
Workload Characterization for Software Aging Analysis

Antonio Bovenzi∗, Domenico Cotroneo∗, Roberto Pietrantuono∗, Stefano Russo∗†,
∗Dipartimento di Informatica e Sistemistica, Universit di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.

†Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126, Naples, Italy.
{antonio.bovenzi, cotroneo, roberto.pietrantuono, stefano.russo}@unina.it

Abstract—The phenomenon of software aging is increasingly
recognized as a relevant problem of long-running systems. Nu-
merous experiments have been carried out in the last decade to
empirically analyze software aging. Such experiments, besides
highlighting the relevance of the phenomenon, have shown that
aging is tightly related to the applied workload. However, due
to the differences among the experimented applications and
among the experimental conditions, results of past studies are
not comparable to each other. This prevent from drawing gen-
eral conclusions (e.g., about the aging-workload relationship),
and from comparing systems from the aging perspective.
In this paper, we propose a procedure to carry out aging
experiments in different applications for: i) assessing aging
trend of the individual systems, as well as assessing differences
among them (i.e., obtaining comparable results); ii) infer-
ring workload-aging relationships from experiments performed
on different applications, by highlighting the most relevant
workload parameters. The procedure is applied, through a
set of long-running experiments, to three real-scale software
applications, namely Apache Web Server, James Mail Server,
and CARDAMOM, a middleware for the development of air
traffic control (ATC) systems.

Keywords-Software Aging, Empirical Study

I. INTRODUCTION

The term software aging denotes a continued and growing
degradation of software internal state during its operational
life. This phenomenon is due to accrued error conditions
that lead to progressive performance loss, eventually causing
system hang or crash. Due to its cumulative property, it
occurs more intensively in continuously and long-running
running applications.
Until some years ago, software aging was judged as an
occasional phenomenon experienced by few badly designed
systems. Currently, as more and more software applications
are reported to exhibit aging, it is recognized as a systematic
non-negligible problem of long-running systems.
Past research efforts focused on predicting the time to failure
of a system affected by aging, in order to trigger proper
proactive recovery actions, known as rejuvenation, with an
optimal schedule. Past studies can be distinguished in two
classes. The former aims to estimate the optimal rejuvena-
tion time by analytic modeling. It is referred to as model-
based approach. The latter relies on measurements of the
system’s runtime health aiming to obtain predictions about
impending aging failures. This is known as Measurements-
based approach.

Among these, several studies reveal that aging dynamics
are related to the workload applied to the system [12][13].
Aging bugs activation and resulting error accumulation
depend on the way application is exercised; hence distinct
workload patterns cause different behaviors in terms of
aging dynamics. Such studies contributed to realize that a
broader view on software aging needs to go beyond a mere
workload-independent approach, since this turned out to be
insufficient to describe the complexity of the phenomenon.
However, even if many of them reported relevant experi-
ences, often on real-world applications, allowing researchers
to claim the relevance of aging in today’s systems, results
of these analyses are often not comparable with each other,
and hardly generalizable; workload parameters, when they
are taken into account, are tied to the specific application
under analysis.

This paper proposes a method to support a broad-scope
analysis of software aging. We outline the sequence of
steps to perform a workload-dependent aging analysis whose
results can serve to practitioners as experimental samples for
empirical analyses. Specifically, our goal is to:

• provide experimenters with a method to evaluate aging
dynamics of their systems, producing results that can
highlight aging of the specific application under analy-
sis, but that can also be considered together with other
studies’ results for contributing to the body of empirical
knowledge about the aging phenomenon. With time,
this can lead researchers to analyze the phenomenon of
aging from a general perspective, independently from
the specific application under analysis;

• enable a comparison among applications in terms of
aging, in order that experimenters can figure out how
their application behave as compared to others (a sort
of aging benchmarking);

• figure out, through a high-level workload characteriza-
tion, how the aging phenomenon is tied to workload;
i.e., what application-independent workload features
statistically affect the aging variation;

The method is based on a workload characterization process
that, starting from a high-level description, leads to design
the list of experiments to perform on the target applica-
tion(s). To validate the proposed method, we have designed
and performed a series of long-running experiments on



three real-scale software applications, i.e., the Apache Web
Server, the James Mail Server (the Java mail server), and
CARDAMOM, a middleware used by air traffic control
(ATC) applications. Results highlight aging trends in each of
the proposed case study in different experimental conditions;
moreover, due to the proposed characterization, it has been
possible to compare the applications among each other,
and to evidence the most statistically relevant workload
parameters influencing aging dynamics.
The rest this paper is organized as follows: Section II surveys
the existing literature about software aging, whereas Section
III describes the steps of the proposed method. Section IV
details the experimental study carried out by applying the
proposed method, while Section V presents the obtained
results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Software aging refers to the accumulation of errors during
long-running application execution, which may lead to i)
performance degradation, and ii) application/system hang
or crash. This phenomenon has been observed in various
operational systems (e.g., web servers [2], middleware [3],
spacecraft systems [4], military systems [5]), causing serious
damages such as loss of money or human lives. It is
due to the activation of the so-called aging-related bugs, a
particular class of software bugs, which manifest their effect
only after a long period of time from their activation [1].
Some examples of aging bugs are: memory leaks (memory
allocated portions of a process but no longer used or usable),
unterminated threads, poor management of shared resources,
data corruption, unreleased file-locks, accumulation of nu-
merical errors (e.g., round- off and truncation), and disk
fragmentation.

