
1

Engineering Air Traffic Control systems
with a Model-driven approach

Gabriella Carrozza ∗ Mauro Faella †, Francesco Fucci‡, Roberto Pietrantuono‡, Stefano Russo‡§
∗SESM scarl, a Finmeccanica company, Via Circumvallazione Esterna di Napoli, 80014 Giugliano, Italy

†Critiware S.r.l., Incubatore Incipit, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126, Naples, Italy
‡Dipartimento di Informatica e Sistemistica, Universitá di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.

§Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126, Naples, Italy.

Abstract—Testing software in Air Traffic Control (ATC) sys-
tems costs much more than building them. This is basically true
in every domain producing software-intensive critical systems.
Software engineers strive to find methodological and process-
level solutions to balance these costs, and to better distribute
verification efforts along all the development phases.

There is considerable interest in applying model-driven ap-
proaches in the critical systems engineering field. Kept promises
and failed expectations of model-driven engineering are still
debated today; we report our experience in trying to take the
model-driven best achievements and, at the same time, to fill its
lacks in the considered industrial context.

Index Terms—Software Process Models, Lifecycle, Model-
based Design, Model Driven Testing

I. BUILDING ATC SYSTEMS TODAY

One of the fundamental pillars of Air Traffic Management
(ATM) is Air Traffic Control (ATC). ATC systems are
software-intensive critical systems which take care of assuring
that aircrafts are safely separated in the sky as they fly, and
at the airports where they land and take off [1]. An ATC
system is in charge of managing all ground and en-route
flight operations, with the aim of preventing collisions and
organizing the flow of traffic.

To build software for ATC systems, the most consolidated
development process model is by far the V-Model. Its key
benefit is the accounting of verification and validation at early
stages, as soon as requirements are elicited, which allows
having development and V&V activities conducted in parallel
flows. In a V-Model, criteria for testing are defined on the basis
of what is actually intended to produce, and not a posteriori,
i.e., on what has been already produced. The model is also
trusted because of the net separation of phases, supported by
entry and exit criteria, and the precise definition/separation of
role and responsibilities. This helps in embedding know-how
more in the process than in people’s mind; the final products’
quality is more prone to be independent of individual skills.

However, pressures from the market require more time- and
cost-effective ways to produce and assess software. And when
talking about effectiveness in software production, the prime
suspect is testing, especially for critical systems. Starting
thinking about testing as requirements are available, as V-
model constrains, is certainly necessary, but it seems no
longer sufficient at all. Testing and on-site maintenance cost
deriving from quality issues are still a relevant concern for
manufacturers and system integrators.

The main source of cost is in the left side of the “V”, where
early verification is still not well supported by methodologies
and tools. But for better cost-quality balance, improvements
are required not only from the testing perspective. Design-
and process-level reasoning is a key issue to optimize testing
efforts. Resources required in terms of personnel and skills,
poor communication within the team, and minor involvement
of end-user are V-Model deficiencies that heavily reflect on
quality and cost management.

Solutions from the literature present valuable and promising
advancements; yet, there is still lack of practical experience
in industrial contexts, which are the real enabler proofs in
critical domains. This makes it tough to tailor toy examples
to real-scale complex systems.

In the context of a public-private collaboration between
the University of Napoli and the Finmeccanica companies
“Selex Sistemi Integrati” and SESM, we are jointly looking for
process-level solutions to impress a sharp yet reliable change
in the way of building high-quality software for ATC systems.

The current V-Model process we refer to comes as in Figure
1 (with labelled artefacts compliant with the MIL-STD-498
standard [2]). We are challenged with improving the cost-
quality trade-off without impacting the current well-proven
practices in such a process. This translates into finding a
solution able of: i) detecting more specification and design
errors earlier; ii) fighting inconsistencies among artefacts;
iii) keeping the main flow of the V-model (with role and
responsibilities) unaltered; iv) scaling with respect to systems
complexity.

