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Abstract—Mandelbugs are faults that are triggered by
complex conditions, such as interaction with hardware and
other software, and timing or ordering of events. These faults
are considerably difficult to detect with traditional testing
techniques, since it can be challenging to control their complex
triggering conditions in a testing environment. Therefore, it is
necessary to adopt specific verification and/or fault-tolerance
strategies for dealing with them in a cost-effective way.

In this paper, we investigate how to predict the location
of Mandelbugs in complex software systems, in order to
focus V&V activities and fault tolerance mechanisms in those
modules where Mandelbugs are most likely present. In the
context of an industrial complex software system, we em-
pirically analyze Mandelbugs, and investigate an approach
for Mandelbug prediction based on a set of novel software
complexity metrics. Results show that Mandelbugs account for
a noticeable share of faults, and that the proposed approach
can predict Mandelbug-prone modules with greater accuracy
than the sole adoption of traditional software metrics.

Keywords-Fault prediction; Fault tolerance; Mandelbugs;
Software metrics.

I. INTRODUCTION

Mission-critical software systems, i.e., systems whose
failure may lead to severe loss in terms of cost or safety, have
strict dependability requirements. In these systems, testing
activities are fundamental to detect software faults (also
referred to as defects or bugs) and to reduce the probability
of failures at operational time. However, there are faults
that are considerably more difficult to detect and that tend
to elude testing, such as: faults related to interactions with
the environment (e.g., hardware devices and other software
systems), faults related to the timing of events and to process
scheduling, resource leaks and data corruption. These kinds
of faults are often referred to as Mandelbugs in the literature,
due to the complexity of the conditions that cause their
manifestation [1]. According to several studies, these faults
have a significant impact in terms of software failures and
costs [2], [3], [4], [5].

Analyzing Mandelbugs in complex software systems, and
predicting where these bugs are located in the system, is of
practical interest for dealing with them during development
and testing. Experience has shown that such faults are
difficult to spot with traditional testing techniques, since
it can be challenging to control their complex triggering
conditions in a testing environment. Therefore, Mandelbugs
require specific strategies. Examples are fault tolerance
strategies that mask faults, for instance by reinitializing the

software state and retrying the failed operation [6], [7],
[8], [9], and verification techniques able to spot hard-to-
trigger faults, such as code reviews and model checking
[10], [11], [12], in addition to traditional dynamic testing.
Since these strategies can significantly increase the cost of
development and testing, it is necessary, in order to be
cost-effective, to focus them on the most problematic parts
of the system. Planning V&V efforts and fault-tolerance
according to Mandelbugs prediction can reduce the cost
of applying such strategies in large and complex software
systems. However, to the best of our knowledge, previous
studies on fault prediction in complex software [13], [14],
[15] did not consider the problem of predicting Mandelbugs.

In this paper, we investigate how to predict the location
of Mandelbugs in complex software systems. The main con-
tributions are: i) an empirical analysis of Mandelbugs in an
industrial mission-critical software system, ii) an approach
for predicting Mandelbugs in such systems, based on a
set of novel software complexity metrics. The considered
system is an industrial software system consisting of about
1.3M lines of code and 23 software modules, and developed
by Selex-SI, a Finmeccanica company producing mission-
critical systems for several domains (such as avionic, naval,
defense). Results shows that Mandelbugs account for a
noticeable share of faults, and that the proposed approach
can predict Mandelbug-prone modules with greater accuracy
than the sole adoption of traditional software metrics.

The paper is organized as follows. Section II provides
background and related work on the characterization of
Mandelbugs and on fault prediction. Section III describes the
industrial case study of this work. Section IV analyzes the
type and the distribution of bugs in the case study. Section
V describes and evaluates the proposed fault prediction
approach. Sections VI and VII conclude the paper.

II. BACKGROUND AND RELATED WORK

A. Mandelbugs

The study by Gray in 1984 [3] was the first work in
the published literature pointing out that often the nature
of software failures is “transient”. In analogy to the Heisen-
berg uncertainty principle, faults behind transient failures
are referred to as Heisenbugs, since they do not manifest
themselves when trying to debug them, due to perturbations
introduced by debugger (e.g., initialization of unused mem-
ory, influence on CPU scheduling and timing of events).



Conversely, non-transient bugs are referred to as Bohrbugs
(in analogy to the Bohr atom model), since they are easy to
diagnose once detected.

Subsequent studies further analyzed the extent and the
features of bugs according to this view, but adopting dif-
ferent terminologies with slightly different meanings, such
as environment-dependent vs. environment-independent [16]
and deterministic vs. non-deterministc bugs [17], or by
focusing on concurrency bugs [18], [19] as the class of
faults causing transient failures. Performing such studies has
proven to be a daunting task, since data about transient
failures is hard to collect by their nature.

In a recent taxonomy of software faults [1], [5], Heisen-
bugs are included in the more general class of Mandelbugs,
where the former are the bugs that change their behavior
when probed using a debugger, and the latter include all
the bugs whose activation condition is related to timing
and to complex interactions with the system state as a
whole, including hardware, OS and other software such
as middleware, virtual machines, libraries and remote ser-
vices. Mandelbugs include the subclass of aging-related
bugs, that are responsible for a phenomenon increasingly
being studied, known as software aging [4]. Software aging
typically causes an increasing failure rate and/or degraded
performance in long-running software systems. This can be
due, for instance, to the accumulation of errors in the system
state and to resource leaks such as physical memory.

