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Abstract—Software systems running continuously for a long
time tend to show degrading performance and an increasing
failure occurrence rate, due to error conditions that accrue
over time and eventually lead the system to failure. This
phenomenon is usually referred to as Software Aging. Several
long-running mission and safety critical applications have
been reported to experience catastrophic aging-related failures.
Software aging sources (i.e., aging-related bugs) may be hidden
in several layers of a complex software system, ranging from
the Operating System (OS) to the user application level.

This paper presents a software aging analysis at the Oper-
ating System level, investigating software aging sources inside
the Linux kernel. Linux is increasingly being employed in
critical scenarios; this analysis intends to shed light on its
behaviour from the aging perspective. The study is based on
an experimental campaign designed to investigate the kernel
internal behaviour over long running executions. By means
of a kernel tracing tool specifically developed for this study,
we collected relevant parameters of several kernel subsystems.
Statistical analysis of collected data allowed us to confirm the
presence of aging sources in Linux and to relate the observed
aging dynamics to the monitored subsystems behaviour. The
analysis output allowed us to infer potential sources of aging
in the kernel subsystems.
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I. INTRODUCTION

Software Aging can be defined as a continued and
growing degradation of software’s internal state during its
operational life. This problem leads to progressive perfor-
mance degradation, occasionally causing system crashing.
Due to its cumulative property, it occurs more intensively in
continuously running systems that execute over a long period
of time. It is typically caused by accrued error conditions,
such as round-off errors, data corruption, storage space
fragmentation, or unreleased memory regions.

Detecting and removing the sources of software aging
(i.e., the so-called aging-related bugs [1]) is very difficult
at testing time, since aging becomes evident only after
a long operational time. For this reason, software aging
represents one of the most subtle dependability threats in
today’s business- and safety-critical software systems.

Past research work reported software aging phenomena
that manifested as the increasing consumption of Operating

System (OS) resources, such as free memory and swap space
exhaustion [2]–[4]. Subsequent studies found software aging
sources in several software applications, such as web servers
[4], telecommunication systems [5], and SOAP servers [6].
Therefore, several approaches were developed to predict the
time to failure at operational time, in order to plan proper
actions (that are usually referred to as software rejuvenation)
with an optimal schedule (i.e., neither too early, because it
would be expensive, nor too late, because a failure may occur
before rejuvenation).

Although relevant, the analysis of software aging sources
at application level represents only a partial view of the
issue. In fact, the OS itself can be a source of software
aging phenomena, since it is a large and bug-prone part
of complex software systems [7]. Being able to detect and
isolate the aging contribution of the OS would yield insights
about aging trends for a wide number of applications based
on it. Moreover, these insights can be exploited for planning
software rejuvenation strategies tailored to the OS [8], as
well as for identifying aging-related bugs in the OS code.

In this work we carry out an experimental campaign to
analyze software aging inside the Linux OS kernel. First, the
study tests the presence of aging sources at the OS level. The
goal of this phase is to statistically confirm if and in what
extent the Linux kernel is actually affected by aging-related
bugs. A deeper analysis is then carried out, with the goal
of figuring out how the usage of each internal subsystem
impacts on aging trends. By means of a kernel tracing tool
specifically developed for this study, we collected usage
information about several subsystems, such as memory
management and the filesystem. Usage information has been
related with the observed aging trends, by means of multiple
linear regression and principal components analysis; these
relationships were exploited to find out kernel subsystems
responsible for aging phenomena.

From our experimental analysis, it results that aging
sources actually exist in the Linux kernel; they manifested as
a statistically significant aging trend of memory consumption
in all our experiments. This result is of practical impor-
tance for final users, which can benefit from a rejuvenation
schedule that individually takes into account aging at the OS



and the application layer. Moreover, the analysis of internal
subsystems identified a set of potential aging sources in
the filesystem and process management subsystem, which
manifested a significant contribution to the overall aging
trend. A further experiment allowed us also to quantify a
non-negligible contribution of the filesystem to the memory
consumption trend, which impacts the overall aging effects
in a large, complex software system.

The rest of this paper is organized as follows: Section II
surveys the past work related to software aging. Section III
describes the experimental procedure and setup, outlining
the steps followed to carry out the analysis. Section IV
reports the statistical analysis results and discusses potential
sources of software aging, while section V concludes the
paper.

II. RELATED WORK

Until some years ago, software aging was judged as
an occasional phenomenon experienced only by few badly
designed systems. As more and more studies reported expe-
riences of systems failed due to software aging, it has been
progressively recognized as a systematic, non-negligible
problem of long-running systems.

