
Run-time Reliability Estimation
of Microservice Architectures

Roberto Pietrantuono, Stefano Russo, Antonio Guerriero
DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
{roberto.pietrantuono, stefano.russo}@unina.it, antonio.guerriero8@studenti.unina.it

Abstract—Microservices are gaining popularity as an archi-
tectural paradigm for service-oriented applications, especially
suited for highly dynamic contexts requiring loosely-coupled
independent services, frequent software releases, decentralized
governance and data management. Because of the high flexi-
bility and evolvability characterizing microservice architectures
(MSAs), it is difficult to estimate their reliability at design time,
as it changes continuously due to the services’ upgrades and/or
to the way applications are used by customers.

This paper presents a testing method for on-demand reliabil-
ity estimation of microservice applications in their operational
phase. The method allows to faithfully assess, upon request, the
reliability of a MSA-based application under a scarce testing
budget, at any time when it is in operation, and exploit field data
about microservice usage and failing/successful demands. A new
in-vivo testing algorithm is developed based on an adaptive web
sampling strategy, named Microservice Adaptive Reliability Testing
(MART). The method is evaluated by simulation, as well as by
experimentation on an example application based on the Netflix
Open Source Software MSA stack, with encouraging results in
terms of estimation accuracy and, especially, efficiency.

Index Terms—Reliability assessment, microservice architec-
ture, software testing, runtime testing, operational testing, re-
liability testing, adaptive testing, in-vivo testing, Netflix.

I. INTRODUCTION

Microservice architectures (MSAs) are a new way of ar-
chitecting applications as suites of independently deployable
services, running in their own processes and interacting via
lightweight mechanisms [1]. They are gaining momentum
especially for those contexts where a loose coupling between
software services, a prompt reaction to changes and a fast
software release cycle provide benefits in terms of delivered
value. Many organizations, like Netflix, Amazon, eBay, Twitter
have already evolved their business applications to MSA [2].

While on the design and development side research on MSA
is evolving at a rapid pace, little effort is being devoted to reli-
ability of applications developed by this paradigm. The actual
value of a microservice application, especially when deployed
on a large scale as is often the case, is greatly dependent on
the user-perceived reliability. Failure in satisfying reliability
requirements entails a large part of the business risk associated
with these applications, and the continuous awareness of run-
time reliability in the context where the application operates
is paramount for decision-makers.

Testing is a common means for reliability assessment. A
fundamental strategy is operational testing and its evolutions,
which exploit the operational profile to derive test cases
resembling the expected usage in operation [3]. However, in

a MSA scenario, assessing reliability at development time is
difficult and, in a sense, even pointless, since the software
and the operational profile change continuously due to the
frequent release, services’ upgrades, dynamic service interac-
tions, and/or to the way the applications are used by customers.

This paper proposes a run-time testing method to estimate
reliability of microservice applications during their operational
phase upon a reliability assessment request (e.g., periodi-
cally, at every new release of a microservice). The core of
the method is a new testing algorithm called Microservice
Adaptive Reliability Testing (MART). It is formulated as an
adaptive sampling scheme that navigates the input space of the
application to draw test cases with higher chance of improving
the reliability estimate. The algorithm is fed with updated
information about the microservice usage profile and about
failing/successful demands of the version of microservices
deployed at assessment time.

The advantages of the proposed testing method are both
in terms of accuracy and efficiency. Accuracy is enforced
by exploiting the field data gathered via monitoring, which
contribute to provide an estimate close to the actual reliability
at assessment time, and assured by the unbiasedness of the
MART estimator. Efficiency is favoured by the adaptivity
feature of the MART algorithm, which is conceived to identify
the most relevant test cases in few steps, providing a small-
variance estimate under a scarce testing budget – a feature
particularly important for a run-time testing strategy.

We use both simulation and experimentation to show the
benefits of the method. Simulation is on a set of 26 con-
figurations resembling possible different characteristics of the
input space. Experimentation is on an application based on the
Netflix Open Source Software platform. Comparison is against
operational testing. Results under several simulation and ex-
perimentation scenarios highlight a remarkable improvement
of both the estimation accuracy and efficiency. The rest of the
paper is organized as follows: Section II surveys the related
literature; Section III presents the method and the MART
algorithm; Sections IV and V report results of simulation and
experimentation, respectively; Section VI closes the paper.

II. RELATED WORK

A considerable number of papers about MSA are being
published since the last years. Besides architectural and de-
sign issues, researchers started targeting quality concerns and
how this new architectural style impacts them. Among the

quality attributes of interest, performance and maintainability
are the most investigated ones according to a recent study
[2]. Reliability is considered in few studies and always in
its broader acceptation related to dependability (i.e., fault
tolerance, robustness, resiliency, anomaly detection) – no
study deals with reliability meant as probability of failure-free
operation. Moreover, reliability-related considerations rarely
appear as the main proposal of a research, but more often as
a side concern in a design-related proposal.

Toffetti et al. propose an architecture to enable a resilient
self-management of microservices on the cloud, by monitoring
application and infrastructural properties to provide timely
reactions to failures [4]. A framework for software service
emergence in pervasive environments is proposed by Cardozo
[5], where the problem of evaluating reliability under changing
environment-dependent services is recognized but left to future
work. Kang et al. present the design, implementation, and
deployment of a microservice-based containerized OpenStack
instance [6]. The authors implement a recovery mechanism for
microservices to increase availability. Butzin et al. investigate
the adoption of MSA for Internet of Things applications,
proposing a fault management mechanism based on the circuit-
breaker pattern, which prevents a failed service from receiving
further requests until its recovery is complete, so as to avoid
cascading failures [7]. Similarly, the service discovery mecha-
nism proposed by Stubbs et al., based on the Serf project [8],
is equipped with monitoring and self-healing capabilities [9].
Failure detection ability provided by Serf is also exploited in
the design of a decentralized message bus for communication
between services [10]. Along the same line, Bak et al. [11]
include an anomaly detection microservice in their MSA
for location and context-based applications. Also testing is
still an underestimated issue in MSA and mostly focuses
on robustness/resiliency assessment. Heorhiadi et al. propose
a framework for testing the failure-handling capabilities of
microservices by emulating common failures observable at
network level. Fault injection is also used by Nagarajan et al. at
Groupon [12], to assess resiliency of MSA-based systems, and
by Meinke et al. [13] where a learning-based testing approach
evaluates the robustness of MSAs to injected faults.