Notwithstanding the difficulties in finding evidences of
Mandelbugs, field data studies provided some evidence that
Mandelbugs account for a significant part of bugs in complex
software. The analysis of field failures in Tandem systems
[3], [20] showed that most software failures were transient.
More recent analyses found that although Bohrbugs repre-
sent the majority of software faults, Mandelbugs account
for a significant share (in the 20-40% range) in open-source
[16] and in NASA space software [5], [21]. The study of
Mandelbugs has been exploited in [9] to analyze software
recovery strategies, and in [22] to analyze how testing for
aging-related bugs affects availability during operation.

B. Fault prediction

Fault prediction aims to identify which modules (e.g., files
or functions) in a given software system are more prone to
software faults, in order to support the planning of testing
and maintenance activities. To this aim, a set of measurable
attributes, namely software metrics, is extracted for each
module (from its source code or from its development
process), in order to relate them to the presence of faults
in the module. First, metrics are collected from previous
projects or previous versions of the current project, along
with information on bugs found in each module, in order to
train a fault prediction model. Then, metrics are collected
from the system under analysis, in order to identify fault-
prone modules using the learned fault prediction model.

Early research in this area was focused on the definition
of metrics able to measure the complexity of a software
module and, in turn, its likelihood to be faulty (such as
the McCabe’s and Halstead’s metrics) [23], [24]. Fault pre-
diction approaches have then evolved by adopting machine
learning and data mining algorithms and techniques, in order
to establish a more accurate relationship between sets of
software metrics and faults, using classifiers and regression
models [13], [25], [26]; these approaches are surveyed in
[27]. Subsequent studies confirmed the feasibility and ef-
fectiveness of fault prediction using public-domain datasets
from real-world projects, such as the NASA Metrics Data
Program, and using several regression and classifiers [14],
[28]. Other recent studies were on the definition of software
metrics collected from early lifecycle data such as textual
requirements [29], and on transferring prediction models
across different projects and companies [30], [31]. However,
to the best of our knowledge, only few studies considered
the problem of discriminating between fault types in fault
prediction [32], [33], and none of them took into account
the difference between Mandelbugs and Bohrbugs, for which
different V&V and fault tolerance strategies are needed.

III. SYSTEM OVERVIEW

In this work, we analyze an industrial software system
developed for the military domain. The goal of the system
is to support the EU Military Staff (EUMS) in the task of
rapidly set-up an Operations Centre (OPC) where a joint
civil/military response is required, and where no national
head quarters can be identified, once a decision on such an
operation has been taken. The system supports command-
level activities and cross-command level activities of the
EU OPC in conducting civilian and military operations on
behalf of the European Union. More specifically, the system
has been designed to: i) enable and improve command
and control of military and/or civilian organizations; ii)
support operational planning undertaken by the OPC; iii)
improve the information exchange; iv) increase Situational
Awareness; v) be the tool to improve collaborative efforts
between planning, execution, assessment and maintenance
of Situational Awareness; vi) enable the OPC to deliver
timely and informed decisions to the deployed forces, to
receive reports from them, to produce and send reports to
higher levels. Additionally, the system acts as support tool
for preplanning activities when the OPC is not activated.

The system is developed by outsourcing the implementa-
tion of modules to external providers, then integrating them
at Selex-SI. Testing is performed jointly with SESM on
single modules as well as on their integration. Results of
testing are reported back to providers in the form of problem
reports. The system is made up of about 1.3 MLoC across
12 components; in turn, some components include sub-
components. In our analysis, we handle a component and
its sub-components as different entities (i.e., the code of a



component not included in any sub-component is considered
a distinct entity), and we refer to both components and
sub-components as modules. In total, the system consists
of 23 modules. We discarded 4 modules from the analysis,
as information about them was not available to us.

IV. FAULT CLASSIFICATION

This section focuses on the classification and analysis of
problem reports of the case study. We describe in detail the
criteria adopted for fault classification, and we analyze the
distribution of faults across fault types and modules.

A. Fault types

In order to examine faults in a rigorous way, we classified
them among two classes according to the definitions by
Grottke et al. [5]. They concern the conditions related to
the fault activation and the error propagation:
• Mandelbug: a bug whose activation and/or error prop-

agation are “complex” where complexity is caused by
1) a time lag between the fault activation and the

failure occurrence, or
2) the possible influence of indirect factors:

a) interactions of the software application with
its system-internal environment (hardware, op-
erating system, or other applications);

b) timing of inputs, events, and operations (rela-
tive to each other, or in terms of the system
runtime or calendar time);

c) sequencing of inputs, events and operations
(the inputs could have been run in a different
order, and at least one of the other orders
would not have led to a failure).

• Bohrbug: a bug which can easily be isolated and
which manifests consistently under a well-defined set of
conditions, because its activation and error propagation
lack “complexity” as defined before.

In most cases, the complexity of the triggering conditions
of Mandelbugs makes them difficult to isolate, and signif-
icantly increases the efforts for systematically reproducing
the failures caused by these faults [3], [20]. Mandelbug is
the complementary antonym of Bohrbug (i.e., each fault
is either a Mandelbug, or a Bohrbug). Aging-related bugs
are a subtype of Mandelbugs (i.e., aging-related bugs is
always considered a Mandelbug), since they exhibit a time
lag between their activation and the occurrence of a failure.

It is important to note that these definitions do not focus
on the circumstances of one specific manifestation of the bug
(e.g., the one that made the testers notice its presence, or that
helped them locate it in the code), but rather on its potential
manifestation characteristics and its inherent features. For
example, even if a developer is able to reproduce a failure
in a well-controlled environment, the underlying fault is
classified as a Mandelbug if its manifestation can result in

a transient failure at the user site because one of the criteria
of complex fault activation or error propagation applies.