Software aging has been observed in a number of sys-
tems massively employed for both business- and safety-
critical scenarios. Relevant examples include the Apache
Web Server [4], [9], the Java Virtual Machine [10], the
AT&T billing applications and telecommunications switch-
ing software [5], military software, e.g., the famous incident
occurred during the first gulf war [1], where an accrued
round-off error caused a miscalculation of the target’s ex-
pected position.

Currently, the best way to counteract aging is software re-
juvenation, in which the operational software is occasionally
stopped and then restarted in a “clean” internal state [11].
As a consequence, several studies on software aging focused
on how to assess the system’s runtime health in order
to estimate the expected time to resource exhaustion (i.e.,
the Time to Exhaustion (TTE)), and determine the optimal
rejuvenation schedule (i.e., when it is better to rejuvenate).
Proposed solutions are broadly classified into two classes:
analytic modelling and measurement-based approaches.

Analytic modelling typically determines the optimal reju-
venation schedule starting from models. Stochastic processes
representing the system’s states are adopted to model the
software affected by aging. Models representing the aging
phenomenon assume failure and repair time distributions,
and compute the rejuvenation schedule that maximizes the
system availability, or, equivalently, that minimizes the
downtime cost. Modelling approaches differ from one an-
other in the chosen distributions and in the adopted stochas-
tic process (e.g., Markov Decision Processes, Stochastic
Petri Nets) [12]–[14].

The measurement-based approach applies statistical
analysis to data collected from system execution to deter-
mine a time window over which to perform rejuvenation.
The idea is to directly monitor the system affected by aging
in order to obtain predictions about possible impending
failures due to resource exhaustion or to performance degra-
dation.

In [2] and [3], authors report results of a measurement-
based analysis, carried out on a network of 9 UNIX work-
stations; they monitored OS resources for 53 days by using
an SNMP-based tool. During the observation period, the
33% of reported outages were due to resource exhaustion,
highlighting that software aging is a non-negligible source
of failures. In [3], some workload parameters are also taken
into account (e.g., the number of CPU context switches, the
number of system call invocations). The work highlighted
the need to consider the workload variation when study-
ing software aging phenomena, since different results are
observed under different workload conditions. Authors first
identified workload states through statistical cluster analysis;
then they built a state-space model determining sojourn
time distributions, and defined a reward function, based on
the resource exhaustion rate, for each workload state. By
solving the model, they obtained resource depletion trends
and TTE for each considered resource in each workload
state. Although [2], [3] considered OS resources and OS-
related parameters to model the workload, authors analyzed
the software aging of the whole system, not focusing on the
investigation and isolation of the aging contribution from the
OS.

In [15], Gross et al. deal with performance degradation,
rather than with the (most common) resource exhaustion.
They applied pattern recognition methods to detect aging in
shared memory pool latch contention in large OLTP servers.
In [4], Trivedi et al. analyzed performance degradation in
the Apache Web Server by sampling web server’s response
time to HTTP requests at fixed intervals. Software Aging
in a SOAP-based server running on top of a Java Virtual
Machine was analyzed in [6]. For each considered distri-
bution, throughput loss and memory depletion highlighted
the presence of software aging. An analysis addressing the
impact of workload parameters on aging trends has been
presented in [9], where the memory consumed by an Apache
Web Server was observed together with three controllable
workload parameters: page size, page type (dynamic or
static), and request rate.

Trivedi and Vaidyanathan in [16] proposed a com-
bined solution, by composing analytic modelling with a
measurement-based approach. They built a measurement-
based semi-Markovian model for system workload, esti-
mating the time to exhaustion (TTE) for each considered
resource and workload state, and finally building a semi-
Markovian availability model, based on field data rather than
on assumptions about system behaviour.



Among the mentioned papers, [4], [6], [10] investigated
software aging sources at the user application level, e.g.,
in the Apache Web Server [4], or in the SOAP-based
server [6]. Past work focused on the intermediate levels of
the software stack, also confirming the presence of aging
sources, respectively in the JVM [10] and at middleware
layer [17]. Moreover, in [4], [10], aging phenomena are
attributed to software aging sources in the OS. In this paper,
we test this hypothesis by analyzing aging sources inside
the OS. Our work relies on a workload- and measurement-
based approach, in that we monitor the OS’s health under
different controlled workloads, collect data characterizing its
behaviour, and then analyze them to identify aging sources
inside the Linux kernel.