While, to the best of our knowledge, there is no attempt for
a reliability assessment solution for MSAs, existing techniques
could be borrowed. Operational testing, where a testing profile
is derived in accordance with the expected operational profile,
is a reference technique for software reliability engineers [3].
The two main problems it has always suffered from are: i) the
difficulty in determining the operational profile at development
time [14]–[16], and ii) the scarce ability to deal with low-
occurrence failures (as it targets mainly high-occurrence ones).
These issues cause estimates with large variance (due to the
few failures exposed) and bias (due to inaccurate profiles).

As in many other scenarios, for MSAs the assumption of an
operational profile known at development time is easily vio-
lated. In addition, in MSA the changing of the software itself
needs to be considered too, as continuous service upgrades
occur. The method proposed here feeds the run-time testing

algorithm with the updates of the profile and of the services
failure probability as well, so as to assess the actual reliability
depending on current usage and deployed software.

Indeed, generating and executing tests at run-time further
stresses the second issue criticized to operational testing,
namely the high cost required to expose many failures besides
the high-occurrence ones. To this aim, evolutions of opera-
tional testing could be considered, which improve the fault
detection ability by a partition-based approach and through
adaptation. For instance, Cai et al. published several papers
on Adaptive Testing, in which the assignment of the next
test to a partition is based on the outcomes of previous
tests to reduce the estimation variance [17]–[19]. The pro-
file (assumed known) is defined on partitions, and selection
within partitions is done by simple random sampling with
replacement (SRSWR). Adaptiveness is also exploited in our
recent work, where we use importance sampling to allocate
tests toward more failure-prone partitions [20]–[22]. Adaptive
random testing (ART) [23] exploits adaptiveness to evenly
distribute the next tests across the input domain, but it aims
at increasing the number of exposed failures rather than at
assessing reliability. The sampling procedure is another key to
improve the efficiency while preserving unbiasedness. In [24]
and [25], the authors adopt stratified sampling and/or sampling
without replacement (SRSWOR). In our recent work, we
introduce a family of testing algorithms that enable the usage
of more efficient sampling schemes than SRSWR/SRSWOR
[26]. The proposed method goes beyond these: it includes
a new sampling-based testing algorithm, MART , conceived
to quickly detect clusters of faults with very scarce testing
budget – hence, suitable for run-time testing – and it considers
the updated profile and services version at assessment time.
Estimation efficiency (i.e., small-variance) and accuracy (w.r.t.
the real reliability at assessment time) are both pursued thanks
to these features.

III. THE RELIABILITY ASSESSMENT METHOD

A. Assumptions
The following assumptions, typical of reliability assessment

testing studies (e.g., [17]–[20]), are made:
1) Consider a demand as an invocation of a microservice’s

method: a demand leads to failure or success; we are
able to determine when it is successful or not (perfect
oracle).

2) The code is not modified during the testing activity; code
can be modified (and detected faults can be removed)
after the assessment.

3) A test case is a demand executed during testing: test
cases are drawn independently from a demand space.

4) The demand space D of a microservice can be parti-
tioned into a set of m subdomains: {D1, D2, . . . , Dm}.
The number of subdomains and the partitioning criterion
are decided by the tester. In general, there are several
ways in which the test suite can be partitioned (e.g.,
based on functional, structural, or profile criteria), pro-
vided that test cases in a partition have some properties

in common; these are usually dependent on the infor-
mation available to test designers and on the objective.
The choice does not affect the proposed strategy, but of
course different results can be obtained according to it.

5) The operational profile P can be described as a probabil-
ity distribution over the demand spaces of all microser-
vices. Differently from most of literature on reliability
testing, no assumption is made on the upfront knowledge
of the profile, but we assume the ability to monitor
the invocations to each microservice at run-time: the
dynamic nature of the assessment process makes use of
the updated information coming from the field in order
to provide an estimate in line with the observed usage
profile and failure probability of services.

Assumptions 3 and 5 are typically met in a MSA, since
Microservces are, by their nature, implemented as loosely-
coupled units and the monitoring/feedback mechanism is a
common facility for what said in Section II.

For each subdomain Di of a microservice, we define
the probability of selecting a failing demand from Di as:
xi = fipi, where pi is the probability of selecting an input
from Di, and fi is the probability that an input selected
from Di is a failing demand. The assessment method aims
at unbiasedly and efficiently estimating the reliability R upon
a request during the operational phase, with R defined as:

R = 1−
m∑
i=1

fipi (1)

B. Overview of the method

Figure 1 outlines the phases of the assessment process.
The assessment includes “development-time” one-off activities
aimed at mapping the demand space to a mathematical struc-
ture used to derive test cases, and then “run-time” activities to
actually carry out the reliability estimation upon request, by
test cases generation and execution. The assessment exploits
the feedback coming from the field (thanks to monitoring
facilities) in order to estimate reliability in line with the current
usage probability, that is pi, and the probability of failure on
demand (PFD), that is fi, of microservices under test. In the
following, each step is detailed.

