
On adaptive sampling-based testing
for software reliability assessment

Roberto Pietrantuono, Stefano Russo
DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy

{roberto.pietrantuono, stefano.russo}@unina.it

Abstract—Assessing reliability of software programs during
validation is a challenging task for engineers. The assessment is
not only required to be unbiased, but it needs to provide tight
variance (hence, tight confidence interval) with as few test cases as
possible. Statistical sampling is a theoretically sound approach
for reliability testing, but it is often impractical in its current
form, because of too many test cases required to achieve desired
confidence levels, especially when the software has few residual
faults inside.

We claim that the potential of statistical sampling methods
is largely underestimated. This paper presents an adaptive
sampling- based testing (AST) strategy for reliability assessment.
A two- stage conceptual framework is defined, where adaptive-
ness is included to uncover residual faults earlier, while various
sampling-based techniques are proposed to improve the efficiency
(in terms of variance-test cases tradeoff) by better exploiting the
information available to tester. An empirical study is conducted to
assess the AST performance and compare the proposed sampling
techniques to each other on real programs.

Index Terms—Reliability assessment, sampling, random test-
ing, statistical testing, operational testing, reliability testing,
adaptive testing, software testing

I. INTRODUCTION

Knowing the level of reliability of a software program is an
as much critical as challenging problem. Claiming an achieved
level of reliability that remarkably deviates from the true
value can have severe consequence in the context where the
software is used. The most common practice to assess software
reliability and, most importantly, the confidence we place
in the assessment, is by testing [1] [2]. Usually, during the
assessment process, tests emulating the real operational usage
are conducted (namely, operational testing), and (failure) data
are collected to estimate reliability [3]–[5]. The main challenge
is to provide an estimate of reliability that is unbiased (hence,
its expectation is the true reliability) and efficient (namely,
with a minimal variance, that implies high confidence).

Statistical sampling methods are a natural way to cope with
this problem, as their goal is to design sampling plans tailored
for a population to study, and provide estimators with the
mentioned properties. Specifically, while unbiasedness (and
other basic properties, like consistency and sufficiency [6]) are
easier to obtain, the driving principle to select an estimator
is its efficiency in relation to the number of observations
required. However, the current literature on sampling-based
software testing proposed very few attempts to go beyond the
conventional random or operational testing. The latter ones
have been extensively proposed in the past [3], [7]–[9], but

they are instances of simple sampling schemes that, even
providing unbiased estimates, require a large number of test
cases for a desired confidence, especially when few residual
faults are in the software (e.g., in critical systems).

This paper proposes a two-stage testing strategy to improve
the efficiency of reliability assessment in terms of estimator’s
variance vs required number of test cases. We define a con-
ceptual framework, called Adaptive Sampling-based Testing
(AST), that includes: i) the adaptive allocation of test cases
to entities (e.g., components, input partitions, modules) at the
first stage, which exploits the continuous feedback from test
outcomes to direct more tests where is actually needed; ii)
test selection schemes, among which a tester can choose, that
aim at best exploiting the possible knowledge that tester has
about the software’s input domain characteristics and usage
profile, so as to run more efficient test selection plans (and
corresponding estimators) than simple random testing. In this
paper, we instantiate the framework with one adaptive alloca-
tion method, based on importance sampling [10], and four test
selection strategies. For the latter, we describe the selection
plan, provide the estimators for the failure rate (hence for
reliability), their variance and the estimators of such variance,
and compare them analytically against currently adopted ap-
proach. Finally, an empirical comparison is performed on four
real programs, comparing the AST test selection schemes both
against each other and against the non-adaptive conventional
operational testing. Besides the positive results in this case,
the framework is open to several instantiations where the
full potential of sampling-based methods can be leveraged to
improve software reliability assessment practices.

II. RELATED WORK

Reliability assessment through testing has been usually ad-
dressed either by software reliability growth models (SRGMs)
during what is called “development testing” [3], or through
statistical sampling-based testing at the end of development.
In the former case, failure data observed during testing and
debugging are used to build (parametric and non-parametric)
models predicting the next time to failure, thus failure intensity
at the end of testing. In this case, detected faults are removed
(i.e., code is changed), and reliability grows during testing:
the goal is to figure out when debug testing can be stopped. A
plenty of SRGMs exist in the literature, all trying to capture the
possible fault detection patterns of a testing process (e.g., [11]–
[14]). The criticisms of this approach lie in their numerous

assumptions due to the difficulties in modeling the complex
factors involved in a real testing and debugging process [15].

In sampling-based testing, software under test is frozen, i.e.,
no change introduced in the code during testing, and the goal
is to assess reliability and accept/reject the product before
release. Test cases are selected randomly either by uniform
distribution or by an operational profile (i.e.,, by a distribution
depending on the expected usage of functionalities). Many
papers referred to the latter as operational testing, and it is
a pillar of reliability testing. It was adopted for certification
testing in the Cleanroom methodology [4], [8], [16], [17],
[9], and in the Software Reliability Engineering Test process
[3]. More recent work improved operational testing either
in terms of adaptiveness to allocate test cases or of test
selection scheme. Adaptive testing was proposed by Cai et
al., based still on operational profile but foreseeing adaptation
in the assignment of test cases to input domains [5], [18],
[19]. The authors formulate testing as an adaptive control
problem using controlled Markov chains, with the goal of
minimizing the variance of reliability estimator. In [1], it
is used along with a gradient descent method to the same
aim, while in [2], it exploits confidence intervals as driving
criterion to select tests adaptively. In terms of test selection,
few approaches went beyond the basic simple random sam-
pling with replacement (SRSWR) scheme. In [20], authors
propose to estimate reliability by stratified sampling. Cluster
analysis is applied to execution profiles to stratify captured
operational executions, and then sampling within strata is
without replacement, which is known to be more efficient than
the with-replacement counterpart. There is no adaptiveness to
online test outcomes, though. In a recent PhD proposal [21],
(non-adaptive) stratified sampling is still proposed, combined
with symbolic execution to stratify profiles. In our previous
work [22], we addressed the dualism between operational
and debug testing, and come up with a combined approach
to improve over conventional operational testing. In [23],
we further elaborate on this, and introduce adaptiveness to
improve reliability during development testing. The adaptive
sampling technique adopted in [23] is also exploited in this
work, in which we generalize that former approach to enable
multiple test selection techniques for the problem of reliability
assessment with code being frozen. Further approaches to
assess reliability (and/or its bounds) are available that use
failure data and possibly other evidence, based, for instance, on
Bayesian approaches or uncertainty quantification [24]–[28],
but are outside the scope of this work, as they do not target
testing strategies.

AST also includes the mentioned without-replacement ver-
sion of stratified sampling as one of the available schemes.
In addition, to exploit further forms of auxiliary knowledge
for more efficient tests selection, three further schemes are
implemented. These are combined with an adaptive allocation
strategy at the upper stage based on importance sampling
[10], an approach successfully used for other problems, rarely
for testing (e.g., in [29] for techniques selection, in [30] for
mutation testing). In this regard, other than the discussed

works by Cai et al., existing works distribute test cases among
entities (mostly components or subsystems) based on “static”
optimization models (e.g., minimizing a testing cost or time
under reliability constraint, and many variants [31]–[35]), not
foreseeing any form of adaptation (not coping, of course, with
the successive stage of test selection).

