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Abstract—We investigate the dependence of software failure
reproducibility on the environment in which the software is
executed. The existence of such dependence is ascertained in
literature, but so far it is not fully characterized.

In this paper we pinpoint some of the environmental compo-
nents that can affect the reproducibility of a failure and show
this influence through an experimental campaign conducted
on the MySQL Server software system. The set of failures of
interest is drawn from MySQL’s failure reports database and
an experiment is designed for each of these failures.

The experiments expose the influence of disk usage and
level of concurrency on MySQL failure reproducibility. Fur-
thermore, the results show that high levels of usage of these
factors increase the probabilities of failure reproducibility.

Keywords-Software testing, debugging.

I. INTRODUCTION

Understanding the nature of software bugs and their man-
ifestation is a daunting task in today’s computing systems.
Researchers have analyzed bugs from different viewpoints in
order to improve the knowledge about their characteristics,
and consequently improve software development processes.
The need of comprehending the root cause of a bug led,
in the past, to develop several schemes capturing static
properties of software defects. Examples are the HP scheme,
the IEEE 1044 classification, and the Orthogonal Defect
Classification (ODC). Less commonly, researchers focus on
the bug manifestation process, although it is increasingly
complicated as systems grow in size and complexity. Ex-
pectedly, many bugs systematically cause the same failure
on a given (sequence of) input(s). However, researchers have
often observed that there is a non-negligible share of bugs
that cause a failure depending on the state of the execution
environment, and may appear even as non-deterministic or
transient as the failure does not occur unless the environment
is in a certain state. The latter category heavily hinders both
testing and debugging activities, since their exposure and
reproduction may be a rare event.

Some broad classifications, developed since the end of
the eighties, take into account the properties of bugs re-
lated to the reproducibility of relevant failures. Gray’s

Bohrbug/Heisenbug classification [1], and its posterior re-
finement by Trivedi and Grottke considering Mandelbug in
lieu of Heisenbug [2], distinguish bugs according to the
complexity of their reproduction process. Despite their merit
of pointing out this need for a better testing/debugging
process, we are still far from gaining a deep insight into
the failure reproduction process. The major difficulty is in
characterizing and defining the failure reproduction “com-
plexity” depending on environmental conditions.

The objective of this study is to investigate the impact of
some environmental factors on the probability of reoccur-
rence of software failures. Considering the most common
causes of environment-dependent failures, the factors taken
into account are: memory occupancy, disk usage, and con-
currency level.

The study is conducted through a controlled experiment
in which we focus on 7 hard-to-reproduce failures of the
Database Management System MySQL. The experiment
consists in repeated executions of a determined workload
under several controlled configurations of the environmental
factors, to see how many times each of the failures surfaces
in the different configurations.

Results highlight the systematic impact of some of the
considered factors. Although these are still coarse-grained
factors, this is a first step toward the characterization and
control of the execution environment for improving repro-
ducibility and supporting testing/debugging activities. The
study output helps to formulate hypotheses about which
factor of the environment is more likely to influence the
failure reproduction process and worth further investigation
in future research.

The rest of the paper is organized as follows. Section
II summarizes the related work. Section III lists the re-
search questions and introduces the case study. Section IV
describes the failure selection criteria. Section V introduces
the details of the experimental campaign conducted. Section
VI presents the results of the experiments conducted and
Section VII discusses the results obtained and highlights the
threats to validity. Finally, Section VIII concludes the paper.



II. RELATED WORK

Several bug classifications have been proposed in litera-
ture, targeting different attributes of bugs. An overall view
of the most popular classifications is provided in [3]. One
of the most widespread is Orthogonal Defect Classification
(ODC) [4]. It classifies bugs in terms of the kind of fix they
underwent and the verification activity in which they were
discovered. This classification has been successfully applied
in different projects as a means to pinpoint and thereby
eliminate the weaknesses in the processes that were mainly
responsible for the discovered faults ([5], [6], [7], [8]).

Other popular schemes are HP’s Defect Origins, Types
and Modes [9] and IEEE’s standard 1044 [10]. These
schemes, like ODC, focus on static properties of bugs such
as the software artifact affected by a bug and the verification
activity in which it was found.

