
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Hybrid Simulation and Test of
Vessel Traffic Systems on the Cloud
MASSIMO FICCO1, (Member, IEEE), ROBERTO PIETRANTUONO2, (Senior Member, IEEE),
and STEFANO RUSSO2, (Senior Member, IEEE)
1Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29, Aversa (CE), Italy (e-mail: massimo.ficco@unicampania.it)
2Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy (e-mail: {roberto.pietrantuono, stefano.russo}@unina.it)

Corresponding author: Roberto Pietrantuono (e-mail: roberto.pietrantuono@unina.it).

This work has been partially supported by the GAUSS national research project, which has been funded by the MIUR under the PRIN
2015 program.

ABSTRACT This paper presents a cloud-based hybrid simulation platform to test large-scale distributed
System-of-Systems (SoS) for the management and control of maritime traffic, the so-called Vessel Traffic
Systems (VTS). A VTS consists of multiple, heterogeneous, distributed and interoperating systems,
including radar, automatic identification systems, direction finders, electro-optical sensors, gateways to
external VTSs, information systems; identifying, representing and analyzing interactions is a challenge to
the evaluation of the real risks for safety and security of the marine environment. The need for reproducing
in fabric the system behaviors that could occur in situ demands for the ability of integrating emulated and
simulated environments to cope with the different testability requirements of involved systems and to keep
testing cost sustainable. The platform exploits hybrid simulation and virtualization technologies, and it is
deployable on a private cloud, reducing the cost of setting up realistic and effective testing scenarios.

INDEX TERMS Cloud computing, Emulation, HLA, Simulation, System-of-Systems, Testing, Vessel
Traffic Systems

I. INTRODUCTION

AVessel Traffic System (VTS) is a large-scale critical
system whose objective is to support safety and effi-

ciency of navigation and protection of the marine environ-
ment, adjacent shore areas, work sites and offshore installa-
tions from possible adverse effects of maritime traffic. It is a
typical critical infrastructure system manufactured according
to the System-of-Systems (SoS) paradigm, where multiple
interoperable systems are progressively interconnected by
means of proper middleware solutions through local or wide-
area networks [1]. A VTS is generally organized in three
hierarchical levels, including local control centers, area cen-
ters, and head quarters. Each local VTS can integrate a
wide variety of remote sensors and inter-operate with several
external systems.

Due to their huge complexity and scale, setting up realistic
and cost-efficient testing sessions for a VTS is a serious
concern. A typical test scenario can consist of several VTSs
hierarchically connected, with a multitude of physical and
functional heterogeneous components across different tech-
nological domains (representing physical hard components
as well as soft components), and human and organizational

components, not necessarily belonging to the same entity
or organization. The monitored area can include from 100
to 5,000 marine objects (including ships, buoys, offshore
plant, etc.), as well as different identification base stations,
weather stations, and huge number of radar, cameras, and
direction finders, with the network scenario involving both
geographical and local connections.

This complexity is likely to lead to unexpected (hence
untested) behaviors, mainly affecting dependability and per-
formance, that usually become evident only during systems
operations on-site and, in particular, in presence of stress,
unexpected conditions or events not observed until then. For
example, during the monitoring of traffic navigation in a
seaport, if not covered in the system specification, a ship out
of the norm (i.e., longer than those specified by applicable
regulations) could be identified by VTS as two distinct ships
when it passes behind a buoy.

A failure in one component can propagate within the sub-
system and to other subsystems, provoking cascading failures
that can produce severe unpredictable consequences well
beyond the impact zone. Diagnosis of malfunctions during
system operation is a very difficult and expensive task, that

VOLUME 4, 2016 1



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

often requires urgent actions on sites by specialized teams of
engineers, with high cost and time overruns for the company.

Assessing the dependability of such a system before de-
ploying it is as much important as difficult. The main chal-
lenge is to be able to reproduce “relevant” scenarios locally,
in order to gain knowledge about the real behavior of the
system in-factory as it would be on-site. It would require
sophisticated modeling practices and expensive experimen-
tation environments/infrastructures to simulate and test the
functionality of the whole SoS and analyze the interconnec-
tions and interactions among its parts [3].

In the context of a public-private research project named
DISPLAY (Distributed hybrId Simulation PLAtform for
ATM and VTS sYstems) [4], we have considered the hy-
brid simulation as a valuable testing option, also known
as pseudo-dynamic testing [5], coupled with a cloud-based
deployment. Hybrid simulation can combine emulation and
simulation together in order to cope with the extreme het-
erogeneity of testing requirements for the described systems.
The simulation can be used to reproduce the behavior of
the external systems of interest (e.g., sensors, radar, web
cam, and external software COTS), whereas emulation can
be adopted to reproduce the execution of the real target sys-
tem. Deployment over virtual infrastructures and a service-
oriented architecture provides flexibility and scalability, op-
timizing time and cost of testing and maintenance activities.

The article presents a platform to implement locally con-
trolled testbeds (managed in factory) for VTSs, through the
integrated use of distributed and hybrid simulation tech-
niques. The platform supports synchronization and com-
munication services needed to make heterogeneous dis-
tributed simulation tools and emulated components interoper-
able. Moreover, service interfaces are provided to configure
and manage (at architectural level) the simulation scenario
through the platform, which runs and manages the simu-
lation process (i.e., emulate the system behavior), without
the effort and cost needed for building and maintaining
complex testbed infrastructures. By adapting the Platform-
as-a-Service (PaaS) concepts to the simulation domain, the
simulation framework can be offered as a service to testers
on a cloud infrastructure (SIMPaaS), and exploited to build
large-scale test scenarios.

The rest of the paper is organized as follows: in Section II,
we survey potential solutions from the literature to simulate
and test a critical SoS, such as VTS. Section III discusses
the role and potential of simulation, hybrid simulation and
simulation-as-a-service solutions for setting up testing envi-
ronments of a SoS. Section IV describes the requirements
of the testing platform for the VTS case. Section V and VI
present our solution. Section VII reports about the testbed
implementation and the main test scenarios of the target
VTS. Section VIII discusses the cloud-based distributed
simulation-as-a-service solutions proposed in the literature.
Section IX discusses implications and concludes the paper.

II. SOS TESTING AND SIMULATION
A VTS is a prominent example of critical System-of-
Systems. According to De Laurentis [6], a SoS consists of
“multiple, heterogeneous, distributed, occasionally indepen-
dently operating systems embedded in networks at multiple
levels that evolve over time”. This entails a inherent structural
and dynamic complexity [7]. Structural complexity derives
from: (i) a multitude of physical and functional heteroge-
neous components, across different technological domains,
representing physical hard components (e.g., railway, radar,
direction finder, etc.), as well as soft components (such as
SCADA, information systems), and human and organiza-
tional components, in general not belonging to the same en-
tity or organization; (ii) the scale and dimensionality of their
connectivity and their geographical extension. Dynamic com-
plexity manifests itself as emergence of unexpected system
behaviors in response to changes in the environmental and
operational conditions of its components, as well as of dis-
ruptive events, (e.g., natural events, criminal and malicious
activities, market and policy factors, outages), introducing
additional complexity in the management and control.

Identifying, understanding and representing such com-
plexity is a challenge to the evaluation of weaknesses and
vulnerabilities of subsystems in consequence of an initiating
event. It requires sophisticated testing environments to sup-
port activities as: (i) in-factory integration and system testing
without the need of expensive geographic-scale evaluation
on-site; (ii) testing to assure the correct functioning of the
product before delivery, to avoid expensive re-designs, late
bug fixes and delivery of bad-quality products; (iii) definition
of tuning actions before their first on-site execution; and (iv)
verification of failure mitigation strategies.

Generally, complexity forces testers to simplify the testbed
configuration to keep its realization cost low. For instance,
some software components are assumed to work properly
(e.g., operating systems), thus, software on the testbed is a
simplified version of the operational one. Also, each sce-
nario could take several hours to complete – thus, only test
scenarios obtained from recording behaviors observed in-
situ are considered. Scenarios taken from the operational
phase assures to test representative cases, but focusing always
on the same (few) scenarios does not allow evaluating new
cases or specific, unforeseen, situations not included in the
requirements, and very few cases can be explored carefully.
Such simplifications greatly reduce the number of tests, but
to the detriment of a deep quality assurance. The natural
pay-off is a partial coverage of requirements and a risk of
low representativeness of tested scenarios, and a consequent
increased risk of poor quality of final products.