III. ADAPTIVE SAMPLING-BASED TESTING (AST)

Let us denote with S the system under test, with the set of
all its inputs denoted as D. Assume the system can be decom-
posed into M independently testable entities E1, . . . Em, each
one with its own input domain D1, . . . Dm. An entity can be
thought in several ways: it can be a subsystem, a component,
a software module, or a simply partition in any partition-based
testing strategy. Suppose a tester has a budget of T test cases
to assess software reliability of S. We make the following
usual assumptions about test cases (e.g., [1] [2] [18] [23]):

1) A test case leads to failure or success; we are able to
determine when it is successful or not (perfect oracle).

2) The code is not modified during testing (i.e., it is
frozen). The assessment is to to find the current status
of reliability; code can be modified after the assessment.

3) Test case runs are independent; i.e., all the non-executed
test cases are admissible each time. The execution of a
test case is not constrained by the execution of some
other test case before.

4) The output of a test case is independent of the history
of testing; in other words, a failing test case is always
such, independently from the previously run test cases.

The objective of AST is to provide an unbiased estimate
of reliability R, denoted as R̂. A “good” estimator is sought,
namely that is unbiased and efficient (i.e., with variance as
low as possible given T tests to run).

The two main stages of the AST framework are in Figure
1. The first phase is about test cases allocation, where the

Fig. 1: AST Phases

number of tests for each entity are decided. This could be
done by several methods, also depending on what entities
are, such as: giving more tests to bigger entities; giving
more tests to entities judged as more critical (by domain

experts); using historical data or design information about the
expected defectiveness to spot critical entities (e.g., via defect
prediction) or to allocate tests by optimization models (e.g.,
[32] [33]). Whatever the initial allocation is, AST foresees a
prominent role of adaptiveness, aimed at re-allocating tests to
improve reliability estimate as testing proceeds. The process
includes a feedback from test results to the allocation step in
order to adjust the allocation depending on where more tests
are actually needed.

The output of the allocation stage is the assignment of
a number of test cases to run to each entity Ei, denoted
as Ti. The second stage of AST is about test selection,
where the algorithm(s) decide how to select the Ti test cases
from domain Di to make the estimate more efficient. In
Section III-B, several test selection techniques are presented,
whose applicability are a trade-off between the knowledge
that a tester could exploit to improve selection, the technique
performance, and its implementation complexity.

All the techniques select test cases based on a more or
less in-depth knowledge of the operational profile. A profile
P is defined as a probability distribution where each input
t has an expected occurrence probability pt. With respect to
knowledge of P , the techniques will generally consider each
input either singularly or grouped by classes with similar
characteristics (e.g., all inputs of a functionality, inputs of
an equivalence class, etc.). To take the more general case,
we consider an occurrence probability pt assigned to each
input t ∈ D. Thus, if no information is available at all about
expected occurrence of inputs, we have pt = 1/|D| (i.e.,
same probability to all inputs). If tester has information at
entity level, a pi value is assigned to the entire domain Di

assuming the within-domain distribution being uniform with
pt = pi/|Di|. If tester distinguishes between classes of inputs
within Di, then different pj values are given to each class
(and uniform distribution within the class). Knowledge of the
profile is assumed to be exact, like in most related literature
[5], [18], [1], [19]. We dealt with partial knowledge of the
profile in our previous work [23], whose Montecarlo-based
approach can seamlessly be integrated in what presented here.

For each domain Di, we define: ϕi = θi
∑
t∈Di pt, where∑

t∈Di pt is the probability of selecting an input from Di, and
θi is the probability that an input selected from Di is a failure
point. Reliability is: R = 1 − Φ = 1 −

∑m
i=1 ϕi where Φ is

the operational failure probability. The estimate of reliability
is computed from domain-level estimates:

R̂ = 1−
m∑
i=1

ϕ̂i = 1−
m∑
i=1

pi · θ̂i (1)

where pi =
∑
t∈Di pt, while θ̂i is the sought estimate of the

probability that an input selected from Di is a failure point.
The variance of the estimator, being θ̂i independent, is:

V (R̂) = V (Φ̂) =

m∑
i=1

p2i V (θ̂i) (2)

A. Adaptive allocation of test cases

Adaptiveness aims at periodically re-allocating tests to im-
prove reliability estimate efficiency in terms of variance. It
iteratively assigns a subset of total test cases (T) to domains,
giving more tests to domains with a bigger expected variance.
At iteration k = 0, a subset T (0) of tests is distributed to
entities. This initial allocation can be done by several alterna-
tives depending on the initial knowledge about domains (e.g.,
proportional to domains size, via defectiveness- and usage-
related historical data, via expert judgement about entities
criticality). We assume that no information is available, and
perform a size-proportional allocation1: T (0)

i = T (0) · |Di||D| .
At next iterations, test cases are distributed by weighting
the number of tests (T (k+1)) foreseen for iteration (k+1):
T

(k+1)
i = T (k+1)ω

(k)
i . In the following, we describe the

method implemented to determine ω(k)
i and T (k+1). A sim-

ple solution is to keep on allocating tests proportionally to
domains size, hence ω

(k)
i = |Di|

|D| . However, as the goal is
to minimize the estimate’s variance, allocation needs to be
proportional not only to size, but also to variance. Assuming
the costs to select a test case across domains approximately
equal, it can be shown that the optimal allocation scheme is
the Neyman allocation [38], where weights are proportional to
size and standard deviation:

T
(k+1)
i = T (k+1) · ω(k)

i = T (k)
|Di|
√
V (θi)(k) · pi∑m

j=1
|Dj |
√
V (θj)(k) · pj

= (3)

However, the true within-domain variances of θi are un-
known. Thus, at each iteration, the estimates of V (θi) have to
be provided by the test selection scheme adopted at domain-
level (discussed in the next Section). To implement a robust
adaptation with respect to fluctuations of such variance esti-
mates, AST does not directly use Equation 3: it implements
an adaptive importance sampling (AIS) algorithm to this aim.

Importance sampling aims at approximating the true distri-
bution of a variable of interest [10]. Our true unknown distri-
bution is the best number of test cases for each domain that
minimizes the variance of reliability estimator. The algorithm
represents the beliefs (i.e., hypotheses) about this distribution
by means of sets of “samples”. Each sample is associated with
a probability that the belief is true: at each iteration, these
probabilities are updated by examining some new samples of
that hypothesis, and a larger number of samples (i.e., test
cases) are drawn from hypotheses with a larger probability.
The goal is to converge, in few iterations, to the “true” best
distribution of test cases.

To establish how the probability of each hypothesis is
updated based on new collected samples, an update rule
is defined. Let us denote with π(k) the probability vector
representing, for each domain, the likelihoods that testing from
that domain contributes to minimizing the variance of the
estimator. This information is well represented by weights
ω

(k)
i . Using the variance estimates of θi in lieu of true

1In adaptive allocation, the number of samples at the first iteration (T (0))
is only required to be much smaller than T [30], in order to start the algorithm

(unknown) variances in Equation 3, the update rule of the
probability vector π(k) is defined as follows:

π
(k)
i = γπ

(k−1)
i + (1− γ) · (1− π(k−1)

i) · ω̂(k)
i

(4)

The rule tends to assign progressively more tests to domains
with higher variance of the estimator, so as to diminish its
impact on the overall variance. Given the same weights ω(k)

i ,
the increase is larger for domains that had fewer resources at
the previous iteration. The smoothness of adaptiveness is fur-
ther is determined by γ ∈ [0, 1], regulating how the algorithm
considers past iterations’ results with respect to current ones.
The π(k)

i values are normalized, since they are probabilities
(π(k)
i = (π

(k)
i)/(

∑
i∈D π

(k)
i)). Starting from π

(k)
i , the bucket-

filling procedure reported below is used to distribute the tests
to domains, so as T (k+1)

i ≈ T (k)
i π

(k)
i ∝ T (k)

i ω̂
(k)
i .