The issue of failure reproducibility is addressed by Gray
in [1]. He classifies bugs in two categories: Bohrbugs, whose
activation is easily reproduced by submitting a certain set of
inputs to the system, and Heisenbugs, whose activation and
propagation to the user interface are not deterministically
reproducible. In [11], Grottke and Trivedi revise this classi-
fication by substituting the term Heisenbug with Mandelbug,
since the former was originally used by Lindsay to indicate
bugs that change their behavior when probed, actually a
subtype of Mandelbug.

Mandelbugs constitute a non-negligible share of software
faults even in critical systems. The authors in [2] perform
a classification of faults reported in the flight software
employed in 18 JPL/NASA space missions: 36.5% of the
analyzed bugs were Mandelbugs. Similar or higher percent-
ages are reported in the open-source programs analyzed in
[12].

The environment in which software is executed plays a
central role in failure reproduction. In [13] and [2] four
factors of complexity in the failure reproduction process
are pinpointed as responsible for a bug to be classified as
Mandelbug: i) a time lag between the fault activation and
the failure occurrence; ii) interactions of the software appli-
cation with hardware, operating system or other applications
running concurrently on the same system; iii) influence of
the timing of inputs and operations; iv) influence of the
sequencing of operations.

The last three factors are actually responsible for the ran-
domness in failure reproduction. In [14] they are collectively
referred as the operating environment. Consequently, failures
are divided in two classes:

• environment-independent, which always occur in re-
sponse to a given workload;

• environment-dependent, whose reoccurrence depends
on the environment, in the sense that if the environ-
ment’s state changes enough, the failures do not appear
when the workload is resubmitted.

Further studies, despite using classification schemes dif-
ferent from the mentioned ones, highlight failures’ charac-
teristics attributable to environment-dependent ones. They
are indirectly concerned with the issue of reproducibility,
as their main focus is to investigate the effectiveness of
fault tolerance methods based on retrying a failed task. The
work in [15] analyzes 200 failure reports of the Tandem
GUARDIAN system, a system previously studied by Gray
in [1] and [16]; it reports examples of failures dependent on
a particular state of memory. The study in [17] focuses on
fault tolerance techniques employed in the earlier mentioned
JPL/NASA space missions’ software. The work in [18]
models fault tolerance against Mandelbugs in 11 IT systems.

The mentioned works provide significant examples of
the relationship between the environment and the failure
reproduction process. However, although this relationship is
explicitly stated, it has not been systematically characterized
in the existing literature.

III. RESEARCH QUESTIONS

The goal of our study is to investigate the reproducibility
of environment-dependent failures (in the sense of [14]) and
to characterize its dependence on the environment. The paper
addresses the following questions:

• Can we characterize and isolate the environmental
conditions that the failure reproduction depends on?

• Is it possible to set the factors in such a way as to
improve failure reproducibility?

The answer to these questions is investigated with refer-
ence to the Database Management System MySQL Server.
It is a good example of medium-scale system used also
in critical contexts. The choice of MySQL is also due to
the quality of its failure data. Most failure reports contain
a How to repeat field in which a workload capable of
reproducing the failure is specified. This field is a valuable
source of information, as we are interested in reproducibility
properties of failures: we use its content as a workload to
exercise each failure in our experiments. We refer to it as
the failure-specific workload.

The following sections describe our procedure for the
selection of the failure reports, the design and the imple-
mentation of the experiments.

IV. FAILURES SELECTION

MySQL has a very large amount of failure data, so
we apply highly restrictive criteria to select which failures
to include in our study. We focus on failures related to
version 5.1 of MySQL Server. We restrict the research to
Closed reports, so as to have complete information about
the possible reproducing workload(s) and the fixes that were
applied after each failure. With these criteria, 568 failure
reports are returned by MySQL’s failure database.



