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Abstract—We present a framework for assessing operational
reliability and performance of Web Services. The framework,
named WS-REPAS, is hybrid in that it combines a modelling
approach, based on Discrete Time Markov Chains (DTMC), with
monitoring and in vivo testing of the service under assessment.
Through the passive observation of the software in operation, field
data are gathered and used to continuously update values of the
parameters of the service DTMC model; changes in the service
provisioning, or in the way it is used, trigger an active strategy,
which executes proper testing sessions, ultimately yielding faithful
estimates of the current service reliability and/or performance.
We illustrate the framework and the automated support it
provides. We show how it works describing experiments with
a Web service publicly available in the Github repository.

Index Terms—Web services, Reliability assessment, Perfor-
mance test, In vivo testing.

I. INTRODUCTION

After about twenty years since their appearance, Web Ser-
vices (WS) are probably still the most popular, standardized
and technologically supported model for building distributed
service-oriented applications. Two key Quality of Service
(QoS) attributes for WS are reliability and performance: this
paper addresses the problem of their assessment, namely, the
engineering task of quantitatively evaluating the reliability and
performance of a web service in its operating conditions.

This engineering problem is relevant in several situations:
examples are the selection of a WS, the search and QoS-based
ranking of functionally equivalent WS, or the composition
of atomic services into a new composite WS [1]. We cope
with the problem from the point of view of site operation
engineers. Typically, they are required to compute QoS metrics
of web services in quasi-production or in actual production
environments: for instance, site reliability engineers at Google
are “responsible to quantify confidence in the systems they
maintain” [2]; similarly, quality assurance teams in DevOps
cycles or in Continuous Integration practices are in charge of
measuring Key Performance Indicators at quality gates [3].

With the goal of assessing WS reliability and performance,
this paper proposes WS-REPAS, a hybrid engineering frame-
work combining a modelling approach, based on Discrete
Time Markov Chains (DTMC), with monitoring and in vivo
testing of the service under assessment. The combination of

off-line analysis techniques with run-time mechanisms for
continuous verification is advocated in [4]. In WS-REPAS,
field data are gathered through passive observations of the
service in operation, and used to continuously update param-
eters of the service DTMC model. When changes occur in
the way the service is provisioned, or in the way it is used,
an active strategy is triggered, which executes proper testing
sessions. WS-REPAS is meant for practitioners, such as site
operation engineers, who can thus leverage monitoring data,
usually available from WS infrastructure facilities, to feed
automated analysis and testing activities, to finally produce
accurate estimates of the reliability and/or performance of a
Web service.

The rest of the paper is organized as follows. Section II
provides some background and discusses related work. Section
III gives an overview of WS-REPAS, providing background in-
formation on the modelling and testing techniques it combines.
WS-REPAS is detailed in Section IV, while the automation of
its key steps is discussed in Section V. Section VI presents
the case study. Section VII provides concluding remarks.

II. BACKGROUND AND RELATED WORK

There have been several initial attempts to define WS
reliability. Zhang and Zhang considered it as a combina-
tion of correctness, fault tolerance, testability, interoperability,
availability, and performance [5]. Zhao et al. viewed it, in
a customer’s perspective, as a function of availability and
correctness [6]. Nowadays, it is usual to define WS reliability
as the probability of failure-free operation under specified
conditions for a specified time, similarly as for software
products.1 However, as WS offer services on demand, their
reliability is often computed or estimated using a more prag-
matic metric, namely as percentage of failing demands [8].
For instance, as stated in [6], “a web service that exhibits
99.7% reliability suggests that the service will fail at most
three times out of one thousand attempts”. We adopt this
approach, expressing WS reliability in terms of the probability

1According to the IEEE Recommended Practice on Software Reliability,
“software reliability predictions are a measure of the probability that the
software will perform without failure over a specific interval, under specified
conditions” [7].



of failure on demand (PFD), a discrete user-oriented metric of
the above usual reliability concept. We focus specifically on
operational reliability, i.e., the reliability of a Web service
actually observed during operation.

