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Abstract—This work presents a method to combine testing
techniques adaptively during the testing process. It intends to
mitigate the sources of uncertainty of software testing processes,
by learning from past experience and, at the same time, adapting
the technique selection to the current testing session. The method
is based on machine learning strategies. It uses offline strategies to
take historical information into account about the techniques per-
formance collected in past testing sessions; then, online strategies
are used to adapt the selection of test cases to the data observed as
the testing proceeds. Experimental results show that techniques
performance can be accurately characterized from features of the
past testing sessions, by means of machine learning algorithms,
and that integrating this result into the online algorithm allows
improving the fault detection effectiveness with respect to single
testing techniques, as well as to their random combination.

I. INTRODUCTION

Software testing techniques are known to perform well
when applied in combination [1], [2], [3]. However, selecting
the best set of techniques tailored for a specific software
application is a hard task. Indeed, techniques may exhibit
very different performance when applied to different software
applications and within diverse organizational contexts. Hence,
their once-for-all characterization is a challenge difficult to
cope with. Most often, practitioners use, informally, their
knowledge about the software under test in order to apply
“proper” combinations, but they do not have a structured
approach to select and combine testing techniques.

This paper presents a learning-based method for online
testing techniques combination. The method aims at maxi-
mizing the number of faults detected, by selecting test cases
dynamically from the technique with the greatest likelihood
of exposing a failure for the specific software under test.
To this aim, we address the inherent uncertainty that each
testing session is subject to, by exploiting both historical
information on techniques performance and data coming from
the test cases outcome as the testing session proceeds. The best
techniques are suggested at the beginning of the process, and
adjusted during the testing session by regulating the impact
of historical information with respect to online data. The
method includes two phases. The first phase provides an initial
characterization of techniques within a reference context (e.g.,
within a company), by exploiting available empirical data. To
this aim, an offline learning approach is adopted to infer a
relationship between the experienced techniques performance
in past testing sessions and features describing the application
conditions in which that performance is observed. This will

orient techniques selection in a new software application.
Accounting for the past is, however, not sufficient for having
the best selection. Performance of a technique depends on
so many variables, unrelated to the past, that it is unfeasible
to have a universally valid characterization (e.g., the specific
features of the software under test, the time and order of
application of techniques, the state of the software at the time
of application, and so on). This may cause totally different
behaviours from what observed in the past. Thus, offline
learning is complemented by an online learning phase, whose
goal is to adapt the techniques choice to the software under
test and to the observations coming directly from the field.
The goal is to direct the attention toward the best techniques
iteratively, being at the same time robust to noisy observations.
Offline learning is driven by an outlined procedure, which first
defines the features of a testing session potentially related to
the techniques performance, and then uses several machine
learning approaches for classification and prediction of the
techniques behaviour. Online learning is based on a Bayesian
algorithm that integrates offline learning results and uses the
importance-sampling approach to learn the distribution of the
“importance” of each testing technique.

From applying this method, this paper highlights that: i) it is
possible to predict, with high accuracy, the techniques perfor-
mance by machine learning algorithms. We defined features
of the testing session potentially related to its performance;
we then produced empirical data for such features by testing
three software programs, and used them to train classifiers and
build prediction models. The most impacting features are also
identified; ii) integrating the result of prediction into the online
Bayesian algorithm for techniques selection, with the goal of
considering historical data in the online selection, leads to an
improved fault detection effectiveness with respect to single
testing techniques as well as to their random combination;
iii) at higher level, formulating the problem compatibly with
machine learning schemes helps to highlight unknown facets
of the testing techniques behaviour, such their relationship with
program and testing process features, or their sensitivity to
historical data with respect to data coming from the current
testing session. In the rest of the paper, Section II provides
some background; Section III describes the method; Section
IV applies the approach to case studies; Section V surveys the
existing related literature; Section VI concludes the paper.
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II. BACKGROUND

The use of machine learning in software engineering has
a long history, and it served many purposes [4], including
defect prediction [5], debug/fault localization [6], software
development [7], and software testing [8]. There are many
machine learning techniques, and their usage in a specific
context depends on the type of the formulated problem and
on its underlying assumptions. Techniques can be grouped
into: i) offline learning techniques, which train models with
observed data in order to identify patterns in the test data;
ii) online learning techniques, which learn models incremen-
tally as more samples become available, and refine models
based on the observed data. Examples of offline learning
methods include decision/regression trees, random forests,
logistic regression, (multiple) linear regression, support vector
machines. Online learning is primarily based on probabilistic
representation and on the concept of adaptation; examples are:
Markov decision processes, reinforcement learning, stochas-
tic sampling, and Bayesian reasoning schemes (e.g., Bayes
networks)1. In this context, the problem addressed by offline
machine learning is formulated as a binary classification
problem. It consists in learning a predictive model from known
data samples belonging to two classes in order to classify
new unknown samples as belonging to one of them. The
problem addressed by online learning is instead formulated
as a Bayesian inference problem. An algorithm is defined to
prioritize testing techniques iteratively. It is based on a Monte
Carlo sampling method, named importance sampling, which
has been used successfully in many domains [10]. Importance
sampling is an inference method to approximate the compu-
tation of the true distribution of variables of interest, which
in many practical tasks is intractable. The method samples
from the true (unknown) distribution, and thus represents the
beliefs (i.e., hypotheses) about the state of the system by sets
of samples. Each sample is associated with a probability that
the belief is true, and at each iteration: (1) the hypotheses
are modified to account for changes in the system, (2) the
probability of each hypothesis is updated by examining some
samples of that hypothesis; and (3) a larger number of samples
are drawn from hypotheses with a larger (relative) probability,
to be analyzed in the next iteration [9]. The goal is to converge,
in few iterations, to the true probability distribution over the
set of hypotheses, identifying the ones more likely to be true.