B. Classification procedure

The bugs analyzed in this study were obtained by inspect-
ing problem reports provided by the V&V team responsible
for the case study system. Data were collected by testers
using the Mantis bug tracker, during the integration testing
phase. Each problem report included a summary and a
detailed textual description of the software problem, the
module affected by the problem, the type of problem (e.g.,
bug or feature request), an indication of whether the problem
has been successfully reproduced, and the steps to reproduce
the problem (if available).

Given a problem report, in order to classify the related
bugs into Bohrbugs and Mandelbugs, we conducted a man-
ual analysis by examining the textual descriptions and, where
available, the steps to reproduce the failure occurrences, and
additional information attached to the problem reports (e.g.,
system logs and screenshots). In order to classify faults
in a rigorous way, we defined a classification procedure
consisting of the following steps:

1) Each problem report was first examined to make sure
that it was related to an actual bug. We removed from
the analysis those problem reports turning out to be
requests for software enhancements, reports related to
the aesthetic of user interfaces or to the online help of
the system, and problems rejected by the development
team as out of the scope of system requirements.
Problem reports not related to bugs were flagged as
not classifiable (NOC) and were not further analyzed.

2) We then looked in the report for any information
on the activation conditions of the bug (e.g., the set
of events and/or inputs required to trigger the fault),
its error propagation (e.g., how the bug affected the
program state and how error states propagated through
the system), and the failure behavior (e.g., the effects
perceived by the users). Problem reports related to the
same fault were grouped and analyzed as a unique bug
(e.g., the textual description indicated that the reported
problem was caused by the same underlying bug as
another report already included in our study).

3) A bug was classified as a Mandelbug (MAN) if we
found indications that one of the types of “complexity”
of the activation and/or error propagation applied
to it, among the ones included in the definition of
Mandelbugs: (i) there is a time lag between fault acti-
vation and the failure occurrence; (ii) the bug requires
an interaction with the system-internal environment
in order to manifest itself; (iii) the timing and (iv)
sequencing of inputs/events/operations have influence
on the fault activation and/or error propagation.

4) If there was evidence that the “complexity” criteria
above are not applicable to the bug (i.e., it is not a



Mandelbug), we classified it as a Bohrbug (BOH).
5) Sometimes, a report did not contain sufficient details

to classify the underlying bug. It was then assigned to
the class of bugs of unknown type (UNK).

The classification of reports was in a first round carried
out by an intern at SESM, using the criteria described
above. In a second round, three of the authors independently
reviewed the classification. Discordant results among the
three authors and doubtful cases were discussed among
authors. When an agreement was not reached or not enough
information could be obtained from the V&V team, the
report was classified as UNK.

C. Analysis of bugs

The problem reports considered in this analysis were
collected between July 2011 and January 2012. In total,
463 problem reports were inspected. Among these reports,
202 of them (43.63%) turned out not to be actual bugs, and
were flagged as NOC. The remaining 261 problem reports
were classified into Bohrbugs and Mandelbugs, accounting
respectively for 78.93% and 14.56% of bugs, as depicted
in Figure 1. The percentage of Mandelbugs is noticeable,
although it is smaller than other projects reported in the
literature (their percentage is between 20% and 40% in
NASA space projects [5], [21]), since the project considered
in this study has been analyzed during its integration testing
phase: Bohrbugs manifest themselves under less complex
conditions than Mandelbugs, and it is reasonable to expect
that a high number of Bohrbugs are detected and fixed during
testing activities. As observed in [22], the analysis of bug
data found during testing can be exploited to identify the best
trade-off between verification and fault tolerance strategies
against Mandelbugs in terms of availability.
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Figure 1. Distribution of problem reports into Bohrbugs and Mandelbugs.

The distributions of both Bohrbugs and Mandelbugs
across modules is shown in Figure 2. In some cases (23
Bohrbugs and 5 Mandelbugs), problem reports involved
more than one module; in these cases, we counted one fault
for each module affected by the problem. It can be seen
that the distributions of both types is uneven across modules,
that is, there are modules that are more faulty than others. In
particular, there are modules having a relatively high number
of Mandelbugs, such as C4, C6 and C7, while at most 1
Mandelbug was found for several modules. This situation
has been observed in many studies on complex software

systems, where few software modules account for most
faults and failures (it is often informally referred to as “20-
80 rule”) [2], [13], [25]. This fact motivates the adoption of
fault prediction strategies for identifying on which modules
testing should focus [13], [14]. A good testing strategy is to
test these modules first and with greatest emphasis, in order
to get the greatest payoff from V&V activities. Moreover,
predicting such Mandelbug-prone modules allows to plan
specifically tailored testing and/or fault-tolerance strategies.
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Figure 2. Distribution of Bohrbugs and Mandelbugs across modules.

V. FAULT PREDICTION

To predict Mandelbug-prone modules, there are two main
aspects that need to be taken into account: the definition
of the software metrics (to characterize the features of a
software module and relate them to faults) and the fault
prediction algorithm to adopt (to establish such relationship
in a quantitative way). In the following, we first discuss the
proposed software metrics and fault prediction algorithms.
We then evaluate prediction on the considered case study.