Rejuvenation techniques are widely adopted to mitigate
software aging effects, by preventing the system from fail-
ing. Their purpose is to restore a “clean state” of the system
by releasing OS resources and removing error accumulation.
Some common examples are garbage collectors (e.g., in Java
Virtual Machines) and process recycling (e.g., in Microsoft
IIS 5.0). In other cases, rejuvenation techniques result in
partial or total restarting of the system: application restart,
node reboot and/or activation of a standby spare.
Research studies on software aging, [7][8][10], try to the
figure out the optimal time for scheduling the rejuvenation
actions. This is typically done by either Analytical ap-
proaches, in which the optimal rejuvenation schedule is de-
termined by models, or by Measurements-based approaches,
in which the optima schedule is determined by statistical
analyses on data collected from system execution. In the
former case, stochastic processes (e.g., Markov Decision
Processes, Semi-Markovian process, Stochastic Petri Nets),
representing the system’s states, are adopted to model the
software affected by aging, through several distributions [7],
[8]. Instead, the work presented in [11], and then in [12],

is an example of the measurements-based approach; in this
case authors report results of an analysis where the 33% of
outages were due to aging. Other examples of measurement-
based analyses are about performance degradation of OLTP
server [9], and of the Apache Web Server [2]. Trivedi et
al. [10] proposed also a combined solution by composing
modelling with a measurement-based approach.
Several works have investigated the dependence of software
aging on the workload applied to the system, by showing
the importance of considering the workload in models that
control rejuvenation activities. In [12], authors present an
analysis, extending the work in [11], that takes into account
some workload parameters, such as the number of CPU
context switches and the number of system call invocations.
Their results confirm that aging trends are related to the
workload states. A comparison with [11] (on the same case
study) shows that the workload-driven methodology is by
far more powerful and useful to model aging phenomenon.
However, workload indicators used in [12] are internal (i.e.,
system-level) parameters, and are hardly controllable factors.
A work that addresses the impact of application-level work-
load on aging trends is presented in [14]. Authors applies
the Design of Experiments approach to draw the effect
of controllable application-level workload parameters on
aging. However, their focus was on one specific application,
i.e., Apache Web Server, and so they consider application-
specific workload parameters (e.g., the page size, the page
type, http requests rate).
Madeira et al. [15] highlighted the presence of aging in
a Java-based SOAP server, highlighting that aging trends
are related to the workload distribution. In [16] some best
practices are provided to build empirical models for Time
To Exhaustion (TTE) prediction. These best practices also
address the selection of workload variables. Our previous
works [6] [17] report the presence of aging trends both
at JVM and OS level; results showed relationship between
workload parameters, such as method invocation frequency
and object allocation frequency, and aging trends.
However, in all the cases parameters are specific either to
the system (such as in [12]), or to the particular application
under analysis (such as Apache, JVM, Linux OS), leaving
the final considerations valid only for that specific case.
Results of these works would be much more useful if they
were comparable to each other, since they would enable
more general analysis of aging-workload relationship.
Our aim is to define a methodological approach to obtain
comparable results about aging of different applications, i.e.,
results produced under comparable workload conditions.

III. DEFINITION OF THE EXPERIMENTAL PROCEDURE

The proposed procedure allows: i) to carry out exper-
imental campaigns to assess aging trends, whose results
are comparable to each other, and ii) to infer workload-
aging relationships, and highlight the most relevant workload



parameters influencing aging dynamics. Figure 1 synthesizes
the procedure’s steps, which are described in the following
subsections.

!"#$%"&'(
)*+,-.",(

/0-,0(1,'-2&3"#4(
5*%*2.",(

6#*%-7-,&#8(
9*434(

:;<*#-7*,34(
:;*2=.",(

/,&%84-4(

!"#$%&'()*)('+,'
-&./.-0)/$1.234'
5"6780)9:8;)-$<-'+,'
-&./.-0)/$1.234'

!"'=.;.-$07'>)808'
5"'>)80'?)/3'

!"'@.44:A)4B.(''
5"'CDEFC'

Figure 1: Steps of the proposed procedure.

A. Workload Definition

The goal of the workload characterization is to have a
first set of parameters whose ability to describe the load
is as much application-independent as possible. Starting
from the reviewed papers that investigate aging-workload
dependency, we have identified some key requirements for
the workload definition.
• Comparability: the parameters describing workload of

different applications should be comparable; therefore
parameters should be described from a high-level per-
spective without referring to application-specific inputs.

• Basic Description: application’s behavior varies ac-
cording to the applied workload, depending on the
amount and type of work. At a first level of abstraction,
characterization should include these two basic macro-
dimensions (cf. with [14]), which are then exploded in
successive refinement steps.

• Specialization Ability: it should be possible to spe-
cialize the high-level application-independent param-
eters into application-dependent workload parameters,
so that practitioners can simply setup their experiments
starting from the high-level workload description.

• Realistic: workload parameter values should fall inside
realistic ranges, e.g., actually observed during opera-
tion, in order to avoid drawing misleading conclusions.

• Practicability: the number of workload parameters
should be kept reasonably low, in order to allow exper-
imenters to design a representative and cost-effective
campaign. This number should account for the budget
(time and machine resources) available for experiments.

To define workload parameters according to the outlined
requirements, we first proceed by defining a high-level
workload characterization; then, this is refined into an
application-dependent workload characterization, in order

to enable the actual experiments execution on real case-
studies.
High-level workload characterization
We assume that, at high level, the load imposed to
an application can be represented as a generic request
of service, considered from the user point of view,
characterized by a request type, among a set of types,
and by input/output parameters. A request of service is
characterized by the following parameters:

Intensity. It represents the stress level of the application. In
absolute value, it is measured as number of requests per
second. In relative value, it is measured as percentage with
respect to the maximum capacity of the system.
Parameters Size. It indicates the value of the overall size
of exchanged data in input/output. This indicator represents
the amount of data processed by a request, and it can have
an impact on software aging. This value will vary from a
MIN to a MAX value, determined by real observations in
the field.
Types of Request. It indicates how many different requests
can be served by the application (e.g., sending or receiving
a message, executing a query); this may affect aging bugs
activation, and thus aging manifestation, since different
parts of the application code can be exercised in response
to different request types.
There is a trade-off between the number of request types
to take into account, and the number of experiments.
Thus, if it is necessary to reduce the number of requests,
different types should be merged into one type, heightening
their level of abstraction (for instance, open a connection
and sending a message could be merged into “sending a
message” requests).
Variation of Request Type. Given a request of type T , this
parameter represents the probability that the next request
will be of a type different from T . In other words, this index
represents the variability of request types. This probability
can be represented by a first-order Discrete Time Markov
Chain (DTMC), where states represent request types; from
a state, the DTMC evolves according to the type of the
next request. Transition probability from state i to state
j represents the probability that the next request will
be of type j, given that the current request is of type
i. The probability that a request is repeated is therefore
the transition probability from state i to itself, pi,i. The
Variation of Request Type is therefore 1 − pi,i; this will
vary from a MIN to a MAX level. Once the pi,i value is
chosen, we assume that the other transition probabilities
are equally distributed (i.e., considering that each row must
add up to 1, pi,j = (1 − pi,i)/n, for j = 1, . . . , n with n
denoting the number of request types).

To summarize, the above parameters indicate: i) how
many requests are, in the average, submitted to the system;
ii) the average size of data the system must process in



a request; iii) what types of request are submitted to the
system; iv) how frequently request types vary.
Application-dependent workload characterization.
Since the goal is to conduct real experiments, these
high-level workload parameters need to be refined into
application-dependent ones. In this stage, the experimenter
has to characterize the parameters with respect to the appli-
cation(s) involved in the experimental campaign.
The intensity of request is viewed, at high level, as the
number of service requests per unit time. We need to know
what “request” means for each application. For instance,
if we consider a Web Server, it can be the number of
page requests per second, as quantified in several works
[14],[18]. Hence, the Types of Request parameter values
have to be determined. This is done by considering the most
relevant requests for each application, which can be retrieved
from documentation and/or from field data. Requests can
be merged if the number is too high (as described above).
The Variation of Request Type parameter will then refer
to the established types of request. As for the Parameters
size, values should be representative of the actual size of
parameters exchanged between user and application (i.e.,
realistic requirement). A practical way to determine the MIN
and MAX values, i.e., the Low and High levels, is to consider
field data regarding the application under study.

B. Aging Indicators Selection

After the workload definition, the second step concerns
with the selection of aging indicators. Aging effects can be
observed during the system execution, by monitoring the
so-called aging indicators. Aging indicators are explanatory
variables that, individually or in combination, suggest if the
system state is degrading or not [23]. Past studies showed
that software aging manifests itself mainly as resource
depletion (typically, memory depletion) and performance
degradation [22], [14], [15], which are therefore the most
common indicators in the literature. While memory deple-
tion can be considered an application-independent measure,
performance degradation can be measured in several ways
depending on the application (e.g., response time, round trip
time, number of served requests per second). Moreover, it
should be considered that aging dynamics may be different
among the considered applications: in order to carry out
comparable analyses we cannot consider absolute values,
but the increase (or decrease) of aging must be measured
by relative values. In other words, data must be normalized.
Along with the absolute aging indicators, also relative aging
indicators need to be considered, e.g., by normalizing data
with respect to the minimum observed aging for that system.

C. Preliminary tests

In the previous steps, workload parameters to be set in
the experiments and aging indicators to monitor are defined.
Before executing the experiments, some tests should be

performed in order to determine the limits of the applications
under test, and complete the previous steps.
For instance, the measurement of the intensity parameter has
been hypothesized as the percentage of the maximum sys-
tem’s capacity. Thus, experimenter should determine what
is the maximum capacity for the system under test, i.e., s/he
has to perform a Capacity test. This implies: i) determining
a metric to measure the throughput of the system, and then
ii) soliciting the system with an increasing load, in terms of
intensity, until a knee in the throughput curve is reached.
The knee indicates the limit of the system’s capacity, since
beyond such limit the system is no longer able to serve re-
quests properly (i.e., as the request rate increases beyond that
limit, its throughput does not increase anymore, as it would
be expected, but it remains the same or even decreases).
Since different limits can be reached with different request
types, capacity tests have to be performed per each request
type. Then, either the average of the observed limits, or, to
be conservative, the minimum of such limits, is chosen as
the system’s capacity. The latter choice assures that, during
experiments, the system will not fail due to the system’s
capacity exceeded; this helps distinguishing failures due to
aging, from failures due to excessive loads.
One more issue is related to the time duration (T ) of
experiments. An experiment should last for an amount of
time at least sufficient to observe a significant trend in data.
Such time is system-dependent; a pre-defined experimental
time for all the applications would imply either a useless
experiment, if T is too low, because of insufficient number of
samples to determine a trend, or an expensive experiment, if
T is too high. Thus, an additional preliminary test is needed
to estimate the best experimental time: we name it Test
zero. Under the assumption that the less intensive workload
parameters, the lower aging trends are, the Test zero aims
to investigate if there is a trend with the least stressful
workload. Least stressful means that parameters are set at
their minimum level, including the intensity parameter. With
samples of this test, the experimental time for each system
is evaluated, by using an algorithm developed and presented
in our previous study [3]. The algorithm determines the
minimum time in order to observe statistically significant
trends for a given response variable. It takes the desired
error that one can tolerate and samples of the Test zero, as
inputs; then it estimates if the number of samples collected
up to a given time t is sufficient to have a significant
trend (e.g., at 95% confidence level). When more response
variables are involved, the minimum experimental time T is
the maximum of times obtained for the considered response
variables. Since the Test zero considers the least stressful
workload, all the experiments with more stressful workload
will exhibit, under the mentioned assumption, aging trends
within T . Note that the formulated assumption is reasonable
and confirmed by previous works [3], [14]. Output of this
test may be used for aging indicator normalization.



