
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A software quality framework for large-scale mission-critical systems
engineering

Gabriella Carrozzaa, Roberto Pietrantuono⁎,b, Stefano Russob

a Accenture Operations, Piazzale dell’Industria 40, Rome 00144, Italy
bUniversità degli Studi di Napoli Federico II, Via Claudio 21, Naples 80125, Italy

A R T I C L E I N F O

Keywords:
Software quality
Decision support systems
Mission-critical systems
Software testing
Software reliability
Automatic static analysis
Testing resource allocation
Defect prediction
Fault prediction

A B S T R A C T

Context:In the industry of large-scale mission-critical systems, software is a pivotal asset and a key business
driver. Production and maintenance costs of systems in domains like air/naval traffic control or homeland se-
curity are largely dependent on the quality of software, and there are numerous examples where poor software
quality is blamed for major business failures. Because of the size, the complexity and the nature of systems and
engineering processes in this industry, there is a strong need yet a slow shift toward innovation in software
quality management.

Objective:We present SVEVIA, a framework for software quality assessment and strategic decisions support for
large-scale mission-critical systems engineering, and its application in a three years long industry-academy
cooperation.

Method:We started with the analysis of the industrial software quality management processes, and identified
the key challenges toward a satisfying quality-cost-time trade-off. We defined new methods for product/process
quality assessment, prediction, planning and optimization. We experimented them on the industrial partner
systems and processes. They finally conflated in the SVEVIA framework.

Results:SVEVIA was integrated into the industrial process, and tested with hundreds of software (sub)systems.
More than 20 millions of lines of code – deployed in about 20 sites in Italy and UK – have come under the new
quality measurement and improvement chain. The framework proved its ability to support systematic man-
agement of software quality and key decisions for productivity improvement.

Conclusion:SVEVIA supports team leaders and managers coping with software quality in mission-critical in-
dustries, yielding figures and projections about quality and productivity trends for a prompt and informed de-
cision-making.

1. Introduction

Modern systems for the management of critical infrastructures – e.g.
air/maritime traffic control, power grids, homeland security – heavily
ground on software. As numerous functions are software-implemented,
software has become a dominant part, and inevitably put in charge of
much of their quality, production cost and time-to-market. Software
quality is reported to worth more than $500 billion per year worldwide,
and quality excellence practices yield a ROI of about 15$ per 1$ spent
[1]. At the same time, experience shows that poor software quality has
been responsible for severe business and safety disasters [2].

In the large-scale mission-critical systems industry there is a dis-
crepancy between the acknowledgment of the primary role of software
and the engineering practices adopted for software quality. This is due
to technical, organizational and cultural reasons. The size and

complexity of systems make difficult and expensive the application of
best practices for software quality. Differently from other sectors where
software is involved, industries in this field are typically big, with many
employees and outsourcing companies. Innovations in software quality
practices are hard to introduce, because of start-up and re-engineering
costs (training and process changes), as well as because of skepticism of
managers, who are often anchored to consolidated industrial processes
where software is seen just as an intangible “add-on” to the concrete
system. In such contexts, the generic perception of the importance of
software quality needs to be supported in quantitative ways, integrated
into wider-scope system engineering processes.

We present the results of a three-year industry-academia partner-
ship focused on innovating software processes in systems engineering,
in the framework of the COSMIC public–private laboratory between
Finmeccanica and Federico II University. The partner company
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produces systems in domains like air and naval traffic control and
homeland security, whose software part has thousands of requirements
and millions of lines of code. The work resulted in the SVEVIA frame-
work for strategic decisions support in software quality management
and productivity improvement.

SVEVIA provides team leaders and managers with quantitative
views about trends of software quality and productivity. It considers
three key dimensions: software quality; development and quality assur-
ance cost; timeto market. Trade-offs among them are quantified and
related to management decisions, as:

• Prediction of the best time to release products;

• Identification of software quality assurance activities (e.g., static
analysis, code inspection, testing) providing best returns;

• Optimal planning and distribution of efforts to quality assurance
activities to attain quality goals while minimizing risks and/or de-
livery time;

• Identification of software components and of production phases
mostly impacting quality and schedule;

• Assessment of performance of external suppliers against quality
targets.