On the other hand, reproducing real complex scenarios in-
factory for a deeper quality assurance is still very expensive
and time-consuming (and often even unfeasible), as multiple
independent and heterogeneous entities, with their own tem-
poral dynamics, must be involved and synchronized among
each other. In this direction, several simulation methods are
proposed in the literature for vulnerability assessment and

2 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

risk analysis of critical infrastructure systems (CISs):
• Logical methods, which include logic trees, Markov

Chains, Markov/Petri nets, Bayesian networks, etc., are
capable of capturing the logic operating of a system, and
of identifying the combinations of failures of elements
potentially leading to the system failure [9]. Drawbacks
of these methods are the exponential growth of system
configurations when the number of components and
states increases, as well as the significant efforts in logic
modeling and quantification.

• Functional methods include agent based model, sys-
tem dynamic model, economic-based approaches; they
are capable of capturing the dynamics of interrelated
operations among hardware and software elements of
a system and its interaction with the environment [3].
Nonetheless, it is difficult to calibrate the model param-
eters and validate complex models.

• Structural/topological methods represent CISs by net-
works, where nodes are the components and links
are the physical and relational connections among
them [10], [11]. Networks can be analyzed by simula-
tion and analytical methods, which can capture relevant
structural properties, identify critical components and
support the improvement of system robustness. How-
ever, they hardly capture the dynamic complexity of real
SoSs, and their computational cost can be prohibitive
when components and links are modeled in detail.

There exist many different tools and frameworks that de-
velopers can use to build complex simulations upon. Some
of these focus on specific application domains, others focus
on domain-independent scope and support simulation in gen-
eral. Examples of domain-specific simulation frameworks are
Mosaik [12], which is a flexible Smart Grid co-simulation
framework, and RinSim [13], a simulator for logistics prob-
lems. Currently, several specific VTS simulators have been
proposed [15], [16]. On the other hand, they are not designed
to test VTS, but only used to train personnel in handling
marine traffic. Examples of general simulation frameworks
are the Jadex project [17], which is a multi-agent based simu-
lation framework, and COSSIM [14], a simulator specifically
designed for providing accurate simulation of cyber physical
systems. On the other hand, generic frameworks would force
the developer to implement realistic simulation scenarios
from scratch, and as the next sections will clarify, it might
complex to capture heterogeneity and structural and dynamic
complexity of a SoS, such as the VTS. However, no specific
simulation platform has been proposed to test VTS.

III. VTS SIMULATION AS-A-SERVICE
The evaluation of risks, vulnerabilities and resilience of
systems can be carried out through a simulation process, by
modeling reality and quantifying defined metrics. In gen-
eral, Simulation can be a valuable support to improve test
representativeness and coverage at low cost. Being able to
accurately simulate the behavior of a system allows engineers
to drastically reduce the time and costs of its dependability

evaluation, enabling more effective testing, analysis of alter-
native design decisions, identification of architectural bottle-
necks, early detection of bugs, and so on. Nonetheless, due
to heterogeneity, structural and dynamic complexity, the SoS
representation and modeling is such that its characteristics
cannot be fully captured and quantified in a reliable way, and
large uncertainty is always present [8].

A simulation service for a SoS would present several
serious challenges: various simulation tools, real sub-systems
(usually Commercial Off-The-Shelf) and experimental plat-
forms need to interact in a coordinated way within a dis-
tributed environment. Their integration would require so-
phisticated modeling practices and complex experimentation
environments. Also, despite the advantages of simulation,
the complexity of systems and the large number of involved
entities would still lead to very high cost and simulation time.
To be effective, simulation should manage these complex
aspects and be, at the same time realistic, time-optimal and
cost-effective - objectives which contrast each other.

Hybrid distributed modeling strategies represent a viable
alternative to design simulation platforms for testing. In
hybrid simulation, the emulated parts are the system or
components under test, e.g, the Vessel Traffic System (VTS)
software, as well as each element that cannot be tested in real
operating environment, for example a network router. The
simulated parts can be, for instance, the sensors or objects
present within the operating scenario, such as a radar, a
ship in a port or a marine object, which can be used to
generate the experimental workload or perturbation in the
system operation. Other elements that can be simulated are
components or subsystem that cannot be directly used, for
example, because they are not accessible or available for the
testing activity. Finally, the real systems are all the other
subsystems that are not the target of testing, but from which
it is possible to obtain, in real-time, the data streams needed
to reproduce a real experimental scenario.

A. HYBRID SIMULATION AS A SERVICE
The high-level objective of hybrid simulation is to reproduce,
in-factory, a high percentage of tests usually executed in-
situ, in a much more efficient way. The VTSs targeted in
this work are typical large-scale critical systems, made up
of several systems geographically distributed in local and
remote centers, which should interact through a commu-
nication infrastructure with other COTS systems (such as
external software entities and sensors sites). Therefore, the
simulation framework should be able to manage large-scale
simulations with several hundreds of entities, typical of a
mission-critical domain. To drastically reduce the setup cost
of testing, testers should be able to easily setup scenarios
without caring about details of the underlying infrastructure
and platform, e.g., hardware and software configurations,
communication networks, software licenses and upgrades,
scaling, SLA-compliant QoS assurance. Therefore, hybrid
and distributed simulation services, supported by novel tech-
nologies for resources virtualization and working environ-

VOLUME 4, 2016 3



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

ment reproduction, represent the most promising option. This
can be realized by designing the simulation platform on atop
of a cloud computing infrastructure, namely, by implement-
ing the simulation environment as a service [19].

In the literature, Simulation-as-a-Service (SIMaaS) model
is conceived to provide access to simulation services on-
demand, running in a shared pool of computing resources, at
low cost and scale as needed [18]. By adapting this concept
to the cloud computing domain, simulation could be built
on Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). At SaaS layer,
the simulation functionality is implemented as software and
hosted in the cloud. All the simulation services are provided
according to a service-oriented architecture approach. This
approach unifies the invocation of different simulation types
and allows combining different implementation models. In
particular, a simulation service can be either directly used
through thin clients (e.g., web browser), if testers require
specific simulation functionality, or by other simulation ser-
vices (as a sub-simulation) to implement complex simulation
workflow [20]. PaaS abstract from the operating system level
and provides a dedicated middleware programming interface
to develop and run simulation applications on cloud without
managing the underlying hardware and software layers. The
platform automatically deploys the simulation components
and starts new instances to achieve scalability [21]. However,
it restricts the application types to those supported by the
platform. At IaaS layer, it does not restrict the type of ap-
plications deployable on the IaaS, but it abstracts away only
from the details of the physical hardware. Virtual resources
are provided to the testers (e.g., the virtual machines of
the system under test), allowing fine-grained control of the
software stack, such as operating systems.

According to Preisler et al. [21], if the simulation is black-
box and not implemented with explicit cloud distribution
in mind (e.g., in the case of an already existing simulation
system), it might be more feasible to use the IaaS approach.
Instead, if the simulation is built from scratch or the simula-
tion model is a simple one, it is more feasible to use PaaS
to encapsulate the model within a simulation component
that is implemented by the PaaS Application Programming
Interface (API). Finally, if the simulation is offered as a
service, SaaS paradigm can be adopted, in which simulation
software is used as services through the cloud.