III. EXPERIMENTAL FRAMEWORK

A. Overview of the approach

The characterization of software aging phenomena we
carried out consists of two parts: (i) the detection of aging
phenomena at the OS layer, and (ii) the detection of po-
tential correlations between aging phenomena and system
workload. The former is devoted to isolate and quantify
the contribution of the OS to software aging in the system.
The latter aims at identifying relevant relationships between
system workload parameters, describing the usage of OS
subsystems, and the observed aging, if any.

To correctly isolate the aging contribution at OS layer,
we need to prevent the occurrence of additional aging at the
application layer. For example, if both applications and the
OS are affected by memory leaks, it is difficult to quantify
the contribution of the OS to the overall leaked memory.
Therefore, we adopted an approach based on controlled
stress tests, in which the applications running in the system
under test are carefully selected. In particular, we removed
from the system all processes that could interfere with
experiments and contribute to software aging (e.g., system
daemons). Moreover, the system was stressed by means of
a load generator, which was screened before experiments
in order to assure that it is aging-free. The load genera-
tor stresses several subsystems (e.g., process management,
memory management) by using system calls provided by the
OS (e.g., by allocating memory and by writing to the disk).

In order to highlight correlations between the system
workload and the aging phenomena, we designed a stress
testing campaign that includes several experiments. An
experiment is characterized by a set of application-level
workload conditions that can be varied by the experimenter.
Each experiment is executed for a long time period, during
which the application-level workload conditions are kept
constant. Workload conditions vary between experiments,
in order to point out how system usage is related to aging
phenomena.

The setup of a stress test experiment is shown in Figure
1, and the collected information is detailed in Section III-B.

During an experiment, we periodically collect information
about aging phenomena, by analyzing indicators in the
system about performance and resource usage (aging in-
dicators) that may exhibit aging symptoms. Past studies
also show that software aging manifests itself as resource
depletion and performance degradation [6], [9], [18]. Data
about the usage of OS subsystems’ functionalities (i.e., the
workload parameters, such as number of interrupts or disk
operations processed in a time period), are also collected
and exploited to discover correlations between the system
workload and aging phenomena.
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Figure 1. Setup of a stress test.

After the experimental campaign, a software aging analy-
sis is performed on the collected data (Section III-C). First,
the occurrence of aging phenomena is detected by means
of statistical trend analysis on aging indicators, which aims
to assess whether the data exhibit a trend with statistical
significance. If an aging trend is detected, it is then related
to the system workload parameters by means of multiple lin-
ear regression and principal component analysis. This step
points out linear relationships between workload parameters
and aging trends. In turn, a workload parameter correlated
to aging phenomena can be a symptom of aging bugs in
a specific subsystem, therefore these relationships can be
exploited to diagnose aging phenomena in OS subsystems.

B. Aging indicators and workload parameters

We identified two aging indicators in our analysis, namely
the memory consumption (MC) and the system call latency
(SCL) (Table I). Memory consumption is considered since
memory is the resource most affected by aging phenomena
and with the lowest TTE, as shown by several past studies
[2], [4]. Memory consumption is given by:

MC = TM − FM − PC (1)

where TM , FM , and PC are total memory, free memory,
and page cache size respectively. This metric is provided by



the standard Linux kernel; it can be queried by means of
the free utility. The page cache contains a copy of recently
accessed files in kernel memory. Since the page cache can
get all the free memory not allocated by the kernel or user
processes, its memory consumption is quite large and would
bias our analysis; therefore, it is subtracted from MC. The
MC is periodically sampled and stored in a trace.

The SCL indicator is considered since bugs that affect
the system performance, such as aging-related bugs, may
affect performance of services at the OS interface. Moreover,
performance degradation is a common symptom of aging
phenomena due to the accumulation of errors and stale
resources, as shown in [6], [9], [18]. Latency is the time
duration between the invocation and the completion of a
system call, which we measure in CPU clock counts using
performance monitoring registers within the CPU. We ana-
lyze the latency of a subset of system calls (the ones included
in Table II). For each system call, we periodically collect a
sample of the latency distribution (i.e., an histogram) of all
invocations made since the previous sample. In particular, a
set of n counters is allocated for each traced system call;
if the latency l of an invocation is between 2i and 2i+1

clock cycles, then the i-th counter is incremented. In order
to collect this data, we included the OSProf profiler [19] in
our tracing infrastructure (detailed in Section III-D).

Table I
AGING INDICATORS.

Indicator Unit of measurement

Memory Consumption (MC) kB
System Call Latency (SCL) # clock cycles per invocation

Along with aging indicators, data about the subsystems
usage (i.e., the system workload parameters) is also col-
lected. We identified the major 5 subsystems within the
Linux kernel [20], [21]; each subsystem was analyzed to
identify a set of workload parameters to characterize the
amount of activity in the subsystem. Kernel subsystems
and the corresponding workload parameters implemented in
our tracing infrastructure are shown in Table II (they are
discussed in Section IV-B).