SVEVIA supports software quality management (SQM) decisions
through:

• Measurement and estimation, aimed to monitor/gauge the effec-
tiveness and efficiency of activities by traditional as well as newly
defined key performance indicators (KPI) for quality and productivity;

• Prediction of quality-cost-time trends, based on advanced mathe-
matical models, for quantitative comparison of alternative strategic
decisions;

• Resources optimization, through models for optimal distribution
of efforts in quality assurance activities, given user-specified con-
straints (e.g., budget) and objectives (e.g., maximize the expected
software quality).

We describe the framework and the experiments with tens of large-
scale systems, accounting for about 900 components and around 20
millions of lines of code.

The paper is organized as follows. Section 2 introduces the reference
systems engineering context and the requirements for the framework.
Sections 3 and 4 present the SVEVIA architecture and services. The
results of the on-field experiments in the years 2013–2015 are pre-
sented in Section 5. Lessons learnt and hints for replicating the fra-
mework in similar domains are discussed in Section 6. Related work is
discussed in Section 7. Section 8 provides conclusions.

2. Industrial domain and SQM requirements

2.1. The systems engineering industrial context

Most companies in the mission-critical systems market are manu-
facturers or system integrators (not software houses) of what are often
categorized software-intensive systems, including sensors and electro-
nics such as radars and video surveillance equipments. They usually
adopt the V-model engineering process and the MIL-STD-498 standard
for software artifacts and documentation [3].

The industrial partner in this study is a large industry of this kind.
Software engineering teams account for about 1000 employees in sev-
eral plants in Italy and UK, organized in capabilities or sub-capabilities
(e.g., “Surveillance Data Processing”, “Human Machine Interfaces”),
and in units. Fig. 1 shows the component-based V-model process adopted.
Components are autonomously deliverable entities known as Computer
Software Configuration Items (CSCI). A CSCI encompasses up to hundreds
of thousands of Logical Lines of Code (LLOC); its lifecycle is managed
by a Unit. Several CSCIs form a system, managed under a Project. CSCIs

and Projects have a many-to-many relation.
The main phases and related MIL-STD-498 artifacts are:

• System requirements analysis and specification. Output documents are:
System/Subsystems Specification (SSS); Interface Requirements
Specification (IRS), with external system interfaces and data model;

• System design. Output documents: System Subsystem Design
Description (SSDD), containing the high-level architecture of the
envisaged solution, and the allocation of requirements to sub-
systems;

• Software requirements analysis and specification. Output documents:
Software Requirements Specification (SRS) for each identified CSCI.
Each SRS is complemented by an Interface Control Document (ICD)
specifying the CSCI interfaces and the related data model;

• CSCI design. Output documents: Software Design Description (SDD)
with the internal design of a CSCI, and the allocation of software
requirements to its subcomponents. Each SDD is related to a CSCI
and accompanied by an Interface Design Document (IDD) that
specifies the CSCI internal interfaces and exchanged data;

• Coding and fixing: the CSCI source code is produced, with continuous
feedback from unit testing to iteratively fix detected defects before
releasing the CSCI to the integration testing stage.

The testing phases and main related artifacts are:

• CSCI unit (or qualification) testing, producing unit test plan (STP) and
design (STD) documents, running tests, and producing a Software
Test Report (STR);

• Software integration testing, yielding Software Integration Test
Description (SITD), running tests, and producing the related report
(SITR);

• System testing and acceptance testing, specifying the Acceptance Test
Plan (ATP), running tests, and producing the in-Factory and on-Site
Acceptance Test report (FAT and SAT, respectively).

2.2. Software quality decision support needs

The managerial perspective is to deliver products with a target
quality level under given cost and time constraints. This demands for a
shift from a decision-making process using basic measurement data, yet
often driven by intuition and experience in this industrial domain, to a
process supported by engineering techniques and tools leveraging ad-
vanced prediction and optimization algorithms.