A. Software complexity metrics

A software module can be characterized by using
both product-oriented and process-oriented metrics (Section
II-B). In this study, we focus on product-oriented metrics,
since they have a wider applicability than process-oriented
ones, which may not be always available. This is the
case of the considered case study (Section III), in which
process-oriented metrics are not available as the modules
of the system are developed by third-party organizations.
We adopted a set of software metrics that are well-known
and commonly used by researchers and practitioners, such
as McCabe’s and Halstead’s metrics. Software metrics were
automatically extracted by using the Understand tool for
static analysis, and are listed in Table I (more details about
the definition of these metrics can be found in [34]).

In addition to traditional software metrics, we introduce
a set of novel metrics that we expect to be related with
the presence of Mandelbugs in the code. These metrics
focus on the indirect factors that cause the activation and
manifestation of Mandelbugs (according to the definition of
Mandelbugs discussed in Subsection IV-A):



Table I
TRADITIONAL SOFTWARE METRICS USED FOR BUG PREDICTION.

Type Metrics Description

Program
size

AvgLine, AvgLineBlank, AvgLineCode,
AvgLineComment, CountDeclFunction,
CountInput, CountLine, CountLineBlank,
CountLineCode, CountLineCodeDecl,
CountLineCodeExe, CountLineComment,
CountOutput, CountPath, CountSemicolon,
CountStmt, CountStmtDecl, CountStmtExe,
RatioCommentToCode

Metrics related
to the amount
of lines of code,
declarations,
statements, and
files

McCabe’s
cyclomatic
complexity

AvgCyclomatic, AvgCyclomaticModified, Avg-
CyclomaticStrict, AvgEssential, Cyclomatic,
CyclomaticModified, CyclomaticStrict, Essen-
tial, MaxCyclomatic, MaxCyclomaticModi-
fied, MaxCyclomaticStrict, MaxNesting, Sum-
Cyclomatic, SumCyclomaticModified, SumCy-
clomaticStrict, SumEssential

Metrics related to
the control flow
graph of functions
and methods

Halstead
metrics

Program Volume, Program Length, Program
Vocabulary, Program Difficulty, Effort, N1,
N2, n1, n2

Metrics based on
operands and oper-
ators

Object-
oriented
metrics

CountClassBase, CountClassCoupled,
CountClassDerived, CountDeclClass, Count-
DeclClassMethod, CountDeclClassVariable,
CountDeclInstanceMethod, CountDeclIn-
stanceVariable, CountDeclMethod, Count-
DeclMethodAll, CountDeclMethodDefault,
CountDeclMethodPrivate, CountDecl-
MethodProtected, CountDeclMethodPublic,
MaxInheritanceTree, PercentLackOfCohesion

Metrics based on
object-oriented
constructs

• Concurrency: In most cases, concurrency-related bugs
manifest themselves only under a specific thread sched-
ule (e.g., two or more threads are scheduled such
that they are interleaved during the execution of some
critical sections lacking proper synchronization). There-
fore, this kind of bugs are triggered by indirect factors
and can lead to transient failures. Since concurrency-
intensive programs can be more prone to this kind
of faults, we collect metrics based on concurrency-
related constructs, such as the number of synchronized
methods and blocks in a class.

• I/O: Some Mandelbugs are triggered by interactions
with the system-internal environment, which includes
the hardware and other software. Since these interac-
tions pass through I/O interfaces of the system, and
since incorrect interactions increase the likelihood of
Mandelbugs, we collect metrics based on the usage of
I/O libraries, such as the java.io and java.net packages.

• Exception handling: The use of exception handling
code in a program is aimed to deal with events (e.g.,
external errors) that may occur at runtime. Faults in
exception handling code are difficult to spot and to
debug, since they are triggered by rare events and
by interactions with the system-internal environment.
Therefore, we collect metrics based on the usage of
exception handling constructs, such as try-catch blocks.

The proposed metrics are summarized in Table II. Metrics
are tailored to the Java language, which has been adopted
in the case study system, although they can potentially be

Table II
PROPOSED SOFTWARE METRICS.

Name Description Domain

CountTryBlocks Number of try blocks N

AtLeastOneTryBlock At least one try block is present
in the class

{0, 1}

CountCatchBlocks Number of catch blocks N

StaticLibraryMethodCalls Number of calls to static meth-
ods of the System package and of
the Runtime.getRuntime() object

N

AtLeastOneStaticLibraryMethodCall At least one call according
to StaticLibraryMethodCalls is
present in the class

{0, 1}

UniqueStaticLibraryMethodCalls Number of calls according
to StaticLibraryMethodCalls,
where calls to the same method
are counted only one time

N

LibraryMethodCalls Number of calls to methods of
the java.io and java.net packages

N

AtLeastOneLibraryMethodCall At least one call according to
LibraryMethodCalls is present in
the class

{0, 1}

UniqueLibraryMethodCalls Number of calls according to
LibraryMethodCalls, where calls
to the same method are counted
only one time

N

ClassThread The class is a descendant of the
Thread class, or it implements
the Runnable interface

{0, 1}

CountSynchronizedMethods Number of synchronized meth-
ods

N

CountSynchronizedBlocks Number of synchronized blocks N

CountLockCalls Number of calls to instances of
the Lock, Semaphore, Reentrant-
Lock classes

N

CountWaitNotify Number of calls to wait(), no-
tify(), notifyAll(), await(), sig-
nal(), signalAll()

N

ImportIO The file imports the java.io pack-
age

{0, 1}

ImportNet The file imports the java.net
package

{0, 1}

ImportConcurrent The file imports the
java.concurrent.util package

{0, 1}

extended to other programming languages such as C++.
These metrics are computed by inspecting the source code
and looking for keywords that denote the usage of specific
programming constructs (e.g., synchronization constructs)
and libraries. Metrics related to import directives (ImportIO,
ImportNet, and ImportConcurrent) are computed for each
source file, while the remaining metrics are computed for
each class in the module; then, the values of metrics for each
class or file are averaged in order to obtain an individual
value for the whole module. The result of this process is
a vector of metrics, where each value denotes the average
value of a metric across files or classes in the module. The
same process is adopted for collecting traditional metrics.



