scheduling of debuggers to 

bug-fixing activities should not be performed only during system testing, 

when a new bug is reported and has to be assigned to a 

developer/debugger for fixing it (see the typical steps of a bug-tracking 

system such as Bugzilla [12]). If the bug assignment would be limited to 

the testing activity’s execution, then it would be difficult to find bug-fix 

solutions that are relevant to a given testing situation (e.g., that exactly 

match the budget and time requirements). We claim that the bug 

assignment (typically a time-consuming and tiresome process in large 

software projects [13]) may be a key factor for a trustworthy prediction of 

the fault correction process of the single functionalities (software 

modules), as well as of the reliability of the whole system. 
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In Sections 4.1 and 4.2, we present an overview of the dynamic testing resource 

allocation framework; in Section 4.3 we provide the formulation of the 

optimization model that represents the core of our approach; in Section 4.4 the 

achieved results on the Medical Company scenario (see Deliverable D2.2 [95]) 

are presented; Section 4.5 introduces related work and discusses the novelty of our 

contribution.  

 

4.1 OPTIMAL TESTING RESOURCE ALLOCATION PROCESS 
 

We defined a process, which helps in dynamically allocating testing 

resources to software functionalities. Dynamic refers to the ability of using testing 

data as they become available, exploiting them to adjust performance online, and 

robust with respect to variations during testing and volatility of planning time’s 

assumptions.  

The defined process is based on a multi-objective optimization model 

combined with a Montecarlo simulation strategy, aiming to maximize the quality 

of a given software (i.e., in terms of number of detected and corrected faults), 

based on the trade-offs among system reliability, testing time, and 

testing/debugging cost. 

We hereafter denote the three objectives to be pursued as: FCO  (Fault 

correction process’ Effectiveness Objective), to maximize; TTO  (Testing Time 

Objective), to minimize; TCO  (Testing-effort Cost Objective), to minimize. The 

output of our process is a solution (i.e., individual in the NSGA-II terminology) 

providing (i) the testing effort to be spent for each system functionality, (ii)  the 

number of debuggers being assigned to each functionality, (iii)  the hours of each 

debuggers to the functionalities. A solution is also characterized by the fitness, 

i.e., the triple composed by the values of FCO, TTO, and TCO that are obtained 

by the solution. 

In the following, we provide a high-level overview of the proposed 

process.  

 

 SRGM Construction. The first phase of the process is obtaining the module-

level SRGMs
3
 that characterize the testing progress of each functionality. 

Differently from previous work on SRGMs-based allocation (e.g., [4], [30], 

[107], [108], [30]), we do not assume any prior specific SRGM, but we infer 

the most suitable for each functionality. 

 

More important, the process includes the possibility to dynamically select the 

best SRGMs during testing as fault detection data become available, whenever 

historical data are unavailable or unreliable. The steps of the SRGM 

construction are shown in Figure 17.  
 
 

                                                             
3
 For this work, a module is a functionality: in the following , the two terms are used as 

synonymous if not differently specified. 
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FIGURE 17: HIGH-LEVEL TESTING RESOURCE ALLOCATION PROCESS OVERVIEW 

 

 Data Gathering. Let F denote the set of functionalities to test. At the 

beginning of the process application, i.e., t0, there are two possible cases 

for a given functionality: i) historical data about testing conducted on that 

functionality are available (or testing data of another system including the 

same functionality, or also testing of a previous version of that 

functionality) ii) no previous data are available. 

 

In the former case the data (in particular, the fault detection times) can be 

used to fit an SRGM for the functionality among a list of SRGMs. In the 

latter case, i.e., without any additional information to prioritize the testing 

efforts at t0, the initial resource allocation is done uniformly to all 

functionalities: once the testing starts, the new data can be progressively 

used to fit the SRGMs. 

 

It should be observed that the former case allows running the optimal 

allocation before the beginning of the testing activities; however, it 

requires historical data. The latter case uses the data generated during the 

ongoing testing process (hence, more accurate), but the optimal allocation 

algorithm can be run only when enough data are available to build the 

SRGMs. Running the optimal allocation dynamically during testing 

(possibly, several times) yields to more accurate results, but might be less 

useful if run too late (since the suggested allocation would apply just to the 

remaining testing time) [5].  

 

 Validity check. To assign a SRGM to a functionality, a validity check is 

performed to evaluate if data (either historical data or collected during 

testing) can be fitted in a satisfactory way. Each functionality is fitted by 

means of every available SRGM among a set of SRGMs the tester wish to 

try. Fitting is performed by means of the EM algorithm [14], which 
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provides the best fitting parameters for a given dataset and SRGM. On 

each SRGM, it is run a goodness of fit (GoF) test, by means of the one-

sample Kolmogorov-Smirnov (KS) test (with 95% confidence level) for 

comparison of samples with a reference probability distribution. If the test 

is satisfied for at least one SRGM, it means that the testing dataset can be 

said, with 95% of confidence, to come from that SRGMs distribution. 

 

Once the validity check is passed, we have, in general, a set of SRGMs 

that satisfy the KS test for one given functionality; these are said to be 

statistically valid SRGMs. Among them, the best one will be selected 

according to the next step3. 

 

 SRGM selection. The input to this step is the set of statistically valid 

SRGMs for each functionality. They are compared in terms of fitting 

ability and the best one is selected. We adopt a common goodness-of-fit 

measure based, the Akaike Information Criterion (AIC). The SRGM 

model with the lowest AIC value is preferred, denoting the minimal 

information loss that we incur by selecting that model. This way, each 

functionality is assigned with the best fitting SRGM based on real testing 

data. 

 

 

 Parameters Specification. The second phase of our process deals with the 

specification of parameters, and the management of the uncertainty. 

Parameters are split into deterministic and uncertain. Deterministic parameters 

(e.g., desired threshold of reliability, available testing budget, cost of a tester 

and a debugger per hour) do not need any preliminary treatment. Uncertain 

parameters (e.g., SRGM parameters, average fixing time, usage profile) are 

treated by means of a Montecarlo-based strategy aimed at providing the 

robustness of the solution against the variability of the parameters. 

 

Examples of uncertain parameters (other parameters are listed in the following 

Section) are the SRGM ones. Their values are, in fact, derived by fitting a 

dataset, and represent just one of the potential set of values tied to the specific 

“instance” of data observed from testing – namely, repeating testing on that 

functionality would give different results, as testing is a random process. 

 

Uncertainty is addressed by considering the value of a parameter as a sample 

of a probability distribution, similarly to works on architectural solution 

optimization [9], [10]. The parameters are considered as random variables, 

whose variability is characterized by their continuous or discrete distribution: 

the value of a specific instance is considered a deterministic sample drawn 

from the distribution of the parameter. The so-specified parameters with 

uncertainty are the inputs for the next phase, namely the robust optimization. 

 

 Robust Optimization. The third phase is the robust optimization process, 

further detailed in Figure 18. The framework includes two modules: a Model 

Builder and a Model solver. 
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The Model builder generates the optimization model based on the 

deterministic and uncertain parameters; the Model solver processes the model 

and produces the Pareto-front solutions, which consist in the testing-effort 

allocation and the assignment of debuggers (and hours) to each system 

functionality.  

 

The workflow of the Model Solver (here implemented through the NSGA-II 

algorithm and the MC simulation) is shown in Figure 19. 

 

The algorithm starts with a set of solutions, which represent the initial 

candidates (i.e., the initial population of the search) - Generating Initial 

Population step. 

 

At each iteration, recombination and mutation operators are applied to produce 

ne individuals. The fitness of the solution is evaluated by handling parameters 

uncertain via MC simulation, with respect to the three objectives, i.e.: i) the 

expected number of faults that will be detected and corrected by adopting that 

solution, ii) the testing and debugging cost that will be sustained, and iii) the 

time to complete the testing activity. The most promising individuals are 

selected (i.e., Evaluating Individuals in Figure 19) by the metaheuristic. Then, 

new candidates are generated from the current population (i.e., Generating 

New Population in Figure 19), until the stop criteria are satisfied4. 

 

Embedding MC simulation within the metaheuristic allows generating robust 

solutions: the output is not a point solution (where the impact of the input 

parameters uncertainty on the solution is unknown), but interval, i.e., range of 

solutions that reflect the possible variability of the optimal solution depending 

on the variability of the uncertain input parameters. As a result, the tester can 

select a solution based on more or less conservative criteria (e.g., taking the 

solution on the lower bound of the 95% confidence interval of the mean of one 

objective, such as the number of corrected faults). 

 

In the following section, we first describe the MC-based strategy to 

manage the uncertainty and produce robust solutions. Then, we detail the 

objective functions of the model and the constraints. 
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FIGURE 18: THE ROBUST OPTIMIZATION FRAMEWORK AND ITS ENVIRONMENT 

 
 

 

FIGURE 19: HIGH-LEVEL (NSGA-II AND MC-BASED) MODEL SOLVER OVERVIEW 
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4.2 TESTING-EFFORT ALLOCATION EVALUATION UNDER 
UNCERTAINTY 

 

In general, system engineering disciplines (and in particular, software testing) are 

fraught with different types of uncertainties. Software testing, like other 

development activities (e.g., the design process [15]), is in fact human intensive 

and thus introduces uncertainties. Software testing uncertainties may affect the 

development effort and should therefore be accounted for in the test plan [16].  

 

Testing activities are related to the planning and enactment, where enactment 

includes test selection, test execution, and test result checking. The majority of 

these activities concern with human behavior (such as test result checking is 

highly routine and repetitious and thus are likely to be error-prone if done 

manually [16]). Test enactment is in fact inherently uncertain, since only 

exhaustive testing in an ideal environment guarantees total confidence in the 

testing process and its results. However, an ideal testing scenario is infeasible in 

practice for all but the most trivial software systems. Instead, multiple factors 

exist that introduce software testing uncertainties [17]. Uncertainty can in fact 

arise from different sources including external factors not directly related to the 

behavior of humans in testing activities, such as the usage of the system from end-

users. 

 

Different types of uncertainty can thus be faced during the testing process. 

Example of uncertainty sources is related to the system specification.
4

 For 

example, information on the software system to be tested may be incomplete, such 

as (some) scenarios, describing the system’s dynamics, might not be available (or 

sufficiently detailed) [18]. 

 

The importance and the need of handling uncertainty in software testing is also 

pointed out by [19]. In particular, the work identifies a set of requirements for 

adequate uncertainty handling in testing, and outlines the lack of: (i) richer testing 

frameworks to handle input parameters uncertainty (i.e., specify input distribution 

instead of discrete inputs), (ii) probabilistic oracles to handle uncertainty 

associated to the system behavior (i.e., due to misbehaviors and incorrect outputs), 

and (iii) richer models to deal with system and environment uncertainty. 

    

In this work package, we dealt with the uncertainty affecting the parameters 

involved in the resource allocation process. The uncertainty is mainly dependent 

on estimation of the parameters inferred from observed data (e.g., parameters of 

the SRGMs, average fixing time), or that cannot be accurately evaluated when no 

enough information is available (e.g., the usage profile of the system 

functionalities). 

 

We face this problem by combining MC simulation and metaheuristic search in 

order to assess the robustness of a solution against uncertainty. Our strategy 

leverages its basics from recent research done in different areas, i.e., software 

                                                             
4 Notice that this uncertainty source corresponds to the type of uncertainty related to system models, i.e., all 

sorts of approximation and modeling uncertainties of a design process [15]. 
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architecture quality (e.g., performance and reliability), optimization under 

uncertainty [109], [110]. Robustness is the ability to tolerate uncertainty in the 

input parameters. Such as indicated in Figure 19, the search space exploration is 

achieved by enhancing metaheuristic techniques (the NSGA-II algorithm in 

particular) with MC simulation for uncertainty analysis. Again, we represent the 

uncertainty of the parameters by probability distributions to simulate the impact of 

solution alternatives on objective functions through MC simulations, and to 

shortlist a set of alternatives using Pareto-based multi-objective optimization 

techniques. 

 

The approach to evaluate the objective functions in a robust way is depicted by 

Figure 20. The three objective functions (FCO, TTO, TCO) for a given solution 

are evaluated by simultaneously considering the uncertainty of all the parameters. 

The samples are generated based on the probability distribution associated with 

each uncertain input parameter, and the fitness (as well as the constraints) for the 

candidate solutions are re-computed for each sample. 

 

Statistical analysis on the fitness values (collected at each MC run) is performed, 

so as to provide solutions with a desired statistical confidence. In the following 

pargarpahs, we detail the steps  as shown in Figure 20. 

 

 

 
 

FIGURE 20: EVALUATION OF TESTING RESOURCE ALLOCATION’S RELIABILITY (TESTING 

TIME AND COST) UNDER UNCERTAINTY 

 

4.2.1 Specification of Uncertain Parameters 
 
The uncertain parameters in the testing resource allocation process are categorized 
as follows:: 
 

 System-specific parameters. This category includes the parameters related 

to the detection and correction process, which are dependent on the 

features of the system (functionalities) under test. These are the parameters 

of the debug-aware SRGMs of each of functionality, i.e.: (i) the expected 

number of initial faults; (ii) the parameters of the detection rate per 

remaining fault function; (iii) the parameters of the correction rate per 

pending fault function .  
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 Parameters specific to the testing-process. This category includes the 

parameters related to the testing process and its activities, such as 

debuggers aspects (e.g., the average amount of bugs a debugger can fix in 

a day). 

 Usage profile. The usage profile concerns how users interact with the 

system. It roughly expresses how much each functionality is expected to 

be used during operations. When available, this information is exploited at 

testing time to exercise the system functionalities proportionally to their 

expected usage. A simple, but widely adopted, way to express the 

operational profile is the relative (percentage) frequency of invocation of 

each functionalities (e.g., the call rates of system functionalities). 

 

Call rate estimates can be usually obtained by examining (i) data gathered 

during simulation, static profiling, or dynamic profiling; (ii) field data 

gathered obtained during runtime monitoring of similar systems (or the 

same system in previous versions); (iii) by exploiting domain knowledge 

and information provided by the software architecture [20]. It is worth 

noting that such estimates are affected by uncertainty that we take into 

account. 