III. THE ON-OFF LEARNING-BASED STRATEGY

The objective of the proposed strategy (hereafter On-Off
testing method) is to run test cases drawn from the technique
with the greatest expected probability to expose a failure at
testing time t. This probability depends on several variables,
which may be regarded as describing the program under test
(e.g., its static features and its state when the technique is
applied), and the state of the testing session itself (e.g., the

1Bayesian-based techniques are also successfully used as offline learning
methods; relevant examples include Naive Bayes, Bayesian network classi-
fiers, Bayesian Logistic regression.

number of test cases executed up to time t, the number of
failures already exposed by that technique, the type of residual
faults). Two are the key elements of the proposed strategy: i) to
exploit historical data for providing indications on techniques
performance; ii) to “modulate” the gathered information to the
new software program, by an adaptive testing procedure. In the
following, variables are introduced to formulate the problem;
then offline and online learning procedures are defined.

A. Problem Definition
A testing technique in this context is a test case selection

criterion2; given a number B of test cases as maximum budget
for testing a program, a testing session is the execution of a
sequence of B test cases chosen according to several criteria.
Consider a set of testing techniques T = {τ1, τ2 . . . τn} and the
current program to test denoted as P0. This is assumed to be
the set of available testing criteria that practitioners refer to.
For the problem definition, consider the following variables.
• Denote with H={h1, h2, . . . , hm} the past testing ses-

sions applied to software programs P1, P2, . . . , Pm. The
testing session to run on P0 is denoted as h0.

• Si(t): the state of a testing session on a program
Pi at testing time t. It is described by variables
ρ1,i, ρ2,i, . . . , ρg,i, representing features of the testing
session that change as testing time t goes on. We measure
the testing time t as number of executed test cases3.

• Oi: the set of values assumed by features of a program Pi,
denoted as ϕ1,i, ϕ2,i, . . . , ϕf,i; these are static features of
the program, and do not change during the testing session.

• di,j : Euclidean distance between normalized Oi and Oj ;
• Nτj ,i: number of test cases drawn from the technique τj

and applied to Pi;
• NTi: total number of test cases applied to Pi;
• Fτj ,i: number of failures exposed by τj when applied

to Pi; Fi =
∑
j∈T Fτj ,i is the total number of failures

exposed in testing Pi.
• θτj ,i =

Fτj,i

Nτj,i
: the detection rate of the criterion τj applied

to the program Pi;
• θi = Fi

NTi
: the total detection rate;

• Nτj ,i(t), NTi(t), Fτj ,i(t), Fi(t), θτj ,i(t), and θi(t) are
the defined variables evaluated at testing time t.

Regarding the testing session h0, the following parameters are
of interest in addition to the previous ones:
• θkτj ,0(t) is the detection rate of criterion τj in iteration k;

the “iteration” refers to the online learning algorithm.
• pj : a probability measure associated with each testing

criterion τj , representing the ability of τj of exposing a
failure; it will be proportional to the detection rate of τj .

The value to be maximized is the total number of exposed
failures F0, given a testing budget NT0. For simplicity, we
will omit the subscript 0 from the notation when referring to
the software program under test P0 (e.g., θτj ,0 = θτj ).

2Testing criterion is used synonymously to testing technique
3Measuring testing time differently, e.g., by calendar time, or CPU execu-

tion time, does not impact the strategy definition and its application, because
the metrics to characterize the techniques (next sub-section) are not influenced
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B. Preliminary Technique Characterization: Offline Learning
The offline learning procedure uses < Pi, hi > pairs as his-

torical data. A sample x in the learning process refers to a test
case applied at time t, and it is a pair < Si(t), outcomei(t) >
composed by the Si(t) features vector, ρ1,i, ρ2,i, . . . , ρg,i, at
testing time t as predictors (we call them dynamic metrics,
since they are time-dependent), and the outcome of the test
case as predicted binary variable (0/1). Features at testing
time t are intended to capture conditions in which a test case
is applied, and are assumed to impact the outcome of a test
case. In particular, we conjecture that the outcome of a test
case mainly depends on the state of the system at the test
case execution time. For instance, if many test cases have
already been executed with a given technique, exposing many
failures, and the detection rate referred to that technique at
time t is considerably decreased, it is unlikely that a test case
chosen according to that technique will still expose any failure;
the same test case, executed in different conditions, may,
instead, provide a positive outcome. Based on this concept,
we identified a set of features describing the “evolution” of
a testing session potentially impacting test cases outcome. In
particular, referring to a program Pi, we define:
• NTτj ,i(t), and NT τj ,i(t) =

NTτj,i(t)

ti
which is the

normalized value of the number of test cases already
drawn from τj at time t (NTτj ,i(t)) to the current number
of executed test cases.