B. Fault prediction algorithms

Since the relationship between software metrics and
(Mandel)bugs is not self-evident and may depend on the
specific system under analysis, we adopt machine learn-
ing algorithms to infer this relationship, which are widely
applied to knowledge discovery problems in industry and
science [35]. In this context, a data sample is represented
by a module in which bugs may reside. In particular, we
consider two approaches for fault prediction, respectively
classification and regression.

In the case of classification, the aim of the fault predic-
tor is to divide modules among a finite set of mutually
exclusive classes. In the first approach that we consider
in this study, modules are classified between two classes,
namely “Mandelbug-prone modules” (i.e., modules with at
least one Mandelbug) and “Mandelbug-free modules” (i.e.,
modules without Mandelbugs). If “Mandelbug-prone” are
correctly identified, the V&V team could exploit classifi-
cation by focusing verification efforts on modules classified
as “Mandelbug-prone”. However, other choices are possible.
We also consider the case in which modules are classified
among three classes, namely “no Mandelbugs”, “exactly one
Mandelbug”, and “more than one Mandelbug”. In this sce-
nario, the V&V team would have more detailed information
for planning verification activities, since more efforts could
be devoted to “modules with more than one Mandelbug”
compared to “modules with exactly one Mandelbug”. To
perform classification, a classification algorithm learns a
predictive model from known data samples (e.g., data from
previous projects or previous releases of the system), which
is then adopted to classify unknown samples (e.g., modules
under development, for which V&V is being planned). There
exist several classification algorithms, which make different
assumptions about the underlying data that can affect the
effectiveness of fault prediction. Therefore, we consider
several algorithms in this study, which are well-known and
often adopted for prediction purposes [15]:

• Decision Trees;
• Support Vector Machines (SVM);
• Bayesian Networks;
• Naive Bayes;
• Multinomial Logistic Regression.

In the case of regression, the fault predictor ranks modules
with respect to the (expected) number of Mandelbugs that
are present in each module. Since verification activities are
limited by time and budget constraints, testers could focus
their efforts on top-ranked modules: for instance, if testers
expect that most of Mandelbugs are located in 20% of
modules (according to the “20-80” rule of thumb), then
V&V can be focused on the top-20% modules according
to the ranking produced by a regression model. In a similar
way to classification, a regression model is learned from
known data samples, which is then adopted to rank a set of

unknown samples. We consider several regression models:
• Linear Regression;
• Regression Trees;
• Support Vector Regression (SVR).
When adopting machine learning for prediction purposes,

it is important to pay attention to which attributes (i.e.,
software metrics in our context) are adopted to analyze data.
In fact, using many attributes does not necessarily improve
the effectiveness of prediction, and, in some cases, using too
many attributes can even reduce performance since attributes
tend to be correlated and redundant (this effect is referred to
as multicollinearity) [26]. Therefore, we include during fault
prediction a feature selection pre-processing step, where a
subset of software metrics is selected before training a clas-
sifier or regressor. We adopt a stepwise regression algorithm
for selecting features [36]: at each iteration, the algorithm
evaluates a candidate subset of features with respect to the
goodness-of-fit of a multiple linear regression model, and
it adds and/or removes a feature from the subset until the
subset cannot be further improved. We consider both the case
in which a subset of features is selected before prediction,
and the case in which feature selection is not performed.

C. Evaluation

Prediction by classification. We first evaluate the ef-
fectiveness of fault prediction based on classification. We
evaluate the ability of a classifier to correctly predict fault-
proneness of unforeseen data instances, by training a clas-
sification model using some of the available data (training
set), and by using it to classify the remaining data (test set).
The evaluation has been performed using the k-fold cross-
validation approach [14], [26], with k = 3; cross-validation
has been repeated 15 times and results have been averaged.

For each data sample in the test set, the predicted class
is compared with the actual class of the sample. Given a
target class (e.g., the class of “Mandelbug-prone” modules),
we compute the following set of performance indicators, that
are commonly adopted in machine learning studies [35]:
• Precision (Pr): Percentage of true positives (TP) among

modules that are classified as belonging to the target
class (true positives and false positives (FP)):

Precision = TP/(TP + FP ) . (1)

• Recall (Re): Percentage of true positives among mod-
ules that actually belong to the target class (true posi-
tives and false negatives (FN)):

Recall = TP/(TP + FN) . (2)

• F-measure (F): Harmonic mean of precision and recall:

F −measure = (2 · Pr ·Re)/(Pr +Re) . (3)

The higher the precision and the recall (ideally, Pr =
Re = 1), the higher the quality of the predictor, since it



avoids false positives (e.g., V&V efforts are not wasted
on Mandelbug-free modules) and false negatives (e.g., all
Mandelbug-prone modules are identified). Improving preci-
sion, i.e., reducing the number of false positives, often results
in worse recall, i.e., increasing the number of false negatives,
at the same time. Therefore, the F-Measure is often adopted
to evaluate the trade-off between precision and recall.