In the reference domain, the component-based approach yields a
highly modular design (centered around CSCIs), and most of the effort
in quality assurance is spent in Verification and Validation activities
(V&V) on the right branch of the V-model. Indeed, for the considered
systems, V&V costs can be as high as 50% of total cost. Rather than
replacing quality tools and practices in use, with additional cost and
arguable usefulness, there is the need to leverage them in defining new
methods and techniques to systematically support strategic decisions in

Fig. 1. The industrial V-model lifecycle.
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the management of software quality and productivity.
It is important to note that the engineering of a CSCI typically takes

many months or even years, and involves several company plants;
moreover, CSCIs may be partially outsourced to external suppliers.
Hence, there is high heterogeneity of engineers’ skills, coding styles,
and employed tools. The general requirement for a decision support
framework is to provide quality assessment, prediction and optimiza-
tion algorithms so as to timely find the tradeoff among quality, cost and
schedule – known as the iron triangle factors [4]. The success of projects
depends heavily on the goodness and timeliness of related decisions.

2.3. Framework requirements

The three main quality assurance areas investigated are: quality
measurement and assessment; V&V decisions support; productivity man-
agement. They should provide engineers with a clear reading of current
quality and cost figures, as well as with support for planning quality
assurance activities. This high-level objective is to be achieved with
minimal impact on the existing processes.

Based on the potential impact on quality, managers demand for
decision support for the following engineering phases:

• coding, integration, system and acceptance test;

• corrective maintenance (pre- and post-release bug fixing).

The following capabilities are required:

• monitoring and reporting, to control “what is happening” with the
key quality and productivity indicators;

• detective analysis, to understand “why something happened” (e.g.,
change in a site’s performance);

• prediction, to forecast “what is likely to happen” in terms of quality
and productivity trends;

• optimization, to suggest “which actions to implement”, quantifying
benefits on quality/cost/time.

In a large organization, two further crucial requirements are:

• low intrusiveness in quality monitoring practices;

• leveraging the many quality-related legacy tools.

As for the former aspect, innovations need to be introduced with
minimal or no changes to existing practices. Developers should not be
required to perform additional tasks; this is due to cost, organizational
and human-related concerns – quality measurements are usually per-
ceived as a form of control. For code quality, for instance, companies do
typically have prescriptive policies for programmers in the form of
coding rules, and static analysis is periodically performed automatically
for computing quality metrics without involving them.

As for the second aspect, a decision support framework needs to
exploit the tools already in use for gathering quality data. Data sources
include tools for:

• automated code analysis and review (e.g., Parasoft©);

• pre- and post-release bugs management; tools in use are spread-
sheets, open source and commercial issue trackers (MantisBT,1

Bugzilla,2 Jira).3

Capabilities and units in company plants use various tools, with
different terminologies and semantics for similar data. Information has
to be inferred from the available data, to save past investments and to

avoid additional training. The framework has also to be decoupled from
tools and independent of the various data formats. Interoperability of
tools can be pursued through adapters.

In summary, the framework has to abstract the information col-
lected by each team and tool, requiring minimal data for feeding
models. Its instantiation requires a bottom-up black-box approach,
where the object of the evaluation (i.e., which quality aspects), the type
of information to gather/infer (which data), the way to gather/infer
them (which metrics and procedures), and the way to interpret and use
results come out from the analysis of the context.

Finally, the analyses offered by the framework are required to be
highly usable, meaning that: (i) different views should be provided to
different users, since the interest of a project leader is not the same as
the top manager; (ii) advanced mathematical models have to be
transparent to end users.

2.4. Software quality dimensions

The dimensions that project managers usually wish to control are
quality, cost and schedule. SVEVIA analyzes the sources of software
quality to predict and control the effects on cost and time. While cost
and schedule are quantified in terms of effort (e.g., man-days) and ca-
lendar time, respectively, quality is assessed through several metrics, as
it has multiple facets. According to the ISO/IEC 25010 standard [5],
quality attributes of a software product are:4

• External: properties that the final users can experience. They are
related to the dynamic behavior of the software in its usage context.
Examples are: reliability, usability, portability, security, perfor-
mance efficiency.