 

Uncertain parameters are treated as random variables. Hence, the values of the 

parameters are considered as samples of a – continuous or discrete – probability 

distribution. Distributions of parameters can be derived in several ways [52], such 

as: (i) using the source of the variations, in the cases when the source of 

uncertainty is known and can be estimated, (ii) by constructing a histogram, when 

a considerable amount of data regarding the parameter behavior are available, (iii) 

approximated as a uniform distribution if no information is available and (iv) as a 

discrete distribution, when parameters are discrete-valued. Depending on the 

available information, any of these methods can be selected to derive a sampling 

distribution for each parameter.  

 

We adopt the uniform distribution (UD) in all the cases but one, as we assume the 

more general case of no prior knowledge about any parameter. Specifically, the 

continuous UD over a range is used for the SRGM parameters about fault 

detection process and for the debugger capacity parameters, while a discrete UD 

over the set of functionalities is used for the usage profile parameters. For the 

SRGM parameters of the fault correction process, we exploit the knowledge 

available from the literature, and adopt the exponential distribution, since it has 

been shown to well represent the debugging process [111]. In the case of SRGM 

parameters, the ranges of the uniform distribution can leverage from the 

confidence intervals (e.g., at 95%) of the parameter estimation (e.g., as in [9][10).  

For the debugger load capacity, it should be derived from requirements within the 

organization, which establishes how many (minimum and maximum) bugs each 

debugger can be assigned in a day. As for the usage profile, if no information is 

available about which functionality is going to be more used in operation, each 

functionality can be assigned the same probability. Finally, as for the correction 

process, the mean of the exponential distribution can be estimated by means of 

historical data available within a company about the average bug fixing time, as 
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recorded in a bug tracking system; if the information is not available, a domain 

expert should assess it. 

 

 

4.2.2 Sampling of Uncertain Parameters and Solution Evaluation 
 

Samples are drawn from the defined distributions for each of the input parameters. 

These are used in the objective functions and constraints of the model in order to 

evaluate a candidate solution under the sampled parameter values. The process is 

repeated until a desired accuracy is achieved (an iteration is called a MC run). The 

output of a MC run is a sample representing one possible fitness value of the 

candidate solution (i.e., a triple of values for FCO, TTO and TCO). Criteria for 

stopping the simulation and robustly evaluate the candidate solution are explained 

hereafter. 

 

 

Objective functions evaluation under uncertainty. The robust value for the 

objective functions from the MC runs could be derived by using two methods [10]. 

The first method consists in deriving a Probability Density Function (PDF) for each 

objective function (i.e., a histogram is constructed for each objective by using 

various discretization techniques), and obtaining the robust objective values for a 

given confidence. However, this approach is computationally expensive 

(considering that it should be repeated for all the individuals). Moreover, 

prospective probability distributions for the objective function values need to be 

specified a priori. 

 

The alternative method leverages non-parametric or distribution-free statistical 

procedures. Specifically, for each candidate solution, it derives descriptive statistics 

(e.g. percentiles, mean, variance or confidence bound) for the three objectives from 

the observed samples of the MC simulation. To capture the robustness of a 

candidate with different degree of tolerance, appropriate percentiles can be used as 

robust objectives. In contrast to the PDF-based method, this method does make any 

assumption on the probability distribution, being it a non-parametric method, and 

are successfully applied in a variety of statistical problems. 

 

We hereafter adopt a non-parametric method. Several options are available 

regarding the descriptive statistic to adopt: for instance, selecting the 50th 

percentile for all the three objectives means that we consider, for each objective, the 

median of the observed samples of the MC simulation, for a given candidate 

solution. A more conservative choice is to select the lower/upper bound, namely the 

5th or 95th percentiles, depending on whether the objective is to minimize or 

maximize. This approximates the bounds of 95% confidence interval. For instance, 

if the objective is to maximize (such as in the case of FCO), we consider the lower 

bound as robust solution (namely the 5th percentile of observed values); whereas, 

for the other two objectives (TTO and TCO), the 95th percentile can be taken as 

robust solution. 
 

Dynamic Stopping Criteria. Regardless the percentile chosen, the issue of how 

many MC runs (i.e., how many samples) should be performed for an accurate 

estimate need to be addressed. We use the notion of dynamic stopping criterion, 
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introduced in [10], in order to monitor the accuracy of the value to estimate (e.g., 

number of faults corrected) and automatically stops the MC simulations when the 

number of samples is sufficient to satisfy a predefined error threshold. For 

instance, let us consider the objective 1, FCO. Let us denote with f a value of this 

objective after one MC run. Several runs of the MC simulation will provide a set 

(likely different) values of f, due to the different (uncertain) input parameters’ 

values sampled at each run (F=f1, f2, …, fN). The goal is to figure out how many 

samples are needed (i.e., the size of N) to get an estimate of the desired percentile 

of the set F – let us denote it as fperc. The procedure is as follows:  

 

 A minimum of k MC runs are performed. After k repetitions, the desired 

percentile is estimated on the collected set (f1,…, ,fk), obtaining the first estimate 

of the percentile, fperc_1. 

 As the number of runs increases beyond k, further estimates are obtained, 

considering samples from the beginning, i.e.: 𝑓𝑝𝑟𝑒𝑐2
 from 𝑓1 … 𝑓𝑘+1 ; 𝑓𝑝𝑟𝑒𝑐3

 

from 𝑓1… 𝑓𝑘+2;, and so on. The variation of the estimate is monitored for a 

sliding windows of size k, as the accuracy of the estimation is a changing 

property. Thus, the last k estimates are considered:  𝑓𝑝𝑟𝑒𝑐𝑗
 ,   𝑓𝑝𝑟𝑒𝑐𝑗+1

, 

…𝑓𝑝𝑟𝑒𝑐𝑗+𝑘
   The statistical significance is calculated for the last k estimates as 

in [112]: 

 

 

𝑒 =  
2𝑧

(1−
𝛼
2

)

√𝑘

√�̂�𝑝𝑟𝑒𝑐
2̅̅ ̅̅ ̅̅ ̅−(�̂�𝑝𝑟𝑒𝑐

̅̅ ̅̅ ̅̅ ̅)2 

�̂�𝑝𝑟𝑒𝑐
̅̅ ̅̅ ̅̅ ̅    (1) 

 

where e is the relative error, 𝑓 ̅denotes the average of last k estimates, 𝑓2̂̅̅ ̅
is the 

mean-square of the last k estimates,  is the desired significance of the test and 

z refers to the inverse cumulative density value of the standard normal 

distribution. The relative error e is checked against a predefined tolerance level 

(0.01 in our case): when it is below the threshold the MC runs are stopped, as the 

desired accuracy has been achieved. 

 

 

 

Robust Optimization. With the MC runs for each candidate solution embedded in 

the loop, the search space exploration is achieved by enhancing the metaheuristic 

techniques (the NSGA-II, in our case) with the MC method for the analysis of 

uncertainty. 

 

For each candidate solution, the fitness value (for each objective) to consider is 

the chosen percentile (e.g., the 5th, the 50th, or the 95th percentile). The Pareto-

front concept is enhanced to express the robustness of the solution with respect to 

parameters uncertainty. Thus, the dominance notion is slightly modified to 

account for this change. For instance, suppose we are considering an objective to 

minimize (e.g., the objective 2, namely TTO). In this case, we may want to 

consider the upper bound (i.e., 95th percentile of the MC sample set) as 

conservative criterion to compare solutions. Then, the Pareto-front concept is 

modified as follows. 
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Given the minimization of a vector function f of n components  𝑓𝑘, 𝑘 = 1, … , 𝑛 of 

of a vector variable x in 𝐷𝑜𝑚 , subject to inequality and equality constraints 

(𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1, … , 𝐽 and ℎ𝑘(𝑥) = 0, 𝑘 = 1, … , 𝐾).  

Let us denote with f ̅(x) =(𝑓1
̅̅ ̅̅ (𝑥), … , 𝑓�̅�(𝑥))   the upper bound function vector, 

(where 𝑓�̅� is the confidence upper bound of 𝑓𝑖  obtained from MC runs). A solution 

vector �̅� = {𝑢1̅̅ ̅, … , 𝑢𝑘̅̅ ̅} dominates a vector �̅� = {𝑣1̅̅ ̅, … , 𝑣𝑘̅̅ ̅} , denoted by u̅  ≼ v̅  if 

f(̅u)  is partially less than f(̅v) , i.e., ∀𝑖 ∈ {1, . . 𝑘} ,  𝑓(̅𝑢)𝑖  ≤  𝑓�̅�(𝑣)   ∧  ∃𝑖 ∈
{1, … , 𝑘} :  𝑓(̅𝑢)𝑖 <  𝑓�̅�(𝑣). 

 

Project Constraints evaluation under uncertainty. Figure 7 sketches a high level 

view of the proposed approach for evaluating alternative candidates (i.e., testing 

resource allocation individuals, see Figure 19) according to the constraints on 

reliability (and testing time/cost). 

 

The input of the approach for constraints evaluation is a testing-effort and bug 

assignment allocation (an individual of the population of the search). It proceeds 

iteratively. At each iteration step, the individual is evaluated according to the 

constraints on reliability/time/cost of testing (see Figure 20). Such properties (i.e., 

reliability, cost and time of testing) of one individual are evaluated by 

simultaneously considering all the parameters’ uncertainties. In particular, 

samples are generated from the probability distributions of uncertain parameters 

using the MC method, and the properties are re-calculated for each of these 

samples. The output of the constraints evaluation approach, Resij (with j 

representing the property identifier), is a descriptive statistic (e.g. percentile, 

mean, variance or confidence bound) for the properties (reliability, testing time 

and cost) from the observed samples of the MC simulation. Dynamic stopping 

criteria are used for determining when a sufficient number of samples for the 

associated individual is determined. 

 

 
 

FIGURE 21: CONSTRAINTS ON RELIABILITY AND TESTING TIME/COST EVALUATION PROCESS 

IN PRESENCE OF UNCERTAIN PARAMETERS 
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Stopping Criteria (Figure 21Figure 21). We have defined the stopping criteria by 

exploiting the work in [9] that deals with the model-based performance analysis 

(i.e., the satisfaction of certain performance requirements, e.g. response time, 

throughput) of software architectures under uncertain parameters. The work 

introduced a MC-based approach. In particular, the sampling process is seen as a 

Bernoulli experiment where each trial provides a value of 1 or 0 leading to a 

Bernoulli distribution with parameter p (which can be estimated using MC 

simulations). Stopping criterion has been defined for estimating the value of p 

with a tolerance against the inherited uncertainty. 

 

Similarly, we can consider the MC-based evaluation process of constraints 

(illustrated in Figure 21), as a Bernoulli experiment where each trial 

(corresponding to execution of the evaluation process, see Figure 20) provides a 

value of 1 or 0 leading to a Bernoulli distribution with parameter p, i.e., each 

execution of the evaluation process has one Boolean indicator representing 

whether the trial satisfies reliability (cost and time) requirements. In other words, 

a run of our constraint evaluation process corresponds to a sample of the MC-

based process defined in [9]. 

 

Thus, the stopping criteria can be defined (by exploiting the ones used in [9]) as 

follows: 

 

– A minimum of h executions of the MC-based process (of Figure 20) are 

conducted and results are recorded (x1,…,xh). The value of p is estimated as 

follows: 

 

�̂� =
∑ 𝑥𝑖

ℎ
𝑖=1

ℎ
   (2)  

 

– The variation of the estimate �̂� = 𝑝1̂, 𝑝2̂, … 𝑝ℎ̂  is monitored for a sliding 

window of size h. Only the last h executions of the MC-based process are 

monitored, as the accuracy of the estimation is a changing property. The 

objective is to detect if sufficient accuracy is obtained. 

– The statistical significance is calculated for the last h estimates: 

 

𝑒 =  
2𝑧

(1−
𝛼
2

)

√ℎ

√𝑝2̂̅̅̅̅
−(�̅�)2 

�̅�
  (3)  

 

where e is the relative error, �̂� is the average of last h estimates, �̂�2 is the mean 

square of the last h estimates,  𝛼 is the desired significance of the test and z refers 

to the inverse cumulative density value of the standard normal distribution. The 

relative error e of the reliability (cost/time) estimate �̂�  is checked against a 

tolerance level, e.g. 0.005. 

 

Results Interpretation (Figure 21Figure 21). Similar to the performance 

robustness of software architectural models [9], the robustness of testing resource 

allocations with respect to the requirements on reliability (and testing cost and 

time) can be evaluated by systematically analyzing the results, Resij(t) (with j and 
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t representing the property identifier and the run identifier, respectively) of the 

MC-based evaluation process runs, and checking if each evaluation process’s run 

fulfills the constraints. 

 

We associate to the t-th result, Resij(t), corresponding to the t-th run of the 

constraint evaluation process, a fulfillment flag 𝑓𝑅𝑒𝑠𝑖𝑗
(𝑡)  which is a binary value 

that indicate the satisfaction of the requirements. The robustness of the testing 

resource allocation (corresponding to the  i-th individual) with respect to the 

requirements on reliability (testing time and cost) is defined as follows: 

 

𝑟𝑜𝑏𝑢𝑠𝑡𝑓𝑅𝑒𝑠𝑖,𝑗(𝑡)
= ∑

𝑓𝑅𝑒𝑠𝑖,𝑗(𝑡)

𝑁
𝑁
𝑡=1   (4) 

      

 

where  (i)  𝑟𝑜𝑏𝑢𝑠𝑡𝑓𝑅𝑒𝑠𝑖𝑗(𝑡)  is a real value in the [0,1] interval, and (ii) N is the 

number of execution of the constraint evaluation process. It is the percentage of 

samples that fulfill the requirement(s). 

 

 

4.3 OPTIMIZATION MODEL FORMULATION 
 

The goal of our optimization model is to find the optimal allocation of testing 

resources among K functionalities of a system S to test, and optimal assignment of 

bugs to debuggers to maximize the effectiveness of the testing process. “Optimal” 

here denotes actions that incur minimum time and cost of testing, and maximum 

effectiveness of the fault correction process under minimum reliability and testing 

budget constraints. 

 

Table 15 summarizes the symbols used throughout this section. e Section. In the 

following, the parameters, variables, constraints, and objective functions are 

described. 