II. LOOKING AT MODEL-DRIVEN APPROACH

Given these requirements, a model-driven approach seems
attractive for us. We look, as specific paradigm, at Model-
driven Architecture (MDA) [3]. Besides the claimed advan-
tages in terms of interoperability, portability and reusability,
we are interested in these key features:

• manual activity in repetitive error-prone tasks are mini-
mized;

• redundant descriptions, at different stages, of the software
behaviour are avoided by automatic transformations; this
minimizes inconsistencies;

• early verification and validation of design artefacts are
aided by tools and favoured by modelling notation and
rules;



2

Fig. 1: The reference V-Model process

• design-oriented flow helps to optimize testing effort;
• code can be generated automatically, which is definitely

the most striking feature;
• maintenance cost is also reduced, since the effort of

introducing a change at upper level can be minimized
by automatic transformations model to model and model
to code;

• compared to pure text, models are less prone to misin-
terpretation. They dramatically reduce the possibility of
misunderstandings on artefacts between different teams,
as well as between teams and stakeholders, at every stage.

We distinguish two major benefits in a possible integration of
MDA into our V-Model: i) a direct testing and maintenance
cost reduction by early defect detection, since the idea of
V-model of verifying correctness and consistency at each
stage would be much enforced; ii) a further cost reduction
coming from the possibility of generating code automatically,
of favouring reuse, and of easing updates and maintenance
actions during operation.

These benefits are not in contradiction with V-model; rather
they look as a natural improvement and refinement of its
pillars. So, integrating MDA into our V-Model is the next step
we decide to take. But, again, MDA alone does not suffice,
and what it cannot cover requires integration.

III. EMBEDDING MDA/MDT INTO A V-MODEL

Incorporating a model-driven way of thinking in a full
development cycle cannot be accomplished by simply placing
MDA steps in the design/coding phase. If we want real
benefits, we must handle: how to deal with phases not covered

by MDA, and how existing well-proven activities will interact
with MDA ones. This is of paramount importance to avoid
bottlenecks and to not cancel potentialities of Model-driven.

In ATC systems engineering, an important need is to
optimize testing activity. MDA primarily focuses on the
“development” side. Verification is basically supported only
as cross-checking of design artefacts consistency, but it is
mostly neglected. Model-driven Testing (MDT) is the key; it
shifts MDA concepts into testing [4]. Nevertheless, these two
practices are not fully integrated and people do not see them
under the same umbrella during everyday work. As MDA,
MDT proposes Platform-Independent and Platform-Specific
models as well, named PIT and PST, where T stand for “Test”.
And, exactly like MDA does, MDT can potentially reduce
testing cost by deriving test cases automatically from these
models [4], [5].

Today, the few companies investing on MDT do not usually
manage the whole process automatically; they create models
manually or partially reusing (MDA) design models (e.g.,
adding stereotypes or profiles to UML models, such as the
UML 2 Testing Profile [6]). We present our solution to let
MDA and MDT flow in parallel along the entire process;
to this aim, we realize Model to Model (M2M) transforma-
tions to generate PIT and PIT-Software automatically from
design models (the design models are referred to as Platform-
Independent models, PIM, and PIM-Software, and Platform-
Specific model, PSM [3]). Figure 2 shows the implemented
links between MDA and MDT in the proposed solution.

System requirements analysis performed by domain experts
is the opening step of the process. Then, two activities run in
parallel: i) the creation of the PIM, and ii) the specification of



3

Fig. 2: Overview of the proposed process

software requirements.
Both the PIM and PIM-Software have two complementary

views:
• the static view describes entities and their structural

relationships;
• the dynamic view describes the run-time behaviour.

The PIM at system level is described by SysML diagrams (e.g.,
requirement diagram, block diagram, state machine diagram),
and is transformed into the PIM-Software using software
requirements. The PIM-Software is described in UML2 and
primarily considers, among others, the following diagram
types: component diagram, modelling the relationships among
components; state machine diagram, describing the behaviour
of components in terms of finite state machines; data model,
describing the data managed by the system; these can be
external data (exchanged with external actors), and internal
data (exchanged among subsystems).

The static view from the PIM and PIM-Software is used to
generate the PIT and PIT-Software through M2M transforma-
tion. These are described in UML Testing Profile (UTP) [6],
as it is a standard for the definition and specification of test
suites in the given domain. The dynamic view is used to
generate the actual test cases by model-based coverage criteria
(e.g., algorithms for specific coverage criteria of behavioural
diagrams, such as state/transition coverage).