• Fτj ,i(t), and F τj ,i(t) =
Fτj,i(t)

Fi(t)
, i.e., the total number

of failures uncovered by τj at time t and its normalized
value to the total number of failures exposed;

• NTi(t), Fi(t), i.e., the total number of test cases and
failures exposed at time t;

• MTTFi(t): mean time to failure from time 0 up to time
t; it is the inverse of the detection rate θi(t);

• MTTF τj ,i(t) =
MTTFτj,i(t)

MTTFi(t)
, i.e., the MTTF referring

only to τj over to the total MTTF.
• LTTFi(t): last time to failure at time t, given by:
LTTFi(t) = t − t(F ), with t(F ) denoting the time
in which the last failures occurred; LTTF τj ,i(t) =
LTTFτj,i(t)

LTTFi(t)
, i.e., the last time that τj exposed a failure,

over the last time that a failure was exposed.
• θτj ,i(t), i.e., the detection rate referred to τj .
• τj , the applied testing technique

These metrics complement measures like detection rate or
total number of failures found, which are not sufficient alone
to judge a technique performance in a testing session. Con-
sidering such metrics, the following procedure is defined:
1) Sample Collection: to build a sample, the set of features
ρ1,i, ρ2,i, . . . , ρg,i are collected from past testing sessions.
These features, as well as the values outcomei, are extracted
from test results. The information needed for each test case is:
test case number, criterion used, and outcome, from which all
the features can be computed. Samples are separated per pro-
gram, obtaining |P | datasets: Di =< Si(t), outcomei(t) >.
2) Selection of Predicting Program and Classifier: to enable
prediction from programs in the repository to the program

undergoing test, P0, a predicting program and a classifier
algorithm need to be selected. To this aim, two solutions are
considered with a two levels of accuracy/overhead trade-off.
The former is called basic cross-program prediction; as for
the latter, we refer to the one suggested by Zimmermann et
al. [12]. We first describe the main steps of these procedures,
and then go into detail of each step. For the basic procedure,
we define the following steps:

1) Let us denote with pred(i)j , the prediction for program
Pi from Pj . We are interested in figuring out how to
perform pred(0)j , being P0 the current program. We
chose, as Pj , the program with the minimal distance
minj∈P (d0,j), where the distance is computed based on
the set of normalized static features ϕ1,0, ϕ2,0, . . . ϕf,0
(O0) and ϕ1,j , ϕ2,j , . . . ϕf,j (Oj).

2) Once the program has been chosen, the classifier is
selected. A validation of a set of classifiers is carried
out on the dataset Dj , which refers to Pj . Results are
compared, and the ones statistically worse are discarded,
whereas the remaining ones are validated classifiers4.

3) A series of cross-program evaluations is performed by
using Pj as training set and the other programs (i.e.,
Pi with i 6= 0 6= j) as test set, and all the validated
classifiers. The classifier with the best average result,
weighted by number of samples, is chosen5. The output
is the pair < Pj , C >, with C the selected classifier.

if a sufficient number of programs is available, the procedure
from Zimmermann et al. [12] can be applied, which has the
advantage of allowing a preliminarily estimate of the expected
prediction quality. It foresees: i) the cross-program prediction
among all the program pairs (with all classifiers Ck), obtaining
effectiveness measures for each pair; ii) the computation of
distances among all the program pairs di,j ; iii) the construction
of decision trees with samples < di,j , R(pred(i)j) >, with
R(·) denoting the effectiveness measure of the prediction
(there will be a tree for each measure R and classifier Ck);
iv) from the new program P0, compute the distances d0,j and
navigate the tree to estimate the effectiveness of the prediction
the would have the program j as predictor with the classifier
Ck. In this way, before actually doing the prediction, one can
establish if it will be successful or not. Of course, the best pair
< pred(0)j , Ck > is chosen. Further details of the Zimmer-
mann’s procedure are found in [12]. Since this procedure may
be expensive, the basic cross-program prediction is preferred
if one of the following conditions holds: i) a sufficient number
of programs to build the decision tree is not available; ii) the
obtained predictions with the basic procedure are satisfactory;
iii) there are no (time/cost/computational) resources to run all
the mentioned cross-prediction tests. As for the basic cross-
program prediction, let us detail the defined steps.

4If there are no statistically relevant differences among them, all of them
can be chosen for the successive step.

5If performance turns out to be poor (e.g., compared to past studies
prediction, as [11]), the best one is still chosen, but its poor prediction will be
compensated in the online learning phase, and the weight of historical data
will be low. In other terms, the approach is robust to poor predictions.
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TABLE I: Software metrics considered

Metrics Description Metrics Description Metrics Description
CountDeclFunction Number of Function C Code File Number of C Code files AvgVocabulary Average Halstead’s

Vocabulary
CountLine Number of all lines CountLineCodeDecl Declarative source code lines AvgDifficulty Avg. Halstead’s Difficulty
CountLineBlank Blank lines CountLineCodeExe Executable source code lines AvgEffort Avg. Halstead’s Effort
CountLineCode Lines containing source code AvgCyclomatic Average cyclomatic complexity AvgBugs Avg. Halstead’s Bugs Deliv.
CountLineComment Lines containing comments MaxCyclomatic Max. cyclomatic complexity VVolume Variance of Halstead’s Vol.
CountLineInactive Number of lines inactive from MaxNesting Maximum nesting level VLength Var. of Halstead’s Length

the view of preprocessor of control constructs
CountStmtDecl Number of declarative statements SumCyclomatic Sum of cyclomatic complexity VVocabulary Var. of Halstead’s Vocabulary
CountStmtExe Number of executable statements SumEssential Sum of essential complexity VDifficulty Var. of Halstead’s Difficulty
RatioCommentToCode Ratio of the number of code lines AvgVolume Average Halstead’s Volume VEffort Var. of Halstead’s Effort

to the number of comments line VBugs Var. of Halstead’s Bugs Deliv.
C Header File Number of C Header files AvgLength Average Halstead’s Length CountPath Number of unique paths

In the program selection (step 1) we use, as features ϕi,j ,
the metrics in Table I. Among the wide variety of metrics,
it is difficult to claim that a given set of metrics is the
best one in characterizing the program. Authors in [5] survey
several metrics at various levels of granularity (method-level,
class-level, component-level, process-level). Although there
are studies using every type of metrics, they show that the
most used and reliable ones are the method-level metrics,
followed by the class-level ones. We based our choice on this
observation, considering the metrics in Table I. These express
the complexity and size of the program, the most common
ones being the McCabe’s complexity, the lines of code, the
Halstead’s metrics, and the object-oriented CK metrics. It is
worth noting that engineers can select other metrics more suit-
able for their organization and for the software they produce.