Through a manual inspection of the reports, we distin-
guish between environment-independent and environment-
dependent failures; this analysis is based on: i) the presence
of phrases indicating potentiality, like “sometimes fails”, “it
may fail”; ii) explicit reference to environmental factors, like
disk or memory, in the description. We manually filter out
all the environment-independent failures and concentrate our
efforts on the 82 environment-dependent ones. On these we
perform a second filtering to select the failures suitable to
be tested in our experimental campaign. A summary of this
second filtering is shown in Table I.

A first criterion failures must satisfy is detectability: it
must be feasible to determine, from the inspection of the
output, whether or not the failure appeared. As the easiest
condition to detect is a crash of MySQL, we include failures
of this kind; we also include failures exposed through
MySQL Test Framework, which automatically detects wrong
outputs in response to predefined test cases. Failures that
do not fulfill both these requirements are labeled as Not
verifiable: eighteen failures of this kind have been found
and excluded from the study.

An example of this kind is the failure #35074. It consists
in a wrong value of MySQL’s status variable max_used_-
connections, which represents the maximum number of
simultaneous connections opened since the server started.
To detect the occurrence of such a failure we should be
able to predict the correct value and compare it to the one
reported by MySQL. Since in our experiment we open a
random number of connections to implement the level of
concurrency factor, we cannot know in advance the correct
value. Therefore, we cannot detect this failure.

Some failures are not testable in our test bench, as their
effects make it difficult to restore MySQL’s initial state
after every execution of the workload (see Section V-A).
Let us consider for instance failure #55616: it requires
the activation of MySQL’s replication option; this in turn
relies on the binary logging of operations; with binary
logging, re-populating tables does not restore the initial state,
as the deletion operations involved would be permanently
logged. Three failures, labeled Replication, have thus been
discarded.

Table I
FAILURE REPORTS’ CLASSIFICATION SUMMARY

Label Number of reports
Not verifiable 18

Replication 3
Error/Bug report 10

Workload not specified 17
Ambiguous workload 3
Version not available 12

Aging 8
Test case misconception 3

User mistake 1
Final considered reports 7

Total 82

Although most reports are actually failure reports, some
of them notify internal errors or bugs of MySQL, not
perceivable from the user interface. Ten failures, labeled
Error report or Bug report, have been excluded. An example
of error report is the #37044. It reports how to observe an
erroneous value of an internal variable in the debugging tool
gdb. This error does not necessarily lead to a failure, and
in any case no workload that potentially cause a failure is
provided. Therefore, it is impossible for us to include this
report in our study.

A further requirement is that the failure-specific workload
must be clearly specified and reproducible. As environment-
dependent failures are difficult to reproduce, reporters are
often unable to devise a workload in How to repeat; there
are also cases in which workloads are attached as files that
are no longer available (see failure #50227). Twenty failures
have been labeled as Workload not specified or Ambiguous
workload; they have been discarded from the study.

It is important to identify the exact subversion of MySQL
in which the failure can be observed. There is a Version field
for this purpose, but it is sometimes imprecise or useless: in
some cases it contains only the version number 5.1, without
any further specification about the subversion; other times it
reports the identifiers of old branches in the SVN that are
no longer available, or old releases that cannot be found on
MySQL’s website. To establish if a subversion is appropriate
to test a failure, we verify one of the following criteria:
i) by analyzing the patch referred in the failure report and
comparing it to the subversion’s source code, we notice that
the patch has not been applied to the subversion; ii) we
observe the failure at least once in a series of preliminary
executions of the failure-specific workload. As regards this
requirement, 12 failures have been classified as Version not
available and excluded.

Some reports pertain memory leaks or other aging-related
errors. This phenomenon has already been studied in [19]
and is outside our scope. We have found and excluded 8
Aging reports. They concern memory leaks logged by the
DBMS running inside a profiler, like Valgrind.

Three reports have been excluded because due to mis-
conceptions in test cases rather than failures of MySQL.
Moreover, the failure #13543 is not due to a bug as well,
but to a user mistake. None of the testers was able to repeat
the failure and the reporter finally declared that it was due to
corrupted data files on his installation: he solved the problem
by reinstalling MySQL and recreating his databases.