• Internal: properties of software artifacts of interest for producers.
They are static properties, and their measurement does not require
software execution. Examples are: requirements size and complete-
ness; design modularity, degree of reuse; code features like McCabe
complexity, lines of code, fan-in and fan-out, degree of compliance
to programming rules.

External attributes represent the desired characteristics of the pro-
duct, and the process is meant to provide a high level of such quality
attributes at low cost. However, they are not easy to measure. A re-
levant metric is the degree of defectiveness, considered a measure of
(non-)quality of artifacts and of activities. It is by far the most im-
plemented quality metric, since it is easy to measure and close to user-
perceived quality. Common indicators for defectiveness are number,
density and rate of defects. In addition, for process analysis purposes,
defects can be characterized by a set of attributes, including source,
type, injection phase, trigger, detection phase, closing time [6,7].
SVEVIA exploits defect-based metrics also to estimate and predict re-
liability, an external attribute of major concern for mission-critical
systems.

Internal quality impacts defectiveness, thus external quality. Its
measurement is useful not only for understanding the product quality at
intermediate stages, but also for external quality prediction (e.g., in
terms of expected residual defects) and consequent planning of im-
provement actions. Given the focus on V&V, the framework stresses the
measurement of internal quality attributes of the source code, by
checking compliance to company programming rules, such as “avoid use
before initialization”, “avoid null pointer de-referencing”.

In summary, SVEVIA considers as key drivers for strategic decisions
about testing and product release: code complexity and compliance to
coding policies; defectiveness; reliability.

1 http://www.mantisbt.org.
2 http://www.bugzilla.org/about.
3 http://www.atlassian.com/software/jira.

4 This standard introduces also “in-use” attributes; the distinction between external and
in-use quality is neglected for the purposes of this work.
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3. The SVEVIA framework

The main functionalities of SVEVIA are grouped in three main areas
(besides Administration) regarding: software quality assessment, de-
cision support and productivity management. These are intended to
provide engineers with a clean reading of current quality, cost and time
figures, as well as to support decisions for efficient planning and ex-
ecution of quality assurance activities. The human roles interacting
with SVEVIA are shown in Fig. 2. The framework displays customized
views according to the user role. For instance, a top manager is pro-
vided with high-level indicators of productivity and quality of software
assets, with the chance of navigating into single Projects or Capabilities,
while the Head of a Unit with lower-level details of CSCIs.

The estimation, prediction and optimization algorithms are con-
ceived to use a minimal amount of input information. Specifically, three
sources of information are considered related to the quality-cost-time of
production phases: (i) the software code; (ii) the history of software-re-
lated defects detected during testing or operation; (iii) the records of
produced artifacts and efforts spent per activity. The history of defects is
the real pivot, as it summarizes the progress of perceived (non-)quality
of the final products and of software-related processes. SVEVIA is in-
tegrated – transparently to the end user – with the company existing
tools which manage such information: it is able to get data from two
code analysis tools, from several heterogeneous issue trackers adopted
across all the company, and from the development activities recording
tool.

Fig. 3 shows the high-level architecture, designed according to the
Model-View-Controller (MVC) pattern. The model part retrieves data
from external tools through an adaptation layer, which copes with the
heterogeneity of data sources and formats. The controller has three
components, quality assessment, decision support and productivity man-
agement (besides administration), which use three further components
embedding the core algorithms: estimation, prediction, optimization. The
view presents results via a web interface.

4. SVEVIA services

4.1. Quality assessment

SVEVIA focuses on the three mentioned engineering phases:
coding, testing, and maintenance. Coding applies to CSCIs – the

building blocks of systems. Testing concerns individual CSCIs, their
integration, and final system validation. Maintenance persists beyond
the system delivery, throughout its operational phase. Quality assess-
ment targets phases, Units and Projects.