The procedure is based on the conjecture that the “closest”
program to P0 is the best one at predicting techniques per-
formance in P0; if this is not true, during the online learning
phase the prediction will be discovered to be poor, and the
weight of history is accordingly lowered. The variant of the
Zimmermann’s procedure allows for predicting this perfor-
mance, giving more confidence on the expected prediction per-
formance, at the expense of more cross-predictions and more
samples required 6. In the step 2 and 3, classifier algorithms
needs to be chosen. Several algorithms can be adopted; some
common algorithms for binary classification problems, which
we adopted later on, are Decision Trees, Bayesian Network,
Naive Bayes, Logistic Regression. Algorithms undergo a cross-
validation, to assess their individual performance. Performance
for each run of cross-validation is assessed by indicators
derived from the number of true/false positives (TPs/FPs),
and true/false negatives (TNs/FNs)7. In particular, we use the
following indicators:
Probability of Detection (PD): PD = TP

TP+FN · 100%.
It denotes the probability that a failure-exposing test case will
actually be identified as such. A high PD is desired.
Probability of False Alarms (PF): PF = FP

TN+FP · 100%.

6E.g., for a decision tree with 30 samples, at least 6 programs are required
7Samples of the test set belonging to the target class (i.e., a test case

is successful in exposing a failure) are TPs if they are correctly classified,
whereas they are FNs. Similarly, samples belonging to the other class are
TNs if they are correctly classified, and are FPs otherwise.

It denotes the probability that a non-failure-exposing test case
is identified as failure-exposing. A low PF is desired.

Balance (Bal): Bal = 100−
√

(0−PF )2+(100−PD)2√
2

.
PD and PF are usually contrasting objectives, and a trade-off
between them is needed. Bal represents this trade-off and it is
based on the Euclidean distance from the ideal objective PD
= 100% and PF = 0% [11].
Given these indicators8, the cross-validation is performed, in
step 2, in the following way: the evaluation is repeated 100
times for each classifier on the dataset, and the average results
are computed. In each repetition, 66% of random samples are
used for the training set and the remaining for the test set.
The non-parametric Wilcoxon signed-rank hypothesis test [16]
is then applied to identify the best classifier(s) (α = 0.05)9.
The procedure tests the null hypothesis that the differences
Zi between repeated measures from two classifiers have null
median. Under the null hypothesis, the distribution of the test
statistic tends to the normal distribution since the number of
samples is large (N = 100). The hypothesis is rejected if p-
value≤ α. Classifiers statistically worse are discarded. In the
step 3, using Pj as training and all the others as test set, a
further evaluation of remaining classifiers is carried out, and
the best one in terms of mean Balance is chosen.
3) Usage of Prediction Results: The chosen program/classifier
pair < Pj , C > will be used during the testing session to
weight the acquired belief about the techniques performance
with respect to the current performance. Prediction will be
done in two phases: i) before starting the testing session h0, in
order to start the online algorithm by prioritizing techniques
that behaved better in the past (Section III-C step 1); ii) at
the end of each iteration k of the online algorithm, using
samples observed in the iteration k-1, in order to figure out if
the prediction from historical data is working well; this will
be used to weight the impact of historical data with respect to
current observations (Section III-C step 2). These are described
in the online learning step.

8The defined measures are commonly adopted in machine learning studies
[11], [13], [14]. Again, there exist other indicators that can be obtained
from true/false positives/negatives, such as accuracy and precision, but they
are known to be highly unstable for datasets where the target class occurs
infrequently [15], like ours (our target class is the exposure of a failure that
is very infrequent)

9This test has been shown to be robust with non-normal testing distributions.
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C. Adapting to the Software under Test: Online Learning

As mentioned, although past history can provide good
predictions of techniques performance, for the extremely un-
certain nature of software testing, historical information is
complemented by online adaptation. To this aim, Bayesian
reasoning is exploited, and in particular, the importance-
sampling method with KLD sampling adaptation [17].

1) Initial Assignment: As first step, the importance sam-
pling requires a relatively small initial set of samples, which
in our problem are test cases. Hence, the number of test
cases for each criterion needs to be decided. This step is
the first phase in which historical data are used. In particular,
before starting the session, prediction is done on the variables
outcome0(0), . . . , outcome0(t∗), where t∗ is the number of
test cases in the first iteration of the online algorithm. It
will represent the expected performance of techniques at the
beginning of the session, given the past results. To perform the
prediction before starting the session, we should hypothesize
the features’ values for these initial t∗ test cases in the new
program (e.g., the LTTF0(t), MTTF0(t) and so on, for
t = 0, . . . , t∗). Since we do not know them before starting,
the values of the first t∗ test cases run on the program Pj
are used. This means that without still knowing anything
about the program under test, we initially give the maximum
importance to past history, that will be then adjusted by
online observations. Thus, using these features as input to
the selected classification model, the prediction is carried
out for each testing technique10, obtaining outcome0,τi(0),
. . . , outcome0,τi(t

∗) values, denoting the predicted outcome
when the feature “testing technique” is set to τi. Given these
values, we distribute test cases as follows:

NT 0
τi = NT 0 ·

∑j=t∗

j=0 outcome0,τi(j)∑
i∈T

∑j=t∗

j=0 outcome0,τi(j)
(1)

Here, NT 0 is the total number of test cases to be executed
in the first iteration, and NT 0

τi is the resulting number of
test cases to be assigned to τi. This means that more test
cases will be given to the techniques that are expected to
perform better in the first t∗ test cases, considering the
impact of the past at this stage as equal to 100%. The term

p0
i =

∑j=t∗

j=0
outcome0,τi (j)∑

i∈T

∑j=t∗

j=0
outcome0,τi (j)

is the corresponding initial

probability assigned to criterion τi. An alternative policy is to
sample from a uniform distribution: NT 0

τi = NT 0

|T | , meaning
that the same number of test cases are drawn from each
criterion; the initial probabilities in this case are 1

|T | . This
means that no historical information is available; we will use
this policy as comparison with the history-based distribution.