Finally, we narrow down our sample to 7 environment-de-
pendent failures. Each one is tested on a specific subversion
of MySQL, as shown in Table II. As of failures #32148 and
#38691, although they were reported on MySQL 5.1, we
have not found any subversion of the 5.1 that satisfied the
criteria described earlier in this section; for this reason, we
have decided to test them on subversion 5.0.67.



Table II
ASSOCIATIONS BETWEEN FAILURES AND MYSQL’S SUBVERSIONS

Failure Subversion
32148 5.0.67
38691 5.0.67
38823 5.1.23a
42419 5.1.30
44521 5.1.34
46539 5.1.30
55421 5.1.34

V. EXPERIMENTAL METHOD

A. Design of experiment

For each of the selected failures we design an experiment
to investigate the influence of a set of hypothesized factors
on an outcome variable representative of the study’s goals.

The first step of Design of Experiment (DoE) is the selec-
tion of the outcome variable. Our concern is to characterize
reproducibility of software failures; we need to translate our
goal in a quantifiable entity related to the system under
consideration. A good candidate to represent reproducibility
is the probability of reoccurrence of a failure over repeated
submissions of the failure-specific workload; this quantity
can be estimated by the proportion of observed failures over
a fixed number of iterations of the workload. Therefore,
our choice for the outcome variable is a binary variable
that indicates whether or not a failure occurred in a single
execution of the failure-specific workload; by counting the
occurrences, we obtain the desired proportion. Relying on
a similar study conducted on the browser Mozilla Firefox,
described in [20], we fix the number of iterations to 10.

Next, we have to choose the factors to study. They should
be characteristics of the environment that are likely to affect
failures’ reproducibility in the system. In our survey we are
considering a DBMS. It is a system which makes large use
of complex in-memory data structures in order to perform
operations on tables, to keep the tables consistent, to cache
them so as to get data in short time. On the other hand, it
needs to access disk to memorize and retrieve data as long as
relevant metadata. Finally, it is a concurrent system, which
may have to handle several transactions at the same time,
each one issued by a different user.

From these considerations, we assume that the factors in
our experiment are:

• memory occupation, namely the percentage of memory
occupied by MySQL’s processes and threads over the
total available memory;

• disk usage, that is the amount of bandwidth of trans-
mission between disk and memory currently in use;

• level of concurrency, the number of users currently
connected to MySQL and requesting operations to it.

These factors are also mentioned in other empirical studies
([14], [15], [21]) as examples of causes that may affect
failure reproducibility.

We choose to adopt two levels, high and low, for each
factor. This is common for exploratory studies, concerned
more on exposing which factors are most likely to influence
the outcome than on setting up a quantitative model [22].

The final step in the design is to define the treatments and
in which order they have to be executed. We choose a full-
factorial design, which tests each possible combination of
levels for the factors. The order of treatments is completely
randomized: this is done in order to avoid observing any
variation of the outcome due to an effect of a chosen order,
variation that may be wrongly attributed to the change in
the factors’ levels.

The final resulting plan is shown in Table III.

B. Architecture of the test bench

The testing environment consists of two virtual machines
running on the same physical computer, an Acer Aspire with:
CPU Intel Core i5-3230M, dual-core; 4 GB RAM; a 500 GB
hard disk; Windows 8.1 operating system.

Each virtual machine is created and run by an instance of
VMware Player. One of the two machines, referred as the
server machine, is intended to run MySQL Server, while
the other one, named client machine, hosts and executes the
testing scripts and collects the results. The two VMs are
connected via a LAN emulated by VMware as well.

The server virtual machine has the following resources:
CPU single-core; 1 GB of primary memory; 40 GB of hard
disk. The client virtual machine has: CPU single-core; 1
GB of primary memory; a 20 GB hard disk. The server
machine is provided with more disk space as it needs to
host several installations of MySQL Server along with the
respective databases. On both machines we have installed
Ubuntu 12.04.2 for Desktop.

C. Factors’ implementation

We map memory occupation onto the percentage of
physical memory assigned to the mysqld process by the
OS; in Linux, physical memory assigned to a process is
called Resident Set, and its amount Resident Set Size (RSS).