 
TABLE 15: MAIN NOTATION ADOPTED 
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4.3.1 Model Parameters 
 

In this section, we describe the main parameters of our optimization model.
5
 

In this section, we describe the main parameters given as input to the model: 

– The time, t0 is the time at which tester decides to run the resource allocation 

algorithm. This time can be the beginning of the testing process of the system 

under test (when historical data are used for the SRGMs construction) or it can be 

any time during the testing process (when online testing data are used to build the 

SRGMs). In the latter case, the allocation model can be run several times during 

testing (what we called dynamic allocation); thus we refer to t0 as “(re-)iteration” 

time. 

– Fd&c(t0)k is the number of faults detected and corrected in functionality k after t0 

time units. 

– When the algorithm has to be run, the SRGMs for each functionality should be 

available, according to the phase 1 of the approach. They are characterized by 

detection and correction rate functions, denoted as 𝜆𝑘(𝑡), and 𝜇𝑘(t), representing, 

respectively, the fault detection rate per undetected fault, and the fault correction 

rate per detected but uncorrected fault. Their parameters’ estimation can be coped 

with in several ways (e.g., Maximum Likelihood Estimate, Least Square Estimate, 

or Expectation Minimization). 

                                                             
5
 For the sake of readability, other parameters are given later in the document. 
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– The δk parameter is the average number of hours required to fix a bug, for the 

functionality k. It is estimated by querying historical data about bug correction 

tracked in the bug repository
6
, such as in [58],, [113], taking the median instead of 

the mean when the distribution is highly skewed. 

ωk is the probability that the k-th functionality will be invoked:  

𝑤𝑘 ≥ 0, ∀𝑘 = 1, … 𝐾 , and ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 . This information can be synthesized 

from the operational profile estimation [38], according to either design-time (e.g., 

documentation, simulation, profiling) or execution-time (field data of previous 

versions) methods, possibly complimented by expert judgment [114]. 

– 𝛾𝑘
𝑑  is processing capacity of the debugger d with respect to the functionality k. It 

represents the working rate of the debugger on functionality k, expressed as 

average number of hours per day that the debugger d is allowed to work t fix bugs 

of functionality k. 

 

- 𝐶1
∗, 𝐶2

∗, 𝐶3
∗  are the cost parameters used in the cost-related objective function 

(TCO). They represent, respectively: (i) 𝐶1
∗  is the cost per man-day to correct a 

bug during testing; (ii) 𝐶2
∗   is the cost per man-day to correct a bug during 

operational use (typically   𝐶2
∗>  𝐶1

∗ [7]); and (iii) 𝐶3
∗ is the cost per testing-effort 

expenditure unit (e.g., man-hour or man-day) to test a functionality (i.e., hourly or 

daily cost of a tester). These parameters are provided as input by the user; 

although they could generally have different values for each functionality, we 

assume they are the same for each functionality to keep the model simple. 

1) α, h, β, A are the parameters of the logistic testing effort function (TEF) 

[30][26], which is used to explain how testing effort varies in function of 

calendar time. Specifically: α,  is the consumption rate of testing-effort 

expenditures, (ii) h is a structuring index whose value is larger for better 

structured software development efforts, (iii) β is the maximum budget 

that has been given on the total amount nof testing-effort that can be 

consumed (expressed in man-hours), and (iv) A is a constant parameter. 

Although the estimate of these parameters is not the main focus of our 

work, as shown in [26], [25], and [24], [22], they may be estimated by the 

method of least squares (LSE) or maximum likelihood estimation (MLE). 

 

4.3.2 Variables 
 
This section introduces the decision variables of the optimization model.  

 

The Yk (1 ≤ 𝑘 ≤ 𝐾) variables represent the amount of testing effort (in man-

hours) to perform on each system functionality. It is a decision variable, namely: 

solving the model will provide a vector of Yk values, that are the suggested testing 

efforts to spent per functionality. A related variable is tk: it is the calendar testing 

time (measured, in hours or in days) devoted to test functionality k, and is bound 

                                                             
6
 For simplicity, we assume the average number of hours required to fix a bug of a given functionality k (i.e., 

δk) is the same for each debugger d working on that functionality. 
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to the spent testing effort Yk via the TEF: In fact, as the effort is related to testing 

time by the TEF, assigning Yk man-hours to k corresponds to assign 𝑡𝑘 = 𝐹−1(𝑌𝑘) 

hours, where 𝐹−1 is the inverse of the TEF. 

 

 

The  𝑥𝑑
𝑘   (1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾)   and  𝑁𝑑

𝑘  (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)  variables 

are used to predict the correction process of the debugger/tester d with respect to 

the functionality k. These are further decision variables. One of the goals of the 

model is, in fact, to maximize the number of faults corrected, which is related not 

only to the maximization of faults detected, but to how much effectively such 

revealed faults are corrected by debuggers. Specifically, the  𝑥𝑑
𝑘   variables are 

used to select debuggers for the functionality k; in particular 𝑥𝑘
𝑑  is equal to 1 if 

the debugger d is chosen and 0 otherwise. The  𝑁𝑘
𝑑 variables represent the time (in 

hours) assigned to the debugger d to work on functionality k in the interval (t0,tk].  

 

Thus, a solution consists of: the Yk variables (1 ≤ 𝑘 ≤ 𝐾) suggesting the optimal 

testing effort per functionality, by the 𝑥𝑑
𝑘  (1 ≤ 𝑑 ≤ 𝐷 , 1 ≤ 𝑘 ≤ 𝐾)  variables 

and, assigning debuggers to functionality, and by the 𝑁𝑑
𝑘  (1 ≤ 𝑑 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾)   

variables assigning the number of hours of debuggers to functionalities. 

 

4.3.3 Constraints 
 

A first set of most relevant constraints of the model are expressed in Figure 22: 

 

 
FIGURE 22: MODEL CONSTRAINTS  

 

- For each functionality k, faults detected in the interval (t0,tk] must be fixed. 

Equation 1 in Figure 22 expresses that the total time assigned to debuggers 

on functionality k must be greater or equal than the expected time to 

correct the detected bugs (estimated as mean fixing time per bug 

multiplied by the expected number of bugs that will be detected if k is 

tested for a time tk). Note that this equation holds if we assume that all 
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detected bugs with the allocated testing resources must be corrected, and 

thus assigned to debuggers, whereas the equation should be appropriately 

modified if this assumption is relaxed. 

- The bug correction process is modeled as a function of the amount of time 

(e.g., in hours) required to fix the bugs detected, and as function of the 

working time of debuggers. The waiting queues are modeled by 

introducing a constraint on the capacity of debuggers. This constraint is 

expressed by Equation 2 in Figure 22: for each functionality k, the load of 

debugger d due to the assignment of bugs is limited by a function of the 

processing capacity of debugger d, (i.e., 𝛾𝑘
𝑑  ). 𝑁𝑘

𝑑 is greater than 0 only if: 

i) the debugger d is allocated to functionality k (𝑥𝑑
𝑘   = 1), ii) a non-zero 

testing time tk is allocated functionality k (tk > 0), and, from constraint 1, 

iii) at least one bug is expected to be detected during the assigned time tk 

(i.e., 𝑚𝑑𝑘
(𝑡0 + 𝑡𝑘) >  𝑚𝑑𝑘

(𝑡0) ), assuming 𝛾𝑘
𝑑   > 0 and δ k > 0. This 

throughput model is a light-weighted one that favors model solvability. An 

explicit management of queues could be introduced, using, for example, 

queuing network models explicitly considering a one-to-one mapping 

between debuggers and bugs, but at the expense of computational 

complexity and understandability. 

- Equation 3 of Figure 22 indicates the (possible) constraints defined for 

debuggers that must be assigned or cannot be assigned to functionalities 

for some reasons, e.g., due to the debugger’s skill level or expertise area. 

In these cases, the corresponding variable 𝑥𝑑
𝑘   is forced to be 1 or 0. Note 

that, in order to solve incompatibilities or dependencies among debuggers 

and/or functionalities, due, for instance, to human factors (skill set, skill 

level and availability) or functionality characteristics, additional 

constraints can be added as contingent decisions. For example, 𝑥2
1  ≤ 

𝑥3
2 means that, if the second debugger is selected for the first functionality, 

then the third debugger must be selected for the second functionality; 𝑥1
2  ≤ 

𝑥1
3  means that, if debugger 1 is selected for functionality 2, then he must 

also be selected for functionality 3. 

- Equation 4 in Figure 22 states that the expected number of cumulative 

faults detected in (t0,tk] (namely, if tk = F
−1

(Yk) testing time is assigned to 

test k), cannot be greater than the expected number of residual fault in k. 

- Equation 5 in Figure 22 expresses a constraint on the maximum effort that 

can be allocated. A maximum threshold B is given on the total amount of 

testing effort possibly consumed (expressed in man-hours). The test 

manager has to distribute a budget B of man-hours among the K 

functionalities; the solution suggests that k-th functionality should receive 

a testing effort equal to Yk man-hours. 

- Finally, Equation 6 of Figure 22 tells that: if there are no available 

debuggers for functionality k, then the amount of testing effort allocated to 

k (i.e., Yk) will be 0 (since bugs could be detected, but then not corrected). 

In other words, if the functionality k receives a certain amount of testing 

effort, then one or more debuggers must be assigned to functionality k. 

There could be an additional constraint on Yk: if we require that all the 

functionalities must be tested, then Yk > 0, 1 ≤ k ≤ K. Similarly, further 

requirements by the tester could be seamlessly included as constraints in 
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the model, enabling several extensions; in this work, we keep the model in 

its basic form. 

- Equation 7 reports the constraint on the minimum desired failure intensity 

at the end of testing. The estimate of failure intensity of a functionality k is 

usually obtained though the SRGM, as it is the derivative of the 

cumulative expected number of detected faults, md(t). The estimate is 

obtained as: 

 

𝜙𝑘(𝑡𝑘) =  
𝑑𝑚𝑑

𝑑𝑡
(𝑡𝑘) (5) 

It denotes the expected failure intensity if the model solution assigns a 

testing effort Yk to functionality k such that Yk = F(tk) (where F denotes the 

TEF), or, similarly, such that: tk = F
−1

(Yk). A maximum threshold, 𝜙∗,  is 

given to the failure intensity of the overall system as input requirement. In 

an average-case scenario, like the one we assume, the failure intensity 

constraint is formulated as follows: 

 

∑ 𝜔𝑘𝜙𝑘(𝑡𝑘) ≤ 𝜙∗𝐾
𝑘=1  (6) 

 

In other words, the system failure intensity is weighted by the call rates of 

each functionality. In a worst-case scenario, tester may want to require that 

all functionalities should satisfy a failure intensity constraint. In this case, 

the constraint would be formulated as follows: 

 

𝑚𝑎𝑥𝑘=1…𝐾(𝜙𝑘(𝑡𝑘)) ≤ 𝜙∗ (7) 

 

Finer-grained constraint can be introduced to guarantee threshold limits for 

each functionality, i.e.: 𝜔𝑘𝜙𝑘(𝑡𝑘) ≤ 𝜙∗ .  
 
 

4.3.4 Multi-Objective Function 
 

In this section, we define the three objectives of the multi-objective optimization 

problem. 

2) Fault correction process’ Effectiveness Objective (FCO) The objective 

function to be maximized, as the predicted number of faults corrected 

(providing an assessment of the system reliability after the application of 

the amount of testing effort, Yk, on each of system functionalities), is given 

by: 

𝐹𝐶𝑂 =  ∑ 𝑚𝑐𝑘
(𝑡0 + 𝑡𝑘)𝐾

𝑘=1          (8) 

The solution for the exponential case with logistic TEF is: 
 

𝑚𝑐𝑘
(𝑡0 + 𝑡𝑘) =  𝑒−𝜇𝑘(𝑡0+𝑡𝑘) ∫ 𝑎𝑘

𝑡0+𝑡𝑘

𝑡0

𝜇𝑘𝑒𝜇𝑘𝑠(1 − exp[−𝛽𝑘(𝑌𝑘(𝑡) − 𝑌𝑘(0))])𝑑𝑠 

(9) 
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After the application of the amount of testing effort, Yk, the expected 

number of faults corrected for the functionality k depends on: the fault 

detection rate, related to the testing effort suggested for k, Yk, through the TEF, 

and (ii) on the availability of sufficient debugger (hours), regulated by 𝑁𝑑
𝑘 and  

𝑥𝑑
𝑘  variables, for the correction of all detected faults at the rate expressed by 

𝜇𝑘(𝑡).  

 

3) Testing Time Objective (TTO) 

Assuming that the time-depending behavior of the testing-effort (for each of 

the system functionalities) is modeled by the generalized logistic testing-effort 

function proposed in [26][30], we can compute the testing time for functionality 

k can as function of the effort: 

𝑡𝑘 = (−
1

𝛼∗ℎ
𝑙𝑛 (

(
𝐵

𝑌𝑘
)ℎ−1

𝐴
)) (10) 

 

where (i) 𝛼 is the consumption rate of testing-effort expenditures in the logistic 

testing-effort function, (ii) h is a structuring index whose value is larger for better 

structured software development efforts, (iii) B is a maximum threshold that has 

been given on the total amount of testing-effort that can be consumed (expressed 

in man-hours), and (iv) A is a constant parameter in the logistic testing-effort 

function. Although the estimate of these parameters is not the main focus of our 

work, as shown in [26], [27], and [28], they may be estimated by the method of 

least squares. Moreover, more details on estimation of the budget B can be also 

found in [5]. 

    

   Assuming that manpower is available to independently test system 

functionalities (namely, they can proceed in parallel), the second objective 

function is the time minimization for testing the K functionalities: 

 
𝑇𝑇𝑂 = 𝑚𝑖𝑛𝑘=1…𝐾(𝑡𝑘)  (11) 

 

Although this assumption could not be too realistic due to the overhead that likely 

incurs when a lot of functionalities must be tested, it reflects a common practice in 

testing planning. However, as previously discussed to relax such an assumption, 

guidelines of existing approaches for the work packages scheduling and staff 

assignment problem plan could be exploited. 
 