C. Aging analysis

The analysis of experimental data is split in three steps:
i) trend detection, ii) workload-aging correlation analysis,
and iii) analysis of potential aging sources.

We adopt statistical hypothesis testing to assess the
presence of a trend in the data. Trend detection has been
performed by means of the Mann-Kendall test, which was
adopted also in [2], [4]. The trend, if any, has been estimated
by means of the non-parametric Sen’s procedure [2], [4],
which calculates the median slope of all pairs of data points.
The Sen’s procedure is known to be robust, i.e., it does

Table II
KERNEL SUBSYSTEMS AND THEIR WORKLOAD PARAMETERS.

Subsystem Parameter Description

Process
Management

TSK-CTS # of context switches
TSK-CRT # of tasks created
TSK-DEL # of tasks removed
TSK-MIG # of tasks migrated among CPUs
TSK-WAIT # of tasks on a waitqueue
TSK-PMPT # of tasks preempted
TSK-RUN # of tasks entering in the

runnable state
TSK-URUN # of tasks entering in the un-

runnable state
TSK-STP # of tasks entering in the stopped

state
TSK-FRK # of fork system calls
TSK-CLN # of clone system calls
TSK-EXEC # of exec system calls

Memory
Management

MM-MMAP # of mmap system calls
MM-MUMP # of munmap system calls
MM-BRK # of brk system calls
MM-PGM # of page misses
MM-PFL # of page cache flushes
MM-PIN # of page cache insertions
MM-PRM # of page cache removals
MM-MALL # of memory allocations
MM-MDAL # of memory deallocations
MM-BREQ # of bytes requested
MM-BALL # of bytes allocated
MM-SWIN # of swap-ins
MM-SWOUT # of swap-outs

Filesystem

FS-RD # of file reads
FS-WR # of file writes
FS-OPN # of files opened
FS-CLS # of files closed
FS-ACC # of access system calls
FS-SEK # of seek system calls

Networking

NET-RD # of socket reads
NET-WR # of socket writes
NET-OPN # of sockets opened
NET-CLS # of sockets closed
NET-ACPT # of accept system calls
NET-LST # of listen system calls
NET-BND # of bind system calls
NET-CNT # of connect system calls
NET-TTR # of TCP packets transmitted
NET-TRC # of TCP packets received
NET-UTR # of UDP packets transmitted
NET-URC # of UDP packets received

Device
Drivers

DR-IRQ # of interrupt requests
DR-TSK # of tasklets executed
DR-SIRQ # of softirqs executed
DR-WQIN # of workqueue insertions
DR-WQEX # of workqueue executions
DR-WQCR # of workqueues created
DR-WQDL # of workqueues deleted

not assume normally distributed measurement errors, and
resistant, i.e., it is not sensitive to outliers.

We observed that workload parameters stressed by the
experiments were normally distributed around their mean
value. However, to relate the system workload parameters
to the revealed aging trends, we need to consider the



correlation among them. Correlation among data may distort
the analysis due to the issue of multicollinearity, caused
by the existence of inter-correlations among the data. For
instance, the parameter FS-WR (number of writes) not only
can correlate with aging, but it strongly correlates also
with FS-OPN (number of files opened), and with others.
Such an inter-correlation can lead to an inflated variance
in the estimation of the dependent variable—that is, aging
trend. This would cause correlated variables to be given
a higher weight, thus actually amplifying the effects of
such variables on aging trends. To overcome this issue, we
used a standard statistical approach, namely the principal
component analysis (PCA) [22], which is a technique that
transforms the original data into uncorrelated data. To assure
that all data series have the same weight, a normalization
step has been first carried out, by the following method:

x′i =
xi −mini{xi}

maxi{xi} −mini{xi}
(2)

where xi is the mean value of he i-th workload parameter
during the whole experiment, and x′i is the normalized value
of xi. Through this transformation, all the time series have
been transformed into series whose values range between 0
and 1. From the original set of variables, the PCA computes
new variables, called Principal Components (PCs), which
are linear combination of original variables, such that all
PCs are uncorrelated. From these new set of (normalized)
variables, a subset of them able to explain the most of
variance of original data is usually selected. Typically, a very
small percentage of original variables (e.g., 10%) are able
to explain from 85% to 90% of the original variance. Each
of the principal components is expressed as:

PCi =
m∑

j=1

aijx
′
j (3)

where x′js are the original variables, m is the number of
variables and aijs are coefficients expressing the weights
that the j-th original variables has on the i-th principal com-
ponent. With this technique, once the m PCs are obtained, a
subset of them that contains as much variance as possible is
selected. The chosen PCs will be the independent variables
of the multiple linear regression model [23]. For each PC,
a statistical hypothesis test is performed, to check whether
there is a relation between the PC and trends. If not, the PC
is excluded from the fitted model. The multiple regression
step will assess the relationships between aging trends and
the principal workload components; hence its output is the
list of PCs with the greatest influence on measured aging.