C. Partitioning and Initialization

As first step, the demand space D of each microservice is
partitioned in a set of subdomains Di. Partitioning is applied
to the arguments of each microservices’ method, whose values
are grouped in sets of input classes. Any partitioning criterion
applies, inasmuch it reflects the tester’s belief about the
failure probability of such sets of inputs. Consider, for in-
stance, the method Login(String username, String
password): the input username can be associated with
5 input classes according to the string length (in-range, out
of range) and content (only alphanumeric or ASCII, plus
the empty string); password can be associated with 7
input classes according to the length and content (as for
username), but also to the satisfaction of application-specific

Fig. 1: The assessment steps

requirements (e.g., one upper case letter, one special character,
etc., broadly split in the classes: requirements satisfied, not
satisfied). As a result, a set of 35 test frames are derived, meant
as the cartesian product of all input classes. In our formulation,
test frames correspond to the subdomains Di. For each pair of
test frames < i, j > referring to a same method of a microser-
vice, a distance d is defined as the number of differing input
classes. For instance, the distance between Login(username1,
password3) and Login(username2, password3) is d = 1.
The distance represents the potential difference in the de-
mands; the greater it is, the bigger the chance of executing
different control flow paths within the method’s code.

Each test frame i of the method h of microservice m
is associated with the current estimate of the two values
introduced in Section III-A: a) the probability that a demand is
done selecting an input from that test frame (p̂i,h,m ∈ [0, 1],
such that

∑
i,h,m p̂i,h,m = 1), which is the estimate of the

usage probability of subdomain Di; b) the probability that
a demand from that test frame fails (f̂i,h,m ∈ [0, 1), which
is the estimate of the PFD for subdomain Di. We refer
to p̂i,h,m and f̂i,h,m simply as p̂i and f̂i when there is no
ambiguity. At the beginning, ignorance of the profile and of the
expected failure probabilities can be dealt with by assigning
the same probability to all p̂i (summing up to 1) and the
same probability f̂i to all test frames in order to start up
the algorithm (Probabilities initialization in Fig. 1).1 Then,
the estimate will be refined at run time as more information
becomes available from the feedback cycle (run-time phase in
Figure 1). Of course, any preliminary estimate of pi and fi of
test frames (or, at coarser grain, of methods or microservices)
would expedite the assessment. In real cases, rarely a tester
is in a complete ignorance about expected usage or failure
proneness of microservices at release time; some information

1Alternatively, p̂i and f̂i can be assigned random values each drawn from
a uniform distribution in [0,1] and, in the case of p̂i, normalized to sum to 1.

is usually available either as quantitative evidence or at least
as tester’s belief. The partitioning criterion is itself an example
of belief of tester, who judges some classes as more prone to
failure while others are deemed correct. It is shown that an
even partial knowledge distinguishing the more failure-prone
partitions improves the assessment w.r.t. the uniform case [26].

D. Monitoring and probabilities update

The run-time assessment (Run-time activities in Figure 1)
requires the ability of monitoring and updating the usage
profile and the PFD for each test frame. Common monitoring
tools can be used to gather data, such as Wireshark, Amazon
Cloudwatch, Nagios. We customize a tool developed by our
research group, called MetroFunnel2, tailored for microservice
applications. In general, monitoring should be able to gather
(at least) the number of request/response to each microservice
method and the outcome (correct/failure). Note that a rough
reliability estimate could be derived by analyzing the gathered
data, but, due to the passive nature of monitoring, the demand
space might be not explored adequately (e.g., never exercising
failing demands, or never using a test frame), yielding large-
variance estimates. Our aim is to assure a small-variance (i.e.,
high-confidence) estimate by actively spotting those demands
more informative about the current reliability.

The update of monitored data is done periodically (each
W demands) and upon a reliability assessment request. Each
p̂i value is updated by using a sliding window of size W
representing the maximum number of demands (i.e., the length
of the history taken into account). The update rule is:
p̂ui = p̂u−1

i · [H + (1−H) · (1− R
W)] + ôui · (1−H) · (R

W)

where:
• p̂u−1

i is the occurrence probability of the i-th test frame
in the previous update request;

• ôui : is the occurrence probability at the current step
estimated as the ratio between demands targeted at the
i-th test frame and the total number of demands;

• H: is a value between 0 and 1, representing the minimum
percentage of history kept in the update operations (in our
case it is set to 50%);

• R: is the total number of executed demands (at most W).
The update of the PFD follows exactly the same rule, with
f̂i instead of p̂i and ôi referring to the ratio between failed
over executed demands with inputs belonging to the i-th test
frame. The rule is to guarantee that possible changes of the
operational profile (e.g., due to new users) and of the PFD
(e.g., due to new releases of microservices) are detected in
few steps, unlike the case of all the history being considered.
The window W needs to be tuned depending on the context.
Other update approaches can be used, like the black-box ones,
where adjustments to the frequentist or Bayesian estimators are
done at a profile changes [27], [28], or the white-box approach
where the control flow transfer among components is captured
[29]. However, investigating the best update strategy is outside
the scope of this work and matter of future work.

2MetroFunnel is available at: https://github.com/iraffaele/MetroFunnel.

E. MART algorithm

1) Network structure: In MART , the test case space is
represented as a network where each node is a test frame
and links between nodes represent a dependency between the
tester’s beliefs about the failure probability of test frames of
a same method. Since demands drawn from two test frames
of a same method are likely to execute some common code,
the failure probability assigned to a test frame affects the
belief about the failure probability of another test frame of
the same method proportionally to the distance between the
two. Given the failure probability P (i)=f̂i and P (j)=f̂j of
two test frames, the link is intended to capture the joint belief
that a test case from both frames will fail. To this aim, each
link between a pair of nodes < i, j > is associated with a
weight wi,j defined as the joint probability of failure of i and j:
P (i∩j) = P (i|j) ·P (j). The conditional probability of failure
P (i|j) is the probability for a test frame i to fail conditioned on
the fact that a failure is observed in the j-th test frame. P (i|j)
depends on the distance in an inversely proportional way: the
smaller the distance, the more similar the two frames, and the
bigger the conditional probability of failure. We represent this
relation by: F (d) = 1

d , hence: P (i|j) = P (i) 1
d with d > 0

(as at least one input class differs between two test frames),
but other distance functions can be conceived. Consequently,
weights are defined as: wi,j = f̂j f̂i

1
d , and, since they are based

on failure probabilities, they are also updated at run time by
monitoring data.