D. Experiments and Data Analysis

Design of Experiments (DoE).
After preliminary tests, the experiments planning is carried
out by the Design of Experiments (DoE) technique. The
DoE [19] is a systematic approach to the investigation of a
system or a process. A series of measurement experiments
are designed, in which planned changes are made to one or
more system (or process) input factors. The effects of these
changes on one or more response variables are then assessed.
The DoE aims to plan a minimal list of experiments to be
applied in order to get statistically significant answers.
The first step in planning such experiments is to formulate a
clear statement of the objectives of the investigation. Then,
the next steps are concerned with the choice of response
variables, and with the identification of factors of interest
that can potentially affect the response variables. A particular
value of a factor is called level. A factor is said to be
controllable if its level can be set by the experimenter,
whereas the levels of an uncontrollable factor cannot be set,
but only observed. The identification of response variables,
factors, and levels is followed by the definition of a list of
experiments, called treatments. Each treatment is obtained
by assigning a level to each one of the controllable factors.
In order to assess the impact of workload on software
aging, we have to plan a set of experiments by varying
workload parameters value, and by evaluating the effect of
planned changes on aging trends. Thus, the chosen aging
indicators are the response variables to be observed, whereas
the defined workload parameters are the factors of the
experiments. Since experiments, in our case, will be carried
out on more than one software application, we also consider
an additional factor, i.e., the software type. The output of this
phase is the list of experiments to perform.
Data Analysis.
The obtained list of treatments is finally executed (step 4 of
Figure 1). Collected data are analyzed, in order to determine
the presence of trends through statistical hypothesis tests (the
most common one is the Mann-Kendall test [20]) for each
response variable.
For data analysis (step 5), both absolute and relative (i.e.,
the normalized) aging indicators must be considered. The
former are useful to highlight the aging trends experienced
by each application. The latter are used for conducting the
classical Analysis of Variance (ANOVA), which tell what
workload parameters mainly impact on aging trends.
The objective of the analysis is to figure out: i) if (and to
what extent) the analyzed systems suffer from aging, ii) how
much the variation of workload parameters from low levels
to high levels impacts the variation of aging trends, and
iii) which is the most influential application-independent
workload parameters. Since we consider various systems,
results allow us also to compare them in terms of aging.

IV. EXPERIMENTS EXECUTION

In this Section we apply the outlined procedure to plan
and execute experiments in three different software applica-
tions. Starting from the defined high-level characterization,
the application-dependent workload characterization, as well
as the experimental design, are shown in the following.

A. Application-Dependent Workload Characterization
1) Case-studies: Applications selected as case-studies

belong to three different classes of long-running software
systems, which are employed in several contexts ranging
from business to mission critical scenarios. They are:
Apache Web Server
Apache is one of the most popular Web HTTP server.
We used the version 2.0.48. In the configuration, we en-
abled SSL, by including the SSL module, and used the
MySQL DBMS, version 4.5. The configuration parameters
have been tuned as in past studies [14], also to com-
pare results: StartServers=150, MinSpareServers=150, Max-
Clients=150, MaxSpareServer=0, MaxRequestsPerChild=0,
MaxKeepAliveRequests=0. By setting the first three direc-
tives to 150 we minimize the waiting time for the man-
agement of a request. The directive MaxClients lets it
serve 150 simultaneous connections, whereas the MinS-
pareServers and MaxSpareServers directives allow having
150 child processes waiting for managing connections.
MaxKeepAliveRequests and MaxRequestsPerChild directives
allow a process to serve an unlimited number of requests,
and a connection to have an unlimited number of requests.
CARDAMOM
CARDAMOM is a CORBA-based middleware tailored for
the development of mission critical, near real-time, dis-
tributed applications1. Its current usage is in the field of Air
Traffic Control (ATC) systems. The CARDAMOM architec-
ture is composed of several services, classifiable in basic and
pluggable services (i.e., which are included/excluded accord-
ing to the user needs). In our experiment, we configured the
Naming Service, Load Balancer and Trace Service2, which
are widely used in practice. We use the version 3.1.
James
James is a JAVA-based mail server supporting several mail-
ing protocols, such as SMTP, LMTP, POP3, IMAP3. It has
a modular architecture designed to separate the processing
phase from the delivery of a message. The system consists
of several components: SMTP server, POP server, NNTP
server, DNS server, FetchMail, SpoolManager. The heart of
the system is the spool manager, which implements the pro-
cessing layer. However we have disabled the components not
well tested (e.g., the NNTP server). We used the JVM 1.5 16
with 512MByte of initial allocated memory, extendable up
to 1024MByte.

1http://cardamom.ow2.org/
2see http://cardamom.ow2.org/docs/ for documentation
3http://james.apache.org/