Then, on the left side, from the PIM-Software we generate
the PSMs by using the right set of M2M transformation rules
depending on the selected platform. On the right side, the PST
is generated in TTCN-3 [7] notation through a further M2M
transformation. We choose TTCN-3 so as we can use one PST
for different PSMs.

The last part of the process concerns with:

1) the M2T transformations of PSMs into source code and
of PST into TTCN-3 scripts;

2) the manual creation of SUT (Software Under Test)
Adapters, one for each specific implementation, which
is a piece of software used to translate TTCN-3 scripts
into messages sent to the SUT.

Finally, the Test Suite is executed on the SUT. This is done in a
specific TTCN-3 run-time environment, by means of the SUT
Adapter. All the artefacts, but software requirements, software
models, and SUT Adapter, are generated automatically.

At this point in time, we went to the market for getting
support tools that are already there, more or less ready to use
(e.g., IBM Rational Rhapsody R©). However, we could not find
a complete tool-chain able to support us throughout the whole
integration and generation process. Despite several tools exist
able to cover many steps of the process, they are very hard to
be integrated either because produced from different vendors
or due to the different hw/sw platforms they target. We have
been accomplishing the difficult task of building such a tool-
chain for several months, due to the huge benefit it would
bring to the design, development, and verification teams.

However, besides these technicalities, the trickiest part is
to make MDA/MDT flow good enough for building critical
software. Indeed, there are still several deficiencies in the
MDA/MDT paradigm. For coping with them, we rely on
the very well proven V-Model activities, to be linked with
MDA/MDT ones.

• An inherent problem of MDA/MDT is surprisingly again
about testing, where the major benefits were expected.
Indeed, testing automation is the most substantial contri-
bution of MDT inasmuch as testing model contains the
static and dynamic view as well; but test automation, and



4

MDT more generally, does not necessarily imply test-suite
cost-effectiveness. Through the above-mentioned model-
based coverage criteria, MDT automatically creates a
lot of functional test cases from the test model in turn
derived from design model; that is fine for testing what
the system is expected to do against what specified at
design stage. There are some problems in this: i) in
large-scale complex systems, as the ones we deal with,
exercising all the produced test cases is by far non-
practicable; ii) in critical systems, conformance to certifi-
cation standards, and the consequent best practices taken
for quality assurance, provide already a certain degree
of confidence on functional behaviour: the missing link
is fulfilment of non-functional requirements. Standards
require quality assurance evidences; other than a coverage
level of functional behaviour, RAMS, robustness, and,
more generally, dependability requirements satisfaction
must be demonstrated.
To tackle these issues, we decide to rely on MDA/MDT to
cope with functional test case production. Then, we faced
non-functional testing by means of consolidated RAMS
analysis steps at each stage.
In particular, as for the former point, to prevent the
number of functional test cases from exploding we need
adequacy criteria and test case selection techniques: we
are exploring solutions to pursue high coverage at lower
cost. Along with the implementation of several coverage
criteria for test suites generated from state machines, we
are now focused on similarity-based test case selection
techniques [8].
As for the latter point, we use RAMS analysis for iden-
tifying the most critical software components to which
allocate the greatest effort, in terms of time and budget,
for non-functional test cases. According to this, we gen-
erate test cases to prove software robustness, and/or to
run stress and performance tests. Although UTP provides
some support to this task, you can exploit a much lower
degree of automation compared to functional test cases
generation.

• MDA does not cover the uppermost part of the V, that
is from requirements to high-level design. Certification
standards of interest (e.g., DO178B/DO178BC/DO248)
deem requirement management as a crucial activity of the
lifecycle. Even if MDA provides great support facilities
in designing and checking conformance to requirements,
it can be even improved by an integrated MDA/MDT
approach. First, having executable design models allows
exercising them against requirements. Second, looking
at the generated test models helps in identifying dis-
crepancies between the corresponding design model and
requirements.
However, this is still not enough to cover everything
is needed in practice, especially from the certification
perspective. Requirement completeness, correctness, and
traceability (among requirements at different level of
abstraction, e.g., user- and system-level, as well as be-
tween requirement and design) is still to be verified
by static manual analysis (e.g., inspection, checklist,

walkthroughs/design reviews) and requirements engineer-
ing techniques [9]. For their validation, the V-Model
encompasses the creation of acceptance tests, which give
us feedback about user’s needs and about what is really
worth to prove in terms of system performance as well.