We choose physical rather than virtual memory because
we think it is more suitable to represent a condition which
may influence failure reproducibility. The reason of that
lies in the particular way Linux handles virtual memory,

Table III
EXPERIMENTAL PLAN

ID Memory occupation Disk usage Level of concurrency
1 High Low High
2 Low Low High
3 Low High High
4 Low Low Low
5 High High High
6 High Low Low
7 High High Low
8 Low High Low



called overcommit [23]: since many applications ask for
more memory space than they actually use, the Linux kernel
always responds positively to memory allocation requests
(like C’s malloc), even if the amount of requested space
exceeds the physically available RAM, but the space is not
allocated immediately; it will be allocated when the program
actually accesses it for reading or writing. Thus, virtual
memory is unbounded and it makes no sense to talk about
percentage of allocated virtual memory, neither do we have
any reason to believe that the program’s behavior can be
affected by the amount of requested virtual memory.

The RSS is the trickiest factor to control, since it de-
pends on the OS’s memory allocation policies. Several
configuration options of MySQL may affect the RSS. We
hypothesize that one of the most influential is the size of the
memory buffer used by InnoDB, MySQL’s Storage Engine,
to cache data from tables [24]: it can be controlled via the
configuration parameter innodb_buffer_pool_size.

Furthermore, in order to prevent MySQL from relying
on the file system’s write-back cache, we set the parameter
innodb_flush_method to the value O_DIRECT. This
is done because write-back cache would require kernel mem-
ory space outside mysqld’s addressing space and thereby
would hinder memory monitoring.

To have MySQL actually use the assigned memory, we
employ the TPC-W benchmark [25] as a workload for it. In
order to distinguish this workload from the failure-specific
one, we will sometimes refer to it as the conditioning
workload. We first profile its effect on physical memory
allocation for different sizes of InnoDB’s buffer. To monitor
RSS during TPC-W execution, we use a script that every two
seconds polls the /proc/`pidof mysqld`/status
pseudofile for the VmRSS value.

Observations are plotted in Fig. 1. We can see that our
hypothesis is confirmed: for a buffer of 8 MB, the RSS
stabilizes around 38 MB, while for 60 MB it settles around
60 MB. We also notice that after 200 seconds of execution,
both the configurations reach a stable value. Therefore, we
decide to implement the two levels of memory occupation
by submitting the conditioning workload for 200 seconds
before submitting the failure-specific workload.

However, even in the high memory configuration, the
reached value (60 MB) is too small if compared with the
total memory available on the server machine (1 GB); we
need a workaround to limit the maximum available memory
for mysqld. cgroups (control groups) is a Linux kernel
feature developed by Google’s engineers [26]; among its
functions there is resource limiting, which allows to set
a maximum amount of memory allocatable to a process.
Looking at the memory profiles, we choose to fix this limit
to 70 MB. In this way, the amounts of RSS reached in
the two configurations constitute two significantly different
percentages of the available memory. This is shown in
Table IV: the amount of occupied memory in the 8-MB-

(a) Profile for a 8 MB buffer (in kB)

(b) Profile for a 60 MB buffer (in kB)

Figure 1. Memory occupation profiles for different values of innodb_-
buffer_pool_size

cache configuration is about half the total memory, while the
one in the 60-MB-cache configuration is near the bound.

Disk usage is controlled by means of PostMark, a bench-
mark for Linux file system. It creates a bunch of files and
performs iteratively reading and writing operations on them;
at the end, it shows a report about the average and standard
deviation of disk’s reading and writing speeds.

Fig. 2 and 3 show the disk usage of MySQL and PostMark
over time. We choose to characterize it by its average value
during the time interval set up for the conditioning of the
environmental factors, namely 200 seconds. The figures
indicate that the average is a good candidate to summarize
the measured data: since the coefficients of variation (COV)
are less than 0.1, we can assume that the mean is stable.