2) Factors and levels specification: In this Section, high-
level workload parameters are mapped to system-specific
ones. Factors and levels are specified for each application.
Apache Web Server
First, the Types of Request factor has to be determined.
Unlike past studies (e.g., [14], [18]), that considered at most
two types of request (i.e., static and dynamic), we consider
the following requests: HTTP request of a static page, HTTP
request of a dynamic page (created by a CGI script), HTTPS
request of a static page, and HTTPS request of a dynamic
page. As for levels, this factor ranges from a minimum of
2 requests, to a maximum of 4 requests. For the Intensity
factor, we take the number of pages requested by clients
per second. Levels of this factor will be determined after
preliminary tests, reported in the next Section.
The parameters size factor is intended as the size of the
required page. To determine the values for levels of this
factor, we take into account the average page size for the
home pages of the most popular web sites, which was found
to be 200KB [14], as medium level. The low and up levels
are set respectively to 50KB and 450KB. Finally, levels for
the Variation of Request Type are set to 50%, 30% and 90%
(medium, high, and low level, respectively), meaning that
the probability of not repeating the same request, 1− pi,i in
the DTMC representation, is 0.5 in the medium level, 0.3
(i.e., pi,i = 0.7) in the low level, and 0.9 (i.e., pi,i = 0.1) in
the high level. pi,j values are derived as explained in Section
III-A: pi,j = (1− pi,i)/n, for j = 1, . . . , n with n = 4 (we
have four request types).
James
In order to stimulate different parts of the code, the Types
of Request for James include: sending of emails (SMTP
protocol), receiving of emails (POP3 protocol), sending
spam messages (testing of the SPAM processor), and sending
messages with an attachment (testing of the virus processor).
The levels range from a minimum of 2 requests, to a
maximum of 4 requests. The intensity parameter is measured
as number of mails processed per second (its levels are
determined after preliminary tests). Parameters size refers
to the size of the email. The medium level was set to the
average size of emails processed by a provider 4, i.e., 70KB ;
the high and low level of the parameters size are respectively
set to 5KB and 200 KB. As for the Variation of Request Type
parameter, we have the same probabilities as in Apache,
since four request types are considered also in this case.
CARDAMOM
To stimulate the middleware we use a client-server applica-
tion (developed in the context of the COSMIC project5),
which exploits CARDAMOM facilities by using the fol-
lowing services: Naming, Load Balance, and Trace Service.
Therefore, we tested the following request types: sending

4http://www.email-marketing-reports.com/
5http://cosmicsite.criai.it/

of messages, receiving of messages, ping messages, logging
(i.e. a request that stresses the Trace service). Again, levels
are from 2 to 4 requests. The intensity of requests is mea-
sured in terms of number of concurrent clients processing the
requests (each client performing 200 operations); levels for
this factor are determined after preliminary tests. Parameters
size refers in this case to the size of the exchanged message.
Such messages correspond to flight data plans, which in
the average are of 20 KB6. The low and high levels are
respectively of 5KB and 200KB. The Variation of Request
Type parameter assumes again the same parameter as in the
previous two applications, i.e., 30%, 50%, and 90%.

B. Experimental campaign

All the experiments are executed on the same machines,
with the same OS, equipped with 2 Xeon Hyper-Threaded
2.8 GHz CPUs, 5 GB of physical memory (both clients and
servers). The machines are on LAN connected via a 100
Megabit Ethernet, and each workstation has Red Had 4 OS
with kernel version 2.3.19, initialized with minimal system
services. Each case study is composed of a client, which has
the role of traffic generator, and a server.
In our experiments, we focused on the following aging
indicators: memory depletion and throughput loss.
To measure memory consumption (MC), we use the stan-
dard Linux kernel utility, free. MC is given by:

MC = TM − FM − PC (1)

where TM, FM, and PC are total memory, free memory, and
page cache size, respectively. In particular the page cache
contains a copy of recently accessed files in kernel memory.
Since the page cache can get all the free memory, its memory
consumption can be quite large, and could bias the analysis;
therefore, it is subtracted from MC. The MC is periodically
sampled (each 30 seconds) and stored in a trace.

To measure throughput loss we use existent or ad-hoc load
generators, which are placed in the client machines. They are
extensively tested before experiments, in order to assure that
they are aging-free. In particular, for Apache we use httperf 7

during capacity test, and JMeter8 during experiments execu-
tion (which allows better control on experimental factors).
These tools can collect the total number of correct reply, and
the average response times. For CARDAMOM and James,
we developed ad-hoc load generators.
After the experiments, trend detection is performed by the
Mann-Kendal test (adopted also in [11], [2], [17]). The trend,
if any, is estimated by means of the non-parametric Sen’s
procedure [20], which is known to be robust, i.e., it does
not assume normally distributed measurement errors, and
resistant, i.e., it is not sensitive to outliers. For data analysis,
a significance level (denoted by α) of 10% is considered.

6http://www.swim-suit.aero/swimsuit/projdoc.php
7http://www.hpl.hp.com/research/linux/httperf/
8http://jakarta.apache.org/jmeter/



1) Preliminary Tests: The goal of preliminary tests is to
measure: (i) the maximum limit of the intensity factor, (Ca-
pacity tests); (ii) the minimum time duration of experiments
necessary to observe aging (Test Zero); (iii) the aging trend
with all the parameters set to their low level (Test Zero).
The latter acts as comparison term, and may be used to
build normalized, i.e., relative, aging indicators.
Capacity Test
By increasing the number of requests (i.e., the intensity
factor), systems eventually reach a knee where the through-
put no longer increases. We evaluate several limits, reached
by submitting in each capacity test a different type of
request. Then, the minimum of such limits is chosen, as
explained in Section III-C. Referring to Apache, it has been
experienced that increasing the number of requests beyond
about 400 requests per second, the server is no longer able
to correctly reply. Specifically, the limit has been measured
at 382 requests per second. As for CARDAMOM, the load
generator increases the number of concurrent clients over
time. In this case, the percentage of correctly processed
requests gets saturated with more than 10 concurrent clients,
i.e., more than 2000 requests. Finally, with James, the test
reports that beyond 22 emails per second, the number of
correctly processed emails decreases. These values are used
to determine the levels of the factor Intensity: we set the
high level at 90% of the maximum capacity, the medium
level at 50% of the limit, and the low level at 30% of the
limit. This completes the factor levels determination. Table
I summarizes the list of all the factors and their levels.