• A further concern is about the integration with OTS
(Off-the-Shelf) components and/or legacy code; this is
a common way of developing the large systems for ATC,
for which MDA/MDT has a limited support.
The defined flow supports only the test cases creation
for OTS components (with some documentation support)
at unit level and for their interaction with others in the
architecture. This simplifies one task; but, the rest of
OTS integration cycle, namely OTS searching, interface
matching, adaptation, and integration strategy, must be
managed separately in our V-Model.

IV. EXAMPLE

We report an example of the model instantiation, developed
in the context of the mentioned industry-university partner-
ship. The industrial partner is currently running the eATMS
long-term program aimed at designing a new generation of
ATM/ATC systems. eATMS goals are: i) optimizing system
deployment and maintenance, ii) achieving the performance
required to manage the traffic increase, and iii) converging
towards interoperability with other European ATM systems as
required by the Single European Sky ATM Research project
[10].

The ATC system subject of our case study is designed
with a component-based approach. It has tens of thousands
of requirements and it consists of many interacting deployable
components, known as CSCIs (Computer Software Configura-
tion Items). We report the application of the proposed approach
to a sub-CSCI of the eATMS Controller Working Position
component, named Data Manager (DTM). The DTM is our
SUT; it is responsible for:

• managing the transition of Flight Data Objects (FDOs)
from external source to the graphical user interface; they
are composed by flights and air traffic data (e.g. weather
information, altitude and coordinates of the flight);

• converting data in different standard format and storing
them into a database;

• offering publishing/subscribing services for the FDOs.
DTM has about seventy requirements and it is meant to be
used by other components.

For DTM development, we implemented MDA/MDT in the
V-Model of Figure 1. We started from an available PIM that
is transformed in PIT through M2M translation rules provided
by Test Conductor

TM
, a commercial plug-in of IBM Rational

Rhapsody R©.
A PIM-Software is designed with UML2 on the basis of

software requirements specification. The high-level architec-
ture (i.e., the static view) consists of 6 components:

1) FDOStorageManager: it manages the format conver-
sion and the persistent storage of FDOs in a database;

2) FDOWriterAdapter: it manages the services to modify
the FDOs during a Writing Session and uses the FDOS-
torageManager to do it;



5

3) FDOPublisherAdapter: it manages the services to pub-
lish new FDOs during a Publishing Session and uses the
FDOStorageManager to do it;

4) FDOReaderAdapter: it provides services to read FDOs
during a Reading Session, using the FDOStorageMan-
ager to retrieve the requested data;

5) FDOSessionManager: it manages sessions for external
components to manipulate FDOs. There are three kinds
of sessions, for writing, publishing and reading;

6) FDOChangeNotificationCenter: the DTM follows the
publish/subscriber paradigm; the component has the role
of message broker: it requests the FDOStorageManager
to store the FDOs posted by publishers and notifies the
subscribers about FDOs changes.

The dynamic view is described by UML2 statechart diagrams,
manually verified against software requirements. At high level,
the DTM component starts in an Idle state, waiting for a
request of service that activates the transition in the Busy state.
When the requested service is carried out without anomalies,
it comes back into the Idle state, otherwise it transits into the
Error state. From this, when recovery activities are performed,
the DTM is restarted resuming to Idle.