Table IV
MEMORY OCCUPATION LEVELS

Level Steady state RSS Percentage of available memory
Low ∼38 MB ∼54%
High ∼60 MB ∼85%



Disk read
Mean: 615.3724
Std. dev.: 19.96795
COV: 0.032449

(a) Profile for an 8 MB buffer (in kB/s)

Disk read
Mean: 82.13585
Std. dev.: 6.614474
COV: 0.080531

(b) Profile for a 60 MB buffer (in kB/s)

Figure 2. Disk usage profiles for different values of the parameter
innodb_buffer_pool_size

Mean: 26093.72
Std. dev.: 1920.263
COV: 0.073591

Figure 3. Disk usage of PostMark

Table V
DISK USAGE LEVELS

Level PostMark
Low off
High on

By comparing MySQL’s and PostMark’s average disk
usage, we notice that the former is negligible with respect
to the latter, both for low and for high memory usage.
Thus, the level of disk usage can be effectively quantified
by considering the effect of PostMark alone: the high level
of disk usage is implemented by running PostMark while
conditioning the environment, whereas the low level is ob-
tained by keeping PostMark turned off. Table V summarizes
this implementation.

To implement levels of concurrency we rely on TPC-W. It
starts 50 Emulated Browsers which iteratively issue requests
to a Web application and stop to “think”, the thinking time
being a random variable uniformly distributed between 100
and 20,000 ms; the Web application in turn sends requests
to the DBMS in order to respond to the browsers. We let the
benchmark run for 200 seconds to reach the desired amount
of RSS; then, we stop it before submitting the failure-specific
workload to implement low level of concurrency; we let it
continue while submitting the failure-specific workload to
implement high level of concurrency. This is summarized in
Table VI.

VI. RESULTS AND ANALYSIS

From the gathered data, we pinpoint three classes of
behaviors about failure reproduction: i) failures that appear
in every execution; ii) failures that do not appear in any
execution; iii) failures that appear in some of the executions.

The observed behavior of the 7 analyzed failures is
summarized in Table VII. The 4 failures belonging to the
first two groups do not show any measurable dependence of
their reproducibility on the factors.

As regards the third group, statistical techniques are em-
ployed to expose such a dependence in an objective way. We
employ contingency tables to summarize the experimental
data and use Fisher’s exact test to draw conclusions about
the influence of a factor on the occurrence of a failure.
Since we neglect the effect of possible interactions between
the factors, we build three separate contingency tables per
failure, each one being relevant to one of the factors; thereby,
when a factor is analyzed, the others’ possible effects are
attributed to chance. This can be done as the experiment

Table VI
CONCURRENCY LEVELS

Level TPC-W
Low stop before submitting failure-specific workload
High let it run while submitting failure-specific workload



Table VII
OBSERVED CLASSES OF FAILURE REPRODUCTION

Failure Observed
#32148 never
#38691 sometimes
#38823 always
#42419 sometimes
#44521 never
#46539 sometimes
#55421 always

is perfectly balanced: fixed the level for the factor under
consideration, the executions are equally distributed among
the combinations of levels for the other factors.

The failures #38691, #42419 and #46539 showed a ran-
dom behavior. The contingency tables from VIII up to XVI
summarize the output data and list the three p-values for the
interactions between the failures and each of the factors.

In our context, a p-value is the probability of obtaining
the observed or a higher difference in the proportion of
failures between the factor’s levels, assuming that there is
no influence of the factor on the proportion (null hypothesis
of Fisher’s test). The lower the p-value, the higher our
confidence in rejecting the null hypothesis. Two-sided p-
value is used to infer the presence of a correlation between
a factor’s level and the outcome variable; left and right p-
values are used to statistically determine if the proportion
of failure occurrences is higher respectively with a low or a
high level of the factor under consideration.