3) Testing-effort Cost Objective (TCO).  The third objective cares about 

minimization of cost, which is a measure related to the effort spent but that goes 

beyond the mere effort for testing. In agreement with [30], for the functionality k, 

the cost of testing effort expenditures during software development and testing 

phase, and the cost of correcting errors before and after release, can be expressed 

as follows: 
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𝐶𝑜𝑠𝑡𝑘(𝑡) = 𝐶1
∗ (

𝛿𝑘

24
) 𝑚𝑐𝑘

(𝑡) + 𝐶2
∗ (

𝛿𝑘

24
) (𝑚𝑑𝑘

(∞) − 𝑚𝑐𝑘
(𝑡)) + 𝐶3

∗ (
𝑌𝑘

24
) 𝑑𝑡       (12) 

where: (i) 𝐶1
∗  (

𝛿𝑘

24
) is the cost per day to correct a bug during testing; (ii)  𝐶2

∗  (
𝛿𝑘

24
) 

is the cost of correcting a bug in operational use (typically 𝐶2
∗ >  𝐶1

∗   [31]); and 

(iii) 𝐶3
∗  is the cost of testing per unit testing-effort expenditure, expressed in cost 

of a man-day (for a tester).
7
 

 

This cost model, similar to the one in [30], is a light-weighted one that favors 

model solvability. However, it can be enhanced by using well-assessed cost model 

from the literature (e.g., COCOMO II model [32]) to increase the result accuracy. 

This can be done without essentially changing the overall model structure, but 

with the side effect of increasing the solution complexity. To address this, the 

guidelines of the COCOMO II-based model defined in [33] for estimating the 

development cost of an in-house developed service may be exploited. More 

specifically, in [33], the development cost of an elementary software service has 

been defined as a function of the testing activity (e.g., the number of tests 

performed on a service before delivery). The original COCOMO II model [32]  

introduces a software cost function that depends on the size (i.e., the lines of code) 

and the type (i.e., simple, intermediate and complex) of software. These two 

attributes allows estimating the amount of effort, in terms of person-months, 

needed to deliver the software. 
 
 

𝐶1
∗  , 𝐶2

∗   and 𝐶3
∗  may be estimated in different ways depending on the functionality 

type and debugger/tester profile. Details on their estimation can be found in [30]. 

The work in [30] is focused on cost of software modules, whereas we consider the 

cost to test system functionalities. In other words, we consider each of the system 

functionalities as software modules. 

 

Therefore, the objective function to be minimized, as the sum of the cumulative 

testing-effort costs for all of system functionalities, is given by: 
 

𝑇𝐶𝑂 =  ∑ 𝐶𝑜𝑠𝑡𝑘(𝑌𝑘)𝐾
𝑘=1            (13) 

 

 

 
 

4.3.5 Model Summary 
 

Figure 10 summarizes the formulation of our optimization model. 

 

                                                             
7 Notice that the cost 𝐶3

∗  does not include the costs for the bug-fixing activity. Instead, 

these costs are considered in the estimation of the 𝐶1𝑘  
∗  parameter. 
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FIGURE 23: OPTIMIZATION MODEL FORMULATION 

 

 

Main assumptions and threats to validity 

 

The usage of SRGMs (with TEF) to model the fault detection and correction 

process implies the following assumptions: 

– The fault removal process is modeled as a Non-Homogeneous Poisson 

process (NHPP), where the mean number of faults detected in the time 

interval (t, t + ∆t) by the current testing-effort is proportional to the mean 

number of remaining faults in the system at time t. 

– Each of the system functionalities are subject to failures at random times 

(with independent inter-failure times) caused by the manifestation of 

remaining faults in the functionalities. 

– System functionalities are autonomous, independently testable. New 

functionalities or feature enhancement are not introduced into the code 

during testing.  

– The relation between testing effort and testing time can be modeled by a 

testing effort function (TEF). 

– – Each time a failure occurs, the fault that caused it is correctly removed 

and no new faults are introduced (i.e., perfect repair). This assumption can 

be partially relaxed if we admit, among the set of selectable SRGMs, the 

ones modeling the imperfect debugging phenomena. 
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We mitigate the SRGM assumptions by enabling, in the formulation, a 

module-tailored selection of the best model among a set SRGMs, and by the 

possibility, in the process, to fit SRGM with online data (that account for the 

effect of such assumptions’ violations). In addition to the SRGM assumptions, 

further assumptions are: 

 

- We assume historical information about issue reports is correct: namely, 

reporters can correctly distinguish a bug from a feature request, can 

correctly identify duplicate bug reports, and we can faithfully approximate 

the average bug fixing time (e.g., the δ parameter) as the bug closing 

minus the bug opening time.  

- Bug fixing time dependence on other basic bug-related features, such as 

severity and priority or bug owners and bug types is not considered to 

keep the model simple at this stage. Extensions can be implemented for 

more accurate but expensive model formulations. 

- We assume that (i) debugger manpower is available to independently fix 

bugs in system functionalities, and (ii) for each of the Yk man-hours, there 

is the same pool of D debuggers. We are working toward relaxing such 

assumptions. To this extent, we are investigating how to use the guidelines 

of existing approaches (such as the ones of [35]) for the work packages 

scheduling and staff assignment problem plan (i.e., the allocation of staff 

to teams and the allocation of teams to work packages).  

- Although we admit several testing-effort time model, we taken, as specific 

example, the generalized logistic testing-effort function, a widely-used 

one. It can be replaced by other well-assessed distribution function from 

the literature. Although this can be done without changing the model 

structure, the effect of other TEFs on solution complexity are not assessed. 

- Cost constants are assumed to be known within the company. Such 

information is not always easily accessible, and more or less complex 

models can be adopted to accurately estimate it, as COCOMO ones. Such 

models are out of scope for this paper. 

 

 
 

4.4 HEALTH CARE CASE STUDY    
 

In this section we describe the case study that we devised in order to validate the 

effectiveness of the approach in dynamic testing resource allocation of industrial 

health care software. In particular, we present the achieved results on the Medical 

Company scenario (see Deliverable D2.2 [95]) . 
 

     The goal of our experimentation is to evaluate the effectiveness of our 

approach in addressing the important challenges related to the tradeoff between (i) 

allocating resources to system functionalities where testing will have the highest 

detection power, and (ii) maximizing the number of bugs that can be fixed in 

available time. To do this, we compared the amount of testing efforts selected by 

our approach with the amount of testing efforts selected without explicitly 

incorporating bug assignment activities into the fault correction process of each of 

the functionalities. 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 65 

 

Deliverable D3.3: “Models-based Process Definition” 

 

Random generation of model instances. Starting from the nominal values of the 

parameters, we have generated 4 different instances (here also called perturbed 

configurations) by randomly changing the following parameters: (i) the total 

amount of testing-effort eventually consumed, B; (ii) the average number of hours 

required for fixing a bug of the functionality k, 𝛿𝑘 , and the expected number of 

initial faults in the functionality k, ak. Specifically, the perturbed configuration 

parameters have been varied within 10% of the nominal values, with the exception 

of the total amount of testing-effort, B, that has randomly increased of the 10% of 

the nominal value. 

 

We have applied on the same case study, our approach and the typical state-of-the 

art testing resource allocation approach (e.g., [7], [3]). Our approach is mainly 

focused on system functionalities (which we consider as software modules). 

Therefore, our model can be compared with existing works by introducing a 

mapping of software modules on system functionalities. 

 

The state-of-art problem of testing resource allocation (here also called base 

model) typically consists of finding the amount of testing-effort to be performed 

for each of the system functionalities
8
 that minimizes the total cost under the 

threshold R on the system reliability. Additional decision variables are introduced 

in our optimization model to represent in bug-fixing activities to perform for each 

system functionalities. 

 
 

For the experiments, we have used JMetal [37], an object-oriented Java-based 

framework aimed at the development, experimentation, and study of 

metaheuristics for solving multi-objective optimization problems.
9
 Due to the 

stochastic nature of evolutionary algorithms, we have performed 30 independent 

runs per algorithm (see [36] for details).     

 

 

Our comparison between the two approaches can be summarized in three steps. 

 

Step 0: Let us assume that all the debuggers may work four hours a day for each 

of the system functionalities. 

 

   For each perturbed configuration (and for the nominal instance), we have solved 

two models for R that spans from 0.9 to 0.97. In Figure 24, Figure 25, and Figure 
26, we report the obtained results, where each bar indicates, respectively, the 

number of corrected faults, the testing time and cost of a model averaged over its 

four perturbed configurations and nominal instance. Each group of tree bars - 

corresponding to one model - refers to the model’s results with five instances. In 

particular, each bar - corresponding to the model solution over the four perturbed 

configurations and the nominal one with a fixed value of the threshold R - reports 

                                                             
8
 As remarked above, for sake of comparison, we introduce a one-to-one mapping of system 

functionalities on software modules. 
9
 jMetal can be obtained freely from http://jmetal.sourceforge.net/. 
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the highest, lowest and average number of corrected faults, the testing time and 

cost obtained. 
 

 

 

FIGURE 24: AVERAGE NUMBER OF CORRECTED FAULTS VS RELIABILITY THRESHOLDS 

 

 

FIGURE 25: CALENDAR TESTING TIME VS RELIABILITY THRESHOLDS 
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FIGURE 26: COST VS RELIABILITY THRESHOLDS 

 

The results highlight, in general, that the solutions of the base model and our 

model do not show discrepancies in case of non-complex search space (i.e., for 

simple scheduling of debuggers to fix-activities), in that the average number of 

bugs, times and costs of their solutions are only slightly different. Moreover, for a 

given model, the times and costs slightly increases while increasing the reliability 

threshold R. This can be observed by fixing a value on the x-axis and observing 

the values on the curves while growing the threshold R. 
 

Step 1: Let us assume that all the debuggers may work one hour a day for each of 

the system functionalities. Then, let us decrease the number of average hours that 

a debugger may work in order to complicate the search space.  
 

   We have generated an additional perturbed configuration by randomly varying 

the parameters of the nominal values (as done for the Step 0), with the exception 

of the total amount of testing-effort, B, that has randomly decreased of the 10% of 

the nominal value. We have solved the two optimization models in this new 

perturbed configuration for a set of values of reliability bound and the average 

number of hours required for fixing a bug of the functionality k, 𝛿𝑘. 

 

   In Figure 14, we report the results obtained by the two models with two 

different values of the average number of hours required for fixing a bug of the 

functionality k, 𝛿𝑘. The first configuration corresponds to the one of the nominal 

instance, whereas the in the second configuration (as shown in Figure 10) we have 

increased the average number of hours required for fixing a bug of each of the 

functionalities. More specifically, the figures report the obtained results, where 

each bar indicates, respectively, the number of corrected faults, the testing time 

and cost of a model averaged over its new perturbed configuration. 

 

  Given a graph represented in Figure 27, each group of two bars - corresponding, 

respectively, to the base model and our model - refers to the models’ results with 

the perturbed configuration. In particular, each bar - corresponding to the model 

solution over the configuration with a fixed value of the threshold R - reports the 
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highest, lowest and average number of corrected faults, the testing time and cost 

obtained. 
 

 

FIGURE 27: STEP 1 RESULTS 

  For each model, the testing cost usually increases in accordance with the 

reliability required by the system (even thought this increase is more evident for 

second configuration). Thus, to satisfy the reliability constraint, it is necessary to 

allocate a greater amount of testing-effort (in man-hours). 

  The results highlight, in general, that the discrepancies between the two models 

results starts becoming more evident. In particular, our model starts capture the 

variation of corrected bugs, the amount of testing time and cost, while modifying 

the bug assignment activities into the fault correction process of each of the 

functionalities. 

 

  Step 2: Let us assume that all the debuggers may not work one hour a day for 

each  of the system functionalities. We study the sensitivity of the solution to the 

debugger fixing time values by randomly assigned some of the functionalities to 

each debugger. By fixing the reliability threshold R to 0.95, for the second 

configuration of the average number of hours required to fix a bug (see Figure 

14), the average number of bugs corrected of corrected faults of our model 

averaged over its new perturbed configuration (defined in Step 1) decrease from 

about 578 to about 544. 

   If we increase the average number of hours required to fix a bug of some of the 

functionalities  (i.e., we set 𝛿1 = 6, 𝛿2 = 5, 𝛿3 =6, 𝛿4 = 6, 𝛿5 = 6, 𝛿6 = 5, 𝛿7 = 6, 𝛿8 

= 5),  then the average number of bugs corrected of corrected faults of our model 

averaged over its new perturbed configuration still decreases from about 544 to 

about 481. 

 

 

4.5 RELATED WORK 
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The work related to our research can be divided into four categories: (i) testing 

resource allocation; (ii) selection of SRGMs; (iv) bug assignment; and (iii) 

parameters uncertainty. 

 

    Testing Resource allocation. In the last years, several research efforts have 

been devoted to allocate testing resources (e.g., [7], [3]). All these approaches 

basically provide guidelines to assign appropriate testing resources to a number of 

relatively small and independent modules (components), which are tested 

independently during module testing phase. Typically, they express the 

relationship between reliability and testing resources by using SRGMs. More 

specifically, these types of reliability models are used for describing the failure 

occurrence and/or fault removal and consequently aid to enhance the software 

reliability. Moreover, since failure curves can be either exponential or S-shaped 

for different modules, flexible SRGMs have also been considered, for example, as 

done in [7]. In particular, the latter uses a flexible SRGM considering testing 

effort which, depending upon the values of parameters, can describe either 

exponential or S-shaped failure pattern of software modules. Testing-effort 

functions (TEFs) have been introduced (e.g., see [29]) to describe the relationship 

between the effort expended to test software (e.g., in person-months), and the 

physical characteristics of the software, such as LOC, etc. In [38], it is shown how 

to incorporate the logistic TEF [39]   into both exponential type, and S-shaped 

software reliability models. Most SRGMs assume that faults detected during tests 

will eventually be removed [38]. 

This assumption, although common in state-of-the-art approaches, might not be 

realistic. However, a class of related papers deals with this imperfect debugging 

phenomenon (e.g., see [40], [41], [42]). For example, in [40], general frameworks 

are proposed for deriving several software reliability growth models based on a 

non-homogeneous Poisson process (NHPP) in the presence of imperfect 

debugging and error generation. 

 

   Existing approaches for testing resource allocation basically are based on simple 

optimization models (e.g., in [8]  two models are presented that minimize the 

remaining faults and the amount of testing-effort given the number of remaining 

faults, respectively) or multi-objective optimization models, for example, 

maximizing reliability, and minimizing testing cost and testing resource consumed 

[3]. Different approaches have been adopted such as genetic algorithms in [43], or 

the gradient projection method and the dynamic programming (a list of these 

types of works can be found in [3]). 