The literature on the assessment and/or prediction of the
QoS of WS is rather large. Often, the QoS metrics of individ-
ual WS are assessed based on historical data, so as to predict
the QoS of a composition of WSs. A common goal of such
assessment/prediction task is to support the optimal selection
of services in a composition [1]. A widely explored strategy
to exploit historical data is collaborative filtering. As the QoS
of a WS depends on its implementation but also on the way
it is used, for every user-service couple there is a specific
“value” of QoS. Collaborative filters exploit such user-service
QoS pairs to best combine several services in a composition.
Two main collaborative filtering approaches exist:

• Memory-based (or Neighbourhood-based): the QoS of
missing user-service couples is predicted by exploiting
users- or services-similarity. Zheng et al. propose a
collaborative approach to predict the WS reliability for
the current user, without requiring actual WS invocations,
by employing the past failure data for similar users [9].
Zhang et al. use collaborative filtering for predicting the
QoS of WS to make recommendations, based on past
experiences of service users [10].

• Model-based: the missing QoS values are predicted con-
sidering complex relationships extracted from data, by
exploiting mining and machine-learning techniques. Silic
et al. present CLUS, a model for reliability prediction
of atomic WSs, which estimates the reliability for an
ongoing service invocation by aggregating data of past
invocations using the K-means clustering algorithm [11].

In some studies, like the one by Silic et al., a third class
of collaborative filtering approaches can be defined as hybrid.
This category includes techniques that use different combi-
nations of collaborative filtering approaches. The work by
Zhang et al. also presents a collaborative filtering technique in
which a user-based and an item-based approach are combined
together [10]. Most of these works target reliability as QoS
attribute of interest; they represent the most common way to
passively exploit data from monitoring to derive an estimate.

Testing is not a common practice to assess QoS attributes
of WS, with the notable exception of Google’s Site Reliability
Engineering (see [2], Ch. 17). Indeed, testing is typically
used for fault detection purposes at a pre-release stage or on
field for enabling fault-free compositions. Few works consider
testing to perform WSs composition based on the assessment
of some QoS attribute [12]–[16]. Zhang proposes an approach
based on dynamic testing to determine whether a WS can be
integrated in a configuration while ensuring a suitable degree
of reliability [12]. Tsai et al. propose group testing to evaluate
the reliability of both atomic and composite WS; majority
voting is used as an oracle for tests [13]. Di Penta et al. present
a technique and a tool to allow users to run test suites against a
service to evaluate functional and non-functional requirements

[14]. Ali et al. propose an extensible framework to assess
service composition toward a more trustworthy and reliable
service ecosystem [15]. Zhu et al. define CARP, a black-
box strategy to perform a context-aware reliability prediction
of WSs [16]. CARP includes an offline step to train the
context-aware reliability model from historical invocation data,
followed by an online step to support on-demand reliability
predictions for ongoing service invocations.

Few researchers tried to combine monitoring with testing
to assess a QoS attribute of interest. Oriol et al. propose
SALMon, a versatile service monitoring framework, that pro-
vides different strategies to get the QoS by combining passive
monitoring and online testing strategies [17]. This is a general
framework that do not focus on specific (monitoring-based or
testing) strategy for the assessment, nor on specific QoS at-
tributes, but enables different monitoring or testing techniques
and different QoS attribute to be integrated transparently.
Sammodi et al. introduce a framework and a prototypical
implementation, based on SALMon, that exploits synergies
between monitoring, online testing and quality prediction [18].
Some more details are given on test cases selection, where
the strategy aims at minimizing the number of online tests
performed to obtain a better coverage of service executions.

Our solution falls into this category. The monitoring-testing
combination features a non-intrusive monitoring-based (black-
box) estimate built upon a Bayesian model, a testing-based
estimate (with high statistical confidence yet with minimum
number of tests), and a strategy to continuously combine both
estimates seamlessly for improved accuracy.

III. OVERVIEW

The WS-REPAS framework combines the KAMI model-
based approach with an in vivo adaptive testing technique
exploiting monitoring data for runtime reliability assessment.

KAMI is a framework (shown in Figure 1) conceived for
run-time modelling of service-based systems [19]. It focuses
on non-functional models which are typically dependent on
(numerical) parameters that are: i) provided a priori by domain
experts, or ii) extracted from other similar systems.

Initial	estimates	

Monitored-based	
data	

Refined	estimates	

System	
Requirements	

Implementation	

Modelling	

Bayesian	estimator	

Fig. 1. The KAMI approach (adapted from [19]).