2) Test generation algorithm: The MART algorithm for test
cases generation is encoded as an adaptive sampling design on
the defined network structure, in which the generation of the
next test case depends on the outcome of the previous ones.
Given a testing budget in terms of number of test cases to
run, the goal is to derive tests contributing more to an efficient
(i.e., low variance) unbiased estimate. Sampling adaptivity is
a feature that allows spotting rare and clustered units in a
population so as to improve the efficiency of the estimation
[30] – this makes such a type of sampling suitable for testing
problems, especially in late development and/or operational
phase, since failing demands are relatively rare with respect
to all the demands space and are clustered. MART generates
one test case at each step. In a given step, the algorithm
aims at selecting the test frame with higher chance of having
failing demands. The exploited design is the adaptive web
sampling defined by Thompson for survey sampling problems
[31]. Within the selected test frame, a test cases is generated
by drawing a demand according to a uniform distribution –
namely, each demand with equal probability of being selected.

Specifically, at the k-th step, MART combines two tech-
niques (i.e., two samplers): a weight-based sampler and a sim-
ple random sampler to select the next test frame. The weight-
based sampler (WBS) follows the links between frames, in
order to identify possible clusters of failing demands. This
depth exploration, useful when a potential “cluster” of failing
demands is found, is balanced with the simple random sampler
(SRS) for a breadth exploration of the test frame space, useful

to escape from unproductive local searches. At each step k, the
next test frame is selected by a mixture distribution according
to the following equation:

qk,i = r
wak,i

wak+

+ (1− r) 1

N − nsk
(2)

where:
• qk,i is the probability to select test frame i;
• N : is the total number of test frames;
• sk is the current sample, namely the set of all selected

test frames up to step k;
• nsk is the size of the current sample sk;
• ak is the active set, which is a subset of sk along with

the information on the outgoing links;
• ak,i is the set of the outgoing links from test frame i to

test frames not in the current sample sk;
• wak,j

=
∑

i∈ak
wi,j is the total of weights of links

outgoings from the active set;
• wak+

=
∑

i∈ak,j∈s̄k wi,j ;
• r between 0 and 1 determines the probability to use the

weight-based sampler or the random sampler.
The selection of the first test frame is done by SRS, and the

active set is updated. Then, at each iteration, if there are no
outgoing links from the active set (i.e., no link with a weight
greater than 0), the SRS is preferred, so as to explore other
regions of the test frame space. Otherwise, the selection of the
sampler is dependent on r. When WBS is used, the selection
is done proportionally to the weights – first term of Eq. 2.
Such a disproportional selection is then counterbalanced in
the estimator preserving unbiasedness. When SRS is used, the
not-yet-selected test frames have equal selection probability3

– second term of Eq. 2. The selected test frame is added to
the active set. All is repeated until the testing budget is over.

3) Dynamic update of the sampler selection: Besides the
basic version of MART , a further variant is implemented where
the choice of r is made adaptive itself. We denote this variant
MARTD opposed to the previous one denoted as MARTS

(D and S standing for dynamic and static, respectively). In
MARTD an initial value of r = r0 is specified, which, in
a sense, encodes the initial trust that the tester has in the
WBS compared to SRS. r0 ≥ 0.5 to assure r will always
be in [0, 1]. The approach in Fig. 2 is used for the dynamic
update of r. The update resembles the mechanism of a serial
input-parallel output shift register. A binary cell is 1 if the
corresponding scheme is selected, 0 otherwise. Each binary
cell is associated with a decreasing percentage (starting from
cell 1) of the (1 − r0) quantity, that is equally spread across
the cells and depends on the size of the register (namely, if i is
the index of the cell and s the number of cells, the percentages
v[i] are: v[i] = i · 100∑s

i=1
i
). For instance, for a shift register

of size 4, the assignment is: 40% for the first cell, then 30%,
20% and 10% for the second, third and fourth ones. The initial

3The scheme can be either with- or without-replacement, with few changes
in the estimator [31]; Eq. 2 is the without-replacement version, the with-
replacement variant replaces 1

N−nsk
with 1

N
.

Fig. 2: MARTD: update of r

r0 value is added to the quantity resulting from the sum of
products between the first register and v[i] and subtracted the
sum of products between the second register and v[i] (e.g., in
the Figure, r = r0 +(1−r0)(0.4+0.2)− (1−r0)(0.3+0.1)).
At each step k of the algorithm, the register corresponding to
the chosen scheme (WBS or SRS) is shifted by one position,
by writing a ’1’ or ’0’ if the sampler revealed a failing test
frame, and r is updated as described.

F. Estimation

After testing, the estimation is carried out. Let us consider
the quantity to estimate: R = 1 −

∑
i xi = 1 −

∑
i pifi,

where xi is the probability that a test case from i is selected
and fails. During testing, results in terms of failed/correct
test cases are collected. Let us denote with yi,t the observed
outcome of a test case t taken from test frame i, yi,t=0/1. In
the general case, in which some failure data for test frame i
is available from the field, the estimate of fi is the updated
ratio of the number of failing over executed demands with

inputs taken from test frame i: f̂
′

i =
f̂i·ni+

∑mi

t=0
yi,t

ni+mi
, where

ni is the number of demands with an input from test frame i
observed during operation and mi is the number of demands
taken from test frame i during testing (i.e., test cases). When
no data is observed for a test frame during operation, the

estimate becomes: f̂
′

i =
∑mi

t=0
yi,t

mi
. Additionally, in a without-

replacement scenario, which can be preferred under a scarce
budget, mi = 1 and f̂

′

i = 0/1. The Thompson estimator is
tailored for our assessment problem, whose idea is to take the
average of the (SRS or WBS) estimators obtained at each step.
The total failure probability Φ is unbiasedly estimated as:

Φ =
1

n
(Nf̂

′

i +

n∑
i=2

zi); (3)

where:

Nf̂
′

i is the total estimator at the first step k = 0 (the first
observation taken by the SRS);

zi is the total estimator obtained at step k = i, and

zi =
∑

j∈sk x̂j + x̂i

qk,i
=
∑

j∈sk p̂j f̂
′

j +
p̂j f̂

′
j

qk,i
;

n is the number of executed test cases;
N is the total number of test frames.