The test scenarios of a VTS – and of critical SoS in general
– are characterized by a large number of distributed and
heterogeneous components (from functional and operational
environment point of view), interacting with other COTS sys-
tems by a complex network structure. Therefore, the use of
cloud-based simulation as a service allows exploiting config-
urability, elasticity and tenacity offered by cloud computing.
In the described context of hybrid simulation, it is necessary
to emulate the real operation environment – therefore, fine-
grained control of the software stack must be assured and a
IaaS approach is more flexible. As for COTS and external
components, such as radar, surveillance camera, and water

systems, it could be only needed to simulate some behavioral
patterns. Considering their complexity, the implementation
of simulators from scratch could be excessively complex and
time-consuming – thus, the platform has to offer facilities to
reuse already existing system components simulated by ded-
icated environments, such as Matlab, Modelica, OMNET++,
etc.. Encapsulating their functionality, namely micro simula-
tion functionality, by a service simulation component would
enable their execution in a unified way on a scalable cloud
infrastructure [21]. However, in order to implement complex
simulation processes, where several simulations are executed
in parallel while exchanging data, the time model of dif-
ferent simulators must be synchronized. Therefore, specific
macro simulation functionality must also be provided, such as
communication and synchronization, to allow the interaction
among different simulators and interoperability between the
simulated and emulated environments. Although, the PaaS
approach restricts the types of applications to those supported
by the platform, it can be more suitable for realizing hybrid
simulation as a service. Therefore, the simulated components
can be new components built on top of the platform API,
or existing simulation tools to encapsulate as a black box
simulation within a component implemented by the API of
the PaaS; but in this case, the simulation does not profit from
the distribution, scalability and robustness properties of the
PaaS platform.

Essentially, the proposed solution consists in implement-
ing the simulation platform as a service (SIMPaaS), enabling
at PaaS level both the macroscopic simulation functionality
(for interlinked simulations) and the microscopic functional-
ity of simulated components, as well as allowing fine-grained
control of the software stack of emulated components at IaaS
level. This solution abstracts, by virtualization, the use and
management of physical resources and the synchronization
and communication mechanisms of each involved simulation
tools, which are very complex in the considered domain.

IV. SIMULATION PLATFORM REQUIREMENTS
In the following, the requirements of the simulation platform
for the VTS scenario are outlined.

In general, a VTS is organized in three hierarchical lev-
els, including local control centers, area centers, and head
quarters. Each local VTS can integrate a wide variety of
remote sensors (e.g., radar, electro optical sensor, automatic
identification system, and direction finder), as well as exter-
nal systems (e.g., long range identification systems (that is,
satellite), tracking, weather and communication systems. In
such complex scenario, hybrid simulation can support the
process of integration and testing of such system, allowing
to: (1) add and remove dynamically sensors; (2) simulate a
failure of a component; (3) simulate accidents; (4) simulate
communication degradation over a large scale wide area net-
work; (5) control the number, type, velocity, and trajectory
of the ships; (6) modify the number of hosts composing
the VTS; (7) generate predefined traffic flows. In particular,
the traffic flows soliciting the system are not a variable that

4 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

FIGURE 1. Nominal scenario.

can be controlled in real-world situations, so that, knowing
the behavior of the system when these variable parameters
change is a kind of a guess that conversely can be carefully
studied in simulated systems.

An example of test scenario is the “Degraded AntiSplitting
Tracking” test. The objective of this test is to check if the
anti-splitting tracker works correctly: whenever an object
exceeding the expected size is detected by the radar, the
system should still identify it as one single big object rather
than two smaller objects (i.e., splitting the object). This is
expected to work even under degraded performance up to
50% of bandwidth loss. Specifically, the test must replicate
a critical situation where a radar has to manage the track
fusion correctly. One single big target can generate track
splitting (because of the size and/or because its slipstream),
that can lead to multiple tracks for the object. This scenario
is emulated both under nominal network conditions, in which
case the WAN uplink and downlink bandwidth is set at
3.5140 Mbps and LAN links are set at 100 Mbps, as well as in
various degraded bandwidth ranging from 3.1626 (i.e., -10%)
to 0.3514 Mbps (i.e., -90%), wherein 100 distributed targets
(also called marine objects) are generated over 10 different
trajectories. The scenario uses the following entities: 1 radar,
1 Automatic Identification System (AIS), Direction Finders
(DFs), and 2 Electro-Optical Sensors (EOS). The oracles of
the test are three: 1) checking the number of tracks created
with respect to the actual number of marine objects to detect
under nominal network conditions; 2) checking the correct
detection of possible degraded network performances; 3)
check if the number of tracks created is correctly determined,
even under degraded performance up to 50%. Other oracles
could be considered by composing single oracles. The nom-
inal scenario (oracle 1) is exemplified in Fig. 1, while the
degraded performance scenario (oracle 2) is in Fig. 2.

A representative simulation setup to cope with the de-
scribed scenarios like the described one is reported in Fig. 3,
where the simulated VTS operation process is obtained by the

FIGURE 2. Degraded performance scenario.

fusion of real time and simulated data, and is placed on top
of a platform that supports synchronization and communica-
tion between the simulated and emulated parts for a correct
evolution of the scenario.

FIGURE 3. Logical view of the hybrid simulation of VTS.

Considering a number of desirable test scenarios, along
with the mentioned considerations about the SIMPaaS ap-
proach, we have elicited a set of final-users (testers) and
systems-level requirements outlined in the next paragraphs.

1) User requirements
Simulation services must be accessible through Web inter-
face, where the tester is enabled to:
• configure both the test scenarios (at architectural level)

and the simulation process (dynamic behavior), to real-
ize specific simulation experiments;

• configure the network infrastructure to interconnect dis-
tributed simulated and emulated components;

• configure virtual resources necessary to rum the simu-
lated and emulated components;

• deploy and un-deploy a predefined simulation scenario;
• monitor the current state of the simulated scenarios.

2) System requirements
User-level simulation services must be supported by system
functionality. Specifically, at functional level, the simulation
platform has to reproduce the test scenarios, by configuring,
distributing, and deploying simulation tasks, implementing
the interactions and synchronization among the involved

VOLUME 4, 2016 5



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

FIGURE 4. Logical view of proposed framework.

tasks, and setting up the network to interconnect simulated
and emulated components; in particular:

• The complex nature of SoS forces the tester to include
real/emulated entities and communication infrastructure
together with simulated entities. This requires mech-
anisms to assure the correct integration of different
interlinked simulation and emulation environments.

• The platform shall care about the data distribution be-
tween all the entities involved in the simulation, which
include local and remote entities, simulated and emu-
lated components, virtualized and real resources.

• The hybrid nature also entails complexities in the time
management, since the simulated time of the different
involved simulation tools, the physical (real) time, and
the clock time should be managed. This implies the
overall simulation time to be synchronized with real
time of (emulated) components.

• The peculiarity of considered systems, is the strong
heterogeneity among the multiple involved simulation
tools. This suggests exploiting the standards for dis-
tributed simulation, in order to ease interoperability of
different simulation/emulation environments, as well as
the portability and extensibility of the framework.

• Performance and scalability are crucial. The platform
should manage several independent long running sim-
ulation scenarios, which should be executed in paral-
lel, in order to reduce testing time and cost. Thus, it
should optimize allocation of simulation tasks, in order
to reduce the resource utilization and satisfy specified
confidence intervals for the results, according to tester-
specified objectives.

• For the reasons explained in the previous sub-sections,
the simulation should be set as a service, making most
of the complexity associated with SoS transparent to the
tester. This implies that the simulation platform should

manage all what concerns resource virtualization (i.e.,
hardware and software configurations, communication
networks, resources scheduling, scaling, etc.), orches-
trating the deployment of emulated and simulated com-
ponents on the virtual environment.

• Finally, while the platform can be deployed in prin-
ciple on public or private cloud, when test scenarios
involve critical systems and sensitive data, or due to
industrial strategic reasons, simulations often demand to
be performed on private clouds for security and privacy
concerns.

V. HYBRID SIMULATION SERVICES
The simulation services are schematized according to four
levels shown in Fig. 4: user level, functional level, simulation
engine, and IaaS.