Starting from the system requirements, KAMI defines a
non-functional model; the values of the model parameters are
initially defined using estimates of the expected behavior of the
system. This initial (imprecise or even incorrect) knowledge
is called “a priori knowledge”. When the system is deployed,
the framework collects monitoring data which correspond to
model elements. For example, if the adopted model is a
DTMC, the collected data are the ones representing transi-
tions among states of the model (which are directly related
to the system usage profile) associated with their execution
time or failure probability, depending if the QoS of interest
is performance or reliability. For instance, in service-based
systems such events are service invocations associated with
their response time and/or failure probability.

These data represent the “a posteriori knowledge” engi-
neers have about the system being modeled; data feed a
Bayesian estimator as defined in [19], in charge of producing
new estimates of the model parameters. These updated models
provide a more accurate representation of the current behavior
of the system, and allow engineers to automatically check
conformance to requirements while the system is running.

In this perspective, the accuracy of the initial values adopted
as a priori knowledge does not affect the effectiveness of esti-
mates of model parameters. Indeed, KAMI can also be useful
in case of greenfield projects, where no a priori knowledge
exists. In these case, random values might be adopted as a
priori knowledge and the Bayesian estimation produces the
correct estimates even if requiring more run-time data.

Regardless of the specific modelling formalism used, this
approach is a passive strategy, since the assessment is based
just on the observation of the system in operation. Passive
strategies have the advantage of coming at low cost (mon-
itoring is the main cost it incurs, provided that the model
is simple enough to be solved/updated); however, they are
limited in terms of accuracy especially in an evolving context
for (at least) three reasons: i) due to the passive nature
of monitoring, the demand space might be not explored
adequately (e.g., never exercising failing demands, or never
using a subdomain), yielding large-variance and inaccurate
estimates; ii) in a highly-dynamic environments (e.g., service-
based applications), both the usage and the failure probability
are expected to change quickly; iii) even under a stable usage
profile and failing behaviour, the estimate of a pure passive
approach needs time to converge to the true one, as, regardless
of the specific model, a certain number of observations are
needed for confidently state a QoS value. What can happen
is that the technique could never converge because of sudden
changes of the profile, hence yielding a constantly old and
inaccurate estimate of the QoS of interest.

WS-REPAS complements passive information with an ac-
tive strategy, combining data coming from monitoring and
data generated by properly designed online testing sessions.
This allows to actively “spot” those demands more informative
about the current reliability, yielding small-variance (i.e., high-
confidence) estimates, at the cost of running a testing session
when needed. An efficient testing algorithm is exploited to

Fig. 2. The WS-REPAS hybrid modelling/testing framework

have confident estimates with few tests. Figure 2 outlines the
proposed framework, which is detailed in the next sections.

IV. WS-REPAS

A. Modelling

Modelling aims at providing a suitable description of the
system under assessment. Several models can be leveraged
from the literature of performance, reliability and availability
assessment [19], the most common ones being Markovian
models, Queueing Networks, (Stochastic) Petri Nets or com-
binatorial models. We rely on Discrete Time Markov Chains.

A DTMC is characterized by a set of states and transition
probabilities between them. The chain evolves in discrete
steps. The one-step transition probability matrix M = [mi,j]
is a stochastic matrix wherein each mi,j is the probability
of going to state j at step n from state i at step (n − 1).
We use irreducible DTMCs (i.e., with no absorbing state), as
they are well suited for continuously running applications like
Web services. States model service invocations, and transitions
represent sequences of invocations.2 Specifically, depending
on the preferred granularity and on the WS application size,
a state can represent i) the invocation of a service, namely, of
any of its method (service-level), or ii) the invocation a specific
method of a service (method-level), or iii) the invocation of
a specific method of a service with inputs belonging to a
specific partition of the method’s input space (partition-level).
In the following, we assume the latter one, namely the finest
granularity. The information, for all the cases, is retrieved from
the WS specification, as detailed later in the paper.

The state-dependent probability vector p(n) at step n of
a DTMC, representing the probabilities of being in each state
at time n, is fully determined by the transition matrix M ,
since: m(n) = m(0) Mn, with m(0) being the initial probability
vector. As n → ∞, mi,j values become independent of both
n and i: all the rows of the matrix M converge toward a
common limit vj . The set of vj values is the steady-state
probability vector v, namely the probability of being in state
j as n → ∞: vj =

∑
i vimi,j . Its value can be obtained

starting from v(0) = m(0) and then iteratively applying v(n+1)

2The representation is suited for capturing state dependencies due to shared
data (which are present both in composite WSs, SOAP WSs and in many
REST services, supposed to be, in principle, stateless) or state dependencies
caused by the environment, such as hardware, external systems, etc.