To determine the proper T (k)
i at each iteration, we consider

the adaptive implementation of importance sampling [10].
Based on a desired error and confidence, this variant tends
to progressively reduce the number of required samples as
more information becomes available, so as to approximate the
sought distribution earlier. Accordingly:

T (k+1) = 1
2ξ
χ2
ρ−1,1−δ ≈ ρ−1

2ξ
{1− 2

9(ρ−1)
+
√

2
9(ρ−1)

z1−δ}3

(5)
where: ξ is the error that we want to tolerate between the
sampling-based estimate and the true distribution; 1− δ is the
confidence we want in this approximation; ρ is the number
of domains from which at least one test case has been drawn
in the k-th iteration; z1−δ is the normal distribution evaluated
with significance level δ. These T (k+1) are distributed to
domains according to π(k)

i vector by the following procedure.

AIS Procedure
The importance sampling procedure. Inputs: Di, π

(k)
i : i ∈ [1,m]

//sort such that πki ≥ π
(k)
i+1

b1 = π
(k)
1 ; //Initialize Cumulative Distribution

for i=1 to m T
(k+1)
i =0; end for //initialization

//Compute Cumulative Distribution
for i=2 to m bi = bi−1 + π

(k)
i ; end for

//Compute T (k+1) according to Eq. 5
r1 ∼ U [0, 1

T (k+1)] //Draw sample from uniform distribution
i = 1; //Distribute test cases to each domain
for j = 1 to T (k+1)

while rj > bi do i = i+ 1; //Find the bucket to fill
end while
T

(k+1)
i =T (k+1)

i + 1; //Fill the bucket
rj+1= rj +

1

η(k+1)

end for
//Return re-ordered {T (k+1)

i } : i ∈ [1,m]
The T (k+1) tests are distributed to domains proportionally to
their relative importance. The resulting number of T (k+1)

i test
cases are run within each domain according to one of the
techniques described in the next Section: test results are in
turn used to estimate the variances V (θi), hence allowing to
update ω̂i (and πi) based on the new information.

B. Selection of test cases

We describe test selection techniques within domain Di

by providing formulas to compute the failure rate estimator
θ̂i (needed in Equation 1), its variance V (θ̂i), and a correct
estimator of such variance V̂ (θ̂i) (needed in Equation 2 as
well as in Equation 3 in lieu of the unknown V (θ̂i)). The
following description starts with the simpler case where simple
random sampling is exploited to select tests, and then proceeds
by refining the sampling scheme to better exploit available
information for efficiency improvement. Hence, the below
techniques require increasing pieces of information about the
program under test, and this is a possible additional criterion
to choose between them, besides efficiency and bias. All the
steps described in the following refer to a given iteration k;
we omit the superscript k in all the Equations for readability
of formulas (e.g., T ki is Ti). Also, we denote: |Di| = Ni.

1) SRSWR-based testing: This first technique makes no
assumption about (i) which input or class of inputs (e.g.,
equivalence class) is more prone to fail within a domain
Di; ii) what is the expected operational usage of (class of)
inputs/functionalities. Tester just has information at entity
level, namely, pi value is assigned to the entire domain Di

assuming the within-domain distribution being uniform, i.e.,
for each input t: pt = pi/Ni. The simplest form, which is
the common one in the existing literature (e.g., [18], [2], [5],
[19], [1]), allows the same input t to be selected more times,
i.e., a simple random sampling with replacement (SRSWR)
scheme. Test outcomes are a series of independent Bernoulli
random variables zi,t such that zi,t = 1 if the execution leads
to a failure, zi,t = 0 otherwise. Probability that zi,t = 1

corresponds to proportion: θi =

∑Ni

t=1
zi,t

Ni
. An unbiased

estimator of θi is the observed proportion of failure points
over the number of trials Ti:

θ̂iSRSWR
=

∑Ti
t=1

zi,t

Ti
. (6)

Accordingly, having assumed independent variables, the
variance of the θ estimator is:

V (θ̂iSRSWR
) =

θi(1− θi)
Ti

(7)

being the numerator of Eq. 6 a binomial random variable. An
unbiased estimator of V (θ̂iSRSWR

) (i.e., such that E[V̂] = V)
is:

V̂ (θ̂iSRSWR
) =

θ̂i(1− θ̂i)
Ti − 1

(8)

using the Bessel-corrected version as unbiased estimator of a
sample variance V : V̂ = n

(n−1)V (n being the sample size).
Although SRSWR keeps the mathematical treatment relatively
simple, it is unable to exploit additional information a tester
might have. New techniques are now introduced that try to
improve the efficiency in terms of variance.

2) SRSWOR-based testing: This technique still makes no
assumption about knowing failure proneness of (classes of)
inputs/functionalities or their operational profile. Differently
from the previous one, this technique uses a sampling without

replacement (SRSWOR), namely, the same test case is not
selected twice. This technique is expected to be more efficient
in terms of estimator’s variance, as it avoids sampling an input
twice. The proportion estimator is still obtained as ratio of
observed failure points over tests executed:

θ̂iSRSWOR
=

∑Ti
t=1

zi,t

Ti
= pi · θ̂i (9)

Variance of the estimator, θ̂, is different. Being a without-
replacement scheme, the population units from which to
sample are less and less. Thus, observations are not really
independent. At the first draw, a test case t of Ti tests to run
is drawn out of Ni units; at the second draw, another test
case from the remaining Ti− 1 is drawn from a population of
Ni− 1 units, and so on. Defining a random variable πt = 1 if
unit i is in the sample, πt = 0 otherwise, θ̂i can be expressed
as
∑Ti
t=1 πt

zi,t
Ti

. Since πt are 0/1 variables, E[πt] = E[π2
t] =

Ti/Ni, and V (πt) = E[π2
t]−E[πt]

2 = Ti
Ni

(1− Ti
Ni

). Moreover:
E[πtπt′] = P (πt′ = 1|πt = 1)P (πt = 1) = (Ti−1

Ni−1)(TiNi)
– namely, if we know that test t is in the sample, we do
have a small amount of information about whether test t′ is
in the sample, reflected in the conditional probability P (πt′ =
1|πt = 1). Thus covariance is not null and: Cov(πt, πt′) =
E[πtπt′] − E[πt]E[πt′] = − 1

Ni−1 (1 − Ti
Ni

)(TiNi). Given these
preliminaries, and using properties of covariance:

V (θ̂iSRSWOR
) = 1

T2
i

V (
∑Ni

t=1
πtzi,t) =

1
T2
i

∑Ni
t=1

∑Ni
t′=1

zi,t, zi,t′Cov(πtπt′)) =

1
T2
i

[
∑Ni

t=1
z2i,tV (πt) +

∑Ni
t=1

∑Ni
t′ 6=t zi,t, zi,t′Cov(πtπt′)]

(10)

Using variance and covariance of πt, πt′ and taking out of the
summation:

V (θ̂iSRSWOR
) =

1
T2
i

Ti
Ni

(1− Ti
Ni

)[
∑Ni

t=1
z2i,t −

1
Ni−1

∑Ni
t=1

∑Ni
t′ 6=t zi,t, zi,t′] =

1
Ti

Ti
Ni

(1− Ti
Ni

)(1
Ni(Ni−1)

)[Ni
∑Ni

t=1
z2i,t − (

∑Ni
t=1

zi,t)
2] =

Ni−Ti
Ni

Ni
Ni−1

θi(1−θi)
Ti

= Ni−Ti
Ni−1

θi(1−θi)
Ti

(11)

Hence, with respect to the SRSWR case, variance is modi-
fied by adding what is called the finite population correction
factor (Ni−Ti)

Ni
, accounting for the fact that the population is

finite, and using the Ni
Ni−1 factor to make it unbiased.