 

   Selection of SRGMs. In the last years the topic of definition, evaluation, and 

selection of SRGMs has been largely studied (see, e.g., [44] and [45]). 

Comparative analysis of SRGM models have also been performed in term of 

goodness of fit, prediction accuracy and correctness, for example, based on failure 

data sets containing system test failures data, field and open source software 

defects data [46]. However, although SRGM is probably one of the most 

successful techniques in the literature, with more than 100 models existing in one 

form or another, through hundreds of publications [47], in practice, SRGMs 

encounter major challenges. As remarked in [48], the evaluation of the SRGMs’ 

predictive power in the literature has generally been limited to only the last few 
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data points (typically last 10% of data) [49] [50]. Moreover, as also claimed in 

[48], the difficulty of applying SRGMs in industry is compounded with (i) the 

lack of studies applied to specific industrial domains [49],  and (ii) scarce 

guidelines to select the best SRGMs for a given software process/application. In 

[48], it has been investigated the application of SRGMs in embedded software 

domain. In particular, eight established SRGMs have been evaluated on a number 

of large software projects within the embedded software domain from three 

different companies. 
 
 
   Bug assignment. The bug assignment problem, related to triage new arriving 

bug reports to the most qualified developer, has in recent years received 

increasing attention. An effective bug assignment in large software projects not 

only requires significant contextual information about both the reported bugs (and 

the pool of available developers), but also is a time-consuming and tiresome 

process [13]. Considerable research efforts in the mining software repositories 

field have concerned bug prediction.  

 

The bug assignment process has been supported by, for example: (i) exploiting the 

application of information retrieval techniques in order to identify the most 

appropriate developers [51]; (ii) using expertise models of developers based on 

previous bug reports [51] [52]  or source code contributions  [53] ; (iii) applying a 

machine learning algorithm the open bug repository to learn the kinds of reports 

each developer resolves [52] ; or (iv) adopting preference elicitation methods to 

determine the developer’s preferences for fixing certain types of bugs [54]. In [13], 

an auction-based multi-agent mechanism also allows developers to require bugs 

from the bug triggers; therefore, they can make decisions based on their 

preferences, expertise, and such. 

 

The problem of resource scheduling for bug fixing can be classified as a special 

case of the more general resource constrained scheduling problem, which is in 

general NP-hard [55]. The effectiveness and efficiency of search-based techniques 

have already been demonstrated for different scheduling related software project 

management problems (e.g., for project planning in the context of a massive 

maintenance intervention [56]). However, the application of search techniques for 

implementing an efficient bug repair policy is very much unexplored [55]. In [55], 

a genetic algorithm is designed for scheduling developers and testers to bug-fixing 

tasks considering both human properties (skill set, skill level and availability) and 

bug characteristics (severity and priority). Also, industrial software defect 

prioritization techniques, in general, suffer of lack of multi-optimization 

techniques [57]. 
 

  Another class of related papers deals with automated debugging techniques that 

aim to help developers locate and understand the cause of a failure (e.g., [58]). In 

particular, statistical-fault-localization techniques have been extensively 

investigated (see [58]    for an overview on these types of techniques and other 

ones like anomaly detection, and experimental debugging). Other papers are 

focused on assisting developers in changing programs to fix bugs. For example, in 

[59], based on a machine learning technique, a tool has been designed for 

computing and reporting a prioritized list of bug-fix suggestions for a given 

debugging situation at a program statement that is suspected of being faulty. 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 71 

 

Deliverable D3.3: “Models-based Process Definition” 

 

 

Parameters uncertainty. Other challenges related to the testing allocation are 

represented by parameters uncertainty. In fact, software testing activity is fraught 

with a not negligible uncertainty relates to values of parameters such as 

operational profile, the expected number of initial faults, the fault detection rate 

per unit testing-effort (SRGMs input), fault fixing time, etc. Several research 

efforts have also been spent in order to deal with parameters’ uncertainty in 

software quality domain (e.g., in component reliability estimates [60], or in the 

performance modeling and analysis process [9]) adopting, for example, a robust 

optimization approach [10], or a bayesian approach [61]. Moreover, for example, 

fuzzy mathematical methods have been used to represent the uncertainty 

parameters (e.g., as done in [62]) of an alternative architecture. The fuzzy 

paradigm has also been used in [63], wherein it is addressed uncertainty involved 

in estimated parameters of SRGM in imperfect debugging environment. 

Therefore, although there is a growing interest in handling uncertainty, in practice, 

uncertainty of all the parameters of a software testing activity is not typically 

addressed. 
 
With respect to the state-of-art, the following major aspects characterize the 

novelty of the approach: 
 
 

 This is the first work (to the best of our knowledge) that enables 

practitioners to maximize the effectiveness of the testing activity using an 

optimization framework, which allows dynamically to model: (i) fault 

detection and correction processes of systems functionalities (modules) 

through the SRGMs that best fit the actual testing data, (ii) testing 

cost/time constraints, and (iii) parameter-specific uncertainties 

phenomenons. So that the systems functionalities (modules) with shorter 

time (budget) are tested and that reveled bugs are fixed earlier. 

 We have explicitly considered the bug assignment activity in the fault 

correction process (typically not done in the existing works). In particular, 

this work has showed that (for a large software system) the bug 

assignment may be a key factor for a trustworthy prediction of the fault 

correction process of the single functionalities (software modules), as well 

as of the reliability of the whole system. 

 The proposed approach does not rely on a specific development process or 

testing practice (e.g., in testing unit). 

 We have provided guidelines for practitioners. We have provided support 

for their testing allocation decisions based on cost, time, and software 

quality. In particular, our approach helps to: (i) select (and use) SRGMs in 

order to make the software testing process more effective; and (ii) handle 

parameters uncertainty, which, as shown through our real world software 

project, plays a critical role in accurately describing testing resource 

allocation process. More specifically, we have shown that the handling of 

uncertainty is a key factor for a trustworthy prediction of the reliability of 

a software system, and leads an optimization model to a more precise (and 

less pessimistic) estimation of the system reliability, as well as to a more 

effective and efficient testing resource allocation activity. It is well known 

that SRGMs sometimes show good performance in terms of predictability 
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of the software reliability, but sometimes they do not. This fact may be, in 

particular, caused by insufficient information on how the software has 

been developed, maintained, and operated [64]. 

 We have instantiated the optimization model for the fault correction with 

the bug assignment activity prediction, but its elements (e.g., cost function 

and reliability constraints) combined with the method for uncertainty 

analysis could be re-used in another phase of the testing process. This 

adoption may require specializing (appropriately modifying) the model in 

order to capture typical aspects of the new phase. Testing-effort allocation 

prediction under testing-effort time/cost and reliability constraints with 

uncertain model parameters, for example, could be used for enhancing 

existing approaches (such as that one in [55]) for scheduling 

developers/testers to activities to be performed to fix a bug repository. 
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5 OPTIMAL REGRESSION FUNCTIONAL TESTING 
 

   Regression testing is the process of validating modified software to provide 

confidence that (i) the changed parts of the software behave as intended, and (ii) 

the unchanged parts have not been adversely affected by the modifications [65]. 

 

  Research in regression testing has seen a flourish in the past years, in particular 

in the fields of new approaches, tools, and techniques to reduce the cost of reusing 

the test suite that was used to test the original version of the software. A quite 

extensive list of these approaches can be found in [66] and [67]. However, the key 

tasks of testing cost reduction methods are commonly: (i) regression test selection 

- selecting subset of existing test cases to run on the modified software (e.g., [68], 

[69], [70], and [71]); (ii) regression test suite minimization - reducing the test suite 

size to a minimal subset to maintain the same level of coverage as the original test 

suite; and (iii) regression test suite prioritization - finding an ideal order of test 

cases according to some criteria, such that test cases with higher priority are 

executed earlier than ones with lower priority [72]. 

 

Although used extensively in industry, regression testing is challenging from both 

a process management as well as a resource management perspective. In fact, 

putting the proposed techniques into practice has been a challenge [72]. 

 

In Section 5.1, we introduces related work. In Section 5.2, we present an overview 

of our approach.  

 

 

5.1 RELATED WORK  
 

In the last years the topic of software testing has been studied in several 

communities and from different perspectives (see, e.g., [73] for a look into 

architecture-based testing techniques, or the survey in [74] of methodologies for 

automated software test case generation). 

    

In particular, a lot of research efforts has been spent for regression testing (e.g. see 

survey [66]). In this work, we focus on regression test suite prioritization, which is 

highly relevant in general to industry (and in particular, for our industrial partner). 

Therefore, hereafter, we review works appearing in the literature dealing with 

regression testing prioritization. 

      

   Several techniques have been introduced for using test execution information to 

prioritize test cases. In [75], a comparison of such techniques, aimed to evaluate 

their ability to improve rate of fault detection, has been performed by conducting 

several empirical studies. More specifically, three categories of techniques have 

been considered, i.e., techniques ordering test cases based on their (i) total 

coverage of code components, (ii) coverage of code components not previously 

covered, and (iii) estimated ability to reveal faults in the code components that 

they cover. Several new controlled experiments and case studies have been 
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performed in [76]. In particular, building on results presented in [75] and focusing 

on the goal of improving rate of fault detection, the authors in [76] have addressed 

additional questions (e.g., related to the techniques’ effectiveness when targeted at 

specific modified versions, or the trade-off between the fine granularity and 

coarse granularity prioritization techniques). 

 

Research effort has been also devoted for defining metrics to quantify and 

compare the rates of fault detection of test suites [77], [78]. In [79], a more 

general metric has been defined for measuring rate of fault detection that accounts 

for varying test case and fault costs. 

 

Another class of related papers deals with prioritization techniques that are driven 

by requirements with higher priority, or operate in the presence of time constraints 

(e.g., [80], [81], [82] discussed below). 

 

   In [80], a regression testing approach is proposed, where test cases are 

prioritized such that the test cases for requirements with higher priority are 

executed earlier during system test. In particular, four factors (i.e., requirements 

volatility, customer priority, implementation complexity, and fault proneness) are 

used to analyze and assign value to each requirement. 

 

  The work in [81] presents initial results of an empirical study on using historical 

test execution data to prioritize test case selection in a constrained regression 

testing process. In particular, the work evaluates how several RTS techniques 

perform under severe time and resource constraints. 

 

    In [82], it is presented a regression test prioritization technique that uses a 

genetic algorithm to reorder test suites in light of testing time constraints. 

    

The genetic algorithms (to determine the most effective order) have also been 

leveraged in [83]. Specifically, this work proposes a method of cost-cognizant test 

case prioritization based on the use of historical records, which are gathered from 

the latest regression testing. 

 

    A comparison of search algorithms for regression test case prioritization, based 

on code coverage (including block coverage, decision (branch) coverage, and 

statement coverage) has also been performed in [84]. More specifically, the work 

presents results from an empirical study of the application of several greedy, 

metaheuristic, and evolutionary search algorithms to six programs, ranging from 

374 to 11,148 lines of code for three choices of fitness metric.  

 

  Several coverage-based test case prioritization techniques have been developed, 

which typically use either a total strategy or an additional strategy. In [85], it is 

proposed a unified test case prioritization approach that encompasses both the 

total and additional strategies. The work has also proposed extensions to enable 

the use of differentiated probabilities that test cases can detect faults for methods 

and the use of static coverage information as well as dynamic. 

 

There was previous work, which has exploited the combination of code coverage 

analysis and the change impact analysis. For example, in [86], a procedure level 
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coverage regression test based on change-based test selections method has been 

experimentally applied to an open source web browser engine project WebKitit. 

Moreover, the work also experimented test case prioritization strategies (based on 

changes) to reduce the testing time when the selection is too large. 

 

  Approaches for particular types of applications (such as for software product 

lines [87]) or testing strategies (e.g., model-based testing [88]) have also been 

introduced, as well as the use of methods (e.g., information retrieval ones [89]) 

have been exploited, for example, in order to address coverage profiling overhead 

(in terms of time and space) and potential problems associated with the 

imprecisions of static program analysis. Research effort has also been done for 

improving regression testing in continuous integration development environments 

[90]. In particular, the work in [90] has introduced two regression testing 

techniques (for testing selection and prioritization, respectively) that use readily 

available test suite execution history data to determine what tests are worth 

executing and executing with higher priority. 

 

5.2 OVERVIEW OF OUR APPROACH 

 

A representation of the high-level workflow of the proposed approach is presented 

in Figure 28. 

 

 

 

 

FIGURE 28: HIGH-LEVEL APPROACH OVERVIEW 

Our approach is mainly based on the analysis of code coverage and code churn, 

which is collected for each of the version of a software product. Such information 

is stored in a database, our implementation makes use of eXist-db database, which 
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is an open source NoSQL database and application platform built on XML 

technology. 
10

 

  Coverage information is collected by a JaCoCo agent, an open source toolkit for 

measuring and reporting Java code coverage.
11

 A JaCoCo report is a xml 

document having the structure depicted in Figure 29. 

 

 

FIGURE 29: OUTPUT OF THE JACOCO TOOL: CODE COVERAGE ANALYSIS 

                                                             
10

 The eXist-db database can be obtained freely from [91]. 

11
 The JaCoCo tool can be obtained freely from [92]. 
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   Churn metrics are collected by CodeChurn Tool. It is a proprietary tool of 

ASSIOMA.net [93], which exploits the Sonar tool [94] for metrics evaluation. 

More details on the churn code metrics and the Sonar tool can be found in 

Deliverable D2.2 [95]. A CodeChurn report is a xml document having the 

structure depicted in Figure 30. 

 

 
 

FIGURE 30: OUTPUT OF THE CODE CHURN TOOL: CODE CHURN ANALYSIS 

 

In Section 5.2.1, we provide more details on the JaCoCo tool’s output, whereas in 

Section 5.2.2, we describe in more detail the Code Churn tool’s output. Finally, in 

Section 5.2.3, we give an overview of the Metric/Prioritization module, which 

represents the core of our approach. 
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5.2.1 The JaCoCo Tool 
 

  The JaCoCo tool provides code coverage analysis in Java VM based 

environments. It is based on Bytecode instrumentation; therefore it is very helpful 

in situations where the source code is not available. 

  As illustrated in Figure 29, the JaCoCo tool allows to collect coverage analysis at 

different level of granularity, resulting in the following coverage measures. 