= v(n)M until convergence is reached [20]. For computing
the expected reliability or performance of a service, the j-
th state is associated with a reward rj (in our case, the
probability of failure on demand – PFD - for (un)reliability,
and the throughput for performance). From the steady-state
probability vector, the steady-state reward Z is given by:
E[Z] =

∑
j vjrj . Transient rewards may be of interest too.

B. Bayesian estimation

Data gathered from monitoring are exploited to update the
DTMC’s parameters by a Bayesian approach. Specifically, we
update the transition probability matrix M (i.e., the usage
probability) and the rewards (PFD and throughput).

For the update of the matrix M , we assume that information
about the occurrence of every transition from state i to state j
in the DTMC can be collected through run time monitoring.

In a Bayesian perspective the transition matrix M is a
random matrix and the statistical problem of updating each
mi,j , using run-time data, corresponds to updating the prior
distribution of M (depending on m(0) ) computing a posterior
conditional probability given the run-time data.

Then the posterior distribution leads to a new estimate of
M . Hence, the Bayesian solution of updating M requires a
statistical model and a prior distribution of M . Regarding the
prior distribution of M , we assume statistical independence
among its rows and model each row (mi,1, . . . ,mi,k) with a
Dirichlet Distribution.3 It yields a posterior distribution, which
is still a Dirichlet, from which we derive an updated transition
matrix through an updating rule that can be expressed as the
weighted sum of our initial estimate and of the knowledge
we extract from run-time data. The weights can be defined in
several ways and they quantify the confidence we have on the
a priori knowledge with respect to run time data.

In WS-REPAS, the weight assigned to the prior distribution
is set to zero each time a testing session is triggered, namely
each time a significant change in the reliability or performance
estimate has been detected (e.g., because of the changed
profile or services’ PFD or throughput), as detailed in the next
Section. In fact, in such a case, the far history is uninformative
and can slow down the convergence.

A complete description of the mathematical steps involved
in this process is beyond the scope of this paper, interested
reader can find detailed information in [19].

As for rewards, the PFD values are updated by a Beta
distribution. Let us denote as fi the PFD associated with the
i-th partition of a service method. Requests are characterized
by a binary outcome: they can be successful or not. We are
interested in the number of failures over Ni demands, which is
well captured by a binomial distribution with parameters Ni

and fi. The failure probability fi in a service-based system
context is likely to be not a fixed value, but it can change over
time. This is suitably represented as a random variable with

3The choice of the Dirichlet distribution is justified in [21], which proves
that, in a multinomial model, the prediction of a future event is linear in the
number of past occurrences if and only if the prior distribution is Dirichlet.

Beta distribution Beta(a; b), which well represents propor-
tions in binomial processes, coming to the well-known Beta-
Binomial distribution. Then, the estimate of fi is given by:
f̂i = E[fi] = ai

ai+bi
.

With a similar reasoning, we update the throughput using
a Poisson-gamma distribution, which uses the Gamma as
conjugate distribution for the rate parameter of the Poisson
process. In particular: let ti > 0 be the throughput of method
i that we want to update. The Poisson(ti) distribution models
the number of responses that have been received in a given
time interval; as before, the rate ti changes over time and can
be modelled as a Gamma(u, v) distribution, with expected
value equal to: t̂i = E[ti] = ui

vi
.

Thus, the overall model consists of an m-variate Dirichlet
distribution to capture the uncertainty about the operational
profile, of n univariate Beta and Gamma distributions to
capture the uncertainty about the PFD and about the through-
out, respectively. These have all the nice property that the
posterior preserves the form of the prior distribution, and
just the parameters need to be updated as new observations
are gathered. Suppose that N1, N2, . . . Nm new demands are
done to the WS methods’ partitions 1, 2, . . . ,m, out of which
x1, x2, . . . xm fail and with response times y1, y2, . . . ym: the
new distributions will be: D(α1+N1;α2+N2; . . . ;αm+Nm)
for the operational profile; Betai(ai + xi; bi + Ni − xi);
Gammai(ui + Ni; vi + yi). Thus, both p̂i, f̂i and t̂i are
updated by this simple mechanism, which requires a negligible
computational cost.