A limitation of the PCA is that PCs do not have a physical
meaning; they are a combination of original variables. Thus,
once found an influence of a PC on the response variable,
we need to analyze the major contributors to that PC,
i.e., identifying those original variables that mostly impact

that PC. Through the analysis of the composition of each
principal component, it is possible to identify workload
parameters more relevant to aging trends.

The identification of the most relevant subsystems’ work-
load parameters drives the final step, i.e., the aging sources
analysis. Subsystems whose parameters (or a combination of
them) exhibit a strong correlation with aging are identified
as potential sources of aging; then, depending on the specific
system, tailored solutions can be taken. It should be noted
that this analysis can identify actual software aging sources
in the kernel, which are workload-independent; however, it
is able to detect only those aging sources stimulated by the
specific workload.

D. Experimental setup

The experiments were distributed among 8 servers1

equipped with 2 Xeon 2.8 GHz CPUs with Hyper-Threading
(4 CPUs are seen by the OS), 5 GB of RAM, Smart Array 5i
Plus Disk Controller, and a 36 GB 15Krpm Ultra320 SCSI
hard disk.

The kernel source code (version 2.6.30.1) was instru-
mented to collect the data required for aging analysis (Sec-
tion III-B). The instrumentation of the system has been kept
simple with intent, in order to prevent the instrumentation
from affecting the aging indicators. The instrumentation
consists of instructions in specific kernel code locations
that increase a counter. The software counters are stored
in a fixed-size kernel memory buffer. These counters are
accessed through the /debug virtual filesystem [20] by a
user-space process, which periodically stores them in a log
and resets them to zero. The overall tracing infrastructure is
sketched in Figure 2.
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Figure 2. Tracing infrastructure.

Before each experiment, the system is restarted, and a
minimal set of processes is started at boot. After booting, a
workload generator is started and the tracing infrastructure
is enabled. We adopted the Postmark2 benchmark in our
tests. This benchmark emulates a large email server, by
performing a mix of data- and metadata-intensive operations
on a pool of random text files [24], [25]. It first creates
the pool of files with uniformly distributed sizes, and then

1http://h18000.www1.hp.com/products/quickspecs/11473 div/11473
div.html

2http://fsbench.filesystems.org/bench/postmark-1 5.c



it performs a sequence (namely transaction) of randomly
selected I/O operations (e.g., file creation, delation, read, and
append). We adopted the default configuration of Postmark
parameters. The standard Postmark benchmark is single-
threaded; however, since concurrency is an important aspect
of complex OSs, we extended the benchmark by running
several concurrent instances of Postmark, similarly to [26].
Each instance executes 105 consecutive transactions; the
instance is then terminated and restarted. Finally, in order to
ensure that the application layer is aging-free, we carefully
inspected the workload source code; this was possible since
the workload is implemented by a single small source file
made up of 1500 lines of code.

The load generator allows us to control the application-
level workload imposed to the OS by specifying the number
of concurrent processes (N ) executing in each experiment.
To choose a proper range for the controllable parameter N ,
we performed a preliminary capacity test of the system, by
executing different experiments with increasing N (starting
from N = 2, which is the minimum to get a concurrent
benchmark). We observe (Figure 3) that the server capacity
(measured in I/O throughput) does not increase anymore
after N = 8. The throughput is initially decreasing for
N ≤ 4 due to the complex interactions between concurrent
processes in our multiprocessor systems (e.g., cache con-
flicts, lock contentions). We selected the range 2 ≤ N ≤ 9
for our experiments, which encompasses several relevant
workload scenarios for our analysis.
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Figure 3. Capacity test.

As for the experiment duration, we do not know a priori
how much time is needed to highlight aging phenomena in
the Linux kernel. In general, this time duration is dependent
on several factors such as the workload and the application
type. A tentative duration of 4 days of execution was chosen
on the basis of past work on software aging [10], [17]. After

observing aging phenomena in the first experiment (N = 1),
we perfomed the remaining experiments for that duration.