2) Probability Update: After the initial assignment, the
algorithm iteratively updates the likelihood that a criterion
τi exposes a failure, pi. This probability is based on the

10Namely, prediction for each value of t = 0 . . . t = t∗ are repeated with
each testing criterion τi, i.e., |T | times

proportion of test cases that exposed a failure (i.e., detection
rate) in each iteration:

pki = α · pk−1
i + (1− α) · (θkτi − p

k−1
i ) (2)

The update rule is obtained by weighting the difference by the
smoothing factor α, which can be tuned in order to give more
or less importance to the past with respect to the current itera-
tion. To determine the latter value, the offline prediction comes
into play again. In particular, as more and more data become
available with testing execution, samples (i.e., test cases) are
used as test set, with the training set being again Pj test data.
Results of the prediction are evaluated in terms of Balance at
each iteration: the impact of historical data is regulated based
on the result of such prediction. For instance, if at the end of
the first iteration, the Balance computed with samples from
t = 0 to t = t∗ are below 0.5, it means that prediction is
working bad and the impact of history-based prediction will be
low compared to the online learning. This makes the approach
robust to poor predictions. This information is put in Equation
2 by assigning a value to α (between 0 and 1) proportional
to the last Balance measure (α = Balance · 1/c, with c > 1
constant11). The values of pki are then normalized, since they
are probabilities: pki = (pki )/(

∑
i∈T p

k
i ). These probabilities

represent the estimate at iteration k of the relative importance
of criterion τi.

3) Importance Sampling Algorithm: The importance sam-
pling algorithm chooses, at each iteration, the number of
test cases to execute in the next iteration, with the goal of
giving more test cases to techniques with larger probabilities
of detecting failures. The focus is progressively shifted toward
criteria more able to detect residual failures. We use the
importance sampling scheme modified to target our specific
problem. The algorithm uses of the KLD-sampling variant,
which adapts the number of sample in each iteration to the
desired error and confidence. The number of samples to
generate at iteration k + 1 is given by [17]:

ηk+1 = 1
2εχ

2
q−1,1−δ ≈

q−1
2ε {1−

2
9(q−1) +

√
2

9(q−1)z1−δ}
3

(3)
where: ε represents the error between the sampling-based
estimate and the true distribution that we want to tolerate;
1− δ is the confidence that we have in this approximation; q
is the number of test criteria from which at least one test case
has been drawn in iteration k; z1−δ is the normal distribution
evaluated with significance level δ. ηk+1 represents the number
of test cases to execute in the (k + 1)-th iteration. With such
a number available and probability vectors, we implemented
the following algorithm (Algorithm 1) to distribute test cases
at each iteration. The algorithm first computes the cumulative
probability distribution of the testing criteria, with probabilities
set in descending order. Then it computes the number of test
cases for the next iteration, and distributes, as output, test
cases to criteria proportionally to their relative importance.
It is executed until the number of available test cases ends.

11We chose a constant c = 1 in our experiments
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Algorithm 1
The importance sampling algorithm. Inputs: τi, pki : i ∈ [1, |T |]
//sort such that pki ≥ pki+1

b1 = pk1 ; //Initialize Cumulative Distribution
for i=1 to |T |

NT k+1
i =0; //initialization

end for
for i=2 to |T |

bi = bi−1 + pki ; //Compute Cumulative Distribution
end for
//Compute ηk+1 according to Eq. 3
r1 ∼ U [0, 1

ηk+1 ] //Draw sample from uniform distribution
//Distribute test cases to each criterion
i = 1;
for j = 1 to ηk+1

while rj > bi do
i = i+ 1;

end while
NT k+1

i =NT k+1
i + 1;

rj+1= rj + 1
ηk+1

end for
//Return re-ordered {NT k+1

i } : i ∈ [1, |T |]

It is finally worth to remark that the entire procedure is
based on a learning framework, whose setting up incurs a
cost. The minimal cost procedure foresees: an offline learning
step, including i) the extraction of metrics of the program
under test, ii) the computation of the distance with programs
stored in the base of knowledge, iii) and the selection of the
best classifier (by cross-validation); an online phase where
the costs are due to: iv) the initial test cases assignment
for each testing criterion, requiring outcome(t) predictions for
each criterion, v) the probability updates, which includes a
further prediction step for the smoothing factor update, vi)
the importance sampling algorithm. Steps i), iii), iv) anf
v) are fully supported by existing tools and thus easily made
automatic12. Steps ii) and vi), as well as the probability update
rule, are also relatively simple to implement13. Therefore,
the procedure execution can be easily automated; a further
potential source of cost comes from historical data collection.
Indeed, the technique makes more sense in organizations
already tracking historical data about testing sessions (at least,
as mentioned, the test case number, the criterion used, and
the outcome). Of course, tracking testing data is a practice
suggested (e.g., by CMMI) also for other purposes, related
to the overall process quality. Thus, the effort required by
this step is negligible for organizations that already collect
them, whereas, for organization not adopting this practice,
it corresponds to the cost of setting up an activity for data
tracking (in which case the advantage would go beyond
testing). It is finally worth to note that, by gathering data
iteratively, the accuracy of predictions will increase with time,
with further benefits in terms of defect detection ability.