C. Change detection

In this step, we aim at revealing relevant changes in the
usage and/or of QoS attribute of interest (e.g., PFD and/or
throughput), so as to trigger testing only when a severe change
happens, in which case the pure model-based estimate is no
longer reliable for what said previously.

Let us first define an “observation” st at (discrete) time t
as a request-response pair. Each time such an observation is
collected, the p̂i, f̂i and t̂i values of each partition are updated
as described previously – hence yielding the updated reliability
and performance estimate by the DTMC solution. These are
the estimates computed via just monitoring.

Let us now consider a sliding window Wt consisting of the
last k observations before t (W = {wt−k, wt−k+1 . . . , wt}),
where: k is the window size and is set to k0. We perform
a statistical hypothesis test on the sample Wt in order to
check if the reliability or performance estimate is significantly
increasing (or decreasing) or not. We opt for the Mann-Kendall
(MK) test, which is a widely-adopted non-parametric trend
detection test making no assumption on the data distribution.
It tests the null hypothesis that there is no trend in data, with
a given significance level α, against the alternate hypothesis
that a trend exists.4 If, according to the MK test, there is no
trend, it means that the monitoring estimate is “stable” and
has converged to true value (with a confidence of 95%). If a

4We set: α = 0.05, namely a confidence of 95%; k0 = 50.



trend exists, it means that the estimate is not stable and is still
converging toward the true value.

Testing is run at the current time t only when a trend is
detected at time t on the window Wt – hence the current
monitoring estimate is not stable – and no trend was detected
at time t-1 on Wt−1. In other words, the monitoring estimate
was judged as “stable” at step t-1, and now a new trend has
been detected (e.g., because the true reliability/performance
changed and the estimate started converging toward the new
true value). This requires a new testing session to get a testing
estimate soon, rather than waiting for the monitoring estimate
to converge.

D. Field testing

Testing will complement the monitoring estimate when
required. The goal is to have high-confidence estimates with
as few tests as possible, by running in vivo tests. The proposed
approach exploits the survey sampling theory, which enables
elaborate schemes leveraging auxiliary information to drive
the test case generation process [22].

Specifically, we implement a weighted operational testing,
in which the estimate of the usage profile (p̂i) is “weighted”
by the estimate of the reward (f̂i or t̂i, depending on the
quality attribute to estimate), in order to select test cases.
This forms the testing profile, according to which tests are
generated. The underlying idea is to accelerate the occurrence
of failing or low-performance requests, rather than waiting for
them to happen in operation (like when we use only p̂i), thus
having the double positive effect of i) anticipating failures
and ii) improving the estimate’s accuracy, as demonstrated in
our previous work [23], [24]. We adapt the algorithm used
in our previous study, named Microservice Adaptive Relia-
bility Testing (MART ) for Microservice architecture (MSA)
applications [25], customized to work for both reliability and
performance testing of Web Services (namely, with both the f̂
and t̂ estimates). This is a without-replacement strategy, which
is known to work better at the expense of trickier mathematical
treatment on the estimator. To get an unbiased estimate of the
expected PFD and of the expected throughout, the Thompson’s
estimator is exploited, which is suitable for the implemented
sampling strategy [26]. Details of the algorithm are in our
previous work [25].

E. Composition

This step is in charge of combining the model-based (Me)
and testing-based (Te) estimates. To this end it implements a
set of composition operators, ⊗ such that, the results of

Compe = Me ⊗ Te
can feed the Evaluation module.

According to the case under exam, ⊗ can be instantiated
in several ways. For example, ⊗ can be defined as the
worst case estimate, whenever a conservative approach is the
most appropriate one; or ⊗ could be a weighted average
weMe + wtTe, where the values of we and wt depend on
the trust associated to the estimates. For example, it could

be wt = 1 (and consequently we = 0) when a change is
detected and until a stable phase is entered again. According
the the need, Compe could be a single value representing
either performance or reliability estimates, or it could be an
aggregated value combining both estimates, or it could be de-
composed in a couple of values < Compe(R), Compe(P ) >
whenever the need of dealing in a separate way with reliability
and performance arises.

F. Evaluation

This module takes in input the results of the composition
and the QoS requirements and implements a comparison
function Φ that can trigger reconfiguration actions.

This function can be implemented in several ways according
to the system of interest. For example, Φ could be a simple
operation, like a comparison with a given threshold of perfor-
mance and/or reliability, or it could be a check that Compe
belongs to a given range of values. Φ could also implement
more complex functions like the computation of Pareto front.