A. USER-LEVEL SERVICES
The presented framework exposes its services by means of
Web-based graphical user interfaces (GUIs) and Application
Programming Interfaces (APIs). In particular, specific GUIs
are provided to testers in order to represent and configure test
scenario, like the one presented above, by composing simu-
lated and emulated components, and drowning their intercon-
nections at the architecture level. The description of available
components is stored in a repository. The framework will
automatically represent the described scenario by an XML-
based simulation descriptors. From logical point of view, the
simulation descriptor represents the set of micro functionality
involved in the simulation scenario (including individual
simulation services provided by simulated/emulated compo-
nents), as well as their interrelation (i.e., the structure of
exchanged data) and network interconnection. In general, a
scenario’s descriptor includes the following conceptual ele-
ments, represented in Tab. 1 and described in the following:

6 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

• Entities, describing the objects involved in the scenario,
which are distinguished in simulated entities, emulated
entities, real entities, plugins (useful as adapters to con-
nect simulated entities to the system under test, e.g., by
translating different communication formats), through
an attribute called mode. These are in turn characterized
by a descriptive type such as: Radar, Automatic Identi-
fication System (AIS), Marine Objects, Electro-Optical
Sensor (EOS), Network, and System Under Test (SUT),
as well as by parameters, such as bandwidth, tracking
mode, splitting probability, configuration parameters of
AIS/EOS/Radar/..., etc., largely depending on the entity
type and mode.

• Operations sequence, describing the sequence of opera-
tions between entities (specifying a staring and end en-
tity) easily representable by an UML sequence diagram.

• Oracles, describing the expected result of a test, charac-
terized by a type (i.e., automatic, manual check), a de-
scription, the entity to be checked against, the expected
output parameter(s) and the expected output value(s)
for such parameters. Complex oracles can be built by
combining simple oracles.

Fig. 5 shows an example screenshot of the GUI used to
deploy and monitoring a test scenario. Moreover, on the
base of the specific simulation domain (e.g., VTS), specific
interfaces are implemented to monitor the simulation process
(for example the movement of ships in the port), as well as
support the system diagnosis and log analysis.

Three sets of APIs are provided for interfacing the plat-
form with the external environment:
• Runtime Execution Interface (REI) - to configure the

involved simulation components and control at run time
the simulation process execution.

• Runtime Storage Interface (RSI) - to store and manage
the necessary information for orchestrating simulation,

FIGURE 5. User interface of the Scenario Launcher.

including simulated/emulated component images, con-
figuration scenarios (simulation descriptors), simulation
recording/log data, etc.

• Runtime Infrastructure Interface (RII) - to achieve, con-
figure, and monitor cloud resources, according to the
individual simulation process and architectural config-
uration, as well as deploy the simulation and emulation
entities on the experimental infrastructure.

Moreover, a set of API is provided to the developer to cus-
tomize the framework with respects to a specific application
domain. In particular, the framework supports standard API
to integrate and make interoperable existing or new simula-
tion/emulation components in the simulation scenarios.

B. FUNCTIONAL-LEVEL SERVICES

The simulation platform uses simulation descriptors pro-
duced at user-level to deploy and execute the hybrid sim-
ulation process, which is implemented by orchestrating a
combination of micro functionality offered by the involved
simulated/emulated components, and macro functionality
(Simulation Engine Services) exploited to implement interac-
tion and synchronization features among them. In particular,
at functional level, the following services are provided by the
simulation platform:

• Configuration and execution Service (CS), which inter-
acts with the lower-level modules to configure the simu-
lation environment and instantiate simulation scenarios,
providing: (i) the list of the simulation components
and their configuration to the Simulation Service Man-
ager (SSM); (ii) the types of data to exchange among
simulated/emulated components to Data Distribution
Manager Service (DDM); (iii) the setting-up of the
network emulation scenario to the Network Emulation
Manager (NEM), in order to interconnect the emulated
elements with the simulated parts; and (iv) the archi-
tectural description of the test scenario to the Virtual
Environment Manager (VEM), in order to implement it
in the virtualized environment in a cost-effective way.

• Monitoring Service (MS), in which the monitoring
information received back from lower modules are
prompted to the tester via the GUI, in order to enable
a full control of the simulation process and the state of
components and the virtual environment.

• Supporting Service, offering repositories and services
to ease the reuse of configuration scenarios, simula-
tion/emulation components, and recording/log data.

• Policy Service (PS) provides services to set QoS pro-
files. Specifically, the user is ebabled to define policies
to manage the life-cycle of components involved in
the simulation. It interacts with DDM by providing
the user-defined QoS profiles for data exchange among
components, and with the VEM, which maps the access
profiles into virtual resources access policies.

VOLUME 4, 2016 7



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

TABLE 1. Scenario elements and attributes

Element/Attributes Example or Description
Entity
Name Name of the entity
Mode 4 Possible modes: Simulated, Emulated, Real, Plugin
Type Object Type: Radar, Marine objects, Electro-Optical Sensor, Automatic Identification System, Network, ...
Instances An integer number, representing the number of instances
Parameters List of parameters depending on the entity Type and/or Mode,

e.g.: Bandwidth, TrackerMode, AlarmMode, SplittingProbability, SiteMode, ...
... Other attributes specific to the entity Type or Mode
Operations
OperationName Name of the entity, such as Start Radar
Order Integer number giving the order of the operations sequence
StartingEntity An entity of the above ones
Action Type of action, e.g.: Create, Delete, Read, Write
EndingEntity An entity of the above ones
Iterations Number of self-calls (i.e., starting entity = ending entitiy
Oracle
Name Name of the oracle, e.g.: Check_Degradation_Uplink_Oracle
Type Automatic or Manual
Description Textual description of the checking to be done
OutputEntityToCheck Entity to be checked, e.g.: VTX-XTH
ExpectedOutputParam Parameter to be cechekd, e.g.: RadarTracks_Num
ExpectedOutputValue Expected value

C. SIMULATION ENGINE SERVICES

This layer implements the hybrid simulation platform by
means of the following modules, whose implementation is
described in the next section.

• SSM – It implements the hybrid simulation process and
manages the system behavior in terms of interactions
among the components involved in the simulation.

• DDM – It is in charge of managing the constant ex-
change of information among components, providing
services for data distribution.

• TEM (Time/Event Manager) – In order to simulate
distributed and concurrent environments, it is necessary
that each involved component perceives the progress of
time in a uniform manner, regardless of their world of
origin (real, emulated, simulated). TEM is responsible
for the correct advancement of time, by managing the
alignment of real and emulated components’ time with
the simulation time.

• NEM – Given the very complex nature of the considered
network-centric systems, we adopt a distributed network
emulation solution to reproduce reality with a high
degree of verisimilitude. NEM implements services to
create, manage and emulate complex LAN/WAN net-
work scenarios.

• VEM – This component enables the dynamic deploy-
ment, management and monitoring of virtual resources,
which are necessary for the implementation and or-
chestration of the local testbed. It instantiates virtual
resources based on information it receives from the
CS. Moreover, it is able to: (i) manage the life-cycle
of virtual machines; (ii) support resource on-demand
and scalability to manage multiple parallel simulation

experiments; (iii) manage the life-cycle of the network
resources and of the virtual storage.

• TOM (Tuning and Optimization Manager) – It imple-
ment a spatial partition algorithms for optimal schedul-
ing and parallel execution of the simulation/emulation
tasks on the virtual resources, in order to perform mul-
tiple and concurrent simulation experiments, specially
when the simulation scale becomes extremely large and
the resources are limited (e.g., in the case of a private
cloud shared by several users and different services).

D. IAAS CLOUD SERVICES
The infrastructure layer provides the executing environment
for simulation engine components and test scenarios, as well
as allows fine-grained control of software stack of emulated
components.

VI. SIMULATION PLATFORM AS A SERVICE
By exploiting standard for distributed simulation, virtual-
ization and cloud paradigm, the proposed simulation plat-
form can on-demand and elastically enable the execution
of different simulation/emulated components of the VTS,
and perform simulation in parallel of multiple complex and
distributed test scenarios.

Specifically, in order to implement distributed simulation
environment, and support simulation interoperability and
synchronization, the High Level Architecture (HLA) has
been adopted. It is an IEEE standard developed by the
Department of Defense in the United States, which enables
the reuse and interoperability of multiple independent, het-
erogeneous and distributed existing simulation environments,
each with its own features, operating systems, and languages
within a more complex federated simulation solution. By

8 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

using the component-based technology, different simulation
environments can interact through standard interfaces and
operate together in a federated HLA architecture composed
by several interactive members, called federate. The interface
specification of the HLA describes how to communicate
within the federation, and is implemented by the Run Time
Infrastructure (RTI). In order to make possible the interac-
tion between federates and the RTI, there is the concept of
ambassador, which is an interface that each federate must
implement to inter-operate through the RTI middleware.