An unbiased estimator of V (θ̂iSRSWOR
) is:

V̂ (θ̂iSRSWOR
) =

Ni − Ti
Ni

θ̂i(1− θ̂i)
Ti − 1

(12)

since:

E[Ni−Ti
Ni

θ̂i(1−θ̂i)
Ti−1

] = Ni−Ti
Ni

E[
θ̂i(1−θ̂i)
Ti−1

Ti
Ti

] =

Ni−Ti
Ni

θi(1−θi)Ni
Ni−1

1
Ti

= Ni−Ti
Ni−1

θi(1−θi)
Ti

(13)

using the fact that θ̂i(1−θ̂i)TiTi−1 unbiasedly estimates θi(1−θi)Ni
Ni−1 .

Assuming Ti ≥ 1, SRSWOR is expected to be more
efficient than SRSWR, since its variance is expected to be
lower:

V (θ̂iSRSWR
)

V (θ̂iSRSWOR
)

=
Ni − 1

Ni − Ti
≥ 1 (14)

Since both SRSWR- and SRSWOR-based testing make the
same assumptions about the knowledge available to tester,
the latter is preferred: we use SRSWOR in the following for
efficiency comparison, neglecting the SRSWR case.

3) Stratified SRS testing: The above two strategies can be
improved if a tester has knowledge about which classes of
inputs within Di are expected to have a common behaviour.
Tester, as a matter of fact, often uses partitioning to try
reducing the number of useless tests. There are several ways
in which s/he can partition an input domain, provided that test
cases in a partition have some properties in common (e.g.,
based on functional, structural, or profile criteria). Regardless
partitioning criteria, we denote as Ci,h the h-th class within
domain i (it can group inputs of a functionality, of an equiva-
lence class, of a “choice” in category-partition testing, and so
on), and Ni,h the number of elements within Ci,h.

If such information is available, the stratified sampling (S-
SRS) technique can be used to instead of SRSWOR and
SRSWR, exploiting the principle of stratified sampling. In S-
SRS testing, the proportion of failure points is estimated by
combining the proportions obtained in each class:

θ̂iS−SRS =
1

Ni

Mi∑
h=1

Ni,hθ̂i,h (15)

where Mi is the number of classes and θ̂i,h the estimate
obtained by Equation 9 for each class. Since the selection
from classes is independent, variance of the estimator is the
linear combination of within-class variances:

V (θ̂iS−SRS) =
1

N2
i

Mi∑
h=1

N2
i,hV (θ̂i,hSRSWOR

) (16)

Similarly, its unbiased estimator is:

V̂ (θ̂iS−SRS) =
1

N2
i

Mi∑
h=1

N2
i,hV̂ (θ̂i,hSRSWOR

) (17)

using Equation 11 and Equation 12 in the two cases.
A task required by S-SRS is the assignment of test cases

to classes. This is the same problem we faced at domain-
level, and assume, without loss of generality, the same solution
here: a “proportional allocation” in the first stage (i.e., Ti,h =
Ni,h
Ni

Ti), and “optimal Neyman allocation” (Equation 3) in the
next stages when an estimate of variances becomes available.

Efficiency with respect to SRSWOR is expected to improve.
Considering the first iteration (namely, under proportional allo-
cation, being conservative), let us compare variances of S-SRS
and SRSWOR. We set vi = θi(1−θi) and vi,h = θi,h(1−θi,h).

Since in proportional allocation Ni,h−Ti,h
Ti,h

= Ni−Ti
Ti

, we have:

V (θ̂iS−SRS)

V (θ̂iSRSWOR
)

=

1

N2
i

∑Mi

h=1
N2
i,h

(
Ni,h−Ti,h
Ni,h−1

vi,h
Ti,h

)
Ni−Ti
Ni−1

vi
Ti

=

1

N2
i

Ni−Ti
Ti

∑Mi

h=1
N2
i,h

vi,h
Ni,h−1

Ni−Ti
Ni−1

vi
Ti

=
1
Ni

∑Mi

h=1

Ni,h
Ni,h−1Ni,hvi,h
Ni
Ni−1vi

(18)
For Ni,h sufficiently large, the ratio Ni,h

Ni,h−1 → 1; the numer-
ator corresponds to within-class variance and the denominator
is the total variance (i.e., within-class plus between-classes
variance, namely vi = 1

Ni

∑
hNi,h[vi,h + (θi,h− θi)2]). Thus,

the ratio is less than 1, unless class means are all equal2.
S-SRS can be applied to any partition testing strategy, e.g.,

black- or white-box partitioning or category-partition testing.
4) PPS-based testing: Besides information that allows par-

titioning of Di, let us assume to have an estimate of the
operational profile at class-level, along with some auxiliary
indication about the failure proneness of a class with respect
to the others. The latter should be a driving principle of
partitioning, wherein classes of inputs are separated with
respect to their supposed failing behaviour. There are several
methods to support the tester’s intuition with quantitative
figures about which functionality or class of inputs is more
likely to fail, especially considering that reliability assess-
ment is done at the end of the development process, and
much information is available. For instance, the amount of
testing, inspection or, generally, quality assurance activities
that a functionality received or the achieved code coverage
suggest where a high effort was devoted to assure few residual
faults; the functionalities’ code characteristics, such as size
or complexity metrics, are often used as predictor for defect
proneness by machine learning [39]; historical failure data,
domain expert opinion, and other evidences can be used for
such an assessment, as mentioned in Section II. These all
can contribute to have a relative assessment of classes with
higher expected failure rate3. However is assessed, we call
it failure likelihood, denoted as ϑ∈[0, 1]. The two techniques
explained in this Section just assume a rough proportionality
of the auxiliary information ϑ with the true (unknown) failure
rate. Note that this knowledge is just supposed to be better than
knowing nothing about the relative difference among failure
rates.

In such a scenario, we change the problem formulation.
Let us consider the quantity to estimate being not the pro-
portion of failure points, but the total: ϕi =

∑
h pi,hθi,h =∑Mi

h=1
pi,h
Ni,h

∑
t∈h zi,t =

∑
t∈Di ptzi,t, where pi,h is the

probability of selecting an input from class Ci,h, and:
pt = pi,h/Ni,h, because of equal selection probability within

2Such a case means that partitioning is done so badly that it has no impact.
3Failure rate of a class is meant as probability of failing given that an input

is selected from that class; the actual failure probability depends, of course,
not only on the faults within the class, but also on the probability of selecting
an input from that class in operation, namely on the operational profile. Thus,
this information is later combined with the class-level operational profile

classes4. We define the auxiliary variable x associated with
each input t such that: xi,t = ptϑi,h where ϑi,h is the
failure likelihood of the class The corresponding probability
of selection of each input point t as test case is: πt =

xi,t∑
t
xi,t

.

This is called proportional to size (PPS) selection [38], where
the “size” is the variable x. If no knowledge about failure
likelihood is available, the method still works, but the higher
the correlation between x and ϕi the higher the efficiency.