IV. SIMULATION

Simulation and experimentation are used to assess perfor-
mance of MART against operational testing (OT). Partition-
based operational testing is used, where partitions (in our case,
test frames) are selected according to an operational profile,
and test cases are randomly taken from the equally-probable
inputs of the selected partition [32]. For simulation, a uniform
distribution is assumed as operational profile, since the interest
is to evaluate the approaches with respect to characteristics of
the demand space and problem size regardless of a specific
profile; for experimentation, specific profiles are defined.

A. Simulation scenarios

MARTS and MARTD and OT are tested in 26 simulated
scenarios obtained by varying the following characteristics
(spread and amount of failures) and problem size:

• Type of partitioning. Partitioning is about separating cor-
rect from failing test cases into test frames, so as all test
cases of a frame have the same outcome. In a perfect case,
a test frame believed to be failing (correct) contains only
failing (correct) test cases – hence its failure probability
(as proportion of failing test cases) is 1 (0). We refer to
this configuration as perfect partitioning. As we depart
from this, the failure probability of a test frame believed
to be failing is smaller, meaning that partitioning is not
perfect. We consider two configurations representing a
non-perfect partitioning, by assigning a failure probability
of 0.9 (0.1) and of 0.75 (0.25) to failing (correct) test
frames. Bigger errors would go toward a uniform belief
about failing/correct test frame (i.e., assigning 0.5 and 0.5
to failing and correct test frames), i.e., there would not
be a discriminative criterion to perform partitioning and
random testing is expected to be better – hence, we treat
this as a separate configuration.

• Failing test frame proportion. This is the proportion of the
failing test frames over the total, for which we consider
two values, 0.1 and 0.2.

• Clustered population. For each of the above 3x2=6 con-
figurations, we further consider the case of test frames
grouped in clusters. These are obtained by considering
the number of failing test frames F in that configuration
and determining the cluster size as S = C · F , with the
clustering factor C =10% or 20% depending on the failing
test frame proportion. For the resulting F/S clusters;
a number of F/S test frames are randomly chosen as
centroids, and, for each of them, S test frames with the
minimum distance d are selected as cluster’s member.

• Total number of test frames, N . Two order of magnitudes
are considered: N = 100, N = 1, 000.

These combinations generate 24 scenarios. Besides, the men-
tioned uniform case (0.5/0.5) is added (under both N = 100
and N = 1000), getting to 26 scenarios. The assessment is
made at 9 checkpoints: n1 = 0.1N,n2 = 0.2N, . . . 0.9N .

Prior to the comparison, we performed a sensitivity analysis

on MART parameters.4 Specifically, MARTS has been run by
varying the value of r as: r = 0.2, r = 0.4, r = 0.6, r = 0.8.
The MARTD variant has been run by varying the value of r0

as: r = 0.5, r = 0.6, r = 0.7, r = 0.8, r = 0.9 and 3 size
values of the register: size = 3, size = 4, size = 5 under
all configurations. The best values, in terms of mean squared
error (MSE) and variance, turned out to be: r = 0.8, r0 = 0.8
and size = 4. The results that follow refer to MARTS and
MARTD parametrized with these values.

B. Evaluation criteria

Accuracy and efficiency are considered as evaluation criteria.
A simulation scenario j is repeated 100 times; r denotes one
of such repetitions. At the end of each repetition, the estimate
R̂r,j is computed by the technique under assessment as well
as the true reliability Rj – for simulation, we know in advance
which input t is failing. For each scenario j, we compute the
sample mean (M), sample variance (S) and MSE:

M(R̂j) =
1

100

∑100

r=1
R̂r.j

MSE(R̂j) =
1

100

∑100

r=1
(R̂r.j −Rj))

2

S(R̂j) =
1

100−1

∑100

r=1
(R̂r.j −M(R̂j))

2

(4)

Comparison of estimation accuracy is done by looking at the
MSE. Comparison of efficiency is done by the sample vari-
ance S. The number of runs is: 3 techniques x 26 simulation
scenarios x 9 checkpoints x 100 repetitions = 70,200 runs.

C. Results

Figures 3-6 show results in several representative configura-
tions5. Figure 3 reports the configuration: <type of partition-
ing, failing test frames proportion, number of test frames> =
< 1/0, 0.1, 1000 >. In this ideal case of a perfect partitioning,
results are clearly in favour of MART for both evaluation
criteria, with MARTD performing better than the static case.
OT gets close to MART with the increase of the number of
tests, as it approaches to N . Figure 4 shows that in what can be
considered a good partitioning (0.9/0.1), MARTS is the best
one and outperforms even MARTD. The case of 0.75/0.25
(Figure 5) shows that as partitioning becomes worse and worse
the performances of both MART algorithms decrease in terms
of MSE but remains still remarkably superior in terms of
variance. In clustered population, performance of MART is
slightly further better with respect to the corresponding non-
clustered cases. Finally, in the extreme case (0.5/0.5), the
MSE of OT is better up to the first 30% of test cases, but it
is still worse in terms of variance (Figure 6). Summarizing:
• In the case of uniform distribution of failing inputs across

the input space (and with no clusters), the random testing
approach, in which sampling resembles the characteristics
of the population, could be preferred in terms of MSE,

4Detailed results of sensitivity analysis are not reported for lack of space;
they are made available at https://github.com/AntonioGuerriero/MART.

5The results for all configurations are available at
https://github.com/AntonioGuerriero/MART.