Table IV provides the results of cross-validation in the
case of 3-classes classification, in which modules are clas-
sified among the “0 Mandelbugs”, “1 Mandelbug”, and “>1
Mandelbugs” classes. The columns of the table provide, for
each class, the precision, the recall and the F-measure for
that class. The rows provide the values of these measures for
each classification algorithm. Each algorithm is evaluated
in 4 cases: (i) only traditional metrics are used, without
feature selection; (ii) only traditional metrics are used, with
feature selection; (iii) both traditional and proposed metrics
are used, without feature selection; (iv) both traditional
and proposed metrics are used, with feature selection. To
simplify the comparison of algorithms, the table provides, in
the last columns, the average for each measure weighted by
the percentage of samples in each class. The set of metrics
selected by feature selection are showed in Table III, along
with the R2 and Adj-R2 measures indicating the goodness-
of-fit of a multiple linear regressor using these features [26].

Table III
FEATURE SELECTION WITH RESPECT TO 3-CLASSES CLASSIFICATION.

Metrics Selected features R2 Adj-R2

Traditional
metrics

CountDeclMethodAll, CountClass-
Coupled, CountDeclClassVariable,
RatioCommentToCode, Count-
LineBlank, CountLineCodeDecl

0.8784 0.7973

Traditional and
proposed metrics

CountClassDerived, UniqueLi-
braryMethodCalls, CountSynchro-
nizedBlocks, CountClassCoupled,
CountTryBlocks, CountDeclClass-
Variable

0.8857 0.8095

It can be seen that, for the classes “0 Mandelbugs” and
“>1 Mandelbugs”, the measures are between 0.6 and 0.9 in
most of the cases, that is, the classifiers are quite effective
at identifying modules belonging to these classes. Therefore,
classifiers are useful to identify the modules that are least
and most prone to Mandelbugs, respectively. Instead, for the
“1 Mandelbug” class, the values are much lower: classifiers
in most cases make mistakes when they classify modules in
this class. This result may be due to the fact that modules in
the “1 Mandelbug” class are often confused with modules
in the “0 Mandelbugs” and in the “>1 Mandelbugs” since
they exhibit features that are close to both these classes.

We evaluated whether feature selection and the proposed
metrics can actually provide benefits to fault prediction, by
comparing the weighted average of F-measures (last column
of Table IV) of the different combinations of classifiers and
features. We performed a hypothesis test to evaluate whether

the differences between the best classifier and the other ones
are statistically significant, i.e., the differences are unlikely
due to random errors. According to [37], we adopted the
non-parametric Wilcoxon signed-rank test procedure, which
tests the null hypothesis that the differences between two
sets of measures have null median, and which can be used
to compare the performance of different classifiers [38]. For
each classifier and feature set (i.e., a row of Table IV), we
collected the averaged F-measure for each “test” fold of
each cross-validation repetition, thus obtaining a distribution
of values for each classifier and feature set, that we com-
pared using the Wilcoxon signed-rank test. Since multiple
comparisons are being performed, we adjusted p-values
using the Benjamini-Hochberg procedure [39], which allows
controlling the false rejection probability while retaining a
high power of the tests.

In the last column of Table IV, we highlight in bold the
best results (according to the Wilcoxon signed-rank test, with
a 90% confidence level) for each combination of feature
selection and metrics (i.e., first, we compare algorithms
when using neither feature selection nor novel metrics; we
then compare algorithms when only feature selection is used;
and so on). For some combinations, more than one classifier
may be the best one (i.e., there are not statistically significant
differences). Moreover, we compared (using the Wilcoxon
signed-rank test) the best algorithms from different com-
binations, in order to identify if feature selection and/or
the proposed metrics actually improve the F-measure of
classification (the best overall F-measure is underlined in
the table). We found that the F-measure is higher when using
feature selection (respectively, Bayes Networks when only
traditional metrics are adopted, and SVM and Naive Bayes
when both traditional and novel metrics are adopted), which
points out the presence of redundant features and the need
for feature selection. Moreover, the proposed metrics provide
an additional gain, since the best results are obtained when
both feature selection and the novel metrics are adopted.
This highlights that the presence of constructs related to
concurrency, I/O and exception handling can provide hints
about the occurrence of Mandelbugs.

In a similar way, in Tables V and VI we provide the results
of cross-validation in the case of 2-classes classification, in
which modules are classified as “Mandelbug-prone” or as
“Mandelbug-free”. For both classes, measures are between
0.6 and 1 in almost all cases. In this scenario, we do not
try to identify modules that have exactly 1 Mandelbug,
thus avoiding the low performance for the “1 Mandelbug”
class; this choice leads to a performance improvement of
classification for the other two classes. The prediction of
Mandelbug-proneness seems to be the most suitable strategy
for practical applications, since it leads to more reliable
results than predicting at a more detailed level (e.g., discrim-
inating between modules with 0, 1 and >1 Mandelbugs). In
the best case, when using the SVM classifier along with



Table IV
CROSS-VALIDATION OF 3-CLASSES CLASSIFICATION.