Table I: Application-dependent Factors and their Levels

Intensity Parameter Variation of # of requests
(req/sec) size (KB) request type type
Low: 115 Low: 50 Low: 30% Low: 2

Apache Medium: 191 Medium: 200 Medium: 50%
High: 344 High: 450 High: 90% High: 4
Low: 400 Low: 5 Low: 30% Low: 2

CARDAM. Medium: 1000 Medium: 20 Medium: 50%
High: 1800 High: 200 High: 90% High: 4

Low: 7 Low: 5 Low: 30% Low: 2
James Medium: 11 Medium: 70 Medium: 50%

High: 20 High: 200 High: 90% High: 4

Test Zero
To evaluate the minimum time duration of each experiment,
the algorithm that we proposed in [3] has been adopted.
It outputs this time starting from samples of Test Zero and
from the error value ε that can be tolerated (we set ε = 0.01).
Table II reports the levels of each factor set for the Test Zero.
According to what described in Section III-C, factors are set
to the least stressful configuration that let us observe aging.
The lightest type of request, among the types identified
for each application, is determined by the experimenter
through a quick test with each request (it is necessary
to monitor system behavior for a few minutes per type).
The factor Variation of request type is always set to 0%

(i.e., the current request is repeated in 100% of the cases);
the values of the factor parameter size are set to their
minimum level. Finally, as for the Intensity factor, the right
value are empirically tuned; i.e., if the first experiment does
not cause aging, it is repeated by increasing the intensity
value until a trend is observed. For all the applications, we

Table II: Levels of each factor for the Test Zero

Types of Intensity Parameter Variation of
request (req/sec) size (KB) request type

Apache HTTP static 115 50 0%
Cardamom send message 600 5 0%

James send mail 7 5 0%

found, by executing this test, a relevant trend in the memory
depletion indicator; whereas, for throughput loss, a slight
trend has been observed only in James, and amounts to
−3.1902 · 10−6 operations per second.
Giving samples of these tests as inputs to the algorithm,
the minimum experimental time is also obtained. Results
of Capacity Test and Test Zero are summarized in Table
III, which reports the Capacity limit, the Minimum time
duration, the Memory depletion trend and the Throughput
loss trend, with the lightest workload.

Table III: Results of Capacity tests and Test Zero.

Apache Cardamom James
Capacity limit (req/sec) 382 2000 22
Minimum exp. time (h) 24 4 24

Memory depletion (KB/sec) 0.163 78.2 38.3
Throughput loss (Op./sec) no trend 3.190210−6 no trend

2) Experimental plan and execution: In previous Sec-
tions, the workload to apply has been characterized in
terms of parameters and their levels; then aging indicators
to observe have been selected, and, finally, the limits of
each application have been determined. According to the
outlined procedure, we are in this phase provided with all
the necessary information to design experiments. To generate
the experimental plan according to the DoE approach (step
4 of Figure 1), we adopt the tool JMP R©9. JMP allows
to create a plan that adheres to the principle of DoE
(e.g., randomization, orthogonality), generating a minimal
list of treatments necessary to get statistically significant
responses. In this plan, factors are workload parameters
(Table I), response variables are the aging indicators. The
list of treatments is reported in Table IV. Columns report
the involved factors, set with a given level value. In addition,
we also consider the software type as factor, whose levels
are the chosen applications. Experiments are executed for
the time duration determined by the Test Zero, amounting to
a total of 210 hours of experimental time.

9http://www.jmp.com/



Table IV: Experimental plan. M=Medium, L=low, H=High

Exp Case Types of Intensity Parameter Variation of
ID study Request (req/sec) size (KB) request type
1 Apache L (2) M (191) H (450) M (50%)
2 Cardamom H (4) L (400) H (250) H (90%)
3 James L (2) M (11) M (70) H (90%)
4 Apache L (2) L (115) L (5) L (30%)
5 Cardamom H (4) M (1000) M (20) L (30%)
6 Cardamom L (2) M (1000) L (5) M (50%)
7 Apache H (4) M (1000) L (50) H (90%)
8 Apache L (2) L (115) M (200) H (90%)
9 James L (2) H (20) H (200) L (30%)

10 Apache H (4) H (344) M (200) M (50%)
11 Cardamom L (2) H (1800) L (5) H (90%)
12 James H (4) L (7) L (5) M (50%)

V. RESULTS AND DATA ANALYSIS

Aging indicators’ samples, collected each 30 seconds,
are first analyzed by means of statistical tests, in order to
estimate aging trends, if present. Table V lists the results that
we obtained for each treatment. It reports trends, estimated
by the Mann-Kendal test, for both memory depletion (MDT)
and throughput loss (TLT), and the computed indexes,
named, respectively, MDI (memory depletion index) and TLI
(throughput loss index). These relative indexes are computed
by normalizing the MDT and the TLT by means of the
min-max formula (index = (RawTrend−Min)/(Max−
Min)) in order to have aging indexes between 0 and 1 (Min
is the minimum between the Test Zero and trends observed
in these treatments).

Table V: Results of experiments

Id MDT MDI TTE TLT (∗10−2) TLI
KB/sec hours op/sec

1 0.185 0.4557 7357.4 0 0.00
2 110.4 0.3852 12.3 3.43 1.00
3 153.4 1.0000 8.9 6.85 1.00
4 0.149 0.0000 9135.0 0 0.00
5 116.7 0.4605 11.7 2.33 0.68
6 84.39 0.0740 16.1 0 0.00
7 0.203 0.6835 6705.0 0 0.00
8 0.176 0.3418 7733.6 0 0.00
9 122.9 0.7350 11.1 0 0.00
10 0.228 1.0000 5969.8 0 0.00
11 161.8 1.0000 8.4 2.07 0.13
12 64.1 0.2242 21.2 1.94 0.28

From results, it is clear that memory depletion is the
most significant aging indicator, since we have experienced
a trend in all the treatments; contrarily, a slight throughput
loss trend has been observed only in five treatments. Hence,
since throughput loss exhibits much slower dynamics, we
conduct the subsequent analyses only considering the mem-
ory depletion trend. Figure 2 shows snapshots of the most
relevant (i.e., with the highest slopes) memory depletion
trends, observed for each of the considered applications.