As a framework for advanced distributed interactive sim-
ulation, HLA-RTI is exploited to implement three of sim-
ulation engine services, including SSM, TEM and DDM.
Specifically, as for SSM, HLA provides mechanisms for
managing the federation members, as well as for specifying
the interaction among the federates. Each federation member
is represented by an HLA simulation object model (SOM),
which specifies the types of information that a federate can
provide to the federations, as well as information that it can
receive from the other. The interactions among the feder-
ates are described by the federation object model (FOM),
that represents the language of the federation. To correctly
exchange simulation data among federates, which evolve
along a different temporal model (emulated and simulated),
the TEM can exploit synchronization functionality offered
by RTI to coordinate how the simulators advance in their
logical and emulation scenarios. According to the test sce-
nario presented in Sec. IV, the simulated parts consist in
100 marine objects (i.e., ships, floating booms, etc.) and
sensors (i.e., 1 radar, 1 AIS, and 2 EOS) used to monitor
marine objects (i.e., their identification, trajectories, velocity,
position, shape, etc.). The sensors will send the collected
information to the SUT through the emulated network. Each
a sensor will represent an HLA federate. Therefore, to share
the time reference among components, specific HLA ambas-
sadors must be implemented for each simulator integrated in
the federation, which waits for events received by sensor and
interacts with the others through the TEM to manage the time
progress. The progress of time among distributed simulated
parts is based on HLA-RTI event driven strategy [25], while
the emulation parts use the system time. Specifically, during
their operation, the sensors will simulate the collection of
information related to the implemented scenario, and send
it to the TEM. The messages received by TEM will be placed
in a queue when they arrive, and are immediately eligible for
delivery to the SUT by the emulated network. The ordering
of these messages is arbitrary. To enable synchronization, an
event driven federate will invoke the TEM, by a Next Event
Request (NER) RTI procedure, when it has completed all
simulation activity at the current logical time and is ready to
advance to a new time. The parameter T specified in the NER
indicates the logical time to which the federate would like
to advance, if there are no other events from other federates
containing a smaller time stamp. Typically, T is the time
stamp of the next event in the federate’s local set of pending
events. If there are no messages with time stamp less than

or equal to T , and none will be received in the future, the
TEM invokes the federates (by Time Advance Grant RTI
procedure) indicating its logical time has been advanced to T.
Before invoking this service, the TEM will send to the SUT
all federates’ messages in its internal queue. Otherwise, the
TEM will deliver the next smallest message destined for the
federate (with time stamp T ′ where T ′ < T ), and all other
messages with time stamp T ′. In this case, the federateâĂŹs
logical time is advanced to T ′.

As regards the synchronization between the simulation and
the emulation environment, under the real-time execution
mode, the simulation parts follow a time-stepped discrete
time model, while the network emulation uses the system
time. Therefore, according to [24], assuming that the system
clocks of the network emulation host and the simulation
hosts are synchronized at startup time (for example, by using
the network time protocol), and in the absence of delay
due to communication and computation issues between the
simulation and the emulation environment, such time syn-
chronization will not violate local causality constraint. When
delay exists, it will cause the time stamp discrepancy of the
same message at the two environments. In the presence of
delay, the simulation time should lead or equal to emulation,
so that the message from simulation parts will not arrive
at emulation in its past time. During our experiments, we
observed that the delay varies across different experiments,
with the maximum value of 35ms and average around 7ms.
On the other hand, VTS can be considered as a near real-
time system. In a real system, the communication delay due
to the WAN network can be very significant. A radar track
can be considered obsoleted only it arrive with 9s of delay.
Therefore, the delay between the two environments can be
considered negligible and assimilated to a network delay.

Moreover, data exchange within the federation is im-
plemented through the DDM, by exploiting the pub-
lish/subscribe paradigm provided by the RTI. Finally, in order
to support Cloud-based distributed simulation, a Cloud-RTI
middleware has been adopted, in which traditional RTI is
provided by the use of Web services [26].

The NEM enhances the overall HLA-based architecture
with network services needed for the interconnection of dis-
tributed simulated parts and emulated components through
the emulated network over the same shared infrastructure.
It interacts with the CS, from which receives the XML
description of the network scenario to emulate. It can include:
(i) the configuration of the elements to be connected; (ii)
the type of network to emulate; (iii) the routing protocol;
(iv) the network characteristics in terms of bandwidth, delay,
jitter and packet loss of connections, etc. In the presented im-
plementation the Common Open Research Emulator (CORE)
has been adopted [27].

As previously described, the simulated components are
objects present in the test scenario, and used to simulate the
experimental workload (e.g., radars, objects in motion) or
perturbation in the system operation. Each test could require
several tens or hundreds of such objects to reproduce a real

VOLUME 4, 2016 9



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

experimental scenario. Moreover, they could be dynamically
added or removed during the the simulation, for example,
in order to simulate a failure of a remote sensor. In general,
they are either software components developed from scratch
or exiting simulation tools. Therefore, in order to reduce
both the number of virtual nodes to be scheduled (i.e., the
required computational resources, which could be limited
in a private cloud), and the VTS’s initialization time (boot
up time) needed for the setup of the whole test scenario,
we adopted two different virtualization approaches to host
simulated and emulated components. Specifically, we adopt
lightweight Linux containers for the simulation parts, and
KVM-based full virtualization for the emulated components
that must be ‘physically’ tested. A ‘container’ is a packaged
self-contained, ready-to-deploy set of parts of an application.
It is represented by a lightweight virtual image that can
include both the middleware and business logic (binaries
and libraries) to run application. Instead, a virtual machine
(VM) is a full monolithic image, which requires guest OS
images in addition to the binaries and libraries necessary
for the applications [22]. The life cycle of containers and
VMs is managed by the VEM, which provides PaaS cloud
services for their packaging and deployment. VEM acts as a
container manager, which enables a registry for the images
of the simulated components to be deployed on the virtual
nodes. It keeps track of the images executed on each node,
and identifies the virtual nodes on which deploys the images,
downloaded from the registry, needed for instantiating the
test scenario. As Linux container, we used the Docker con-
tainer virtualization technology [28]. As open-source cloud
PaaS, we adopted OpenShift [29] for supporting contain-
ers, and Kubernetes [30] to orchestrate Docker containers
on cluster nodes. As open-source cloud IaaS, we adopted
OpenStack [33]. Moreover, an IaaS management layer has
been exploited in order to access and control the virtual
infrastructure, for supporting on-demand resources provi-
sioning, running simulations on the cloud efficiently, and im-
proving load balancing capability of the simulation. Specif-
ically, VEM exploits Chef technology in order to simplify
the configuration and deployment of the OpenShift nodes
and emulated components (emulated networks and systems
under test) on cloud resources [31]. In particular, software
components that must be installed on virtual nodes are seen
as “resources”. “Recipes” specify the resources to use and
the order in which they are to be applied. A “cookbook”
defines a scenario. It contains everything that is required to
support that scenario, including recipes, attribute values, file
distributions, templates, etc. Chef cookbooks are stored in
the Chef server (central repository), which is a component of
the VEM installed on a cloud node and invoked as a remote
service. The Chef Workstation loads the Chef cookbooks
onto the Chef Server, and manages operations, such as the
installation and execution of the agents (Chef clients) on the
target nodes. Finally, the communication between the Chef
workstation and the Chef server is performed by the Knife
interface, which offers to the testers management functional-

ity for nodes, recipes and cookbooks, roles.
Finally, a resource management algorithm has been pro-

posed in our previous work, which optimizes allocation of
the simulation tasks (i.e., OpenShift nodes) and emulated
components on virtual nodes, reducing the cost to the service
provider (the cloud resource consumption in a private cloud),
and enhances the parallelization of the simulation jobs, by
fanning out more federated instances (test scenarios) [34].
The computed allocation of the test scenario is translated in
a Chef cookbooks and automatically deployed by VEM.

VII. TEST SCENARIOS
The developed platform is used to implement several test
scenarios of the VTS of the DISPLAY project’s indus-
trial partner. In the following, we describe the implemented
testbed and the test scenarios that can be currently run in the
hybrid simulation mode without the burden (or infeasibility,
in various cases) of a real implementation.