IV. RESULT ANALYSIS

In this section, we analyze the results provided by the
experimental campaign. First, we provide evidence of aging
phenomena manifested during the experiments; we then
relate aging trends with system usage, and try to identify
sources of aging into the OS.

A. Aging trend detection

In our experimental campaign, we observed a memory
consumption trend in every experiment. Here and in the
following, we say that a trend is detected when a confidence
level of 95% or more is reached. Table III shows the
estimated slopes of memory consumption trends, with the
corresponding 95% confidence interval. Instead, we did not
find any significant trend in the system call latency indicator
(SCL). This result may be due to the specific workload we
considered, which does not highlight appreciable software
aging effects on performance. However, these results point
out that memory consumption is a more significant problem
than performance loss, therefore in the following we focus
on aging phenomena related to the memory consumption.

Table III
MEMORY CONSUMPTION TRENDS.

Slope p-value 95% conf. interval
2 7.391 kB/h 7.667e-32 [6.393, 8.396] kB/h
3 3.148 kB/h 2.001e-08 [2.233, 4.066] kB/h
4 1.978 kB/h 7.494e-04 [1.018, 2.932] kB/h
5 10.153 kB/h 1.896e-67 [9.280, 11.036] kB/h
6 14.845 kB/h 1.530e-92 [13.817, 15.893] kB/h
7 11.892 kB/h 2.749e-71 [10.909, 12.872] kB/h
8 19.817 kB/h 3.023e-42 [17.468, 22.215] kB/h
9 16.090 kB/h 4.325e-114 [15.123, 17.056] kB/h

The memory consumption trend for the experiment N = 7
is shown in Figure 4, along with the collected samples.
The memory consumption trend is most probably due to
software aging phenomena: in fact, the OS operates in
constant workload conditions for the whole experiment,
and we excluded from the analysis the memory allocated
for the page cache (see Section III-B). Therefore, memory
consumption should not increase in the absence of software
aging phenomena. The observed trends are relatively small
if compared to aging trends described in past work [10].
However, as shown in Figure 4, the trend is non-negligible
and it adds up to the memory consumption at the application
layer, which can be significant and also be affected by aging
phenomena, thus exacerbating the software aging issue. This
motivates a more detailed analysis for the identification of
aging sources in the OS (e.g., memory management bugs)
and the need for software rejuvenation strategies tailored to
the OS.
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Figure 4. Memory consumption trend during the N = 7 test.

B. Workload characterization

In this section, we provide a workload characterization
of the experiments, in order to support the analysis of soft-
ware aging. A large set of workload parameters is initially
considered (Section III-B), in order to include the factors
that are potentially related to software aging. However, to
minimize the effect of multicollinearity, we performed a
PCA (Section III-C) obtaining a small set of representative
principal components (PC).

In particular, workload parameters were grouped by sub-
system, and each group was separately characterized. For
each subsystem, we identified the minimal number of princi-
pal components accounting for at least 90% of the variance
in the data. From the initial set of workload parameters,
we identified a subset of 9 principal components. The low
number of principal components (compared to workload
parameters in Table II) is due to the inherent redundancy
of information in the workload parameters. In particular,
only 2 PCs were obtained for the Memory Management, the
Device Driver, and the Filesystem subsystems (Tables IV, V,
and VII), since the considered workload uniformly stressed
factors related to I/O and memory management; in both
cases, the weight of workload parameters is about the same
(in absolute value) except for some parameters which were
zero or close to zero (e.g., MM-SWIN and MM-SWOUT,
since the physical memory was not saturated).

In the Process Management and Device Driver subsys-
tems, respectively three and two PCs were identified (Tables
VI and VII). In the case of Process Management, almost
all workload parameters contributed to each PC, with the
exception of TSK-PMPT (the number of preempted tasks
was very low since the workload was I/O bound) and TSK-
URUN (since we didn’t explicitly stop any process during
an experiment).

Table IV
PRINCIPAL COMPONENTS RELATED TO THE MEMORY MANAGEMENT

SUBSYSTEM.

MEM-PC1 MEM-PC2
MM-MMAP -0.49289 0.20383
MM-MUMP -0.48244 0.21586
MM-BRK -0.3287 0.30394
MM-PGM 0.040484 0.41911
MM-PFL 3.6979e-18 2.3393e-18
MM-PIN 0.044984 0.4169
MM-PRM 0.045682 0.41676
MM-MALL 0.11301 0.39067
MM-MDALL 0.27469 0.31592
MM-BREQ -0.40028 -0.15454
MM-BALL -0.40256 -0.1415
MM-SALL 0 0
MM-SDAL 0 0

Table V
PRINCIPAL COMPONENTS RELATED TO THE FILESYSTEM SUBSYSTEM.