 Instructions, namely single Java byte code instructions. In particular, 

instruction coverage is related to the amount of code that has been 

executed or missed. 

 Branches for all if and switch statements. In particular, the total number of 

such branches in a method are counted so as to determine the number of 

executed or missed branches. 

 The Cyclomatic Complexity is estimated for each non-abstract method, 

classes, packages, and groups. 

 Lines. Coverage information for individual lines are calculated for the 

class files that have been compiled with debug information. In particular, 

if at least one instruction that is assigned to a certain source line has been 

executed, then the source line is considered executed. 

 Methods. A non-abstract method contains at least one instruction, and is 

considered as executed when at least one instruction has been executed. 

Notice that constructors and static initializers are also counted as methods, 

because JaCoCo is based on Bytecode instrumentation. 

 Classes. If at least one the methods of a certain class has been executed, 

then the class is considered as executed. 

 

More details on the tool can be found in [92]. The supported reports formats are 

HTML, XML, and CSV. In our implementation, we have chosen the XML 

format.  

 

An extensive list of code coverage tools for java can be found in [96]. 
 

5.2.2 The Code Churn  Tool 
 

   As illustrated in Figure 30, the Code Churn tool allows collecting churn code 

analysis at different level of granularity. In particular, the tool evaluates the (i) 

Total added, modified and deleted LOC, and (ii) Cyclomatic complexity. 
 

5.2.3 Metric/Prioritization Module 
 

   A primary input to the Metric/Prioritization Module is represented by an XML-

based structure collecting churn metrics and coverage metrics. In fact, for each of 

the test case, churn metrics and coverage metrics are joined in a common structure 

depicted in Figure 31. More specifically, the XML output files of the JaCoCo tool, 

related to the code coverage analysis, and Code Churn tool, are merged. To this 

extend, we have exploited the proprietary RaptorXML tool, which is a hyper-fast 
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XML and XBRL processor. A 30-day trial version of RaptorXML can be 

downloaded from [97]. 

 

 

 
 
FIGURE 31: OUTPUT OF THE RAPTORXML TOOL: MERGING OF THE COVERAGE AND CHURN 

ANALYSIS 

The data models of the JaCoCo tool (see Figure 29) and the Code Churn Tool (see 

Figure 30) are precisely the ones used in eXist-db database.  

 

Table 16 and Table 17 summarize, respectively, the input and the output of the 

Metric/Prioritization module. Specifically, the Metric/Prioritization Module 

processes the XML-based structures, and assigns priority to the test cases. Priority 

assignment involves applying a function that seeks to capture the relationship 

among the test cases, the code coverage, and the churn analysis. The goal of the 

prioritization we are interesting in is that of considering in order of relevance (a) 

tests case potentially covering changed parts of the product (b) test cases which 

guarantee the best coverage. Specifically, we have introduced two parametric 

algorithms inspired on standard Total statement coverage prioritization and the 
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Additional variant. Details on the implementation of these algorithms can be 

found in the next section. 

 

 
TABLE 16: INPUT OF THE METRIC/PRIORITIZATION MODULE 

Source Data Type Description 

User Source code of system 

versions 

 (java code) 

Our approach is mainly based 

on the analysis of code 

coverage and code churn, 

which is collected for each of 

the version of a software 

product. Such information is 

stored in a database, our 

implementation makes use of 

eXist-db database, which is an 

open source NoSQL database 

and application platform built 

on XML technology. 

User Test cases Test cases to prioritize 

JaCoCo tool Coverage information Analysis of code coverage is 

collected for each of the 

version of a software product. 

Specifically, coverage 

information is collected by a 

JaCoCo agent, an open source 

toolkit for measuring and 

reporting Java code coverage. 

CodeChurn Tool Code churn analysis Churn metrics are collected by 

CodeChurn Tool. It is a 

proprietary tool of 

ASSIOMA.net, which exploits 

the Sonar tool for metrics 

evaluation 

 

                                             TABLE 17: OUTPUT OF THE METRIC PRIORITIZATION MODULE 

Decision Description 

Test cases prioritization A primary input to the Metric/Prioritization 

Module is represented by an XML-based 

structure collecting churn metrics and coverage 

metrics (obtained, respectively, with JaCoCo 

and CodeChurn tool). In fact, for each of the test 

case, churn metrics and coverage metrics are 

joined in a common structure. More specifically, 

the XML output files of the JaCoCo tool, related 

to the code coverage analysis, and Code Churn 

tool, are merged. To this extend, we have 

exploited the proprietary RaptorXML tool, 

which is a hyper-fast XML and XBRL 
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processor. 

The Metric/Prioritization Module processes the 

XML-based structures, and assigns priority to 

the test cases. Priority assignment involves 

applying a function that seeks to capture the 

relationship among the test cases, the code 

coverage, and the churn analysis. The goal of the 

prioritization we are interesting in is that of 

considering in order of relevance (a) tests case 

potentially covering changed parts of the 

product (b) test cases which guarantee the best 

coverage. 

                                                                         

 

5.2.4 Test prioritization 
 

5.2.4.1 Churn Coverage Prediction Prioritization 

 

    In this section we consider predictive prioritization techniques which exploit 

both coverage and churn information. In this case we do not consider bursts but 

focus our attention only on the two last versions Vm-1 and Vm of a sequence of  

versions  〈𝑉1, … , 𝑉𝑚〉. In this case we assume that tests have been already executed 

on Vm-1 (i.e. coverage metrics are available on that version) but have not yet 

executed on version Vm  for which only churn data are available. 

     The challenge of predictive prioritization is that of estimating a good 

prioritization of test cases for version Vm by exploiting churn data and coverage 

data collected for version Vm-1. 

   The goal of the prioritization we are interesting in is that of considering in order 

of relevance (a) tests case potentially covering changed parts of the product (b) 

test cases which guarantee the best coverage. To this purpose we propose suitable 

adaptations of two well-known prioritization techniques, namely the Total 

Statement coverage prioritization and the Additional Statement Coverage 

Prioritization. 

    Actually, we introduce two parametric algorithms inspired on standard Total 

statement coverage prioritization and the Additional variant. This algorithms 

exploit structured coverage information for test cases referred in the following as 

coverage increment. Intuitively, the coverage increment of a test case depends on 

the current state of coverage and gives the contribution of coverage split into three 

components: the contribution for changed parts, for deleted parts and for 

unchanged parts. By introducing suitable ordering criteria for coverage increments 

we are able to define variants of the prioritization algorithm. 

 

Let M(V) be a coverage report for the version V of a product, namely a .xml 

structure recording the coverage information after the execution of a (possibly 

empty) set of test case. With M0(V ) we denote the initial coverage report 

corresponding to the execution of an empty set of test cases. For a test T, a version 

V and a coverage report M(V ) let be Inc(T,M) be the quadruple 〈𝐶, 𝐷, 𝑈, 𝑇〉 where 
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 C is the number of instructions of methods that will change w.r. to version 

V coveredby the execution of T and uncovered in M(V ); 

 D is the number of instructions of methods that will be deleted w.r. to 

version V covered by the execution of T and uncovered in M(V ); 

 U is the number of instructions of methods that will remain unchanged 

w.r. to version V covered by the execution of T and uncovered in   M(V ). 

 

 𝐼𝑛𝑐(𝑇, 𝑀) gives the coverage increment with respect to the coverage report M 

after the execution of the test case T. Such a tuple is called coverage increment 

tuple. Notice that is 𝐼𝑛𝑐(𝑇, 𝑀0)  precisely the tuple  〈𝐶(𝑉, 𝑇), �⃗⃗⃗�(𝑉, 𝑇) , �⃗⃗⃗�(𝑉, 𝑇), 𝑇〉 

. For a set of test cases Z, 𝑀𝑎𝑥𝐼𝑛𝑐≼(𝑍, 𝑀)  gives the test case in Z which 

guarantees the greatest coverage increment among all the test cases in Z, namely 

𝑀𝑎𝑥𝐼𝑛𝑐(𝑍, 𝑀) is the test case 𝑇 ∈ 𝑍such that 𝐼𝑛𝑐(𝑇, 𝑀) = 𝑚𝑎𝑥�̅�∈𝑍{𝐼𝑛𝑐(�̅�, 𝑀)} 

where max is computed with respect to the parametric ordering of quadruples ≼ 

 

  Let us consider now the Churn Total Statement Coverage Prioritization. The 

pseudocode is reported in Figure 32. 

 

 
FIGURE 32: ALGORITHM 1: CHURN TOTAL STATEMENT COVERAGE PRIORITIZATION 

   The Churn Total Coverage Prioritization can be easily obtained by ordering 

under the parametric ordering ≼  the coverage increment tuples of all the 

considered test cases (the function Test applied to a sequence of coverage 

increment tuples simply gives the sequence of projection of the test name 

component of each tuple). 

     The standard Total instruction coverage prioritization (which do not consider 

churn information) can be defined by considering the ordering ≺ defined as 

follows  
 

〈𝐶, 𝐷, 𝑈〉  ≺𝑆𝑡   〈𝐶′, 𝐷′, 𝑈′〉 iff  𝐶 + 𝐷 + 𝑈 ≤ 𝐶′ + 𝐷′ + 𝑈′ 
 

 

 In [98] some prioritization criteria sensitive to churn are introduced. For instance, 

the General strategy is intended to cover most procedures besides the changed 

ones under the assumption that test cases with higher overall coverage are better. 

The opposite of General is the Specific strategy which is intended to cover least 

procedures besides the changed ones. The specific strategy selects those test cases 

first which cover little outside of the changes. In our setting we can define 

analogous strategies working at the granularity level of instructions instead of 

granularity level of methods. For instance, the principles of the general strategy 

can be enforced by the following ordering ≼𝐺𝑒𝑛 defined as follows 
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On the opposite, the principles of the specific strategy can be enforced by the 

following ordering   ≺𝑆𝑝𝑒𝑐   defined as follows  

 

 
 

   Finally, we consider a kind of ordering   ≼𝑙𝑒𝑥   which prioritize first the coverage 

of changed parts if relevant and than that of coverage of unchanged part if the 

coverage increment of changed parts can be considered equivalent (a kind of 

’lexicographic order  between coverage of changed parts and coverage of 

unchanged parts). The definition of the ordering ≼𝑙𝑒𝑥  depends on a parameter 

𝛼 ≥ 0 which used to determine when the amount of coverage can be considered 

equivalent. 

    

    The ordering   ≺𝐿𝑒𝑥   defined as follows   

 

 

 

  Let us consider now the Churn Additional Coverage Prioritization. The 

pseudocode is reported in Figure 33. 

 

 
 
FIGURE 33: ALGORITHM 2: CHURN ADDITIONAL STATEMENT COVERAGE PRIORITIZATION. 
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The function  𝐴𝑑𝑑𝐶𝑜𝑣𝑒𝑟(𝑇, 𝑀) gives as a result a coverage report obtained by 

adding to M the coverage information of test case T. 

 

5.2.4.2 Backward Churn Prioritization 
 

   In the previous section we have considered algorithms for predictive (forward) 

prioritization which has to be considered in absence of coverage information for 

changed parts. If the test cases have been executed at least once in the last version 

Vm the prioritization can be recomputed taking into account also coverage 

information. In this case we can consider the same strategies seen for predictive 

prioritization with a slight modification of the concept of coverage increment 

tuple called backward coverage increment tuple. 

   For a test T, a version V and a coverage report M(V ) let be 𝐼𝑛𝑐𝐵(𝑇, 𝑀) be the 

quadruple 〈𝐶, 𝐴, 𝑈, 𝑇〉 where 

 

 C is the number of instructions of methods changed in V w.r. to the 

previous version covered by the execution of T and uncovered in M(V ); 

 A is the number of instructions of methods added in V w.r. to the previous 

version covered by the execution of T and uncovered in M(V ); 

 U is the number of instructions of methods unchanged in V w.r. to the 

previous version covered by the execution of T and uncovered in M(V ). 

 

  𝐼𝑛𝑐𝐵(𝑇, 𝑀) gives the coverage increment with respect to the coverage report M 

after the execution of the test case T. 

Notice that the backward coverage increment tuple simply replaces the coverage 

of methods which will be deleted with the coverage of methods which are added. 

In this case  𝐼𝑛𝑐𝐵(𝑇, 𝑀0) is precisely the tuple〈�⃖�(𝑉, 𝑇),  �⃗⃗⃗⃖�(𝑉, 𝑇) , �⃗⃗⃖�(𝑉, 𝑇), 𝑇〉. For 

backword increment coverage tuple, the analogous of ≺𝑆𝑡 , ≺𝐺𝑒𝑛, ≺𝑆𝑝𝑒𝑐 and ≺𝐿𝑒𝑥, 

written  ≺𝑆𝑡 𝐵, ≺𝐺𝑒𝑛𝐵, ≺𝑆𝑝𝑒𝑐𝐵  and ≺𝐿𝑒𝑥𝐵, respectively, by simply replacing in the 

definitions the metrics deleted methods with the metrics of added methods. 

   Therefore, a predictive (forward) prioritization can be used to suggest the first 

regression test for a new version. A backward prioritization can be used for the 

next stages (after the first). The backward prioritization allows in addition to 

check the predictive power of forward prioritization. The idea is that a good 

prediction should be very similar to the ordering of test output by a backward 

prioritization. 

  To measure the distance of two prioritizations (two orderings of the same set of 

test cases) we shall consider, for instance, the following definition. A 

prioritization of a test suite TC is an bijective function  𝑝𝑟: 𝑇𝐶 →  {1, … , |𝑇𝐶|} 

(intuitively pr(T) gives the position of the test 𝑇 ∈ 𝑇𝐶 in the prioritization). Given 

two prioritizations pr1   and pr2 for TC with = n, the distance of two prioritizations 

is given by 

 

 

Notice that the distance of two equal prioritization is 0. The constant 
2

|𝑇𝐶|2 gives an 

upper bound for the greatest possible distance. 
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5.2.5 Experimental Results 
 

  For the experiments we have considered SIR [99], a repository of software-

related artifacts meant to support rigorous controlled experimentation with 

program analysis and software testing techniques, and education in controlled 

experimentation. For the experimentation we have considered Java products 

having a meaningful number of lines of code, of versions and cardinality of test 

suit. The chosen products are SIENA and ANT whose attributes are depicted in 

Table 18. Siena (Scalable Internet Event Notification Architecture) is an Internet-

scale event notification middleware for distributed event-based applications 

deployed over wide-area networks, responsible for selecting notifications that are 

of interest to clients (as expressed in client subscriptions) and then delivering 

those notifications to the clients via access points [100]. The associated test suite 

guarantees a complete method coverage (not a complete statement coverage). Ant 

is a Java-based build tool supplied by the open source. 