4.1.1. Code quality
CSCIs are scrutinized through static code analysis. This checks if an

extensive set of rules is respected by programmers, to spot errors (such
as buffer overflows and null pointer dereferences) that can escape
compilers’ detection and testing, and to verify compliance to industry
standards like MISRA [8].

SVEVIA considers several rules for the C/C++, C# and Java pro-
gramming languages, categorized as bug detective (BD) and coding rules
(CR). BD are rules that, if not met, are likely to lead to software defects;
CR refer to programming style guidelines. Macrogroups of rules are
listed in Table 1. Rules are assigned a severity level from 1 to 5 (most to
least critical), and are grouped by quality attribute they refer to: Se-
curity, Reliability, Performance, Maintainability.

Rule infringements are checked periodically by means of Automatic
Static Analysis (ASA) tools. SVEVIA parses their results, and builds
numerical and graphical indicators for code quality monitoring and
reporting, providing feedback to team leaders and enforcing control
over CSCIs. These include:

• Basic statistics, e.g., mean and standard deviation of BD and CR rule
violations (a.k.a. infringements), BD and CR density (number of in-
fringements per 1K or 10K LOC);

• Count of infringements by CSCI, rule, severity, site (where the CSCI is
produced), unit and sub-unit. These suggest: (i) what are the most
violated rules and their severity; (ii) what are the differences across
CSCIs, across internal/outsourced development teams, Units and
plants, and which ones remarkably deviate from the average quality;

• Temporal trend of BD and CR density in the last 8 trimesters, checked
against a target threshold, current distance from the target CR and BD
infringements density, and prediction of time to achieve the target;

• Code complexity metrics, such as McCabe cyclomatic complexity and
number of LOC, which are known to be related to code quality [9].

• Monetary risk associated to a CSCI, estimated as average effort to
remove a rule weighted by number of violations and by rule se-
verity. This gives a measure of technical debt, meant as cost needed
to fix infringements (by their number, type, and average removal

Fig. 2. Actors of the SVEVIA framework.
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cost) and to sanitize the code;

Examples of basic decisions supported by the analysis of current
status and trend over time are:

(i)prioritize internal coding rules to enforce;
(ii)train programmers based on most violated rules;
(iii)inspect sites or units with anomalous quality patterns;
(iv)increase the effort to lower the trend of violations;
(v)reduce heterogeneity of quality across CSCIs, units, sites;
(vi)reduce complexity of CSCIs.
More complex decisions are supported by prediction and optimi-

zation algorithms; they are described later in Section 4.2.
Fig. 4 shows one SVEVIA code quality view for one of the capabilities

of a test project – a system for Air Traffic Control (ATC).5 Synthetic
informations on violations’ density are on top. The graphs indicate an
improvement of two key indicators (CR and BD violations) over time
(trimesters) with respect to the starting temporal reference. The navi-
gation into sub-capability and CSCI figures allows engineers to spot
problems at finer level. The view provides figures about:

• rules with highest number of violations;

• rules with highest violation density, grouped by top three severity
levels;

• distance of CSCIs from the target violations;

• tree map of the CSCIs with more infringements;

• violation density, broken down by company site;

• CSCIs with highest monetary risk.

In the example, we can note that: the general trend of violations is
decreasing across trimesters; reliability rules are the most critical ones,

and the first six BD rules have more than 100 violations; the worst 20
CSCIs exhibit a high share of violations, and some of these are really
critical (e.g., one CSCI is 900% distant from the target with a monetary
risk of one order of magnitude greater than the fourth in the list).

4.1.2. Testing process quality
Code quality properties are essential, yet they do not have a direct

impact on user-perceived quality. Even if unlikely, poor code quality,
e.g. due to high complexity or high number of infringements, does not
imply a high number of operational failures. This is because (i) in-
fringements are not necessarily actual software defects, and (ii) defects
do not always lead to operational failures [10]. Testing is where real
failure-causing defects are discovered; if not corrected, they are likely
to appear in operation. Hence, the end quality depends heavily on
testing and debugging [11].