We notice a strong dependence of the failures #38691 and
#42419 on disk usage. As regards the latter, we even see
that the failure appears in the totality of the executions with
high disk usage: this means that the failure is reproduced
deterministically if disk is highly stressed. To confirm this,
we ran 5 more executions in each of the treatments with

Table VIII
CONTINGENCY TABLE FOR FAILURE 38691 AND MEMORY OCCUPATION

Memory occupation Failure occurrences Total
NO YES

Low 10 30 40
High 5 35 40
Total 15 65 80

Left p-value: 0.9583
Right p-value: 0.1258
Two-sided p-value: 0.2515

Table IX
CONTINGENCY TABLE FOR FAILURE 38691 AND DISK USAGE

Disk usage Failure occurrences Total
NO YES

Low 14 26 40
High 1 39 40
Total 15 65 80

Left p-value: 1.0000
Right p-value: 0.0001*
Two-sided p-value: 0.0003*

Table X
CONTINGENCY TABLE FOR FAILURE 38691 AND LEVEL OF

CONCURRENCY

Level of concurrency Failure occurrences Total
NO YES

Low 6 34 40
High 9 31 40
Total 15 65 80

Left p-value: 0.2839
Right p-value: 0.8742
Two-sided p-value: 0.5679

Table XI
CONTINGENCY TABLE FOR FAILURE 42419 AND MEMORY OCCUPATION

Memory occupation Failure occurrences Total
NO YES

Low 3 37 40
High 5 35 40
Total 8 72 80

Left p-value: 0.3559
Right p-value: 0.8683
Two-sided p-value: 0.7119

high disk usage and the failure appeared in every iteration.
The dependence of these two failures on disk usage can
be asserted with a significance less than 0.01, as the p-
values are very low. The failure #46539 depends notably
on level of concurrency. The dependence can be assumed
with a significance of 0.05, as the two-sided p-value is
0.0252. Moreover, we can notice that in the three cases
in which a dependence is shown, the right p-values are
lower than 0.025. Thus, we can assert that the probability of
failure reoccurrence is higher when the respective influential
factors are set to a higher level of stress. The findings are
summarized in Table XVII.

Table XII
CONTINGENCY TABLE FOR FAILURE 42419 AND DISK USAGE

Disk usage Failure occurrences Total
NO YES

Low 8 32 40
High 0 40 40
Total 8 72 80

Left p-value: 1.0000
Right p-value: 0.0027*
Two-sided p-value: 0.0053*

Table XIII
CONTINGENCY TABLE FOR FAILURE 42419 AND LEVEL OF

CONCURRENCY

Level of concurrency Failure occurrences Total
NO YES

Low 2 38 40
High 6 34 40
Total 8 72 80

Left p-value: 0.1317
Right p-value: 0.9716
Two-sided p-value: 0.2633



Table XIV
CONTINGENCY TABLE FOR FAILURE 46539 AND MEMORY OCCUPATION

Memory occupation Failure occurrences Total
NO YES

Low 6 34 40
High 6 34 40
Total 12 68 80

Left p-value: 0.6223
Right p-value: 0.6223
Two-sided p-value: 1.0000

Table XV
CONTINGENCY TABLE FOR FAILURE 46539 AND DISK USAGE

Disk usage Failure occurrences Total
NO YES

Low 7 33 40
High 5 35 40
Total 12 68 80

Left p-value: 0.8259
Right p-value: 0.3777
Two-sided p-value: 0.7555

VII. DISCUSSION

A. Interpretation of results

The performed experiments give an affirmative response
to the first research question. A characterization of failures
based on the impact of environmental conditions is possible
and catches real phenomena regarding their reproducibility.
Results show that the reproducibility of some of the failures
is actually influenced by the state of the environment. It is
possible to isolate environmental components that individu-
ally affect the reproducibility. Our proposal for environmen-
tal factors reveals to be a good guess, as a strong influence
of disk usage and level of concurrency has been highlighted.