 
TABLE 18: CASE STUDIES 

 

 

In Table 19 and Table 20, we report the churn metrics provided by the tool 

ChurnTool (we consider eight versions for both Siena and Ant). 

 
TABLE 19: CHURN METRICS FOR ANT 

 

 

 

 

 

 

TABLE 20: CHURN METRICS FOR SIENA 
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Analysis of the results 

   In order to show the effectiveness of the combination of coverage and churn 

information we here illustrate the results that we have obtained from the 

prioritization which optimizes either coverage or coverage of changed parts in the 

next software version. 

  For the Ant and Siena systems, we have prioritized the test cases by using 

coverage and churn information. More specifically, for a version Vk, we have 

prioritized the test cases by using the relationship among the test cases, the code 

coverage, and the churn analysis. 

   The experiments were run on a Ubuntu Linux 12.04 workstation equipped with 

a Intel Core i7 (2 MB of cache memory and 8 GB RAM DDR3). 

   InFigure 34, we report the obtained results for the Siena system. For each 

version, we have prioritized the test cases, and estimated the coverage of changed 

parts of the first 50, 150, 250, and 350 test cases of its prioritized test suite. Each 

bar indicates the number of instructions (i.e., single Java byte code instructions) of 

changed parts covered by the test cases. Therefore, we have measured the 

predictive power of test cases as a function of the changed parts. To sake of 

comparison, we have also estimated the coverage of the whole test suite. 

 

 

 
 

FIGURE 34: COVERAGE OF TEST CASE PRIORITIZATION FOR THE SIENA SYSTEM 

 

  In Table 21, we report the detailed results. Each cell reports the resulting number 

of instructions of changed parts covered by the test cases for a certain version 

(row) and a certain number of test cases (column). 
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TABLE 21: COVERAGE FOR SIENA 

 
 

 

   Similarly, in Figure 35, we report the obtained results for the Ant system. For 

some versions, we have prioritized the test cases, and estimated the coverage of 

changed parts of the first 8, 10, 14, 18, and 24 test cases of its prioritized test 

suite. Each bar indicates the number of instructions (i.e., single Java byte code 

instructions) of changed parts covered by the test cases. To sake of comparison, 

we have also estimated the coverage of the whole test suite. 

 

 
 

FIGURE 35: COVERAGE OF TEST CASE PRIORITIZATION FOR THE ANT SYSTEM 

 

In Table 22, we report the detailed results. Each cell reports the resulting number 

of instructions of changed parts covered by the test cases for a certain version 

(row) and a certain number of test cases (column). 

 
TABLE 22: COVERAGE FOR ANT 

 

 
The results highlight, in general, that the predictive power of test cases (as a 

function of the changed parts) almost always increases while increasing the 
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number of selected test cases. For example, for the Siena system (see Figure 34), 

the number of instructions of changed parts covered by the test cases (except in 

two cases) almost always increases while increasing the number of test cases. 

Moreover, the discrepancies among test cases (i.e., their predictive power) 

become more evident as the number of changes increases (e.g., for versions with 

higher values of code churn metrics), such as for the version V2 of the Siena 

system (see Table 21). On the other hand, the predictive power of test cases do not 

show discrepancies in case of small increase in the number of test cases or 

changes. For example, for a given version of the Ant system, the predictive power 

of test cases does not essentially change. 
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6 ARCHITECTURAL DECISION-MAKING 
 

 

The prediction of the software architecture quality supports a large set of 

decisions across multiple lifecycle phases that span from design through 

implementation-integration to adaptation phase. However, due to the different 

amount and type of information available, different prediction approaches can be 

introduced in each phase. A major issue in this direction is that Quality of Service 

(QoS) attribute cannot be analyzed separately, because they (sometime adversely) 

affect each other. Therefore, approaches aimed at the tradeoff analysis of different 

attributes have been recently introduced (e.g., reliability vs cost, security vs 

performance).  

 

Our work has been focused on modeling and analysis of QoS tradeoffs of a 

software architecture based on optimization models. A particular emphasis has 

been given to two aspects of this problem: (i) the mathematical foundations of 

QoS tradeoffs and their dependencies on the static and dynamic aspects of a 

software architecture, and (ii) the automation of architectural decisions driven by 

optimization models for QoS tradeoffs. Our major contribution is to show how 

effectively optimization modeling techniques can capture relevant aspects of the 

architectural decision-making process in different lifecycle phases, thus 

representing a very relevant support for the software engineers tasks. We have 

also given a tutorial on this topic [101]. 

 

In the book chapter [102], in the context of a waterfall development process, we 

implement three models: one for the architectural design (i.e. the software 

architecture driven model applicable before the release of a system), one for the 

implementation/deployment phase (we show how the QoS of a software 

architecture depends on the hardware architecture), and one for the maintenance 

phase (i.e. the software architecture driven model applicable after the release of a 

system). In order to show the usefulness of our approach, we run these models on 

an example coming from the domain of medical information systems.  

 

In this chapter, we have also presented a general optimization model that 

minimizes the total costs subject to constraints on the level quality of the software 

architecture. The model can be adopted in (specialized for) one of the lifecycle 

phases by leveraging available information and parameters, the level of detail of 

which obviously increases as the development progresses. Then, each specialized 

form of the general model can be either separately used and solved, if required in 

a certain lifecycle phase, or used in pipeline feeding with each other, as we will 

show in our example. In Section 6.1, we report the formulation of this general 

optimization model by discussing typical architectural decisions, which can be 

supported by using optimization models.    

 

Our work has also been focused on the automation of the support for the 

decisions that software architects make after deployment. This approach is based 
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on an optimization model whose solution suggests the “best” actions to be taken 

according to a given change scenario (i.e., a set of new requirements that induce 

changes in the structural and behavioral aspects of the software architecture).  

 

In particular, in [103], we introduce a framework named SHEPhERd (Software 

arcHitecture Evolution based on cost, PErformance and Reliability), which is 

composed of a UML case tool, a model builder and a model solver.  

 

SHEPhERd is based on an optimization model that suggests the “best” actions to 

be taken upon a certain change scenario arising. A change scenario is a set of new 

requirements that induce changes in the structural and behavioral aspects of the 

software architecture. In particular, in our model, for each new requirement in a 

change scenario we consider different sets of evolution actions (called evolution 

plans) that are able to guarantee these new requirements. We aim to obtain a set of 

decisions that lead to the definition of a new architecture that minimizes cost, 

while keeping the reliability and the response time within certain thresholds. In 

Section 6.2, we describe the main features of the SHEPhERd framework. 

 

In Section 6.3, we introduce the SAQO (System Adaptation with Quality 

Optimization) framework, which extend the SHEPhERd framework. 

 

6.1 A GENERAL FORMULATION FOR ARCHITECTURAL DECISIONS VS 
QUALITY CONSTRAINTS 

 

In this section, we report the general optimization model presented in [102].   

The model minimizes the total costs subject to constraints on the level quality of 

the software architecture.  

  Let 𝑆 = {𝑢1, ⋯ , 𝑢𝑛}  be a software architecture made of 𝑛  software units 𝑢𝑖 

(1 ≤ 𝑖 ≤ 𝑛) the composition of which results in services that the system offers to 

users. 

   Since the proposed model may support different lifecycle phases, we adopt a 

general definition of software unit: it is a self-contained deployable software 

module containing data and operations, which provides/requires services to/from 

other elementary elements. A unit instance is a specific implementation of a unit. 

For each unit 𝑢𝑖, let 𝐽𝑖 be the set of instances available by vendors and 𝐽�̅� the set of 

possible options for developing the instance in-house. Let 𝑢𝑖𝑗 be the 𝑗-th instance 

of  𝐽𝑖 ∪ 𝐽�̅� . 

  Architectural Decisions. The analysis of the QoS tradeoffs is a broad decision-

making process that consists of a set of actions aiming to modify the static and 

dynamic structure of the software architecture. The decisions within the different 

life-cycle phases are basically related to the following software actions: 

1. Introducing new software units: One or more new software units may be 

embedded   
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into the system.
12

 We call 𝑁𝑒𝑤𝑆 the set of new available software units 

that can provide different functionalities. 

2. Replacing existing unit instances with functionally equivalent ones 

available on the market: The employed instance 𝑢𝑖𝑘 of a software unit 

𝑢𝑖 may be replaced with an element of the set 𝐽𝑖, i.e., with of the instances 

available for it on the market (e.g. a Commercial-Off-The-Shelf (COTS) 

component/web service).We assume that all the instances in 𝐽𝑖  are 

functionally compliant with 𝑢𝑖𝑘 , i.e., each of them provides at least all 

services provided by 𝑢𝑖𝑘 and requires at most all services required by 𝑢𝑖𝑘. 

The instances in 𝐽𝑖 may differ from 𝑢𝑖𝑘 for cost and quality attribute (e.g. 

reliability and response time). 

3. Replacing existing unit instances with functionally equivalent ones 

developed in-house:  An existing instance of a software unit 𝑢𝑖 may be 

replaced with one developed in-house. Developers could opt for different 

building strategies resulting in different in-house instances, i.e., the 

elements of the set  𝐽�̅�. The values of quality attributes of such optional 

instances (e.g., reliability, response time) could vary due to the values of 

the development process parameters (e.g. experience and skills of the 

developing team). 

4. Modifying the interactions among software units in a certain 

functionality: The system dynamics may be modified by 

introducing/removing interactions among software units within a certain 

functionality. 

 

Optimization model formulation.  

Model Variables. Let 𝑥𝑖𝑗  (1 ≤  𝑖 ≤ 𝑛, 𝑗 ∈  𝐽𝑖 ∪ 𝐽�̅�) be the binary variable that is 

equal to 1 if the instance 𝑗 is chosen for the software unit 𝑖, and 0 otherwise. 

Moreover, let 𝑧ℎ (1 ≤ ℎ ≤ |𝑁𝑒𝑤𝑆|) be the binary variable that is equal to 1 if the 

new software units ℎis chosen and 0 otherwise.  

    Let us analyze the system on the base of 𝑝 quality attributes (such as cost, 

response time, availability, etc.). Suppose moreover that each attribute of any 

software unit depends on the value of parameters 𝛼𝑖
𝑘’s, 𝛽𝑖

𝑘’s, and 𝛾𝑖𝑗
𝑘  ’s, where (i) 

the vector 𝛼𝑖
𝑘  describes the (at most) 𝑢  software architecture observable 

parameters, e.g., the average number of invocations of a software unit within the 

execution scenarios considered for the software architecture, (ii) the vector 𝛽𝑖
𝑘 

contains the (at most) 𝑣  hardware observable parameters, e.g., the processing 

capacity of the node hosting the software unit, that is measured, for example, as 

the average number of instructions per second that the resource can execute, and 

(iii) the vector 𝛾𝑖𝑗
𝑘  represents the (at most) 𝑤 features of the implementation of 𝑢𝑖, 

e.g., the reliability of the instance used for replacing the existing unit. For the 𝑘 

quality attributes of a provided instance, the value of the features  𝛾𝑖𝑗
𝑘 ’s is assumed 

to be either given from the software unit provider or estimated from the customer. 

                                                             
12  Notice that such type of action has to be associated to another action that indicates how this unit 

interacts  with existing units, therefore it modifies the interactions within certain functionalities (see 
last type of   software action). 
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On the contrary, for an in-house developed instance the   𝛾𝑖𝑗
𝑘  ’s can be predicted by 

considering variables of the decision planning.  

  Let 𝛤𝑘 ∶  ℝ𝑢  ×  ℝ𝑣  × ℝ𝑤   →  ℝ  ( 𝛤�̅� ∶  ℝ𝑢  ×  ℝ𝑣  ×  ℝ𝑤   →  ℝ ) be the 

function that, on the base of the above parameters, returns the value of the 𝑘-th 

quality attribute (1 ≤ 𝑘 ≤ 𝑝) of an existing (new) software unit. In particular, let 

𝛬𝑖𝑗
𝑘 = 𝛤𝑘(𝛼𝑖

𝑘, 𝛽𝑖
𝑘 , 𝛾𝑖𝑗

𝑘 )  the value of the 𝑘 -th attribute of the provided/in-house 

instance 𝑢𝑖𝑗.  

  We can represent the value of the 𝑘 -th quality attribute of the 𝑖 -th existing 

software unit as a function of the decisional strategy 𝐱: 

 

                                                 𝜃𝑖
𝑘 = ∑ Λ𝑖𝑗

𝑘
𝑗 ∈𝐽�̅� ∪𝐽𝑖

𝑥𝑖𝑗                             (1)      

 

   Similarly, we can represent the value of the 𝑘-th quality attribute of the ℎ-th 
new software unit as a function of the decisional strategy 𝐳: 

 

                                                                �̅�ℎ
𝑘 =  𝑧ℎΓ̅𝑘 (𝛼𝑖

𝑘, 𝛽𝑖
𝑘, 𝛾𝑖𝑗 

𝑘 )                        (2)     

 

  Let 𝐺𝑘:  ℝ𝑛 × ℝ|𝑁𝑒𝑤𝑆| → ℝ, with (1 ≤ 𝑘 ≤ 𝑝), be the function that returns the 

𝑘-th quality attribute of the whole system on the base of the same attributes of 

each existing/new software unit. And let us assume (without loss of generality) 

that the values of each quality attribute 𝑘 are constrained strained to be above a 
lower threshold value 𝛩𝑘. Assume, moreover, that the cost is the first quality 
attribute, i.e., 𝜃𝑖

0 (�̅�𝑖
0) express the cost of the existing (new) software units. Finally, 

let 𝐶𝑜𝑠𝑡: ℝ𝑛 × ℝ|𝑁𝑒𝑤𝑆|  → ℝ  be the cost function of the whole system that clearly 
depends on the costs of all the existing (new) software units. Different cost models 
could be used to define 𝐶𝑜𝑠𝑡, e.g., it may also include the potential costs of software 
unit adaption (i.e. the glueware). The general formulation of the optimization model 
for the QoS tradeoffs analysis is given by: 

     

                     min                             𝐱,𝐳 𝐶𝑜𝑠𝑡(𝜃0, �̅�0)                                                                          (3) 

𝐺𝑘(𝜃0, �̅�0) ≥ 𝛩𝑘                              ∀𝑘 = 1 … 𝑝 

 

∑ Λ𝑖𝑗
𝑘

𝑗 ∈𝐽�̅� ∪𝐽𝑖

𝑥𝑖𝑗  =  𝜃𝑖
𝑘                             ∀𝑘 = 1 … 𝑝, ∀𝑖 = 1 … 𝑛 

 

𝑧ℎ�̅�𝑘  (𝛼ℎ
𝑘 , 𝛽ℎ

𝑘, 𝛾ℎ 
𝑘 )  =   �̅�ℎ

𝑘                       ∀𝑘 = 1 … 𝑝, ∀ℎ = 1 … |𝑁𝑒𝑤𝑆| 
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  𝑥𝑖𝑗 ∈ {0,1}                                   ∀𝑖 = 1 … 𝑛, ∀𝑗

= 1 … 𝑝 ∑ 𝑥𝑖𝑗 = 1                                            ∀𝑖 = 1 … 𝑛     

𝑗∈𝐽�̅�∪𝐽𝑖

 

 

𝑧ℎ ∈ {0,1}                                   ∀ℎ = 1 … |𝑁𝑒𝑤𝑆| 

 

                                 Other constraints (e.g., equations to predict 𝛼𝑖
𝑘’s and 𝛽𝑖

𝑘
 ’s) 

 

 

6.2 THE SHEPHERD FRAMEWORK 
 
In this section, we provide an overview of the SHEPhERd framework [103], 

which we have introduced in the context of component-based architectures. 