0 1 2 3 4 5 6 7 8 9

x 10
4

1.5

2

2.5

3

3.5

4
x 10

5

rs
s
[K

B
]

time[sec]

(a) Treatment 10, MDT Apache.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8
x 10

5

time[sec]

rs
s
[K

B
]

(b) Treatment 11, MDT Cardamom.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15
x 10

5

time[sec]

rs
s
[K

B
]

(c) Treatment 3, MDT James.

Figure 2: Most relevant experiments

Considering the absolute values (cf. column 2 and 4 of
Table V), the treatments that revealed by far the lowest
aging trends are those carried out on Apache (that are:
#1, #4, #7, #8, #10), which exhibited trends two orders of
magnitude lower than CARDAMOM and James. Observed
values for Apache are also consistent with those observed in
past studies [21]. Apache experienced an average trend of
0.1856 KB/sec, whereas in CARDAMOM and James it is
of 110.298 KB/sec and 94.75 KB/sec, respectively. This
behavior leads CARDAMOM and James to very short times
to failure due to resource exhaustion (the expected Time To
Exhaustion, i.e., the TTE, is reported in Table V, column
4.). For CARDAMOM, consequences of this result could be
even more dangerous, since its foreseen employment is in
mission critical systems for Air Traffic Control (ATC). Note
that results are comparable to each other, since they have
been obtained under comparable workload conditions, i.e.,
referring to the same high-level workload parameters, set
with values that are relative to the limits of each application.



To complete the analysis, we conduct the ANOVA in order
to assess the effect of factors on response variables. The
analysis consists in determining which of the principal
factors (i.e., the workload parameters: Intensity, Paramaters
size, Types of request, and Variation of request type), impact
on aging indicators. Since aging dynamics turned out to
be noticeably different depending on the application, we
evaluate the influence of workload parameters on aging by
considering the relative aging indicator, i.e., the MDI.
ANOVA is conducted by testing the hypothesis, H0, that the
factor Fi does not statistically affect the response variable.
Table VI reports results of one-way ANOVA for each consid-
ered factor, with a significance level for acceptance/rejection
of α = 0.10 (i.e., confidence of 90%). The analysis shows

Table VI: Results of the Anova

Factor p-value Outcome
Intensity 0.0235 H0 can be rejected with α < 0.1

Parameter size 0.4837 H0 cannot be rejected
Types of requests 0.55 H0 cannot be rejected

Variation of req. type 0.13 H0 cannot be rejected

that the most influential factor is the Intensity factor, with a
p-value lower than 0.05. Other factors do not significantly
affect the response variable. More in detail, Table VII reports
data aggregated by factors. It is evident that requests with
high intensity exhibit, in the average, much higher trends.
Differences can be noticed also in the other parameters,
whose variation from low to high level causes an increase
in the experienced aging. However, only for the intensity
parameter, we found a statistical evidence. Hypothesis tests
report that the difference between experiments with high and
low level of the factor:
• intensity (i.e., 0.6738) is significant at p − value =

0.00153, i.e., with a confidence greater than 90% (ap-
proximately of 99%);

• parameter size (i.e., 0.1289) is not significant (p −
value = 0.3235);

• number of request type (i.e., 0.0354) is not significant
(p− value = 0.4367);

• variation of request type (i.e., 0.2836) is not significant
(p− value = 0.1466).

Other than the intensity parameter, it should be noted that the
second greatest difference is in the variation of request type,
i.e., of how often the type of request is varied. The difference

Table VII: Results of MDI. Average MDI grouped by factors

Factors High Medium Low
Grouped by Intensity 0.9117 0.5348 0.2378

Grouped by Parameters Size 0.5253 0.7006 0.3963
Grouped by Types of Request 0.5507 - 0.5152

Grouped by Variation of Request Type 0.6821 0.4385 0.3985

between experiments with 90% and with 30% of chances to
not repeat the same request, is significant with a confidence
of about 85%. It seems that more varying workload causes
greater aging.
Finally, regarding the additional factor software type, the
differences between CARDAMOM and Apache, and be-
tween James and Apache turns out to be significant with
p − value << α = 0.1, (CARDAMOM-Apache, p −
value = 2 ∗ 10−4, James-Apache p − value = 4 ∗ 10−4),
unlike the difference between CARDAMOM and James.

VI. CONCLUSIONS

In this work, the phenomenon of software aging and its
relation with workload have been investigated. To overcome
limitations of past studies, which typically analyze the phe-
nomenon on single software applications, we defined a pro-
cedure to design experiments for revealing aging, and able
of producing comparable results as well. The procedure has
been applied through an experiment on three large software
applications. The first result regards the identification of
aging trends, in terms of memory depletion, in all the exper-
imented applications. As secondary result, due to the adop-
tion of the outlined procedure, we have been able to compare
systems from the aging point of view: the comparison
highlighted that CARDAMOM and James showed higher
aging dynamics than Apache (the average differences are
118.13 KB/sec and 113.27 KB/sec for CARDAMOM-
Apache and James-Apache, respectively). The average TTE
in hours, for our configuration, are: 7672, 12.1, and 13.7
for Apache, CARDAMOM and James, respectively. Finally,
the third result is about the possibility to infer aging-
workload relationships using results obtained from different
applications; from this point of view, the analysis, even
though preliminary, showed that more stressful workloads,
in terms of Intensity (number of requests per unit time),
greatly influence the manifestation of software aging, and is
statistically the most influential factor. As for the Parameter
size, Types of requests, and Variation of Request Type factors,
although some of them seem to affect aging (e.g., Variation
of Request Type, at 85%), there is no statistical evidence at
a confidence of 90%. However, regarding the latter point,
it is no possible to provide a definitive answer about their
influence on aging, since the obtained results are affected by
the limited number of samples. As any in empirical study,
this represents a threat to results validity. On the other hand,
this limitation is what the proposed procedure intends to
overcome: if future analyses are performed by adopting the
outlined steps, their results can be considered as “samples”
of the same experiment, increasing the confidence on the
observed relationships between workload and aging.
This knowledge can also be used for predicting purposes,
e.g., to improve model-based solutions, or develop tools for
aging estimation. Along this direction, next steps include:
i) the execution of additional experimental campaigns on



different systems, in order to enrich the knowledge of aging-
workload relationship, and to promote the comparability
among systems; ii) the implementation of a tool for runtime
TTE prediction, which, based on the defined workload
parameters, monitors the runtime workload and evaluates
aging trends by means of workload-dependent models; iii)
the definition of benchmarking approach in which aging is
one of the dependability aspects to consider.