The PIT-Software is automatically generated from the static
view of DTM, by Test Conductor

TM
transformation rules. The

dynamic view is used to generate the test cases with the
criterion of covering all the states. A very simple example
of generated test-case at this high level is shown in Figure 3;
as we go at lower level, test cases become more and more
complex.
Then, on the left side of the “V”, we used the Rhapsody R©

translation rules to transform the PIM-Software into a PSM
where the “Platform Specific” is intended in relationship to
the specific implementation language, C++, and then to C++
source code. On the right side, we used the ConformiQ

TM
tool

for getting to TTCN-3 scripts from test models. An example
of the generated TTCN-3 script is in Figure 4. Finally, this
kind of scripts are executed through Elvior c© TestCast, which
uses a SUT Adapter to specific APIs provided by the TTCN-
3 Execution Environment (EE). The SUT Adapter, that we
implemented in Java, cares about the communication between
TTCN-3 scripts and the C++ implementation of the SUT.

Fig. 3: Test case example

All the produced artefacts by this flow are included in the

testcase State_DTM_Idle_to_WritingSession() runs on Tester
system SUT_adapter

{
var float oldtimer := 0.0;
var default default_behaviour_ref;
start_test_case();
default_behaviour_ref := activate(testerDefaultBehaviour

());
send_ServiceRequest_to_input(DeclareAsPublisherTemplate1)

;
oldtimer := 0.0;
timeoutTimer.start(10.0 - oldtimer);
alt
{
[] timeoutTimer.timeout {}

}
timeoutTimer.stop;
send_ServiceRequest_to_input(

OpenPublishingSessionTemplate1);
setverdict(pass);
deactivate(default_behaviour_ref);
end_test_case();

}

Fig. 4: Generated TTCN-3 script example

documents foreseen by our V-Model for each design/testing
phase.

V. INSIGHTS

In the middle of the story, we are now able to summarize
what we see as the enablers for integrating V-Model and
Model-driven development to get the most of both:

• Model-driven flow is essential on both the sides of the
“V”; it allows for parallel evolution of artefacts, and
favours cross-checking between corresponding activities
at any given level of abstraction. This corroborates V-
Model principles and favours transfer of knowledge and
communication among teams.

• Procedures for integrating Model-driven development
into customized processes are crucial and can bring
significant benefits, as also remarked in [11]. However,
one should neglect neither the start-up effort needed to
set them up, nor the fact that they may need to be tailored
for different systems.

• A very important role is played by tools. There is still
poor interoperability among available tools; a one-for-all
tool-chain does not exist yet. For instance, the Rational
Rhapsody R© tool and the related plugins (Test Conduc-
tor

TM
and Automatic Test Generator) cover a relevant

slice of the depicted model, but part of the right side
of the V (i.e., transformation into TTCN-3, to TTCN-3
test scripts, and then the TTCN-3 execution environment)
should be implemented with others (examples for these
tasks are ConformiQ

TM
tool-chain, Elvior c© TestCast). We

definitely believe it is worth building it, if we want to let
Model-driven really penetrate into the reference industrial
domain. Open source integrated alternatives (e.g., based
on languages/tools in the Eclipse environment, such as
ATL transformation language and Acceleo) would also
be widely desirable.



6

A last consideration is on the opportunity of radical changes
in this area. Besides social, cultural, or economic hurdles
[12], we believe that industry and academia are still not
ready. The former is, not without reasons, firmly anchored to
consolidated processes and practices, which work well even if
dated and not in line with modern technologies and paradigms.
The latter, instead, misses real world application scenarios
to make research real and practically assess methodologies
and approaches [13]. We believe that concrete experiences in
industrial settings are the missing link. In this domain, only
more industrial examples would convince people, more than
any theoretical evidence, that certain changes are possible and
that are worth to be considered for improving the quality of
delivered critical, large scale, software systems.

ACKNOWLEDGEMENTS

This work has been supported by MIUR under Project
PON02 00485 3487758 “SVEVIA” of the public-private lab-
oratory “COSMIC” (PON02 00669) and by Finmeccanica
under the “Iniziativa Software” project. The work of Dr.
Pietrantuono and Fucci is supported by the project Embedded
Systems in Critical Domains (CUP B25B09000100007) within
the framework of POR Campania FSE 2007-2013.

REFERENCES

[1] EUROCONTROL European Organisation for the Safety of Air Navi-
gation, “Eurocontrol website”, http://www.eurocontrol.int/articles/what-
air-traffic-management

[2] U. S. D. of Defense, MIL-STD-498 Overview and Tailoring Guidebook,
1996.