12In particular, we used Understand 2.0 c©, available at:
http://www.scitools.com/, for metric extraction, and WEKA, available at
http:://www.cs.waikato.ac.nz/ml/weka, also providing an API for its usage by
Java programs, for all (cross-)prediction steps.

13We implemented them by Matlab c© procedures

IV. CASE STUDY

A. Objective

By means of a case-study, this Section investigates the
following research questions: i) does On-Off testing expose
more failures with respect to other techniques? ii) how much
the availability of historical information can impact the per-
formance of On-Off testing? To address these questions, the
performance of the On-Off strategy in terms of number of
failures exposed given a testing budget B is evaluated. The
On-Off testing will rely on three different testing criteria
from which to draw test cases. The strategy will be compared
against: i) the application of the three criteria singularly, ii)
a strategy, which we call All-RAN, that combines criteria
randomly, and iii) a strategy, that we called the full method,
in which one test case per each criterion is executed at each
test case execution time. We assumed the latter strategy as an
upper bound to compare with, since it employs each criterion
at each test case execution, with |T | · B (i.e., three times)
more resources than the others. Finally the impact of historical
information is evaluated, running test sessions at two extremes:
by considering no information from offline learning, and no
information from online learning, respectively.

B. Subject Programs and Testing Criteria

To experiment both offline and online learning phases, we
took a sample of 4 software programs, 3 of which used to
build the historical data repository, and one used as subject
to test (i.e., sample P0). Programs are taken from a publicly
available repository14, and chosen based on the availability
of test case specification and/or test suites, and with at least
5KLoC (lines of code). Selected programs with their basic
features are shown in Table II, with the last one being P0.
From the available test cases, we used three testing criteria to

TABLE II: Software programs considered in this study.

Program Language Size Functions Avg Cycl. Number
(LoC) Complexity of Faults

Offline Learning
Grep (v3) C 10068 146 14.49 18
Flex (v3) C 10459 162 9.78 17
Make (v1) C 35545 268 10.56 19

Online Learning
Space C 6199 136 3.87 33

show the applicability of the approach, namely random testing
(denoted as τRAN ), statement coverage-based testing (τCOV ),
and robustness testing (τROB). While for the first two criteria
several test cases were available from the repository, for the
third one we wrote test cases from the TSL specification15.

C. Offline Learning

To build the knowledge base, we carried out testing ses-
sions on the three selected programs. For each program,

14SIR repository: http://sir.unl.edu/portal/index.php
15TSL specification are written according to the category-partition method;

we worked on choices so as to include only error cases (i.e., test cases from
the invalid partitions), then generating test cases from them with the TSL tool
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TABLE III: Comparison between classifiers.

Algorithm Grep Flex Make
PD PF Bal PD PF Bal PD PF Bal

Naive Bayes (NB) 97.72 % 13.21% 90.52% 97.46 % 6.5 % 95.06 % 93.1 % 15.72 % 87.86 %
Bayes Net (BNet) 98.49 % 20.64 % 85.36 % 97.34 % 4.75 % 96.15 % 96.28 % 32.91 % 76.58%
Decision Trees (DT) 99.49 % 11.74 % 91.69% 98.72 % 17.09 % 87.88 % 98.53 % 45.49 % 67.81%
Logistic (Log) 98.76 % 23.64 % 91.36 % 98.32 % 19.55 % 86.12% 98.15 % 44.43 % 68.55%

we hypothesized a budget of test cases allocated to them
proportionally to the number of originally available test cases
in the repository; this led to 600, 500 and 800 test cases for
Grep, Flex, and Make, respectively16. The execution of test
cases led to detect and remove all the faults (except one in
the Make program); since fault location is known and we
tracked their activation, the debug has been immediate; at each
exposed failure, the corresponding fault has been removed17.
The cumulative number of faults detected for each testing
session is reported in Figure 1. During these sessions, dynamic
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Fig. 1: Cumulative number of failures for testing sessions

metrics introduced in Section III-B have been collected for
each technique along with the outcome of each test case.
These data are used to train and test classifiers. To choose
the program acting as predictor, we tested the basic cross-
program prediction. As first step, the distance is computed
among the programs used in the offline learning and the
program that will go under test, i.e., Space. Based on their
normalized metrics (see Table I), the closest software program
to space is Grep. The three Euclidean distances turned out to
be: d0,Grep = 2.7687, d0,F lex = 3.0439, d0,Make = 3.6740.
As second step, the four classifiers are cross-validated on the
Grep dataset; results are in Table III and IV. Note that the
former Table reports the average results (over 100 executions)
of cross-validation for each dataset, not only Grep. Perfor-
mance of classifiers differ in the three datasets among each
other (e.g., the highest Balance value with Grep, by Decision

16The selection of test cases from the available ones may bias result; this
is minimized by randomizing selection and choosing a number of test cases
proportional to the available ones.