REFERENCES

[1] M. Grottke and K. S. Trivedi. Fighting bugs: Remove,
retry, replicate, and rejuvenate. Computer Communications,
40(2):107–109, 2007.

[2] M. Grottke, L. Lie, K. Vaidyanathan, and K. S. Trivedi,
Analysis of software aging in a web server, IEEE Trans.
Reliability, vol. 55, no. 3, pp. 411–420, 2006.

[3] G. Carrozza, D. Cotroneo , R. Natella, A. Pecchia, S. Russo,
Memory Leak Analysis of Mission-Critical Middleware. Jour-
nal of Systems and Software vol. 83, no. 9, 2010.

[4] E. Marshall Fatal Error: How Patriot Overlooked Scud. Sci-
ence, p. 1347, Mar.1992

[5] A.Tai, S.Chau, L. Alkalaj and H.Hecht. On-board Preven-
tive Maintenance: Analysis of Effectiveness an Optimal Duty
Period. Proc. 3rd Workshop on Object-Oriented Real-Time
Dependable Systems, 1997

[6] D. Cotroneo, S. Orlando, S. Russo, Characterizing Aging
Phenomena of the Java Virtual Machine. Proc. of the 26th
Symp. on Reliable Distributed Systems, 2007, pp. 127–136.

[7] S. Garg, A. Puliato, K. Trivedi, Analysis of Software Rejuve-
nation using Markov Regenerative Stochastic Petri Nets. Proc.
of 6th Intl. Symp. on Software Reliability Engineering, 1995.

[8] Y. Bao, X. Sun, and K. Trivedi, A Workload-Based Analysis
of Software Aging, and Rejuvenation, IEEE Transactions on
Reliability, vol. 54, no. 3, p. 541, 2005.

[9] K.J. Cassidy, K.C. Gross, A. Malekpour. Advanced pattern
recognition for detection of complex software aging phenom-
ena in online transaction processing servers. Proc. of the Intl.
Confer. on Dependable Systems and Networks, 2002, 478–482.

[10] K. Vaidyanathan and K. Trivedi, A Comprehensive Model for
Software Rejuvenation, IEEE Transactions on Dependable and
Secure Computing, vol. 2, no. 2, pp. 124137, 2005.

[11] S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. S. Trivedi,
A Methodology for Detection and Estimation of Software
Aging, in Proc. of the 9th Intl. Symp. on Software Reliability
Engineering, 1998.

[12] K. Vaidyanathan and K.S. Trivedi. A measurement-based
model for estimation of resource exhaustion in operational
software systems. Proc. of 10th International Symposium on
Software Reliability Engineering, 1999, 84–93.

[13] Wang, Dazhi and Xie, Wei and Trivedi, Kishor S.. Performa-
bility analysis of clustered systems with rejuvenation under
varying workload. Performance Evaluation, 247–265, 2007.

[14] R. Matias Jr and P. Freitas, An Experimental Study on
Software Aging and Rejuvenation in Web Servers. Proc. of
the 30th Intl. Computer Software and Applications Conference
(COMPSAC), vol. 01, 2006, pp. 189196.

[15] L. Silva, H. Madeira, and J.G. Silva. Software aging and reju-
venation in a soap-based server. Proc. of 5th Intl. Symposium
on Network Computing and Applications, 56 65, 2006.

[16] G. A. Hoffmann, K. S. Trivedi, and M. Malek. A best practice
guide to resources forecasting for the apache webserver. In
12th IEEE Pacic Rim International Symposium on Dependable
Computing, 183–193, 2006.

[17] D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, Software
Aging Analysis of the Linux Operating System. Proc. of 21st
IEEE Intl. Symp. on Software Reliability Engineering, 2010.

[18] R. Matias, Jr., Pedro A. Barbetta, K. S. Trivedi, P. J. Freitas
Filho, Accelerated Degradation Tests Applied to Software
Aging Experiments, IEEE Trans. on Reliability, 59 (1), 2010.

[19] Douglas C. Montgomery, Design and Analysis of Experi-
ments. 5th edition.

[20] Pranab, Kumar, Sen, Estimates of the Regression Coefficient
Based on Kendalls Tau, Journal of the American Statistical
Association, Vol. 63, No. 324 (Dec., 1968), pp. 1379- 1389

[21] Yun-Fei Jia, Xiu-E Chen, Lei Zhao and Kai-Yuan Cai. On the
Relationship between Software Aging and Related Parameters.
Proc. of the 8th Intl. Conference on Quality Software, 2008

[22] A.Avritzer, A. Bondi, M. Grottke, K. Trivedi,. E.J. Weyuker.
Performance Assurance via Software Rejuvenation: Moni-
toring, Statistics and Algorithms, Proc. of the International
Conference on Dependable Systems and Networks 2006

[23] M. Grottke, R. Matias Jr., K. S. Trivedi, The Fundamentals
of Software Aging. Proc. of the 1st International Workshop
on Software Aging and Rejuvenation/19th IEEE International
Symposium on Software Reliability Engineering, 2008.