A. TESTBED
Figure 6 schematizes the implemented testbed.

It is based on a DELL M820 blade cluster with 32 nodes,
each with two quad-core processors, a 72GB HDD and either
8/16/32 GB RAM. Each node is equipped with the CentOS
6.6 x86_64 distribution – kernel 2.6.32-504.8.1.el6x86_64,
OpenSwitch (OVS) 2.3.1 linked as kernel module, and Open-
stack Icehouse series. Each node is equipped with 4 network
interface cards (NIC) at 1Gbps. One NIC is used by the
DELL management suite; two NICs are used for the data
exchange among virtualized nodes; the fourth NIC is used
by OpenNebula for node and VMs monitoring.

The logical components running on the testbed are:

• The System Under Test (SUT), namely the VTS, whose
behaviour is observed under the given test scenario;

• The simulation platform (SIM), responsible for simulat-
ing data coming from many types of sensors, such as
Radars, AISs, EOSs, DFs, Weather station and others;

• The plugin component (PLG), which is an adapter to
convert data format from/to SIM to/from the SUT; im-
plemented as a HLA federate; moreover, a Bridge that
do not interact with the SIM, relays data captured from
the operational site toward the SUT;

• The network component (NET), providing the network
infrastructure, that is interfaced with external systems
by the routers emulated bu CORE; moreover, a DMZ is
used to decouple and protect the interface from the OS
and from the DB, for security reasons.

The high-level objective of the testbed is to provide the ability
to setup realistic scenarios with a desired and configurable
(at runtime) number of marine objects (e.g., ships, buoys,
wrecks) along with simulated data coming from all kinds
of sensors (e.g., radars, AISs, EOSs, DFs) from a given
geographical site, provided as input to the VTS under test.

10 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

FIGURE 6. Testbed

B. TEST SCENARIOS

By using the platform, we implemented all the operational
scenarios reported in Tables 2–5. They are grouped into the
following four types:

• Maritime traffic control operation (MTC) - Scenarios in
this category test the correct functioning of the VTS
instance (emulated on the developed platform) with
respect to maritime traffic control operations (i.e., they
mimic real operational scenarios, according to a given
functional test plan drawn from requirements).

• Network operation (N) - These scenarios aim at recreat-
ing WAN contexts, to test the correct functioning of the
VTS with respect to varying network conditions.

• Fault tolerance (FT) - These scenarios are reproduced
to test conditions where faults (at component and/or
network level) can occur, so as to check to detection and
recovery ability of the VTS.

• Multiple scenarios (M) - Tests in this category aim at
checking the behaviour of the VTS when multiple in-
stances are present in one center and/or when it operates
in multiple control centers at the same time.

The scenarios listed in Table 2–5 act as test frames, namely
as a suitable combination of classes of parameters’ values
from which many concrete test cases can be drawn (by
instantiating specific values from within the classes range).
Each scenario is characterized by: an ID denoting the group it
belongs to (among the four ones mentioned above); the high-
level objective of the scenario; the entities involved (simu-
lated, emulated or real entities, depending on the scenario);
the relevant parameters along with the ranges of input that

can be provided.1 From these frames, testers easily obtain test
case by specifying values for the entities and for the relevant
parameters,

As a matter of fact, the new platform practically enabled a
pre-release system testing activity (both functional and non-
functional) that was previously prohibitive: without the plat-
form, many of those scenarios were unfeasible (or extremely
expensive), and thus, single pieces tested in isolation, because
of many real systems involved in geographically distributed
sites and not synchronously available for testing. The plat-
form enables the possibility of running tests continuously, as
the platform is system-independent. Also, it allows a drastic
reduction of orders of magnitude (from days to few hours or
minutes) to setup and run a single test case with respect to
a (feasible) real test. The 19 scenarios we implemented are
expected to increase with the increase of the platform usage
by the industrial partner’s engineers. This will expectedly
bring to considerable saving of testing time/cost and many
more scenarios that can be actually proved.

VIII. RELATED WORK
Simulation Software-as-a-Service (SIMSaaS) is a relatively
new paradigm that has achieved significant attention on in
the Cloud Computing community, which enables the exe-
cution of simulation application environments that can be
deployed on-demand and offered as-a-service [35]. Several
specific application domains use SIMSaaS, such as traffic
and transportation [36], scheduling parallel discrete event
simulation jobs [37], and manufacturing [38]. Tsai et al. [19]
proposed a generic SIMSaaS framework incorporating multi-

1Ranges’ boundary values are determined by the tester, who usually
observes typical runtime conditions to set them, and/or refers to extreme
conditions, depending on the objective of the test.

VOLUME 4, 2016 11



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

TABLE 2. Maritime traffic control test scenarios. Legend: AIS=Automatic Identification System; EOS=Electro-Optical Sensor; DF=Direction Finder; MO=Marine
Objects; NM=Nautical Mile; SAR=Synthetic Aperture radar.

ID Objective Entities Relevant Parameters Input (Range)
MTC_1 Check Performance (response time) 1 AIS - -

Radars #Radars 5 to 20
EOSs #EOSs 5 to 20
DFs #DFs 5 to 20
MOs #MOs 100 to 500

#Paths 20 to 100
Update period 3000ms
WAN Bandwidth 100 Mbps
LAN Bandwidth 3,5140 Mbps

MTC_2 Check the Tracker resolution 1 Radar - -
MOs #MOs 2 to 5

Distance among MOs 1m to 400m
MTC_3 Check the behaviour of the Tracker 1 Radar - -

upon tracks fusion and under bandwidth reduction 1 AIS - -
MOs #MOs 2 to 5

Bandwidth Reduction 10% to 50%
MTC_4 Check the antisplitting ability of the Tracker 1 Radar - -

1 MO MO Splitting Prob. 0 to 1
MTC_5 Check the tolerance to a faulty transponder by verifying 1 AIS - -

the creation of equal tracks under both correct and wrong 1 MO - -
information by transponder (simulated by a track jump) Track Jump 0.1 NM to 2 NM

MTC_6 Check the correct computation of collision times 1 AIS - -
given by the Distance Time Diagram (DTD) 1 Radar - -

MOs #MOs 10 to 50
MTC_7 Check the correct activation of a collision alarm 1 AIS - -

under at minimal distance threshold 1 Radar - -
MOs #MOs 10 to 50

Distance Threshold 1 NM to 5 NM
MTC_8 Check the correct notification of a safety message 1 AIS - -

received by a MO 1 MO - -
MTC_9 Check the correct positioning of targets 1 AIS - -

on a map referring to a very large area 1 Radar - -
1 SAR - -
MOs #MOs 10 to 50

Avg MO Distance 100 NM to 500 NM

TABLE 3. Network test scenarios. Legend: AIS=Automatic Identification System; EOS=Electro-Optical Sensor; MO=Marine Objects.

ID Objective Entities Relevant Parameters Input (Range)
N_1 Check the tolerance to the WAN bandwidth reduction 1 AIS - -

up to a threshold (i.e., check the correct creation of tracks) 1 Radar - -
2 EOSs - -
MOs #MOs 100 to 500

#Paths 2 to 10
WAN Band Reduction -10% to 90%

N_2 Check the tolerance to faults (downtime) in the WAN link 3 AISs - -
between a remote site and the Control Center 4 Radars - -
(i.e., the maximum uptime under network failure MOs #MOs 100 to 500
and the time to notify the failure are as expected) 1 Remote Site - -

#Paths 2 to 10
WAN Downtime 10s to 180s

N_3 Check the tolerance to faults (downtime) in the WAN link 3 AISs - -
among multiple Control Centers 4 Radars - -
(i.e., the maximum uptime under network failure MOs #MOs 100 to 500
and the time to notify the failure are as expected) 1 Remote Site - -

2 Control Centers - -
#Paths 2 to 10
WAN Downtime 10s to 180s

N_4 Check the tolerance to latency in the WAN link 1 AISs - -
up to a threshold (i.e., check the correct creation of tracks) 1 Radar - -

2 EOSs - -
#Paths 2 to 10
Latency ±50ms to ±500ms

tenancy architecture and scalability for simulation, also pre-
senting a simulation runtime infrastructure. The Fortissimo

project provides one-stop, pay-per-use, on-demand access to
simulation cloud resources, including software, hardware and

12 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

TABLE 4. Fault tolerance test scenarios. Legend: AIS=Automatic Identification System; EOS=Electro-Optical Sensor; MO=Marine Objects; SAR=Synthetic
Aperture radar.