G. Reconfiguration

This is in charge of implementing reconfiguration actions,
triggered by the previous evaluation. For example, if the
reliability estimate highlights that a specific service or method
(represented by the expected reward in the state represent-
ing that service/method/partition) has a high PFD, then the
action can be an update of the service to improve the PFD
or a fault tolerance action. Similarly, if a service/method
exhibits a high expected throughput because of a high load
(represented by high transition probability values toward the
service/method/partition), then a load-balancing action, such
as redirecting requests, can be implemented, which result in
changing the transition probabilities, solving the bottleneck.
The implementation of specific reconfiguration actions is left
to future work.

V. TOOL SUPPORT

This Section discusses the automated support to the main
steps of the proposed WS-REPAS framework.

A. WS input partitioning and test cases generation

The partitioning of the input domain is performed starting
from a specification of the interfaces in the swagger format
(the WS Interface Specification in Figure 2). It consists of a
JSON documentation of the application, with a huge number

TABLE I
LIST OF JSON ATTRIBUTES

host hostname and port number
paths URL in the host that identify the resource

method http methods allowed for the URL
parameters list of parameters specified in the URL or in the payload

name parameter name
in location of the parameter (path or body)

type parameter type (Integer, String, ...)
maximum maximum value of the parameter, or specific

symbol/character
minimum minimum value of the parameter



of keys to describe the host, the methods (URI templates),
the parameters, the expected responses, and so on. Starting
from this one we derive a simplified JSON description of the
interfaces, where we consider the attributes described in Table
I. The attributes in bold are mandatory; those in Italic are
optional. A method can have no parameters; if a parameter is
specified, name, in, and type must be defined (maximum and
minimum values are optional). An example of the extracted
JSON specification of the methods follows.

{
” h o s t ” : ” example . com : 1 2 3 ” ,

” p a t h s ” :{
” / foo ” :{

” g e t ” :{
” p a r a m e t e r s ” : [ ]

}
} ,
” / foo /{ op1 }” :{

” g e t ” :{
” p a r a m e t e r s ” : [ {

”name ” : ” op1 ” ,
” i n ” : ” p a t h ” ,
” t y p e ” : ” I n t e g e r ” ,
”maximum ” : 1 0 ,
”minimum ” : 0

} ]
}

}
. . .

}

Starting from this specification, partitioning is performed
defining equivalence classes of the input values. If maximum
and/or minimum values are not specified, a default partitioning
is considered based on the type of specified parameters. Each
partition is encoded in a data structure called test frame, with
associated the estimates of the operational profile, PFD and
throughput (namely, p̂i, f̂i and t̂i, respecitvely) used by the
test case generation algorithm previously described.

B. Field data analysis

Execution data about the WS under test are gathered by
a monitoring infrastructure and processed by a parser (see
Figure 2) to extract the information necessary for change
detection and for the testing strategy. This takes in input a
couple request-response, which is obtained by the monitoring
infrastructure. The parser derives the partition (i.e., the test
frame) the input belongs to, hence feeding the Bayesian
estimation module, which updates the information as specified
in Subsection IV-B. This allows obtaining a fresh estimate
by the defined models and to improve the testing algorithm
performance.

C. Change detection

The change detection is performed by the Change Detector
component in Figure 2. This collects the latest estimates
of reliability, and performs the Mann-Kendall test using the
Kendall library of R statistical computing language.5

5https://CRAN.R-project.org/package=Kendall.

D. Tests execution

After every request, we have an estimate of reliability. This
estimate is chosen between the one deriving from the model
(Modelling in Figure 2) and the one from testing (Testing-
based estimator in Figure 2). Different ways can be conceived
to combine or chose between the estimates (composition in
Figure 2): in our current implementation, the policy is as
follows: testing is run only when the monitoring estimate
has a trend (like explained in Section IV-C); in such a case,
the testing estimate is expected to be more accurate, as
monitoring is not stable yet: hence we consider the last testing
estimate for all the subsequent time steps until the monitoring
estimates converges or the difference between the two becomes
negligible (i.e., < ε = 0.001).

VI. CASE STUDY

For illustrative purpose, we evaluated WS-REPAS on
a RESTful service for managing products feature models
(namely, compact representations of the features of products in
a Software Product Line), called Feature Service (FS)6, having
7 methods, 1,712 lines of code mostly in Java and SQL. The
purpose of the evaluation is to show the feasibility of our
approach in both a stable and a variable profile scenario.