Given this general scheme, selection of test cases can be
done, again, with or without replacement. Since Ni,h and
pi,h values are known, we need to estimate the total number
of failure point Zi =

∑
t zi,t to get θ̂i and ϕ̂i. In case of

with-replacement selection, the estimator is the sample mean
of observed values rescaled by the inverse of their selection
probability πt, namely: Ẑi = 1

Ti

∑Ti
t=1

zi,t
πt

, known as the
Hansen-Hurwitz estimator. Variance is:

V (Ẑi) = E[(Ẑi − Zi)
2
] =

1

Ti

[

Ni∑
t=1

πt(
zi,t

πt

− Zi)
2
] =

1

Ti

(
Ni∑
t=1

z2
i,t

πt

− Z2
i

)
(19)

With respect to the simple random sampling counterpart (SR-
SWR), this is a generalization, since in SRSWR πt are equal to
1/Ni

5. If we consider the corresponding without-replacement
case (namely, PPS sampling without replacement), we expect
to obtain better variance than Equation 19. Hence, we now
consider two techniques, the RHC and the SDE schemes, to
estimate Zi.
PPS-RHC technique
This uses the Rao, Hartley and Cochran (RHC) sampling for
selecting tests according to PPS [40]. It acts as follows:

1) Given the Ti test cases to execute in Di, divide randomly
the Ni units of the population into g = Ti groups, by
selecting G1 inputs with a SRSWOR for the first group,
then G2 inputs out of the remaining (Ni −G1) for the
second, and so on. This will lead to g groups of size
G1, G2, . . . , Gg with

∑g
r=1Gr = Ni. The group size is

arbitrary, but we select G1 = G2 = · · · = Gg = Ni/Ti,
as this minimizes the variance [40].

2) One test case is then drawn by taking an input t in each
of these g groups independently and with a probability
proportional to size – in our case, according to πt values.

3) Denote with πt,r the probability associated with the t-th
unit in the r-th group, and with qr =

∑
t∈Gr πt,r the

sum in the r-th group. An unbiased estimator of Zi is:

Ẑi =

g∑
r=1

πtzi,t

πr/qr
(20)

4Note that unequal probability of selection could be seamlessly used in the
method formulation, but the information on the operational profile is rarely
available at such fine level of granularity.

5Note that, the case of proportions θ of Equation 7 for SRSWR is similar,
since θ(1− θ) = θ − θ2 =

∑
t
zi,t/Ni −

∑
t
z2i,t/N

2
i =

∑
t
z2i,t/Ni −∑

t
z2i,t/N

2
i , since zi,t = z2i,t being zi,t a dihcotomic (0/1) variable. Since

proportions are “means” of the variable zi,t, while here we have a total,
Equation 7 multiplied by N2

i yields the variance of the total’s estimator Ẑi
that is the same as Equation 19 with πt = 1/Ni

with zi,t = 1 if t is a failure point, 0 otherwise. The
suffixes 1, 2, . . . , r denote the g test cases selected from
the g groups separately. This leads to: θ̂iRHC = Ẑi

Ni
,

which is the sought proportion of failure points.
The estimator is unbiased since E[Ẑi] = E1E2[Ẑi] = E1[Zi]
= Zi, where E2 is the expectation for a given split and E1

the expectation over all possible splits into Ti groups of the
chosen sizes. Variance of Ẑi is derived by observing that,
under unbiasedness, V (Ẑi) = E1V2(Ẑi), where V2 is the
variance within a split:

V (ẐiRHC) =

∑
r
G2
r −Ni

Ni(Ni − 1)

(
Ni∑
t=1

z2i,t

πt
− Z2

i

)
(21)

with
∑
r denoting the sum over the g = Ti groups. Its

unbiased estimator is derived in [40] is:

V̂ (ẐiRHC) =

∑
r
G2
r −Ni

N2
i −
∑

r
G2
r

(
g∑
r=1

qr(
zi,r

πr
− Ẑi)2

)
. (22)

Choosing G1 = G2 = · · · = Gg = Ni/Ti, we have:∑
r
G2
r−Ni

Ni(Ni−1)
=

Ti(Ni/Ti)
2−Ni

Ni(Ni−1)
= 1

Ti

(Ni−Ti)
(Ni−1)

(23)

Hence:

V (ẐiRHC) =
1

Ti

(Ni − Ti)
(Ni − 1)

(
Ni∑
t=1

z2i,t

πt
− Z2

i

)
(24)

which clearly less than the with-replacement case in Equation
19. Thus the without-replacement case is better, in terms of
efficiency, than the with-replacement case by a factor (Ni−Ti)

(Ni−1) .
The sought variance of θ̂iRHC and its estimator are:

V (θ̂iRHC) =
V (Ẑi)

N2
i

V̂ (θ̂iRHC) =
V̂ (Ẑi)

N2
i

(25)

Let us compare RHC against the SRSWOR case (denoted, for

brevity, SRS). From Equation 11, writing θi =

∑Ni

t=1
zi,t

Ni
and

recalling that zi,t = z2
i,t, being zi,t a 0/1 variable), we have

that:

V (ẐiSRS) = N2V (θ̂iSRS) =
1

Ti

(Ni − Ti)
(N − 1)

(∑
t

Niz
2
i,t − Z

2
i

)
(26)

Therefore, RHC (Equation 24) is more efficient if this condi-
tion is verified:

Ni∑
t=1

z2i,t

πt
<

Ni∑
t=1

Niz
2
i,t (27)

Considering that πt =
xi,t∑
t
xi,t

=
xi,t
Xi

=
xi,t
X̄iNi

, and Zi =

Z̄iNi (X̄ and Z̄ are the population means), the RHC variance
becomes:

V (ẐiRHC) =
(Ni − Ti)
(Ni − 1)

X̄i
Ni

Ti

Ni∑
t=1

1

xi,t
(zi,t −

Z̄i

X̄i
xi,t)

2 (28)

Expanding the expression and recalling that Cov(X, Z
2

X) =

E[X, Z
2

X]− E[Z
2

X]E[X], condition in Equation 27 is verified
if and only if Cov(X, Z

2

X) > 0. But in PPS sampling,

X is supposed to be roughly proportional to Z, thus their
covariance should be at least positive. RHC turns out to be
worse than SRSWR only in the case that auxiliary information
is negatively correlated with the variable to estimate, which
is a worse situation than a complete absence of knowledge
about more or less failure-prone classes (i.e., knowledge is
even misleading). In practice, an even partial knowledge (e.g.,
inputs from boundary-value regions more likely to fail than
others) can suffice to distinguish more failure-prone classes;
without such knowledge, partition testing is not convenient
from the assessment point of view.
PPS-SDE technique
This technique still uses a PPS without replacement like RHC.
It works in this way: on the first draw a unit t1 is chosen with
probability π1; on the second draw a unit t2 (6= t1) is chosen
with probability π2/(1−π1) leaving t1 aside; on the third draw,
t3(6= t1, t2) is chosen with probability π3/(1−π1−π2), and so
on. On the final nth (n = Ti > 2) draw, a unit in (6= t1,...,tn−1)
is chosen with probability:

πn

1− π1 − π2−, . . . ,−πn−1
(29)

It follows that:
e1 = z1/π1
e2 = z1 + z2

π2
(1− π1)

ej = z1 + · · ·+ zj−1 +
zj
πj

(1− π1 − · · · − πj−1)
(30)

with j = 3 . . . , Ti, are all unbiased estimators for Zi. In fact,
the conditional expectation: Ec[ej |(t1, z1), . . . , (tj−1, zj−1)]

= (z1 + · · ·+ zj−1) +
∑N
j=16=t1,...,tj−1

zk
πj/(1−πj)

πj
(1−πj) = Zi.