As for the second question, we have obtained indications
that environmental factors can be conditioned so as to
improve detectability of a failure, or even to make its
reproduction deterministic. A remarkable case is failure
#42419. It has shown up in all executions with high level of
disk usage, although randomly observed with low disk usage
(see Table XII). This observation supports the claim of the
possibility to obtain even a deterministic reproduction by
forcing some environmental factors to be in a certain state.
It is useful for the purpose outlined in Section I: a debugger
can be suggested to systematically set disk usage to a high

Table XVI
CONTINGENCY TABLE FOR FAILURE 46539 AND LEVEL OF

CONCURRENCY

Level of concurrency Failure occurrences Total
NO YES

Low 10 30 40
High 2 38 40
Total 12 68 80

Left p-value: 0.9984
Right p-value: 0.0126*
Two-sided p-value: 0.0252*

Table XVII
FINDINGS SUMMARY

Failure Most influential factor Significance
#38691 Disk usage 0.01
#42419 Disk usage 0.01
#46539 Level of concurrency 0.05

Probability of failure reproduction is higher when the
level of the relevant influential factor is high, with
significance 0.025

Failure #42419 appeared in every execution with
high level of disk usage

level, as we did in our experiments.
The overall results suggest that the probability of failure

reoccurrence increases if the environmental factors affecting
it are set to a high level of stress (see Tables IX and XVI).
This observation is reasonable, considering that in a stressed
environment rare conditions that can lead to a failure are
more likely to occur.

More specifically, let us take the failures #38691 and
#46539 as examples. The former is due to a fault in
the cleanup operations that are performed on internal data
structures when a join operation attempts to request a
lock on a table and it is refused. When the disk usage
is high, it is more likely that the lock is refused and the
data structures corrupted. The failure #46539 is observed
if an operation INSERT IGNORE is rolled back due to
a deadlock or an expired timeout, and the system tries to
ignore a non-ignorable error. Deadlocks or timeouts appear
more frequently with many requests pending on the DBMS
(high level of concurrency).

In Tables X, XI and XIII the opposite trend is observed,
that is the proportion of failures appears to be higher
for a low level of the relevant factor’s stress. However,
the difference of proportion is too small to make these
observations statistically significant. The recorded p-values
are indeed higher than 0.1, so no influence of the relevant
factor can be inferred in those three cases.

B. Threats to validity

The validity of a case study has to be analyzed under four
aspects: construct validity, internal validity, external validity
and reliability [27].

The analysis of construct validity is concerned with de-
termining if the employed techniques actually enable us to
observe the property we are intended to investigate. In this
context, an issue arises with respect to the implementation of
memory occupation. By monitoring it during the experiment,
we noticed that in some executions the profiles in Figure 1
were not matched; thereby, an existing influence of this
factor may have been concealed.

Furthermore, threats may arise from the use of two distinct
virtual machines on the same physical one. On the one hand
it mitigates the biasing effect due to having the client script



and the system under test on the same physical machine:
the memory spaces of the two machines are isolated and the
virtual disks are stored in two separate files. On the other
hand a source of bias may be the sharing of one physical
disk by both machines: to minimize this effect, the scripts
on the client machine are devised so that their disk accesses
are negligible with respect to the ones of the server machine.

Internal validity is threatened if the outcome variable
is affected by factors not taken into consideration. The
presence of a class of failures which we were not able to
reproduce (see Section VI) is an indication that such factors
exist in our experiment.

External validity is concerned with the possibility to
generalize our findings. Our sample is too small to draw
general conclusions about the relationship between failure
reproducibility and environment. Nonetheless, our goal was
to prove the possibility to isolate the single environmental
factors affecting specific failures.

Reliability is concerned with the extent to which the
experiment could be repeated with the same results. As
regards this aspect, we notice that the pinpointed relation-
ships are asserted with a very low level of significance; thus,
their evidence is strong and there is high likelihood that a
researcher repeating the experiment draw the same findings.

VIII. CONCLUSION AND FUTURE WORK

We studied the possibility to characterize software failure
reproducibility in terms of the environmental factors by
which it is affected. In our experiments with MySQL, two
factors, disk usage and level of concurrency, have been
discovered to be configurable for an improvement of some
failures’ reproducibility. Two failures did not appear in any
execution of our experiments. This proves the incomplete-
ness of our classification: there may be environmental factors
affecting reproducibility that have not been identified. This
opens the way to further studies on environmental factors,
so as to obtain a complete characterization in this sense.

Our observations are limited to the MySQL case study.
Similar studies conducted on different systems may help to
draw more general conclusions about the relationship be-
tween the failure reproduction process and the environment.
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