Figure 36 shows the SHEPhERd framework within its working environment. The 

framework basically comprises two modules: a Model builder and a Model solver. 

 

 
FIGURE 36: THE SHEPHERD FRAMEWORK AND ITS ENVIRONMENT 

 

SHEPhERd framework Input. A primary input to the framework is represented 

by an UML-based architectural model composed of: (i) a Component Diagram 

describing software components and their interconnections, (ii) a set of Sequence 

Diagrams describing the possible execution scenarios, and (iii) a Deployment 

Diagram describing the platform architecture. 
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The system maintainer, through a Monitor module, is able to perceive non-

functional requirement violations in the runtime system. She/he defines evolution 

plans for new and/or violated requirements that represent change scenarios. After 

receiving an evolution request from the system maintainer, the Model builder 

generates the optimization model in the format accepted by a solver (e.g., 

LINGO
13

 that we have used in [103]). 
 

 

   The Model builder first allows users to annotate the UML diagrams with 

additional data that represent the optimization model parameters, such as failure 

probabilities of software components, or the processing capacity of the platform 

nodes. Then, it transforms the annotated model into an optimization model in the 

format accepted from the solver. 

 

SHEPhERd framework Output. The optimization model is processed by the 

Model solver, which produces the results, which consist of a set of evolution 

actions. It suggests how to adapt both the static and dynamic aspects of the 

software architecture. Moreover, the platform architecture is modified by re-

deploying existing components and/or deploying new components on the existing 

nodes.  

 

  A new software architecture is obtained by modifying its structure and behavior. 

To modify the structure, our approach suggests replacing existing components 

with different available instances and/or to introduce new components into the 

system. With regard to the system behavior, the model is focused on the system 

scenarios (expressed, for example, as UML Sequence Diagrams) by removing or 

introducing interaction(s) between existing or new components. The platform 

architecture (modeled, for example, with an UML deployment diagram) can also 

be modified by re-deploying existing components and/or deploying new 

components.  
 

 In [103], the mathematical formulation of the optimization model that 

SHEPhERd generates and solves can be found. Details on model formulation can 

be found in [103]. 

 

  The goal of our optimization model is to find the optimal set of actions needed to 

tackle required changes to the software architecture. “Optimal” here denotes 

actions that incur minimum cost while guaranteeing a certain level of reliability 

and performance.  

  The objective function under the main reliability and performance constraints, 

plus the constraints on the model variables, represents our optimization model. 

The model solution determines the evolution plan to choose for each change 

requirement, in order to minimize the software evolution costs under the 

reliability and performance constraints. 

 
 

                                                             
13

 [Online]. Available: www.lindo.com. 
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6.3 THE SAQO (SYSTEM ADAPTATION WITH QUALITY 
OPTIMIZATION)  FRAMEWORK 

 
 
In this section, we introduce the SAQO (System Adaptation with Quality 

Optimization) framework, which extends the SHEPhERd framework. Figure 24 

shows the SAQO framework within its working environment. 

    The framework SAQO allows storing the specification of requirements, 

architectural decisions, and their interactions in a repository. The internal structure 

of the repository is compliant with the metamodel in Figure 25. 

 

SAQO is a complex specification environment adopting the metamodel for the 

adaptation space. SAQO allows to: 

 

 Support the software architects/maintainers to maintain the interactions 

and conflicts between requirements, between design decisions, and 

between requirements and design decisions. The support includes 

automatic detection (by model checking techniques) of interactions and 

conflicts mostly in the part of the architecture design decisions and 

propagation of interaction between different levels. 

 Automatically produce the space of possible feasible architectural 

solutions obtained by instantiating parametric design decisions. Each 

solution is computed taken into account the specification constraints 

associated with the design decisions and the known interactions and 

conflicts between concrete design options. 

 Dynamically adapt a service-based system in an automated manner. 

SOQA is based on an optimization model that allows to choose among the 

possible solutions (produced in the previous point) the concrete solutions 

that minimizes cost, while keeping system qualities (e.g., the reliability 

and the response time) within certain thresholds. 

 

   For example, SOQA can be used to suggest the “best” actions to be taken upon 

a certain change scenario arising. A change scenario is a set of new requirements 

that induce changes in the structural and behavioral aspects of the software 

architecture. A new software architecture is obtained by modifying its structure 

and behavior. To modify the structure, SOQA suggests replacing existing 

elementary services with different available instances and/or to introduce new 

services into the system. With respect to the changes in the system behavior, it 

modifies the architectural design decisions (represented as parametric BPEL 

processes) by removing or introducing interactions between existing services 

and/or between existing and new services. The parametric design decision is 

instantiated in order to have a space of feasible concrete design decisions and the 

best concrete design decision resulting from the optimization phase is suggested. 

   

SAQO framework Input. As shown in Figure 37, the input of our framework is a 

parametric BPEL which represents an architectural decision, which has to be 

concretized by instantiating the parameters with concrete adaptation decisions. 

The concrete decisions which are candidates for instantiation are retrieved in the 

repository by exploiting the search expression associated with parameters. The set 
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of candidates are filtered by using constraints (to be defined), interaction and 

conflict information. The task is performed by the Concretization module.  

 

The Conflict Analysis module takes in input a design option and produces an 

executable specification whose behaviors are checked against invariant and 

reachability constraints in a model checking environment (e.g., SPIN
14

).  

 

The PROMELA language
15

, for example, can be used for the executable 

specification.  Therefore, a BPEL is translated into a PROMELA program and its 

behaviours are checked against state and reachability properties. Conflicts and 

interactions detected are stored in the repository, and possibly used for complete 

the knowledge about interaction and conflicts of stored entities. The output of the 

Conflict Analysis module is the adaptation space, namely a set of feasible design 

options over which the next step of optimization is taken.  

 

It is a module obtained by integration of the SHEPhERd framework proposed in 

[103]. Similar to the SHEPhERd framework, the Optimizer module of the SOQA 

framework comprises two main modules: a Model builder and a Model solver (see 

previous section for more details) 
 
 
 
 
 

 
 
 

 

FIGURE 37: THE SOQA FRAMEWORK AND ITS ENVIRONMENT 

 

                                                             
14

 http://spinroot.com/spin/whatispin.html 

15
 http://spinroot.com/spin/Man/grammar.html 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 97 

 

Deliverable D3.3: “Models-based Process Definition” 

6.3.1 The Metamodel  
 

In this section, we describe the metamodel for the adaptation space of service 

based applications (see Figure 38).  
 
The metamodel allows to represent: (a) structured requirements with particular 

concern on their interactions, conflicts, and conflict resolutions; (b) parametric 

and concrete structured design decisions associated with the requirements together 

with interactions and conflicts between design solutions; and (c) transformation of 

design decisions in order to support the adaptation.  

 

In the following we discuss the main entity of the metamodel related to the (i) 

requirement modeling, and (ii) design modeling.  

Requirement modeling.  

Requirement: A requirement can also be seen as a goal. A goal can be a 

functional requirement (hard-goal) or non-functional requirement (softgoal). 

According to [104], goals represent stakeholder intentions, which are 

manifestations of intent which may or may not be realized. A requirement can be 

(recursively) structured into AND/OR composition (sub-) requirements defining 

an AND/OR tree like structure. A requirement has a textual description (e.g., a 

natural language specification), and a constraint consisting of a formal expression 

over attribute-value pairs associated with the entity Requirement. A requirement 

may have a number of associated issues. 
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FIGURE 38: ADAPTATION SPACE EXPLORATION METAMODEL 

 

Position: For a requirement, the stakeholders may express different positions with 

respect to an Issue associated with a requirement. A position provides an 

(alternative) solution of an issue. A position may be in conflict with other 

positions related to the same issue. A requirement resolution is a requirement 

which intends to overcome the conflicts to different positions of the same 

requirement. Issues are questions, such as, “how will requirement Ri be satisfied?”, 

“what does term ti of Ri mean?”. Remark: this part of the model addresses only 

different interpretation of the same requirement and do not address as in [105] 

statements of the form “requirements Ri and Rj appear to conflict, how can they be 

resolved?” [105]. The solution of this problem is given by possibly associating 

Requirement Issue also to an Interaction between requirements. In summary, a 

requirement issue can be opened either for different positions with respect to a 

requirement or for a conflicting interaction among requirements. 
 
 

Design Modeling 
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A design issue represents an architectural schema, which is described by a 

composite abstract structure, namely a BPEL where parametric services can be 

invoked. We use the standard control operation: sequence, while, switch, flow, 

invoke. An invocation can take a composite concrete structure or parameter 

(abstract). 

 

A design issue has the following attributes: 
 Interface Input: It is the set of required services. It is given by an ordered 

set of logical names. 

 Interface Output: It is the set of provided services. It is given by an 

ordered set of logical names. 

 Internal Interface Connection: It is the set of interfaces composition of 

internal modules. It is given by a set of pairs of the form (M1.Out1, 

M2.In2) where M1 and M2 are logical names of the modules of the design 

issue, and Out1 is an interface postcondition of M1 and In2 is an interface 

precondition of M2. Moreover, we can have pairs of the form (self.In, 

M1.In1) and (self.Out, M1.Out1) connecting interface post and 

preconditions of the design issue, respectively, with post and preconditions 

of an internal node. 

 Precondition: A constraint which has to be satisfied to activated the 

solution. 

 Postcondition: A constraint which is satisfied at the termination of the 

execution. 

 Invariant: A constraint which is satisfied in each intermediate stable state, 

i.e., before 

and after the execution of each atomic action. 

 Technical Constraints: Technical limitations, for instance, required 

technology. 

 All the constraints are boolean expression freely constructed with boolean 

connectives 

over atomic proposition of the form: EntityName.AttributeName op Value, 

with op in {>, ≤, ≥, <, =, ≠} .  Notice that Design Issue inherits from 

Entity the possibility to associate a set of attributes together with their 

current values. 

 A search attribute in a parameter is a query like string giving the set of 

design options to be considered for the instantiation of the parameter (the 

parameter domain). Notice that it is not guaranteed that the design options 

in the result set are admissible. 

 

A design option is described by a composite concrete structure, namely a BPEL 

which allows only concrete invocations (there is no occurrence of parameters). 

With reference to the metamodel note that a design option is a special case of a 

design issue with no-occurrence of parameters. In the metamodel, we have an 

association which binds the Design option with Parameter. An admissible binding 

should preserve pre, post, and invariant conditions of Parameters and Design 

Options. 

 

A concretization is a simultaneous binding of all of the Parameters of a Design 

Issue with a corresponding number of admissible design options. The 

concretization is admissible if the pre, post, and invariant conditions of the Design 
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Option are fulfilled and if the individual pre, post, and invariant conditions of each 

Design Option continue to hold when they are placed in the context of the Design 

Issue. 

 

The pre confl, post confl, inv confl attributes of Concretization report possible 

conflicts related to a concretization. The contribution to the possible conflict of 

each parameter binding is reported in the pre confl, post confl, inv confl attributes 

of the association classes between Concretization and Design Option. 
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7 CONCLUSIONS  
 

In this section, we present the overall conclusions of this document in the context 

of findings expected and novelty of our contribution. 

 

To the best of our knowledge, this is the first approach implemented as an 

optimization framework for dynamically modeling: (i) fault detection and 

correction processes of systems functionalities (modules) through the SRGMs that 

best fit the actual testing data, (ii) testing cost/time constraints, and (iii) 

parameter-specific uncertainties phenomena. So that the systems functionalities 

(modules) with shorter time (budget) are tested and that reveled bugs are fixed 

earlier. We provide guidelines for practitioners. We provide support for their 

testing allocation decisions based on cost, time, and software quality. 

 

We have also proposed an automatic prioritization approach for large software 

systems that embeds the “code churn” measure. Specifically, we have provided 

support for optimizing regression functional testing with coverage and churn 

metrics. Moreover, our work has been also focused on the automation of the 

support for the architectural decisions. Specifically, we have focused on the (i) 

modeling and analysis of QoS tradeoffs of a software architecture based on 

optimization models, and (ii) definition of framework for supporting the software 

architects/maintainers. More specifically, we support the software 

architects/maintainers to maintain the interactions and conflicts between 

requirements, between design decisions, and between requirements and design 

decisions. The support includes automatic detection (by model checking 

techniques) of interactions and conflicts mostly in the part of the architecture 

design decisions and propagation of interaction between different levels. Our 

approach also allows producing the space of possible feasible architectural 

solutions obtained by instantiating parametric design decisions. Each solution is 

computed taken into account the specification constraints associated with the 

design decisions and the known interactions and conflicts between concrete 

design options. 
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