The overall expectation E(Ec(ej)) = E(Zi) = Zi, ∀j =
1, . . . , Ti. So, unconditionally, E(ej) = Zi, and the Des Raj
estimator is [38]:

ẐiRAJ =
1

Ti

Ti∑
j=1

ej (31)

Notice that ej , ek (j < k) are pairwise uncorrelated; so, the
variance of Ẑi and its unbiased estimator are:

V (ẐiRAJ) =
1

T 2
i

Ti∑
j=1

V (ej) V̂ (ẐiRAJ) =
1

Ti(Ti − 1)

Ti∑
j=1

(ej − Ẑi)2

(32)

Clearly, ẐiRAJ depends on the order in which the units are
drawn in the sample s. So, we apply the Murthy’s unordering
to get the a better variance, by averaging the ordered ẐiRAJ :

ẐiSDE =
∑
s′→s

p(s′)ẐiRAJ (s′, Z)/
∑
s′→s

p(s′) (33)

where s = (t, . . . , tTi) is a sample drawn as described and
s′ → s denotes the sum over all samples obtained by per-
muting the coordinates of s: this estimator is called Murthy’s
(1957) symmetrized Des Raj estimator (SDE). Variance and
its unbiased estimator in this case are [41]:

V (ẐiSDE) =
1

2

N∑
i 6=j 6=1

πiπj(1− πi − πj)
N2(2− πi − πj)

(
zi

πi
−
zj

πj

)2

(34)

V̂ (ẐiSDE) =

N∑
i 6=j 6=1

(1− πi − πj)(1− πi)(1− πj)
N2(2− πi − πj)2

(
zi

πi
−
zj

πj

)2

(35)

Again: θiSDE = 1
N2V (ẐiSDE); θ̂iSDE = 1

N2 V̂ (ẐiSDE). The
variance of unordered estimators are known to be less than the
corresponding ordered ones [41], so V (ẐiSDE) < V (ẐiRAJ).
In turn, V (ẐiRAJ) is smaller than the PSSWR case, since:

V (e1) =

Ni∑
t=1

πt(
zt

πt
− Z)2 =

∑∑
1≤t≤j≤Ni

πtπj [
zi,t

πt
−
zi,j

πj
]2

V (e2) =
∑∑
1≤t≤j≤Ni

(1− πt − πj)πtπj [
zi,t

πt
−
zi,j

πj
]2 < V (e1);

(36)

and so on V (eTi) < V (eTi−1) . . . V (e1). So:

V (ẐiRAJ) =
1

T 2
i

Ti∑
j=1

V (ej) <
V (e1)

Ti
(37)

The latter corresponds to the variance in case
of PPSWR (Equation 19). For what said:
V (ẐiSDE)<V (ẐiRAJ)<V (ẐiPPSWR

). Thus, both RHC
and SDE are more efficient than the with-replacement
case. We neglected the PPSWR case just like we neglected
the SRSWR case. In summary, we consider the following
sampling techniques: SRSWOR (denoted, for brevity, SRS),
which selects tests by simple random sampling without re-
selecting the same test cases; Stratified SRSWOR (denoted,
for brevity, S-SRS), which refines the previous approach by
stratifying the domain selects via SRS within each stratum;
RHC for PPSWOR (denoted, for brevity, RHC) and SDE for
PPSWOR (denoted, for brevity, SDE), which considers the
unequal probability of selection to further improve efficiency
of the estimator. These approaches are compared in the
following Section experimentally. It is finally worth to note
that estimations are available at each iteration; thus the final
estimates are adjusted by using formulas of sampling on
successive occasions for unmatched subsample [42] [41], not
presented here for lack of space.

IV. EVALUATION

This Section reports results of the empirical evaluation to
assess the AST performance and compare the test selection
techniques to each other on real programs under several
scenarios. Besides described techniques, we also run the
conventional operational testing as baseline for comparison.

A. Testing Scenarios

Subject Programs
We exploit the same testbed used in our mentioned recent
paper [23]. Techniques are applied to four programs taken
from the SIR repository [43]: Make (v3.79), SIENA (v1.15),
Grep (v2.4) and NanoXML (v2.2). The programs have the
availability of a limited number of test cases generated by
the category-partition method (Table I, column 5). These have
been enlarged by modifying the available TSL specifications.

The additional test cases are generated by removing constraints
(e.g., “single” and “error” constraints) and adding choices to
the existing ones (e.g., environment choices), according to
the category-partition method (Table I, column 7). Programs
are available with faults seeded inside, but, since they are
conceived for regression testing purpose, we ignored them and
injected new faults from scratch according to the G-SWFIT
technique [44], [45]. G-SWFIT acts at source code level, by
exploiting a set of fault operators derived from the well-known
Orthogonal Defect Classification (ODC). We considered the
same distribution as the one actually observed in field studies
about the presence of ODC fault types into programs [45]. An
automatic injection tool based on G-SWFIT is used (SAFE -
SoftwAre Fault Emulation) [46] [44], already adopted in our
previous work [47] [23] [48], whose aim is to increases the
representativeness by spotting all the potential locations for
each different type of fault. As number of faults, we chose four
equally-spaced levels (Table I, column 6) to test the approach
with different reliability values.

At each test execution, the possible failure occurrence is
recorded. To recognize failures, we keep a “gold” version
without faults seeded, and the failure is said to have occurred
if the output of the two versions under the same test case is
discordant. To evaluate performance under different available
testing budget, each experiment will select a fixed number
of test cases from the available ones. We consider 8 points
ranging from T = 100, 200, . . . , 800 test cases.

Program Lang. LoC Vers. Initial N. of Final N. of N. of
Test cases Test cases Faults

Make C 35545 3.79 1043 9238 24
Siena Java 6035 1.15 567 6846 6
Grep C 10068 2.4 809 7041 12

NanoXML Java 7646 2.2 237 7077 18

TABLE I: Overview of the considered programs.

Partitioning and operational profile
AST exploits the initial partitioning of the overall input space
into entities Ei with domain Di. As mentioned above, entities
can be modules, components or partitions. In this experiment,
an entity is a partition. Test cases are partitioned into disjoint
domains on the basis of the functionalities they are intended
to test, getting respectively, 7 partitions for Grep, 6 for
Make, 6 for SIENA and 7 for NanoXML. At lower level,
three out of four techniques (namely, S-SRS, RHC and SDE)
allows exploiting also a further partitioning of inputs in Di

6.
In this experiment, we considered the choices of category-
partition as Ci,h classes, having inputs in a choice very similar
characteristics. As these classes are the finest grain that tester
is assumed to know, profiles are generated by assignment of
probabilities to classes. Specifically, we distinguish two cases
corresponding to possible profile knowledge level of tester:

6This double-level of partitioning is more relevant in the cases where
entities are components, subsystems or modules, e.g., in the case of large
scale systems, where the advantage of adaptation could be more relevant.
Here double-level is implemented for illustrative purpose.

• The case of RHC and SDE, where class-level knowledge
is required: given a domain Di, probabilities pi,h are ran-
domly assigned to each class h so that

∑
i

∑
h pi,h = 1.