ID Objective Entities Relevant Parameters Input (Range)
FT_1 Check the tolerance and recovery ability 3 AIS - -

of the SUT under a failure of a node 4 Radar - -
1 SAR - -
2 SUTs - -
MOs #MOs 100 to 500

#Paths 2 to 10
FT_2 Check the tolerance and recovery ability 3 AIS - -

of the SUT under the failure of a LAN link 4 Radar - -
1 SAR - -
2 SUTs - -
MOs #MOs 100 to 500

#Paths 2 to 10
FT_3 Check the tolerance and recovery ability 3 AIS - -

of the SUT under the failure of multiple nodes and LAN links 4 Radar - -
1 SAR - -
2 SUTs - -
MOs #MOs 100 to 500

#Paths 2 to 10
FT_4 Check the tolerance and recovery ability 3 AIS - -

of the SUT under the failure of one or more switches 4 Radar - -
1 SAR - -
2 SUTs - -
MOs #MOs 100 to 500

#Paths 2 to 10

TABLE 5. Multiple test scenarios. Legend: AIS=Automatic Identification System; EOS=Electro-Optical Sensor; DF=Direction Finder; MO=Marine Objects;
NM=Nautical Mile; SAR=Synthetic Aperture radar.

ID Objective Entities Relevant Parameters Input (Range)
M_1 Check the correct positioning of targets 1 AIS - -

with multiple instances of the SUT in one center 1 Radar - -
1 SAR - -
2 SUTs - -
MOs SUT 1 #MOs 10 to 50
MOs SUT 2 #MOs 10 to 50

#Paths SUT 1 2 to 10
#Paths SUT 2 2 to 10

M_2 Check the correct positioning of targets 1 AIS - -
with one SUT on multiple centers 1 Radar - -

1 SAR - -
2 SUTs - -
MOs #MOs 10 to 50

#Paths 2 to 10

expertise [41]. In particular, it focuses on modeling and sim-
ulation of coupled physical processes and high-performance
data analytic by exploiting HPC facilities. However, there is
a lack of automation and integration of tools in modeling and
simulation of distributed systems.

In this direction, Distributed Interactive Simulation (DIS)
and HLA represent two standards for distributed simulation.
DDS is managed by the Object Management Group, and
used as a messaging middleware standard for supporting
data-centric simulations, enabling seamless, timely, scalable,
and dependable distributed data sharing [39]. However, it
focuses exclusively on information exchange to support the
federation of solutions without providing the necessary in-
trospection [40]. Its successor HLA is a bit more flexible, as
the information to be exchanged is not standardized (it only
says how to structure the data). HLA is essentially used to
facilitate the reuse and interoperability of different simulation

systems and assets. On the other hand, HLA does not well
suit the considered large-scale, fine-granularity and long-time
distributed simulation scenarios, for its inefficient utilization
of simulation resources, lack of load balancing capability,
weak fault tolerance capability, and complicated simulation
deployment process [26]. RTI services are centralized, which
can be a bottleneck of the interaction between large-number
of hosted simulation entities. Therefore, the new concept
that includes service orientation and provision of simulation
applications via the PaaS model of Cloud Computing would
allow overcoming the discussed limits.

One of the first cloud-based HLA approach is introduced
in [42]. It presents a possible solution for integrating HLA
with a Service Oriented Architecture (SOA) in the context
of a smart building project. The simulation manager module
is a service wrapper on top of the RTI, which exposes
access to the RTI federation services via a RESTful API.

VOLUME 4, 2016 13



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

RESTful-based RTI have been used in the present work to
make interoperable the simulated VTS components hosting
on distributed cloud virtual nodes.

HLAcloud [43] presents a model driven and cloud-based
framework to support both the implementation of distributed
HLA-based simulation systems from a SysML (Systems
Modeling Language) specification of the system under study,
and its execution over a cloud infrastructure. It generates
the Java/HLA source code of the federates and the scripts
required to deploy and execute the HLA federation onto the
PlanetLab cloud-based infrastructure. Similarly to such con-
tribution, this work aims to propose a framework to provide
distributed simulation on Cloud infrastructure. Nevertheless,
in this work a simulation PaaS has been implemented to
make interoperable simulated and emulated distributed com-
ponents of a VTS, as well as automatically configure deploy
lightweight Linux containers for the simulation parts and
KVM-based virtual nodes for the emulated components on
open-source cloud IaaS, such as OpenStack.

IX. CONCLUSIONS AND FUTURE WORK
Hybrid and distributed simulation, supported by novel tech-
nologies for resources virtualization and working environ-
ment reproduction, represents the most promising way to
define the strategies needed to actually support SoS testing in
factory as it would be on-site. Designing an architecture for
scalable, distributed and parallel simulation, with automated
resource management and execution on the cloud, can satisfy
the requirements of large-scale simulations effectively.

The proposed solution provides testers with a distributed
simulation platform able to support the implementation of
in factory local testbeds for reproducing complex in situ test
scenarios. The framework is able to integrate heterogenous
emulated and simulated environments by relying on synchro-
nization, communication and virtualization services and is
itself offered “as a service” to testers, who can define arbi-
trarily complex scenarios without caring about the underlying
integration and communication complexity. The framework
is currently adopted by VTS engineers for building large-
scale, realistic and effective test scenarios with remarkable
gains in terms of tests set up and execution cost.

ACKNOWLEDGMENT
This work has been partially supported by the GAUSS na-
tional research project, which has been funded by the MIUR
under the PRIN 2015 program.

REFERENCES
[1] J. Guckenheimer and J. Ottino, “Foundations for complex systems re-

search in the physical sciences and engineering,” Tech. Report from NSF
Workshop, 2008.

[2] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann, “Critical
infrastructure interdependency modeling: a survey of US and international
research,” INL/EXT-06-11464, Idaho National Laboratory, Idaho Falls,
2006.

[3] Min Ouyang, “Review on modeling and simulation of interdependent
critical infrastructure systems,” Reliability Engineering and System Safety,
vol. 121, pp. 43-60, 2014.

[4] DISPLAY - Distributed Hybrid Simulation Platform
for ATM and VTS SYstems. [Online]. Available:
http://www.dieti.unina.it/index.php?option=com_content&view=article&
id=255:display&catid=75&Itemid=341&lang=it. Accessed on: Aug.
2018.

[5] A. Souid, A. Delaplace, F. Ragueneau, and R. Desmorat, “Pseudodynamic
testing and nonlinear substructuring of damaging structures under earth-
quake loading.” Engineering Structures, vol. 31, no. 5, pp. 1102-1110,
2009.

[6] D. De Laurentis, “Role of humans in complexity of a system-of-systems,”
LNSC, Springer, vol. 4561, 2007, pp. 363-371, 2007.

[7] IEEE-Reliability Society, “Technical committee on ‘Systems
of Systems’, WHITE PAPER,” 2014. [Online]. Available:
http://rs.ieee.org/component/content/article/9/77-system-of-systems.html.

[8] T. Aven, “Interpretations of alternative uncertainty representations in a
reliability and risk analysis context,” Reliability Engineering and System
Safety, vol. 96, no. 3, pp. 353-360, 2011.

[9] E. Zio, “Computational methods for reliability and risk analysis,” World
Scientific Publishing Co. Pte. Ltd., Singapore, 2009.

[10] L. Dueñas-Osorio, I.C. James, J.G. Barry, B. Ann, “Interdependent re-
sponse of networked systems,” Journal of Infrastructure Systems, vol. 13,
no. 3, pp. 185-94, 2007.

[11] J. Johansson and H.Hassel, “An approach for modeling interdependent
infrastructures in the context of vulnerability analysis,” Reliability Engi-
neering and System Safety, vol. 95. no. 12, pp. 1335-1344, 2010.