17Note that in the following, the number of “exposed failures” and of
“detected faults” will be the same, since for each exposed failure there will be
exactly one fault detected and removed. Namely, a test case is repeated until
it succeeds; a failure caused by a test case from which more faults would be
removed is counted like repeated executions of that test case until it succeeds,
and one fault at each execution is removed

Tree, is the lowest one with Make). However, the average high
performance (especially in the recall attribute that is never
under 90%) suggests that the selected dynamic metrics (e.g.,
MTTF(t), LTTF(t), NT(t)) my be good predictors for test cases
outcome. By running an InfoGain attribute ranking algorithm,
in which attribute are ranked by their information gain [19],
we observed that the top five metrics useful for prediction are:
LTTFτj ,i, NTi, MTTF τj ,i, Fi, MTTFi.
The latter Table (IV) reports, in each cell, the result of the
Wilcoxon test for the Balance measure. We first consider the
row with more favourable comparisons (i.e., Decision Tree);
from this we chose the ones statistically equivalent, thus
Bayesian Net and Logistic Regression. From cross-validation
results on the Grep dataset from Table III, it is clear that all the
classifiers give good performance, but statistically the Naive
Bayes classifier is slightly worse, and thus it is discarded. The
remaining three validated classifiers are used in the successive
cross-prediction step, to choose only one of them. Using Grep
as training, and Flex (with 500 samples), and Make (with
800 samples) as test set, we obtained the values in Table V.
Based on results, the chosen pair at the end of this phase
is < Grep,Decision Tree >. The last step of the analysis is
performed with the online learning step applied to Space.

TABLE IV: Wilcoxon Test at α=0.05. B=statistically better; W=statistically
worse; 0=statistically equivalent

Algorithms DT BNet Log NB
DT - 0 0 B
BNet 0 - 0 0
Log 0 0 - 0
NB W 0 0 -

TABLE V: Cross-program Prediction

From Pi to Pj DT BNet Log
Grep to Flex 81.93 79.73 76.70
Grep to Make 75.73 76.90 48.88
Weighted Average 78.11 77.99 59.58

D. Online Learning

To start the online phase, the learnt model is applied first
at the beginning, in order to provide the initial weights to
techniques, and then at each iteration of the online algorithm,
to adapt weights. The online algorithm will terminate when
the testing budget is exhausted. For testing Space, we assume
a set of 500 test cases as budget.
The first step is to determine the number of test cases to
perform at the first iteration (i.e., NT 0) (cf. with Equation 3);
given a maximum tolerable error of ε = 0.1, and a significance
level of δ = 0.01, NT 0 = 46. Then, dynamic metrics from
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Grep regarding the first NT 0 test cases are considered, in
order to predict the outcome0(0), . . ., outcome0(t∗ = NT 0)
variables. Finally, the number of test cases for each criterion
(N0

τj ) is derived from Equation 1. When the history-based
initial allocation is considered, by using Grep as training set
and the Decision tree classifier, we have: NT 0

τRAN = 24,
NT 0

τCOV = 14, and NT 0
τROB = 818. Starting the testing

session with this allocation, the importance sampling algo-
rithm terminated in 12 iterations; in each iteration it updates
probabilities according to Equation 2. Figure 2 shows the
evolution of the assignment of test cases by the algorithm
to the various criteria. Note that the assignments take the
impact of offline learning into account; Figure 3 depicts the
corresponding evolution of α. It indicates that the prediction
from Grep to Space is working well, because the Balance is
always around 0.7, and thus the impact of offline learning
is noticeable in this case. The procedure starts with 24,
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Fig. 2: Assignment of test cases to the testing criteria
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Fig. 3: Evolution of the learning factor

14, and 8 test cases over 46; then, as faults are found
by the techniques, the assignment changes according to the
importance sampling. Up to the iteration 8, the coverage-based
and random testing perform well, and thus more test cases are
assigned to them (except in iteration 4, where a high detection
rate of robustness testing in the previous iterations caused the
algorithm to assign 18 test cases to it). The algorithm ends

18The percentage of outcomes0,τi variables denoting a failure-exposing
test case are: 0.5294, 0.2941, and 0.1764 for, respectively, random testing,
coverage-based testing, and robustness testing.

up with much more test cases suggested for random testing,
and with robustness testing having no test case assigned at
iteration 9, due to its lower performance after iteration 4.
The number of assigned test cases for each iteration is 46
up to iteration 8; then, when robustness testing receives no
assignment, the number per iteration becomes 3219. The final
result of this experiment is reported in Figures 4 and 5,
which show the number of failures exposed vs. the number of
test cases. It synthesizes the performance of On-Off learning
compared to the others. Figure 4 compares On-Off learning
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Fig. 4: Cumulative number of faults: On-Off approach vs. Random,
Coverage-based, Robustness testing
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Fig. 5: Cumulative number of faults: On-Off approach vs. Full selection,
and random selection of criterion (All-RAN)

against single applications of each testing technique. The
superiority of combining techniques versus applying single
techniques is confirmed. This is especially beneficial after
the initial phase of testing (in our case, after about 40 % of
testing time), since the detection power of single techniques
starts decreasing significantly. Of the other techniques, random
testing performed better, as predicted by its past performance
in the three selected programs. Testing sessions in Figure 5
compare the On-Off method with the totally random approach
(i.e., a testing criterion is selected randomly at each test case
execution), and with the full method (for which a total of
500 × 3 = 1500 test cases are executed). On-Off method
outperforms the random selection of criteria and is very close

19Iteration 12 ends with a total of 496 test cases; thus iteration 13 has only
4 test cases, and it is not reported in Figure
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to the full method; in some cases it is even better20, and ends
with only one fault less than the full approach, with one-
third of resources. This is due to the focusing of test selection
towards criteria more effective at that time.