FS-PC1 FS-PC2
FS-RD -0.43127 0.23118
FS-WR -0.4317 0.23165
FS-OPN -0.43153 0.23138
FS-CLS -0.43154 0.23039
FS-ACC 0.23514 0.72445
FS-SEK 0.44712 0.51132

Table VI
PRINCIPAL COMPONENTS RELATED TO THE PROCESS MANAGEMENT

SUBSYSTEM.

TSK-PC1 TSK-PC2 TSK-PC3
TSK-CTS 0.13336 -0.43439 0.57759
TSK-CRT 0.37447 -0.31228 -0.21547
TSK-DEL 0.37452 -0.31264 -0.21511
TSK-MIG -0.28049 -0.32948 -0.35243
TSK-WAIT -0.28391 -0.33014 -0.34553
TSK-PMPT -6.8013e-18 1.8667e-18 4.086e-18
TSK-RUN 0.34706 -0.46638 -0.018913
TSK-URUN 0 0 0
TSK-STP 0.22042 0.23902 -0.55882
TSK-FRK -0.37781 -0.2142 0.030124
TSK-CLN -0.37505 -0.21322 0.025204
TSK-EXEC -0.3 -0.18032 -0.12614

In the case of Device Driver subsystem, hardware in-
terrupt requests (IRQs), softirqs, and workqueue parame-
ters provide the most significant contributions to the PCs.
Tasklets do not significantly contribute since the considered
device driver (Section III-D) does not adopt this kernel
mechanism. The processing of I/O disk requests is then
based on both IRQs, softirqs and workqueues. IRQs enable
the device driver to manage events from the hardware device
(e.g., an operation is completed); softirqs are adopted to
postpone non-critical work (e.g., data processing) that oth-
erwise should be performed by IRQ handlers; workqueues
are adopted by the block I/O layer (a device-independent
component that interfaces the kernel with block device



drivers) to manage pending I/O requests. For each I/O
operation from the user, a sequence of IRQ, softirq, and
workqueue events occur; therefore, these workload param-
eters are related each other, and the PCs take into account
these relationships. It is finally worth noting that since our
workload does not encompass network activity, we did not
consider the Networking subsystem; we plan to perform
further experimental campaigns in the future, to extend the
analysis to other subsystems.

Table VII
PRINCIPAL COMPONENTS RELATED TO THE DEVICE DRIVER

SUBSYSTEM.

DR-PC1 DR-PC2
DR-IRQ 0.54346 -0.56596
DR-TSK 9.2541e-18 1.0458e-16
DK-SIRQ 0.4797 0.81545
DR-WQIN -0.4871 0.0858
DR-WQEX -0.48711 0.085825
DR-WQCR 0 0
DR-WQDL 0 0

C. Workload-Aging Correlation and Aging Sources Analysis
Multiple linear regression has been adopted to identify the

relationships between aging trends and workload parameters
of each subsystem. Table VIII provides the results of par-
tial linear regression with respect to memory consumption
trends. In particular, TSK-PC2, TSK-PC3, and FS-PC1
exhibit a statistically significant relationship with memory
consumption trends (with 95% confidence). This reveals
that the process management and the filesystem subsystems
(which the mentioned PCs refer to) are subject to aging
phenomena, since the aging trends vary with the usage of
these subsystems.

Looking at the composition of these PCs, we can see that
for both subsystems, almost all of the considered parameters
contribute to the PCs (except the TSK-PMPT and TSK-
URUN for the process management and FS-SEK for the
filesystem). Therefore, there is no particular system call that
contributes much more than others.

Table VIII
MULTIPLE LINEAR REGRESSION OF MEMORY CONSUMPTION TRENDS

WITH RESPECT TO PRINCIPAL COMPONENTS.

Coef. p-value Correlation
TSK-PC1 -0.132 0.739 No
TSK-PC2 -8.793 0.000 Yes
TSK-PC3 2.238 0.041 Yes
DR-PC1 0.486 0.659 No
DR-PC2 -6.432 0.388 No
FS-PC1 4.149 0.001 Yes
FS-PC2 0.409 0.636 No
MEM-PC1 -0.382 0.472 No
MEM-PC2 0.350 0.769 No

To confirm whether the subsystems identified by our
methodology are actually involved in the aging phenomena,

we carried out a more precise analysis on the filesystem.
This analysis also serves as an example of how developers
can delve into the results after applying the proposed ex-
perimental procedure. We selected the filesystem since it is
one of the most critical and bug-prone component of the OS
[27], [28].