[12] Mosaik - A flexible smart grid co-simulation framework. [Online]. Avail-
able: https://mosaik.offis.de/. Accessed on: Aug. 2018.

[13] RinSim - A simulator for logistics problems. [Online]. Available:
https://github.com/rinde/RinSim. Accessed on: Aug. 2018.

[14] COSSIM - A novel, comprehensible, ultra-fast, security-aware CPS simu-
lator. [Online]. Available: http://www.cossim.org Accessed on: Aug. 2018.

[15] MARIN - Vessel Traffic Service (VTS) simulator. [Online]. Available:
http://www.marin.nl/web/Facilities-Tools/Simulators/Simulator-Facilities/
VTS-Simulators.htm. Accessed on: Aug. 2018.

[16] K-Sim VTS - Vessel traffic services simulator. [Online]. Available:
https://kongsberg.com/en/kongsberg-digital/maritime%20simulation/
vessel%20traffic%20services%20simulator/ Accessed on: Aug. 2018.

[17] L. Braubach and A. Pokahr, “The Jadex project: simulation,” Multiagent
Systems and Applications, vol. 45, pp. 107-128, 2013.

[18] S. Shekhar, H. Abdel-Aziz, M. Walker, F. Caglar, A. Gokhale, and X.
Koutsoukos, “A simulation as a service cloud middleware,” Annals of
Telecommunications, vol. 71, no. 3, pp. 93-108, 2016.

[19] Wei-Tek Tsai, W. Li, H. Sarjoughian, and Q. Shao, “SimSaaS: simulation
software-as-a-service,” 44th Annual Simulation Symposium (ANSS’11),
pp. 77-86, 2011.

[20] S. Guo, F. Bai, and X. Hu, “Simulation software as a service and service-
oriented simulation experiment,” IEEE Int. Conf. on Information Reuse
and Integration, pp. 113-116, 2011.

[21] T. Preisler, T. Dethlefs, and W. Renz, “Simulation as a Service: a design ap-
proach for large-scale energy network simulations,” Federated Conference
on Computer Science and Information Systems, vol. 5, pp. 1765-1772,
2015.

[22] C. Pahl, “Containerisation and the PaaS cloud,” IEEE Cloud Computing,
vol. 2, no. 3, pp. 24-31, 2015.

[23] M. Ficco, G. Avolio, F. Palmieri, and A. Castiglione, “An HLA-based
framework for simulation of large-scale critical systems,” Concurrency
and Computation: Practice and Experience, vol. 28, no. 2, pp. 400-419,
2016.

[24] J. Sztipanovits, “A model-based integration of network emulation with
HLA-based heterogeneous simulation environments,” Tech. Rep. Institute
for Software Integrated Systems (ISIS)-10-107, 2010.

[25] Richard M. Fujimoto, “Time management in the high level architecture,”
Transactions of The Society for Modeling and Simulation International,
vol. 71, no.6, pp. 388-400, 1998.

[26] H. Heng, L. Ruixuan, D. Xinhua, Z. Zhi, and H. Hongmu, “An efficient and
secure cloud-based distributed simulation system,” Journal of the Applied
Mathematics & Information Sciences, vol. 6, no. 3, pp. 729-736, 2012.

[27] J. Ahrenholz, “Comparison of CORE network emulation platforms,” IEEE
Military Communications Conference (MILCOM), pp. 864-869, 2010.

[28] D. Merkel, “Docker: lightweight Linux containers for consistent develop-
ment and deployment,” Linux Journal, no. 239, Mar. 2014. [Online]. Avail-
able at: http://dl.acm.org/citation.cfm?id=2600239.2600241. Accessed on:
Aug. 2018.

14 VOLUME 4, 2016



Ficco et al.: Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

[29] OPENSHIFT - Red Hat Openshift. [Online]. Available:
https://www.openshift.com/. Accessed on: Aug. 2018.

[30] KUBERNETES - An open-source system for automating deployment,
scaling, and management of containerized applications. [Online]. Avail-
able: http://kubernetes.io/ Accessed on: Aug.. 2018.

[31] CHEF - Cloud management. [Online]. Available:
https://www.chef.io/solutions/cloud-management/. Accessed on: Aug.
2018.

[32] Using Chef to Customize Multi-Node Cloud
Foundry Deployments. [Online]. Available:
https://blog.pivotal.io/pivotal-cloud-foundry/products/using-chef-to-custom
ize-multi-node-cloud-foundry-deployments. Accessed on: Aug. 2018.

[33] OpenStack - Open source software for creating private and public clouds.
[Online]. Available: https://www.openstack.org/. Accessed on: Aug. 2018.

[34] M. Ficco, B. Di Martino, R. Pietrantuono, and S. Russo, “Optimized task
allocation on private cloud for hybrid simulation of large-scale critical
systems,” Future Generation Computer Systems, vol. 74, pp. 104-118, Sep.
2017.

[35] T. Azevedo, Rosaldo J. F. Rossetti, Jorge G. Barbosa, “A state-of-the-art
integrated transportation simulation platform,” 4th Int. Conf. on Models
and Technologies for Intelligent Transportation Systems, pp. 340-347,
2015.

[36] J. Harri, M. Killat, T. Tielert, J. Mittag, and H. b. Hartenstein, “DEMO:
Simulation-as-a-service for ITS applications,” 71st IEEE Vehicular Tech-
nology Conference (VTC 2010), pp. 1-2, 2010.

[37] X. Liu, X. Qiu, B. Chen, Q. He, and K. Huang, “Scheduling parallel
discrete event simulation jobs in the cloud,” IET Conference publications,
vol. 2012. pp. 72-72, 2012.

[38] S. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini, “Cloud
computing for simulation in manufacturing and engineering: Introducing
the CloudSME simulation platform,” Annual Simulation Symposium, no.
2., pp. 89-96, 2014.

[39] IEEE Standard for Distributed Interactive Simulation-Application Proto-
cols. IEEE Computer Society. 1278.1, 2012.

[40] A. Tolk and S. Y. Diallo, “Using a formal approach to simulation interop-
erability to specify languages for ambassador agents,” Winter Simulation
Conference (WSC’10), pp. 359-370, 2010.

[41] The Fortissimo project. [Online]. Available at:
https://www.fortissimo-project.eu. Accessed on: Aug. 2018.

[42] M. Dragoicea, L. Bucur, W.-T. Tsai, and H. Sarjoughian, “Integrating
HLA and service-oriented architecture in a simulation framework,” 12th
IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing (CCgrid
2012), pp. 861-866, 2012.

[43] P. Bocciarelli, A. D’Ambrogio, A. Giglio, and D. Gianni, “A SAAS-based
automated framework to build and execute distributed simulations from
SysML models,” Winter Simulation Conference, pp. 1371-1382, 2013.

MASSIMO FICCO (M’02) is Assistant Professor
at University of Campania “Luigi Vanvitelli”. He
received the degree in Informatics Engineering in
2000 from Federico II University of Naples, and
his Ph.D. in Information Engineering from the
Parthenope University of Naples in 2010. From
2000 to 2010, he was senior researcher at the Ital-
ian University Consortium for Computer Science
(CINI). Since 2004 he teaches master courses in
software reliability and security, software engi-

neering, data bases, programming. His current research interests include se-
curity and reliability of critical infrastructure, cloud computing, and mobile
computing.

ROBERTO PIETRANTUONO (SM’16) is As-
sistant Professor at Federico II University of
Naples, where he teaches Software Engineering.
His research interests are in the area of software
reliability engineering, software testing, verifica-
tion of critical software systems. He co-authored
more than 60 papers in these areas. He is co-
founder of Critiware s.r.l., a company working in
critical systems engineering. Since 2008, he has
been involved in several EU and national projects

on software engineering and software dependability.

STEFANO RUSSO (SM’15) is Professor of
Computer Engineering (since 2002) at the Fed-
erico II University of Naples, where he teaches
Software Engineering and Distributed Systems,
and leads the Dependable Systems and Soft-
ware Engineering Research Team (DESSERT,
www.dessert.unina.it). He is Associate Editor of
the IEEE Transactions on Services Computing.
He co-authored over 160 papers in the areas of
software engineering, software aging, middleware

technologies, mobile computing.

VOLUME 4, 2016 15