Features Classifier

Target class: number of Mandelbugs
Weighted average0 Mandelbugs 1 Mandelbug > 1 Mandelbugs

Pr Re F Pr Re F Pr Re F Pr Re F

All metrics

Dec. Trees 0.772 0.637 0.689 0.283 0.333 0.280 0.779 0.750 0.746 0.682 0.608 0.627
Mult. Logistic Reg. 0.784 0.533 0.623 0.128 0.222 0.159 0.602 0.750 0.658 0.623 0.536 0.550

Bayes Net. 0.702 0.726 0.707 0.109 0.156 0.126 0.950 0.800 0.858 0.653 0.638 0.636
SVM 0.700 0.570 0.622 0.071 0.133 0.092 0.725 0.717 0.693 0.588 0.525 0.540

Naive Bayes 0.612 0.904 0.729 0.000 0.000 0.000 0.722 0.467 0.557 0.525 0.625 0.549

Selected metrics

Dec. Trees 0.683 0.644 0.660 0.072 0.089 0.079 0.771 0.967 0.857 0.590 0.621 0.600
Mult. Logistic Reg. 0.668 0.533 0.587 0.155 0.267 0.193 0.957 0.867 0.899 0.644 0.567 0.591

Bayes Net. 0.711 0.970 0.820 0.022 0.022 0.022 1.000 0.833 0.876 0.654 0.758 0.684
SVM 0.651 0.874 0.744 0.000 0.000 0.000 0.727 0.633 0.661 0.548 0.650 0.584

Naive Bayes 0.682 0.793 0.731 0.000 0.000 0.000 0.822 0.650 0.709 0.589 0.608 0.588

All metrics,

Dec. Trees 0.740 0.615 0.662 0.231 0.267 0.222 0.762 0.717 0.721 0.650 0.575 0.595

with novel metrics

Mult. Logistic Reg. 0.798 0.533 0.618 0.132 0.222 0.162 0.572 0.700 0.616 0.617 0.517 0.532
Bayes Net. 0.682 0.719 0.695 0.096 0.111 0.099 0.906 0.800 0.842 0.628 0.625 0.620

SVM 0.812 0.622 0.688 0.100 0.156 0.120 0.645 0.750 0.681 0.637 0.567 0.579
Naive Bayes 0.632 0.978 0.767 0.000 0.000 0.000 0.867 0.467 0.603 0.572 0.667 0.582

Selected metrics,

Dec. Trees 0.710 0.615 0.655 0.243 0.267 0.236 0.767 0.883 0.805 0.637 0.617 0.614

with novel metrics

Mult. Logistic Reg. 0.724 0.548 0.616 0.165 0.333 0.216 0.879 0.717 0.775 0.658 0.550 0.581
Bayes Net. 0.665 0.859 0.747 0.017 0.022 0.019 0.973 0.700 0.806 0.620 0.663 0.625

SVM 0.778 0.993 0.871 0.000 0.000 0.000 0.793 0.867 0.819 0.636 0.775 0.695
Naive Bayes 0.804 0.807 0.801 0.267 0.267 0.261 0.817 0.800 0.796 0.707 0.704 0.698

the proposed metrics and feature selection (see Table V),
performance metrics are always greater than 0.9, with an
average F-measure equal to 0.941, leading to a reliable
enough classification for practical purposes. Moreover, by
looking at the weighted average of F-measures (in the last
column in the table), it can be seen that both feature selection
and the proposed metrics are necessary to achieve the best
performance: the Wilcoxon signed-rank test showed that
performance metrics are higher with statistical significance.
This result confirms that the proposed metrics are helpful to
improve the prediction of Mandelbug-prone modules.

Table V
FEATURE SELECTION WITH RESPECT TO 2-CLASSES CLASSIFICATION.

Metrics Selected features R2 Adj-R2

Traditional
metrics

CountInput, N2, Vol, AvgEssential 0.8536 0.8004

Traditional and
proposed metrics

CountInput, Essential, N2, Count-
WaitNotify, Vol, CountClassBase,
ImportIO

0.9843 0.9705

Prediction by regression. Finally, we evaluated the ef-
fectiveness of fault prediction when using a regression
model. In this scenario, the aim is to rank modules with
respect to their number of Mandelbugs: this is achieved by
estimating the number of Mandelbugs in a module using
a regression model and by ordering the modules according
to this estimate. In order to evaluate the accuracy of the
ranking, we adopt cross-validation to train regression models
using a subset of data and to evaluate the accuracy of models
with respect to the remaining data, repeating this process
several times. The ranking produced by the regression model
is compared to the correct ordering of modules, by using

the Pearson correlation coefficient [26]. Moreover, since the
tester would focus verification on the topmost modules in
the ranking provided by the regression model (according to
the observation that most faults are located in few modules),
we evaluated the accuracy of regression in predicting which
modules have the highest number of Mandelbugs, assuming
that the tester is going to focus on the top-20% modules in
the ranking. We evaluated the following two measures:

• “TOP-20%”: The ratio between the number of Man-
delbugs located in the predicted 20% topmost modules
and the total number of Mandelbugs in the test set. This
ratio represents the expected percentage of Mandelbugs
that can be detected when focusing on the predicted
topmost modules, among the whole set of Mandelbugs
in the system.

• “Normalized TOP-20%”: The ratio between the num-
ber of Mandelbugs located in the predicted 20% top-
most modules and the number of Mandelbugs in the
actual 20% topmost modules. This ratio compares the
number of Mandelbugs that can be detected when
focusing on the predicted topmost modules with the
number of Mandelbugs that could be detected in the
case of perfect prediction.

Table VII shows the results of cross-validation for regres-
sion models. The best results (according to the Wilcoxon
signed-rank test) are obtained using both the proposed
metrics and feature selection. In particular, when the linear
regression model or SVR is adopted, (i) the expected corre-
lation coefficient of predicted ranking is higher than 0.7, (ii)
about 60% of the whole set of Mandelbugs can be detected
when focusing verification on the predicted 20% of modules
(as indicated by the “TOP 20%” measure), and (iii) the



Table VI
CROSS-VALIDATION OF 2-CLASSES CLASSIFICATION.