In particular, the approach that we adopt to identify aging
sources is to collect and to analyze more detailed data
about memory consumption of the considered subsystem.
From the analysis of the literature on the architecture of the
Linux kernel [20], [21], we identified three data structures
that are intensively used for filesystem activity; in turn,
the management of these data structures can potentially be
related to memory consumption trends:
• Directory entry: it used in path-related operations, such

as searching the inode associated to a path; it represents
a specific component in a path (e.g., a directory in the
path or a file);

• Inode: it contains the information needed to manipulate
a file or a directory (e.g., file metadata);

• Buffer head: it represents a set of disk blocks for I/O
operations.

To check if the filesystem is involved in the memory
consumption trends, we executed an experiment (running
the Postmark workload with N = 8) in which we col-
lected information about the mentioned data structures.
More specifically, we periodically sampled the number of
instances of these data structures stored in memory, by
tracing the requests of the filesystem to the memory allocator
for allocating or deallocating them.
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Figure 5. Memory consumption due to filesystem data structures.

Figure 5 shows the memory consumption due to the con-
sidered filesystem data structures. We observe an increasing
trend (3.418 kB/h) that is statistically significant; it accounts
for 17.25% of the overall memory consumption trend. We



then analyzed the source code of the filesystem, in order to
identify memory management bugs related to filesystem data
structures. We found that the memory consumption trend is
due to the caching of these data structures by the filesystem.
In particular, they are not immediately deallocated by the
kernel, which can reuse them in subsequent filesystem opera-
tions. In the considered filesystem (ext3), there is no garbage
collection mechanism to periodically reclaim this memory;
as a result, these data structures are deallocated only when
the available memory is too low. While this mechanisms
can be desirable in some scenarios, it may not be the case
for performance-critical application, since it causes degraded
performance due to the increased memory pressure (i.e., the
kernel needs more time than usual to allocate memory, since
other data structures need to be deallocated). We foresee two
strategies to prevent such a scenario:

• To proactively deallocate data structures before memory
saturation; this mechanism could be triggered periodi-
cally;

• To impose a maximum size to the filesystem cache;
newly allocated data structures could replace oldest
ones on a least-recently-used basis.

V. CONCLUSION

The study reported in this paper focused on the analysis
of software aging in the Linux OS kernel. The experimental
procedure revealed that the Linux OS suffers from soft-
ware aging phenomena, manifested as statistically signifi-
cant memory consumption trends; instead, there were no
statistically significant effect on system call latency. The
analysis of collected data at subsystem level showed that
aging dynamics are present in the process management and
in the filesystem subsystems.

These results can be an aid for Linux kernel developers
to find software aging bugs in such a large software. As
an example of how these results can be exploited, we
performed a deeper analysis of the filesystem. It revealed
that a significant contribution of the experienced aging is
due to this subsystem, caused by delays in crucial data
structures deallocation. At the same time, we observe that
the filesystem analysis does not fully account for the overall
memory consumption trend; there are more aging sources
within the kernel. From the statistical analysis of PCs, we
hypothesized some additional sources of software aging that
are worth being analyzed and reported to kernel developers:

• Since the Process Management subsystem was also re-
lated to the aging trend, the manifested aging dynamics
suggest that potential aging sources are also in that
subsystem; for example, memory could be leaked when
a new process is started, or when a process exits;

• The conducted analysis on the filesystem could be
extended to more data structures within the filesystem
(for example, the filesystem journal);

• The analysis in this work could be repeated by in-
creasing the set of workload parameters (Table II);
more parameters may reveal additional relationships
between kernel subsystems and aging trends, which can
be followed to track down other software aging sources.

Carrying out additional experiments with the methodology
outlined in this paper, by using different workload patterns,
could lead to identify additional aging sources inside the
kernel, other than those found in this work. Our future work
will be focused on:
• Exploring the Network Subsystem, by designing exper-

iments with a network-stressing applicative workload;
• Looking for further potential aging sources in the

kernel, designing additional experiments according to
the outlined methodology;

• Defining effective software rejuvenation strategies: the
cost (both in time and complexity) of software rejuve-
nation techniques at the application (e.g., application
restart) and OS layer (e.g., whole-system reboot) can
differ by orders of magnitude. If the extent of software
aging at each layer is precisely evaluated, then software
rejuvenation techniques can be scheduled to maximize
system availability (e.g., by scheduling rejuvenation at
the application layer frequently, and rejuvenation at the
OS layer only when needed). This would enable the
design of more effective rejuvenation strategies.
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