E. Pure Online and Offline Learning

We finally assess the strategy with respect to the availability
of past information. In the previous experiment, the prediction
from past data showed good performance; however this may
not always be the case (e.g., due to the heterogeneity of the
programs, or to the unavailability of data). Thus we consider
the cases in which no past data are used (pure online learning)
and in which only past data are used (i.e., pure offline learning,
where the initial history-based assignment, 24, 14, 8, is kept
for all the session). The pure online learning scheme leads
to an initial uniform allocation of test cases, in contrast to
the history-based scheme, and to not include the smoothing
factor α in the probabilities update formula, Eq. 1. With the
uniform allocation, we have: NT 0

τCOV = NT 0
τROB = 15 and

NT 0
τRAN = 1621. The testing session conducted with this

setting led to the result of Figure 6 and 7. The former applies
only to online learning, since offline learning has a constant
assignment of test cases. It highlights that the assignment
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Fig. 6: Assignment of test cases to the testing criteria
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Fig. 7: Cumulative number of faults

20Note that it cannot be assumed that the full method is the best ideal
approach, since, the selected test cases per criterion are always a subset of
all the available ones, and may be not the best test cases

21The spare test case is allocated to the historical best criterion

has a more fluctuant trend than history-based scheme; this
means that the allocation of test cases is more sensitive to the
performance of the previous iteration. Due to the absence of
the smoothing factor, the robustness testing is soon left out
from the assignment, and it does not receive resources after
92 test cases. Similarly, the coverage-based method is stopped
after about 200 test cases22. Such exclusions also determine
the behaviour of Figure 7, where it is clear that the pure online
learning approach gets soon saturated, since it does not give
any possibility to the other techniques after just 200 test cases.
The performance is high at the beginning, which apparently
suggests that the history can actually be neglected. However,
observing the behaviour of the pure offline learning approach,
it can be noted that it starts much worse in terms of number
of faults found, but toward the end of the session some more
faults are detected, because coverage-based and robustness
testing can still provide their contribution. Performance is
worse than pure online learning but more linear. Of course
without online adaptation such an approach cannot achieve
performance of On-Off learning strategy.

V. RELATED WORK

In this Section a brief overview of related work is given.
Although combining testing techniques has been clearly shown
to be advantageous [1], [2], [3], the problem of how to
best select and combine techniques is still an open issue.
Machine learning methods are very promising due to their
ability to cope with uncertainty that characterizes software
testing problems. Dietterich et al. identified in 2008 software
testing as one of the most challenging domains for machine
learning over the successive ten years [20]. At the same time,
Namin and Sridharan [9] recently recognize that, despite the
potential of learning methods, their usage (especially referring
to Bayesian methods) in software testing is still in its early
stages. Despite this “early stage”, some relevant examples of
learning methods applied to software testing appeared in the
literature. In [21], authors propose to adopt decision trees to
improve test suites in category-partition testing in what they
called the MELAB (MachinE Learning based refinement of
BlAck-box test specification) process. The same author then
described some other experience in applying machine learn-
ing in testing-related problems [8], e.g., in debugging/fault
localization, in fault prediction for aiding risk-driven testing,
and in automatic test oracles identification. Although they
are all related to testing, these do not address the problem
of testing criteria selection. Online learning methods found
more application for techniques selection. Our online learning
phase is inspired to the work by Sridharan and Namin [18],
which utilizes importance sampling for prioritizing operators
in mutation testing. Their approach is aimed at finding the
most important set of operators in terms of percentage of
mutants left alive. Similarly, our approach aims at finding the

22Note that in this case iterations are many more than 12; the first two have
46 test cases; then, after robustness testing exclusion, they are composed of
32 test cases, and when also the coverage-based approach is excluded, they
have only 5 test cases, for a total of 67 iterations.
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most important testing criteria. In our case, we augmented
the amount of available information by considering historical
data. An approach using adaptation in test cases selection is
proposed in the works by Cai about adaptive testing [22].
In adaptive testing, the software is modelled as controlled
Markov chains (CMCs) and the control theory is used to act
on test case selection given the feedback from the field. A
further application of learning methods to testing is found
in [23], where an adaptive sampling mechanism to identify
feasible paths in a control flow graph with high traversing
probability is presented. These are good examples of learning
methods for various problems of software testing; our idea is
to complement offline and online learning to combine history-
based decision making and adaptive learning for testing tech-
nique selection. Besides machine learning, the problem of
testing technique selection has been addressed in a different
manner. For instance, Vegas and Basili [24] categorize in
a characterization schema all the information, collected in
interviews with experts, necessary to select techniques. Their
final result is a storage scheme for future techniques selection.
Even though their contribution does not provide methods
for actually perform the selection, that information could be
used for improving our offline machine learning approach. A
qualitative selection procedure is also suggested in [25], in
which the use of mapping matrix is proposed to analyze V&V
techniques and their ability of finding defects. However, the
work simply describes a way to organize the information about
defects and testing techniques, but they just outline a flow of
high-level steps with few quantitative support.

VI. CONCLUSION

This paper presented a method for testing techniques com-
bination. The approach adopts methods typically used for
classification/prediction problems along with a Bayesian-based
method to iteratively direct the attention towards more likely
failure-exposing techniques. Highly accurate predictions are
obtained for testing technique performance using the defined
testing session features and machine learning algorithms.
These are then used in the adaptive algorithm for technique
selection achieving clear improvements in fault detection ef-
fectiveness. It is worth noting that results are obtained with
one experiment on medium-size C programs; repetitions of
the experiment are therefore necessary to confirm the obtained
results, as well as the usage of larger (and diverse) programs
as case-studies, which may potentially exhibit different results.
This will be a main research direction in the near future.
Moreover, in the future we plan to extend the approach
by accounting for the severity of failures as one additional
dynamic metric, so as to characterize a technique also with
respect to the number of more (or less) severe failures it is
able to expose.
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