Fig. 3: Simulation - perfect partitioning, failing test cases proportion 10%, 1,000 test frames: MSE and variance

Fig. 4: Simulation - type of partitioning 0.9/0.1, failing test cases proportion 10%, 100 test frames: MSE and variance

Fig. 5: Simulation - type of partitioning 0.75/0.25, failing test cases proportion 20%, 100 test frames: MSE and variance

Fig. 6: Simulation - random population: MSE and variance

but not in terms of variance; in all the other cases,
wherein partitioning has some chance of putting together
common test cases from the failing behaviour point of
view, MART show considerable advantages.

• MART performs much better with low number of test
cases; this is due to the adaptivity feature, which allows
picking up and exploring entire clusters of failing inputs
soon. This is confirmed by the number of failure points
found, which was always bigger in all the 26 tested
configurations than the ones found by OT.

• MARTD is generally better than the static counterpart,
but the advantage of MARTS in some cases is worth to
be noted considering its simpler formulation.

• Results are unvaried under N = 100 and N = 1, 000.
The trends are approximately the same.

V. EXPERIMENTATION

MART is experimented on a Netflix-based application exam-
ple, named Pet Clinic Microservices System, for the manage-
ment of a veterinary clinic. It is built by using the Spring Cloud
Netflix technology stack, which provides Spring Boot apps
with interoperability with Netflix Open Source Software (OSS)
components, such as the Eureka service and the Zuul service.
The application consists of five services: the API gateway
application (built on Zuul), the discovery server (Eureka),
the config server application to manage external properties
for applications across environments, the customers service
application, the vets service application and visits service
application, which are services for customers, vets and visits
management, respectively. The application has 13 methods and
we manually derived 262 test frames.

A. Experiments

The experiments aim at evaluating MART in assessing
reliability in operation. Four experiments are designed. The
goal of experiments 1, 2 and 3 is to evaluate performance
with three different initial operational profile estimates (i.e.,
a tester’s estimate before operation). At the beginning of the
experiment (before any operational data is still observed), we
run both MART and OT and compare their estimate. Then,
during the operational phase, MART , unlike OT , i) collects
field data by monitoring, ii) updates the profiles, iii) runs
the testing algorithm and iv) computes a new estimate. We
evaluate the updated estimates at 3 subsequent steps during
the operational phase, representing, ideally, a request for a new
reliability assessment. Experiment 4 evaluates the method in
presence of a change of the true operational profile, in order to
assess performance under a variable profile scenario (opposed
to the stable profile of experiments 1, 2 and 3). In this case,
there are 3 update steps before the profile change, and 3 further
steps after the profile change, i.e., under a new profile.

B. Initial probabilities assignment

Test frames could be assigned an initial failure probability
and occurrence probability by assuming ignorance as men-
tioned in Section III-C, like we did in the simulation case.

However, to evaluate the approach also in another setting,
probabilities are hereafter assigned by assuming some knowl-
edge of the tester about the test frames. To this aim, we
preliminarily analyzed test frames to provide a realistic testing-
time characterization. We ran 30 (uniform) random test cases
for each test frame. The proportion of failures was used as
an “equivalent” prior knowledge about failure probability, as
suggested by the seminal work by Voas et al. [28], and to
support distinguishing more or less failure-prone test frames.
Based on them, we split test frames in three categories, and
assigned an initial failure probability to each. Categories are:
• First category: 25 test frames that exhibited no failure.

The initial failure probability to these test frames is set
to: f̂i = ε = 0.01. The assignment of ε > 0 represents the
uncertainty due to the limited number of observations.

• Second category: 46 test frames, which failed at any of
the 30 executions. The initial failure probability for these
test frames is set to: f̂i = 1− ε = 0.99.

• Third category: 191 test frames, the rest of test frames,
which failed sporadically. Based on observed proportion
of failures, approximately 1 failure every 10 requests, the
initial probability is set to: f̂i = 0.1.

As for operational profiles, for the experimental purpose
we need to consider both a true profile and an estimated
profile. The true profile is used during the operational phase to
submit demands to microservices, simulates the run-time usage
of microservices. Based on the inspection of microservices’
methods (e.g., looking at the size of test frames in terms of
number of inputs, at their failure probability assessed as just
mentioned, and at the functionality they support within the
system), the following probabilities are set for test frames
of the three categories: pi = 0.8/|F1|, pi = 0.05/|F2|, pi =
0.15/|F3| (where |F1| = 26, |F2| = 46, |F3| = 191 test
frames), for each test frame of the first, second and third
category, respectively. Clearly, while any other true profile can
be assumed, we are interested in assessing how the difference
between an estimated profile and a true one impacts the
assessment. Hence, three estimated profiles are considered,
deviating, respectively, by 10%, 50% and 90% from the true
profile. The “deviation” is measured as the sum of absolute
differences of the true vs estimated occurrence probability of
each test frame: e =

∑|F |
i=0

∣∣pEi − pTi ∣∣ where: |F | is the num-
ber test frames; pEi is the estimated occurrence probability of a
test frame; pTi is the true occurrence probability. Experiment
1, 2 and 3 use these three profiles. Experiment 4 needs to
use two true profiles, since it aims at evaluating the method in
presence of a true profile variation. A second profile is defined
as: pi = 0.55/|F1|, pi = 0.05/|F2|, pi = 0.35/|F3| for test frames
of the first, second and third category, respectively. As initial
estimated profile for this experiment, the average one is taken,
hence the one deviating by 50% from the true one.

C. Experimental scenarios

Each experiment is repeated under a different number n
of executed test cases. This is set as percentage of the 262
test frames, assuming to be in a situation with scarce testing

budget (i.e., less test cases than test frames). Specifically,
we consider two values for a very scarce budget, which is
particularly interesting in a MSA scenario, with n being 20%
and 40% of test frames, and one value between 60% and 80%
to assess performance when some more tests are available,
namely: n = 70% of test frames. Considering 3 values for
n and 4 experiments, the experimental scenarios are 12. In
the stable profile case (experiment 1, 2 and 3), MART is run
during the operational phase 3 times (3 update steps), while
it is run 6 times in experiment 4 – hence 45 times in total;
operational testing is run 12 times, at the beginning of each
scenario, since no run-time update is foreseen by OT.