A constraint on these assignment is a distinction that
we make between boundary-values classes (let us denote
with C ′h) from the others (C ′′h), since the former as
assumed to occur less frequently in operation. To generate
a profile, a uniformly distributed random value in [0,1],
ν′h, is assigned to each class C ′h, and is then normalized
to sum up to 1: p′i,h =

ν′h∑′
h
ν′
h

. The same is done

for classes C ′′h , obtaining p′′i,h. Then, probabilities p′i,h
are rescaled by 1/3, while p′′i,h are rescaled by 2/3, to
account for the less expected occurrence of boundary-
value choices. Probability assigned to each input is then:
pt =

pi,h
|Ci,h| ∀i, h, and: pi =

∑
h pi,h for domain Di.

• In the case of S-SRS technique, the domain is still
partitioned in classes (again, corresponding to choices),
but no knowledge about the profile at class-level is
assumed. Thus, the random assignment is made at domain
level, by generating a [0,1] number νi attached to Di

and normalized (pi∑
i
pi

) to sum up to 1. The case of

SRSWR and SRSWOR is the same as S-SRS, namely
knowledge is limited to an entire domain Di (in these
cases: pt = pi/|Di|).

As in [5], [23], [18], [1], we do not focus on one specific
profile in the evaluation. The above procedure is repeated to
generate three profiles, P1, P2, P3.

B. Evaluation criteria
Given the above scenario, we have: 8 points for the number

of test cases × 4 programs × 3 profiles × 4 techniques =
384 different scenarios. For each scenario j, we have the true
reliability Rj as Rj = 1 −

∑
t∈D ptzt (zt = 1 if t leads

to failure zt = 0 otherwise)7. Since testing selection criteria
are probabilistic, each scenario j is run 100 times to draw
statistically valid conclusions. At the end of each run r, we
compute the reliability estimate given by the technique under
test, R̂r,j , using Equation 1 and Equations for θi estimate
for each technique. Then, the sample mean value M of the
estimates at each run and the sample variance S are computed:

M(R̂j) = 1
100

∑100

r=1
R̂r,j

S(R̂j) = 1
100−1

∑100

r=1
(R̂r,j −M(R̂j))

2

(38)

To assess the efficiency of the estimators, we compare the
sample variances S8.

V. RESULT

A. Results
Results for each program and profile are in Figures 2a-2l,

reporting, the sample variance S. All the techniques remark-

7We know the faults injected and get the faults matrixes by running all the
tests and checking which input leads to failure; this allows getting the true
failure rates θi and thus R

8Since the estimators are unbiased, both the sample variance and the sample
MSE can be used for comparison. We opted for the former since the analytical
comparison is in terms of variance

ably outperform operational testing, hence adaptiveness for
test allocation among entities plays a key role in reaching
efficent estimates earlier. Very low values are achieved with
800 test cases, as reported in the Figures’ captions. Regarding
the relative comparison among test selection techniques, RHC
and SDE have similar results in all the profile/program pairs,
and in almost all the cases are better than SRS and S-SRS. The
latter is also better than SRS in most cases, but not always.
Results are quite invariably across profile-program pairs.

To have statistically significant results, we run non-
parametric ANOVA, with significance at α = 0.01. We adopt
the Friedman’s test to test the hypothesis of “no difference”
among compared techniques (rejected at p-value < 0.001),
followed by post hoc analysis to detect which techniques differ
significantly9. Table II lists the results. Results confirm that
all the observed differences are statistically significant, except
SDE and RHC, which thus resulted to provide reliability
estimators with a similar efficiency.

Pairwise Comparison: p-values
SDE RHC S-SRS SRS

SDE - 0.4310 4.42E-13 5.52E-25
RHC - - 8.31E-15 1.90E-23
S-SRS - - - 4.22E-06

TABLE II: Comparison for variance S.

B. Threats to validity
The accuracy of results depends on the number of test

cases used as test input domain, thus we enlarged the initial
test suite by an order of magnitude to limit this threat. The
additional tests are generated by category-partition: although
it is a well-defined method, its subjective application could
affect the result. Representativeness of seeded faults is a
further threat. Despite we reduce the bias of artificial fault
seeding by injecting more representative faults than SIR’s
faults, real faults might be different. External validity threats
are related to the subject programs and profiles. We used
programs from a known repository, and with quite different
features. However, changing programs might entail differ-
ent results. About profiles, we used three different profiles
generated randomly; further changing the profile could yield
different results. Treatments are replicated 100 times in 384
combinations to limit these threats.

VI. CONCLUSION

The presented framework defines a strategy to adaptively
allocate tests along with test selection algorithms to ex-
ploit knowledge about the input domain and expected usage.
Analytical and empirical comparison provide figures about
performance with respect to conventional operational testing
and among presented algorithms. Besides results on our case
studies, the AST framework generally means to pave the
ground for a better integration of survey sampling methods in
the theory of software reliability assessment, in order to better
exploit the available testing-related knowledge to devise more
efficient estimators.

9The Nemenyi test is used for post-hoc after a non-parametric ANOVA [49]

(a) Make Profile 1. Best Variance: RHC: 5.86E-07(b) Make Profile 2. Best Variance: SDE: 4.498E-
07

(c) Make Profile 3. Best Variance: RHC: 5.41E-07

(d) SIENA Profile 1. Best Variance: SDE: 5.00E-
07

(e) SIENA Profile 2. Best Variance: SDE: 2.60E-9(f) SIENA Profile 3. Best Variance: RHC: 7.21E-
09

(g) Grep Profile 1. Best Variance: SDE: 9.37E-07(h) Grep Profile 2. Best Variance: RHC: 1.62E-06(i) Grep Profile 3. Best Variance: RHC: 5,62E-06

(j) NanoXML Prof. 1. Best Variance: RHC::
7.67E-06

(k) NanoXML Prof. 2. Best Variance: SDE:
1.07E-07

(l) NanoXML Prof. 3. Best Variance: RHC: 5.14E-
07

Fig. 2: Sample variance of reliability estimate

ACKNOWLEDGMENT

This work has been supported by EU under the FP7 Marie
Curie Industry-Academia Partnerships and Pathways (IAPP)
projects ICEBERG (nr. 324356, www.iceberg-sqa.eu) and CE-
CRIS (nr. 324334, www.cecris-project.eu).

REFERENCES

[1] J. Lv, B.-B. Yin, and K.-Y. Cai. On the asymptotic behavior of adaptive
testing strategy for software reliability assessment. IEEE Trans. on
Software Engineering, 40(4):396–412, 2014.

[2] J. Lv, B-B. Yin, and K-Y. Cai. Estimating confidence interval of
software reliability with adaptive testing strategy. Journal of Systems
and Software, 97:192–206, 2014.

[3] J.D. Musa. Software reliability-engineered testing. Computer,
29(11):61–68, Nov 1996.

[4] H.D. Mills, M. Dyer, and R.C. Linger. Cleanroom software engineering.
IEEE Software, 4(55):19–24, 1987.

[5] K-Y. Cai, Y-C. Li, and K. Liu. Optimal and adaptive testing for
software reliability assessment. Information and Software Technology,
46(15):989–1000, Dec 2004.

[6] H. Pham. Software System Reliability. New York, NY, USA: Springer-
Verlag, 2006.

[7] R.W. Selby, V.R. Basili, and F.T. Baker. Cleanroom software develop-
ment: An empirical evaluation. IEEE Trans. on Software Engineering,
SE-13(9):1027–1037, Sept 1987.

[8] P.A. Currit, M. Dyer, and H.D. Mills. Certifying the reliability of
software. IEEE Trans. on Software Engineering, SE-12(1):3–11, 1986.