A. Test infrastructure

The test infrastructure for the experiments consists of the
following components:

• Workload generator: it emulates clients of the application,
executing demands according to the true profile; after a
certain number of observations, the profile and the failure
probabilities may be changed so as to emulate a variable
profile, e.g. due to an upgrade of a service;

• Monitor: it performs the monitoring of the application
usage, feeding the WS-REPAS Engine. To this aim, we
use the MetroFunnel monitoring tool tailored for our
purpose, developed in our research group;7

• Bayesian estimator: that exploit the information obtained
by monitoring to update the estimated profile, the failure
probability and the estimated throughput;

• Test generator: it implements the testing algorithm to
select the test frames according to the operational profiles
weighted by the failure probability or throughput esti-
mates to get reliability and performance estimates based
on test results;

• Estimator: it assesses reliability and performance accord-
ing to the sampling and modelling strategies adopted.

B. Setup and execution

Two experimental scenarios are run to show the feasibility
of our approach. The first one is performed considering 900
observations under a stable operational profile, so as to check
for the convergence of the estimates to the true values. For the
second one, we consider 900 observations, split in three sets.

6https://github.com/JavierMF/features-service
7MetroFunnel is available at: https://github.com/dessertlab/MetroFunnel.



Fig. 3. Example of WS-REPAS execution to estimate the reliability in a static
operational profile condition, compared to the modelling approach without
testing

Fig. 4. Example of WS-REPAS execution to estimate the throughput in a static
operational profile condition, compared to the modelling approach without
testing

Each set is related to a different true operational profile, hence
emulating a scenario in which the usage of the WS changes
significantly during operation.

The test is configured considering the 80% of the total
number of test frames as budget. This value corresponds to
130 tests per execution.

C. Results

Figures 3 and 4 show that WS-REPAS converges to the
true reliability and performance. where the performance of
WS-REPAS are compared to the pure modelling approach,
namely, without the support of testing. In both cases, the
support of testing improves the estimate of the modelling
approach, producing values that are more representative of the
true information both in terms of reliability and of throughput.

Figures 5 and 6 report the result under the variable profile
scenario. At 300 and 600 requests, the true profile changes:
both Figures show the ability of WS-REPAS to adapt its
estimates to the variability of the true profile, following the
changes of the operational profile. In the case of throughput,
this is even more evident, since the testing estimate is able to
get much closer to the true value than the modelling approach;
the latter has a very slow convergence, and would clearly
require much more time to converge.

Two important remarks are: i) the testing-supported estimate
is able to “anticipate” the true value, sometimes by a large
amount of time steps, which can be useful to take preventive
actions before failure or performance loss is experienced by
end users; ii) this, of course, has a cost: in the shown example
case study, it amounts to 5 testing sessions for the reliability

Fig. 5. Example of WS-REPAS execution to estimate the reliability in a
variable operational profile condition, compared to the modelling approach
without testing

Fig. 6. Example of WS-REPAS execution to estimate the throughput in a
variable operational profile condition, compared to the modelling approach
without testing

assessment (Figures 3 and 5) and 2 testing sessions for the
performance assessment (Figures 4 and 6).

In the future, our aim is to precisely assess the trade-off
between the gain obtained (in terms of accuracy and of “antic-
ipation”) and the cost incurred (e.g., trying the approach with
different testing budget and/or different testing algorithms;
trying different policies to minimize the number of times that
testing is triggered). Moreover, the problem of test isolation is
outside the scope of this work, but our aim is to address the
challenges and side-effects brought by running in vivo tests in
operational instances.

VII. CONCLUSION

The quantitative evaluation of the reliability and perfor-
mance of Web services is an important engineering activ-
ity, especially in modern DevOps and continuous integration
practices. In such contexts, we believe this activity can be
carried out accurately and effectively through the seamless
combination of modelling and testing techniques, leveraging
field data which are typically made available to operation
engineers by monitoring infrastructures.

In this papers, we have presented WS-REPAS, a framework
which combines modelling by means of Discrete Time Markov
Chains and an active in vivo black-box testing strategy, pro-
viding confident estimates with relatively few runtime tests.
The framework is automated to a large extent; in particular,
test cases for the Web service under test are automatically
generated from a specification of its interfaces, based on a
partitioning of its input arguments.
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