D. Evaluation criteria

MSE and variance are used again, as for simulation.
However, an experimental scenario j is repeated 30 times for
each technique instead of 100, being experiments more time-
consuming. The true reliability Rj is computed by preliminary
running T = 10, 000 test cases under the true profile and using
Rj = 1− F

T , with F being the number of observed failures.

E. Testbed

The code to run the experiments is in a testing service
interacting with the application’s microservices. It includes:
• Workload generator: this module executes demands ac-

cording to a given true profile, emulating a client of the
application, with the possibility to change the profile and
the failure probability (i.e., emulating an upgrade of a
service) after a number of requests (5,000 in our case).

• True reliability estimator: this module runs T test cases
according to a given true profile, and computes the
frequentist reliability estimate (T=10, 000 in our case).

• Monitor & parser: these modules are implemented by
customizing a tool for microservice monitoring developed
in our group, called Metro Funnel, and adding a log
parser to extract the number of (correct/failing) demands
to each microservice used for the probabilities update.

• Tester: this module implements the MART algorithm; it
runs test cases according to what defined above, and
provides the estimate of the MSE and variance.

• Operational tester: the module implements the OT algo-
rithm, runs tests and estimates the MSE and variance.

F. Results

Fig. 7-9 report the results of experiments 1, 2 and 3. The
values for MART are reported for step 1 to 3 during the
operational phase representing the three subsequent assess-
ment requests occurring every 5,000 demands. OT is a static
approach, hence it is run only at step 1, before the operational
phase starts, and then the same value is reported at step 2 and
3 for easing the visual comparison. The results show that:
• In all the cases, MART’s estimates have a smaller MSE

and a much smaller variance than OT ;
• MART is better since the beginning, regardless of the

dynamic update of failure and usage probabilities, as the
algorithm based on the adaptive web sampling scheme is
able to spot clusters of failures more rapidly than OT;

• The update step based on monitoring makes MART
considerably improve its performance, as profile and PFD
estimates converge to the true ones and exploited by the
algorithm. This progressive improvement is more evident
for the MSE; variances are small since step 1.

• Looking at the difference between the 3 profiles, it turns
out that with profile 1 (10% of deviation), Figure 7, the
MSE decreases suddenly at step 2; with profile 2 (50%
of deviation), there is a smoother decrease and the MSE
is slightly bigger than the profile 1 case; with profile 3
(90% of deviation), MSE is expectedly bigger at step
1, but suddenly decreases at step 2. This means that,
even under a profile much different from the true one, the
adaptivity allows correcting the estimate, of course with
different speed of convergence toward the true reliability.

• The difference between the percentage of executed tests
(20%, 40% and 70%), reported in each graph, is of
interest too: what can be observed is that the MSE and
variance obtained with only n = 20% is comparable,
or even better in several cases, with those obtained with
40% and 70%. At step 2, and especially at step 3, the
20% case has no difference with 40% and 70% in terms
of MSE, and is even better in terms of variance.

Figure 10 reports the results of experiment 4, i.e., under a
variable profile scenario. After step 3, the profile changes –
namely, the demands are issued in accordance to the second
true profile and the assessment is computed again by both
approaches at step 4. The decrease of MSE of MART at step
5 highlights how the proposed method suddenly detects the
change of the profile and “correct” the estimate according to
the new profile; at step 6, the results are like in the steps 1 to
3. Results on variance are not affected by the changed profile:
the MART’s estimate is stable and much more consistent over
the 30 repetitions compared to OT. The superiority of MART
is statistically confirmed by the Wilcoxon test for both MSE
and variance, in both cases yielding a p-value< .0001.

VI. CONCLUSION

This paper presented a run-time testing method for on-
demand assessment of reliability in MSA. Results suggest
that both the run-time adaptivity to the real observed profile
and failing behaviour and the testing-time adaptivity imple-
mented by the new MART algorithm (allowing to spot failures
with few tests while preserving the estimate unbiasedness)
are good starting points to further elaborate in the future.
Improvements can be achieved by investigating what other
information can be useful to expedite the assessment (e.g.,
about service interactions), by exploring other approaches for
the information update (e.g., Bayesian updates), by exploring
different partitioning criteria and/or by integrating optimal par-
tition allocation strategies [33]–[35]. Finally, further extensive
experiments are planned to improve generalization of results.

ACKNOWLEDGMENT

This work has been supported by the PRIN 2015 research
project “GAUSS” (2015KWREMX 002) funded by MIUR.

Fig. 7: Stable profile, experiment 1 - 10% deviation of estimated vs true profile: MSE and variance

Fig. 8: Stable profile, experiment 2 - 50% deviation of estimated vs true profile: MSE and variance

Fig. 9: Stable profile, experiment 3 - 90% deviation of estimated vs true profile: MSE and variance

Fig. 10: Experiment 4, variable profile. MSE and variance

REFERENCES

[1] J. Lewis and M. Fowler. Microservices - a defi-
nition of this new architectural term. Available at:
http://martinfowler.com/articles/microservices.html, 2014.

[2] P. Di Francesco, I. Malavolta, and P. Lago. Research on architecting
microservices: trends, focus, and potential for industrial adoption. In
IEEE International Conference on Software Architecture, pages 21–30,
2017.

[3] M. R. Lyu, editor. Handbook of software reliability engineering.
McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

[4] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds. An
architecture for self-managing microservices. In International Workshop
on Automated Incident Management in Cloud, AIMC ’15, pages 19–24,
2015.

[5] N. Cardozo. Emergent software services. In ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2016, pages 15–28, 2016.