[9] J.H. Poore. A case study using cleanroom with box structures adl.
Technical report, Software Engineering Technology CDRL 1880, 1990.

[10] D. Fox. Adapting the Sample Size in Particle Filters Through KLD-
Sampling. Int. Journal of Robotics Research, 22:2003, 2003.

[11] Amrit L. Goel and Kazu Okumoto. Time-dependent error-detection rate
model for software reliability and other performance measures. IEEE
Trans. on Reliability, R-28(3):206–211, 1979.

[12] A. L. Goel. Software reliability models: Assumptions, limitations and
applicability. IEEE Trans. on Software Engineering, SE-11(12):1411–
1423, 1985.

[13] S.S. Gokhale and K.S. Trivedi. Log-logistic software reliability growth
model. In Proc. 3rd Int. High-Assurance Systems Engineering Sympo-
sium (HASE), pages 34–41, 1998.

[14] K. Ohishi, H. Okamura, and T. Dohi. Gompertz software reliability
model: Estimation algorithm and empirical validation. Journal of
Systems and Software, 82(3):535–543, 2009.

[15] V. Almering, M. Van Genuchten, G. Cloudt, and P.J.M. Sonnemans.
Using software reliability growth models in practice. IEEE Software,
24(6):82–88, 2007.

[16] R.H. Cobb and H.D. Mills. Engineering software under statistical quality
control. IEEE Software, 7(6):45–54, Nov 1990.

[17] R.C. Linger and H.D. Mills. A case study in cleanroom software
engineering: the ibm cobol structuring facility. In 12th Int. Computer
Software and Applications Conference, COMPSAC 88, pages 10–17, Oct
1988.

[18] K-Y. Cai, C-H. Jiang, H. Hu, and C-G. Bai. An experimental study of
adaptive testing for software reliability assessment. Journal of Systems
and Software, 81(8):1406–1429, 2008.

[19] K-Y. Cai. Optimal software testing and adaptive software testing in the
context of software cybernetics. Information and Software Technology,
44(14):841–855, 2002.

[20] A. Podgurski, W. Masri, Y. McCleese, F.G. Wolff, and C. Yang.
Estimation of software reliability by stratified sampling, 1999.

[21] F.b.N. Omri. Weighted statistical white-box testing with proportional-
optimal stratification. In Proc. 19th International Doctoral Symposium
on Components and Architecture, WCOP’14, pages 19–24. ACM, 2014.

[22] D. Cotroneo, R. Pietrantuono, and S. Russo. Combining Operational and
Debug Testing for Improving Reliability. IEEE Trans. on Reliability,
62(2):408–423, 2013.

[23] D. Cotroneo, R. Pietrantuono, and S. Russo. Relai testing: A technique
to assess and improve software reliability. IEEE Trans. on Software
Engineering, 42(5):452–475, 2016.

[24] P. Popov. Proc. 21st int. conference on computer safety, reliability and
security. SAFECOMP, pages 139–150. Springer, 2002.

[25] I. Gashi, P. Popov, and V. Stankovic. Uncertainty explicit assessment of
off-the-shelf software: A bayesian approach. Information and Software
Technology, 51(2):497–511, 2009.

[26] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj. A
bayesian approach to reliability prediction and assessment of component
based systems. In Software Reliability Engineering, 2001. ISSRE 2001.
Proceedings. 12th International Symposium on, pages 12–21, Nov 2001.

[27] L. Strigini and D. Wright. Bounds on survival probability given mean
probability of failure per demand; and the paradoxical advantages of
uncertainty. Reliability Engineering & System Safety, 128:66–83, 2014.

[28] L. Strigini and A. Povyakalo. Computer Safety, Reliability, and Security:
32nd International Conference, SAFECOMP 2013, Toulouse, France,
September 24-27, 2013. Proceedings, chapter Software Fault-Freeness
and Reliability Predictions, pages 106–117. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[29] D. Cotroneo, R. Pietrantuono, and S. Russo. A learning-based method
for combining testing techniques. In Proc. 35th Int. Conference on
Software Engineering (ICSE), pages 142–151. IEEE, 2013.

[30] M. Sridharan and A.S. Namin. Prioritizing mutation operators based on
importance sampling. In 21st Int. Symposium on Software Reliability
Engineering (ISSRE), pages 378–387, Nov 2010.

[31] Chin-Yu Huang and Jung-Hua Lo. Optimal resource allocation for cost
and reliability of modular software systems in the testing phase. Journal
of Systems and Software, 79(5):653–664, 2006.

[32] Chin-Yu Huang, Jung-Hua Lo, Sy-Yen Kuo, and M.R. Lyu. Optimal
allocation of testing resources for modular software systems. In
Software Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
Int. Symposium on, pages 129–138, 2002.

[33] R. Pietrantuono, S. Russo, and K.S. Trivedi. Software Reliability and
Testing Time Allocation: An Architecture-Based Approach. IEEE Trans.
on Software Engineering, 36(3):323–337, 2010.

[34] M.R. Lyu, S. Rangarajan, and A.P.A. Van Moorsel. Optimal allocation
of test resources for software reliability growth modeling in software
development. IEEE Trans. on Reliability, 51(2):336–347, 2002.

[35] G. Carrozza, R. Pietrantuono, and S. Russo. Dynamic test planning: a
study in an industrial context. International Journal on Software Tools
for Technology Transfer, 16(5):593–607, 2014.

[36] K-Y. Cai. Towards a conceptual framework of software run reliability
modeling. Information Sciences, 126(1–4):137–163, 2000.

[37] K.S. Trivedi. Probability and statistics with reliability, queuing and
computer science applications (2nd ed.). John Wiley and Sons Ltd.,
Chichester, UK, 2001.

[38] Sharon L. Lohr. Sampling Design and Analysis. Duxbury Press; 2
edition, 2009.

[39] C. Catal and B. Diri. A systematic review of software fault prediction
studies. Expert Systems with Applications, 36(4):7346–7354, 2009.

[40] J.N.K. Rao, H.O. Hartley, and W.G. Cochran. On a simple procedure of
unequal probability sampling without replacement. Journal of the Royal
Statistical Society. Series B (Methodological), 24(2):482–491, 1962.

[41] Arijit Chaudhuri. Survey Sampling Theory and Methods. Chapman &
Hall/CRC, Second Edition, Taylor & Francis Group, 2005.

[42] A. Chauduri and J. W. E. Vos. Unified theory and strategies of survey
sampling. North-Holland Publishers, Amsterdam., 1988.

[43] SIR: Software-artifact infrastructure repository.
[44] R. Natella, D. Cotroneo, J.A. Duraes, and H.S. Madeira. On fault

representativeness of software fault injection. IEEE Trans. on Software
Engineering, 39(1):80–96, 2013.

[45] J.A. Duraes and H.S. Madeira. Emulation of software faults: A field data
study and a practical approach. IEEE Trans. on Software Engineering,
32(11):849–867, 2006.

[46] Software fault emulation tool: http://wpage.unina.it/roberto.natella/tools.html.
[47] D. Cotroneo, R. Pietrantuono, and S. Russo. Testing techniques selection

based on odc fault types and software metrics. Journal of Systems and
Software, 86(6):1613–1637, 2013.

[48] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and G. Carrozza. Error
Detection Framework for Complex Software Systems. In Proc. 13th
European Workshop on Dependable Computing, EWDC ’11, pages 61–
66. ACM, 2011.

[49] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