[3] J. Mukerji and J. Miller, “MDA Guide Version 1.0.1”, 2003;
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

[4] P. Baker, Z. Dai, J. Grabowski, I. Schieferdecker, and C. Williams, Model
Driven Testing: Using the UML Testing Profile, Springer, 2010.

[5] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
Survey of Model-Driven Testing Techniques”. Proc. of the International
Conference on Quality Software, IEEE Computer Society, 2009, 167-172

[6] OMG Std., UML Testing Profile (UTP), OMG, 2012.
[7] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz, An

Introduction to TTCN-3, John Wiley and Sons, 2011.
[8] H. Hemmati, A. Arcuri and L. Briand, “Achieving Scalable Model-Based

Testing Through Test Case Diversity”, ACM Transactions on Software
Engineering and Methodology, to appear in vol. 22, no.1, 2013.

[9] E. Hull, K. Jackson and J. Dick, Requirements Engineering, Springer,
2010

[10] SESAR, “SESAR Joint Undertaking”, http://www.sesarju.eu
[11] J. Hutchinson, M. Rouncefield, and J. Whittle,“Model-driven engineer-

ing practices in industry”, Proc. of the International Conference on
Software Engineering, IEEE Computer Society, 2011, 633-642.

[12] B. Selic, “What will it take? A view on adoption of model-based
methods in practice”, Software & Systems Modeling, Springer, vol. 11,
no. 4, October 2012, pp. 513-526.

[13] L. Briand, “Embracing the Engineering Side of Software Engineering”,
IEEE Software, vol.29, no.4, 2012, pp. 96

Carrozza.jpg
Carrozza.jpg Gabriella Carrozza, Ph.D., is currently leading the

V&V team at SESM. Her main research interests
are in dependability evaluation and assessment of
complex software systems, as well as on the V&V of
large critical systems. She is managing two projects
in the SESAR research programme, aimed at devel-
oping novel ATC and Airport systems supervision
to improve overall software quality and reliability.
Since 2008, when she held her Ph.D. in Computer
and Automation Engineering at the Federico II Uni-
versity of Naples, she has been serving as reviewer

and PC member of several conferences and journals in the dependable systems
research community.
Contact her at: gcarrozza@sesm.it

Faella.jpg Faella.jpg
Mauro Faella is a R&D Software Engineer at Criti-
ware S.r.l.. He is also consultant at SESM. His re-
search interests include the model-driven approaches
and practices in testing activities of critical systems.
He has an MS in computer engineering from the
Federico II University of Naples, Italy.
Contact him at mauro.faella@critiware.com

Fucci.jpg Fucci.jpg Francesco Fucci is a PhD student in Computer and
Automation Engineering at the Federico II Univer-
sity of Naples. He received his M.Sc at the same
university in 2011. He was also consultant at SESM,
where he worked in the V&V team for projects in
the field of Air Traffic Management.
Contact him at: francesco.fucci@unina.it

Pietrantuono.png
Pietrantuono.png

Roberto Pietrantuono, PhD, IEEE Member, is
currently a post-doc at Federico II University of
Naples. He collaborates with several companies of
the Finmeccanica group, in the field of critical soft-
ware system development. His research interests are
in the area of software engineering, particularly in
the software verification of critical systems, software
testing, and software reliability. He received his PhD
degree (2009) in Computer and Automation Engi-
neering from the Federico II University of Naples,
Italy.

Contact him at: roberto.pietrantuono@unina.it



7

Russo.jpg Russo.jpg
Stefano Russo is Professor and Deputy Head at the
Department of Computer and Systems Engineering,
Federico II University of Naples. He is Chairman
of the Curriculum in Computer Engineering, and
Director of the “C. Savy” Laboratory of the Na-
tional Inter-Universities Consortium for Informatics
(CINI). His research interests are in the areas of
distributed software engineering, middleware tech-
nologies, and dependable software systems. He coor-
dinates the national project DOTS-LCCI on software
dependability for critical infrastructures. He has (co-

)authored more than 120 scientific papers.
Contact him at: stefano.russo@unina.it