[6] H. Kang, M. Le, and S. Tao. Container and microservice driven design
for cloud infrastructure devops. In IEEE International Conference on
Cloud Engineering (IC2E), pages 202–211, 2016.

[7] B. Butzin, F. Golatowski, and D. Timmermann. Microservices approach
for the internet of things. In 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–6, 2016.

[8] HashiCorp. The Serf tool - Decentralized Cluster Membership, Failure
Detection, and Orchestration. http://www.serfdom.io (last access: 2018-
05-12).

[9] J. Stubbs, W. Moreira, and R. Dooley. Distributed systems of microser-
vices using Docker and Serfnode. In 7th International Workshop on
Science Gateways (IWSG), pages 34–39, 2015.

[10] P. Kookarinrat and Y. Temtanapat. Design and implementation of a
decentralized message bus for microservices. In 13th International Joint
Conference on Computer Science and Software Engineering (JCSSE),
pages 1–6, 2016.

[11] P. Bak, R. Melamed, D. Moshkovich, Y. Nardi, H. Ship, and A. Yaeli.
Location and context-based microservices for mobile and internet of
things workloads. In IEEE International Conference on Mobile Services
(MS), pages 1–8, 2015.

[12] A. Nagarajan and A. Vaddadi. Automated fault-tolerance testing. In
IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 275–276, 2016.

[13] K. Meinke and P. Nycander. Learning-based testing of distributed mi-
croservice architectures: Correctness and fault injection. In D. Bianculli,
R. Calinescu, and B. Rumpe, editors, Software Engineering and Formal
Methods, pages 3–10, 2015.

[14] B. Beizer. Cleanroom process model: a critical examination. IEEE
Software, 14(2):14–16, 1997.

[15] B. Littlewood and L. Strigini. Validation of ultrahigh dependability for
software-based systems. Communications of the ACM, 36(11):69–80,
1993.

[16] D. Cotroneo, R. Pietrantuono, and S. Russo. Combining Operational
and Debug Testing for Improving Reliability. IEEE Transactions on
Reliability, 62(2):408–423, 2013.

[17] K-Y. Cai, Y-C. Li, and K. Liu. Optimal and adaptive testing for
software reliability assessment. Information and Software Technology,
46(15):989–1000, 2004.

[18] J. Lv, B.-B. Yin, and K.-Y. Cai. On the asymptotic behavior of adaptive
testing strategy for software reliability assessment. IEEE Transactions
on Software Engineering, 40(4):396–412, 2014.

[19] J. Lv, B-B. Yin, and K-Y. Cai. Estimating confidence interval of
software reliability with adaptive testing strategy. Journal of Systems
and Software, 97:192–206, 2014.

[20] D. Cotroneo, R. Pietrantuono, and S. Russo. RELAI Testing: A Tech-
nique to Assess and Improve Software Reliability. IEEE Transactions
on Software Engineering, 42(5):452–475, 2016.

[21] A. Bertolino, B. Miranda, R. Pietrantuono, and S. Russo. Adaptive
coverage and operational profile-based testing for reliability improve-
ment. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 541–551, May 2017.

[22] D. Cotroneo, R. Pietrantuono, and S. Russo. A learning-based method
for combining testing techniques. In Proc. 35th Int. Conference on
Software Engineering (ICSE), pages 142–151. IEEE, 2013.

[23] T.Y. Chen, H. Leung, and I.K. Mak. Adaptive random testing. In
MichaelJ. Maher, editor, Advances in Computer Science - ASIAN 2004.
Higher-Level Decision Making, volume 3321 of Lecture Notes in Com-
puter Science, pages 320–329, 2005.

[24] A. Podgurski, W. Masri, Y. McCleese, F.G. Wolff, and C. Yang. Esti-
mation of software reliability by stratified sampling. ACM Transactions
on Software Engineering and Methodology, 8:263–283, 1999.

[25] F.b.N. Omri. Weighted statistical white-box testing with proportional-
optimal stratification. In 19th International Doctoral Symposium on
Components and Architecture, WCOP’14, pages 19–24. ACM, 2014.

[26] R. Pietrantuono and S. Russo. On Adaptive Sampling-Based Testing
for Software Reliability Assessment. In Proceedings 27th International
Symposium on Software Reliability Engineering (ISSRE), pages 1–11,
2016.

[27] J. R. Brown and M. Lipow. Testing for software reliability. SIGPLAN
Not., 10(6):518–527, 1975.

[28] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M. Nicol,
B. W. Murrill, and M. Voas. Estimating the probability of failure when
testing reveals no failures. IEEE Transactions on Software Engineering,
18(1):33–43, 1992.

[29] K. Goseva-Popstojanova and S. Kamavaram. Software reliability estima-
tion under certainty: generalization of the method of moments. In Eighth
IEEE International Symposium on High Assurance Systems Engineering,
2004. Proceedings., pages 209–218, 2004.

[30] S. L. Lohr. Sampling Design and Analysis. Duxbury Press; 2 edition,
2009.

[31] D. G. Horvitz and D. J. Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical
Association, 47(260):pp. 663–685, 1952.

[32] K-Y. Cai, C-H. Jiang, H. Hu, and C-G. Bai. An experimental study of
adaptive testing for software reliability assessment. Journal of Systems
and Software, 81(8):1406–1429, 2008.

[33] R. Pietrantuono, S. Russo, and K.S. Trivedi. Software Reliability and
Testing Time Allocation: An Architecture-Based Approach. IEEE Trans.
on Software Engineering, 36(3):323–337, 2010.

[34] R. Pietrantuono, P. Potena, A. Pecchia, D. Rodriguez, S. Russo, and
L. Fernandez. Multi-objective testing resource allocation under uncer-
tainty. IEEE Transactions on Evolutionary Computation, 22(3):347–362,
2017.

[35] G. Carrozza, R. Pietrantuono, and S. Russo. Dynamic test planning: a
study in an industrial context. International Journal on Software Tools
for Technology Transfer, 16(5):593–607, 2014.