Features Classifier

Target class: Mandelbugs-proneness
Weighted averageMandelbug-free Mandelbug-prone

Pr Re F Pr Re F Pr Re F

All metrics

Dec. Trees 0.698 0.652 0.665 0.589 0.629 0.598 0.651 0.642 0.636
Mult. Logistic Reg. 0.742 0.607 0.664 0.592 0.724 0.648 0.676 0.658 0.657

Bayes Net. 0.701 0.748 0.706 0.676 0.571 0.593 0.690 0.671 0.656
SVM 0.724 0.630 0.670 0.601 0.695 0.642 0.670 0.658 0.658

Naive Bayes 0.654 0.659 0.650 0.548 0.533 0.533 0.608 0.604 0.599

Selected metrics

Dec. Trees 0.882 0.770 0.819 0.754 0.867 0.804 0.826 0.813 0.812
Mult. Logistic Reg. 0.864 0.800 0.828 0.774 0.838 0.802 0.825 0.817 0.817

Bayes Net. 0.833 0.807 0.815 0.776 0.790 0.778 0.808 0.800 0.799
SVM 0.751 0.867 0.803 0.798 0.629 0.697 0.772 0.763 0.757

Naive Bayes 0.810 0.815 0.808 0.763 0.743 0.746 0.789 0.783 0.781

All metrics,

Dec. Trees 0.680 0.622 0.643 0.549 0.600 0.565 0.622 0.613 0.609

with novel metrics

Mult. Logistic Reg. 0.789 0.622 0.685 0.627 0.771 0.681 0.718 0.688 0.683
Bayes Net. 0.633 0.622 0.622 0.549 0.543 0.537 0.596 0.588 0.585

SVM 0.809 0.711 0.751 0.694 0.781 0.727 0.759 0.742 0.741
Naive Bayes 0.702 0.770 0.730 0.672 0.571 0.609 0.689 0.683 0.677

Selected metrics,

Dec. Trees 0.802 0.711 0.747 0.672 0.752 0.701 0.745 0.729 0.727

with novel metrics

Mult. Logistic Reg. 0.956 0.926 0.938 0.916 0.943 0.927 0.938 0.933 0.933
Bayes Net. 0.762 0.807 0.775 0.738 0.648 0.671 0.751 0.738 0.729

SVM 0.976 0.919 0.943 0.917 0.971 0.940 0.950 0.942 0.941
Naive Bayes 0.859 0.911 0.875 0.883 0.781 0.817 0.870 0.854 0.850

regression model identifies on average 83% of Mandelbugs
that could be identified in the case of perfect prediction
(as indicated by the “Normalized TOP 20%” measure). For
these models, the average R2 measure on the test sets is
R2

linear = 0.482 and R2
SVR = 0.571, respectively; although

the models do not precisely fit data, they can still be useful
to point out which are the “TOP 20%” most Mandelbug-
prone modules in the system. A similar result was observed
in [26] where failure-prone components were ranked using
regression models. We conclude that fault prediction can be
useful to identify a small set of modules in which most of
Mandelbugs are located, thus improving V&V planning.

Table VII
CROSS-VALIDATION OF REGRESSION.

Regressor Pearson TOP 20% Norm.
coef. TOP 20%

All metrics
Linear Regr. 0.241 31% 46%
Regr. Trees 0.115 12% 19%

SVR 0.352 34% 50%

Selected metrics
Linear Regr. 0.516 38% 51%
Regr. Trees 0.343 23% 33%

SVR 0.617 50% 74%

All metrics, Linear Regr. 0.227 30% 45%

with novel metrics
Regr. Trees 0.115 12% 19%

SVR 0.326 32% 50%

Selected metrics, Linear Regr. 0.770 59% 83%

with novel metrics
Regr. Trees 0.230 14% 22%

SVR 0.707 61% 83%

VI. THREATS TO VALIDITY

Observed results are limited to the considered software
system, although the analysis is comforted by the extensive-
ness of the study accounting for more than 400 problem re-
ports. We observed that the percentage of Bohr/Mandelbugs

is comparable to past studies, while the pinpointed rela-
tionships with software metrics is new, and needs to be
confirmed on different systems in future work.

To interpret the results, it should be considered that
the manual classification, even if driven by the defined
procedure, may introduce a bias, e.g., due to unclear reports,
or to misinterpretations. This can affect the measurement of
the Bohr/Mandelbugs proportion, and thus the identification
of Mandelbug-prone modules. To limit this bias, we exclude
those reports not fully clear and/or with not sufficient infor-
mation, and then, on the resulting set, a cross-validation step
is carried out: results were validated by three of the authors,
discussing reports with the V&V team where possible, and
excluding a small part of reports (6.51%) that were not
entirely clear with respect to the adopted criteria.

VII. CONCLUSION

In this paper, we investigated how to predict the location
of Mandelbugs in complex software systems. We found that
Mandelbugs account for a noticeable share of bugs, and that
there are components more prone to Mandelbugs than others.
This fact motivates the use of fault prediction to focus V&V
activities and fault-tolerance mechanisms. We also found
that using both traditional software metrics and a novel set of
metrics (based on concurrency, I/O and exception handling
constructs), fault prediction can achieve high accuracy. Fu-
ture work will be aimed to combine prediction with V&V
and fault-tolerance strategies.
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