Common testing metrics include: coverage of requirements or code;
percentage of tests exposing failures; number of wrong tests (failed due
to mistakes); effort spent to create and execute tests. Besides these,
SVEVIA offers innovative metrics to assess testing effectiveness and
efficiency. Since the ultimate goal of testing is to reveal defects (not
just to achieve high coverage), effectiveness refers to how much testing
is able to expose defects with respect to total defectiveness; efficiency
relates effectiveness to the effort required. However, the total defec-
tiveness is unknown. SVEVIA provides an algorithm for estimating of
total number of defects expected to be found by testing (ExpDefect).

The estimation algorithm is based on software reliability growth
models (SRGMs), a widely used class of models in software reliability
engineering [12]. SRGMs fit inter-failure times from test data in order
to estimate the next time to failure on the basis of the observed trend.
They are commonly used to estimate the reliability growth over testing
time, the mean time between failures [13] or the number of expected
remaining defects [14].

Fig. 3. Architecture of the SVEVIA framework.

5 Data are anonymized for confidentiality reasons.
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In SVEVIA they are mainly used to estimate the expected number of
(residual) defects at the end of testing, the effort still needed to detect
them (useful for scheduling the best release time), and for resource
allocation optimization as part of the decision support function
(Section 4.2). There exist many such models, varying for the shape of
the data fitting function [15]. Given a set of testing data, SVEVIA fits
them with a set of models, then selecting the best fitting one among a
set of eight models. Specifically, the models implemented in the current
version of the framework are: exponential; S-shaped; Weibull; log logistic;
log normal; truncated logistic; truncated extreme-value max; truncated ex-
treme-value min. Table 2 reports the models with their parameters. The
SVEVIA algorithm applies all the models to the testing dataset, de-
termines the SRGM’s parameter values by means of the Ex-
pectation–Maximization (EM) algorithm developed by Okamura et al.
[16], and then computes the Akaike information criteria (AIC) for each
SRGM, selecting the one with the best AIC value [17]. The number of
total expected defects as estimated by the selected SRGM (paramter ‘a’
in all the cases, Table 2) is taken as ExpDefect metric. Based on it, ef-
fectiveness is estimated by Test Maturity%:

=TM
Defects

ExpDefects
% ·100.

(1)

TM% is the percentage of defects found over all expected defects, thus
yielding the current state of testing with respect to the SRGM-estimated
expectation. Note that the numerator is an exact number, while de-
nominator is a statistical estimate; this makes the metric a statistical

estimate. Two efficiency metrics are derived. The first one is the Test
efficiency%:

= =TE TM
TestEffort

DetRate
ExpDefects

% % .
(2)

TE% is the percentage of achieved effectiveness relatively to the testing
effort spent (TestEffort). Testing effort is expressed in man-days, al-
though other choices are possible in the framework (man-hours, man-
weeks, man-months). Note that this metric also represents the defect
detection rate (DetRate) normalized over the expected defects. DetRate is
defined as the number of defects detected per unit of testing effort –

=DetRate Defects
TestEffort .

The second efficiency metric is for relative comparisons of CSCIs (or
Projects). Indeed, DetRate and TE% indicate the actual efficiency of
testing, but they do not allow a fair comparison of CSCIs, because the
number of defects does not vary linearly with the testing effort (testing
is usually more efficient initially, when it exposes more failures per time
unit). SVEVIA introduces a ‘relative’ efficiency measure: given a test
maturity value, it tells which testing process exhibits the best (nor-
malized) rate. For instance, considering TM%=90%, SVEVIA compares
the efficiency of testing teams in achieving that level. Defining the
number of effort units (man-days) to detect x% of total estimated de-
fects (TestEffortx%), its normalization over the number of estimated
defects is a relative (in)efficiency measure (the higher the value, the
lower the efficiency):

=RTE
TestEffort
ExpDefects

%
%

.x

(3)

Overall, SVEVIA provides, for each CSCIs and/or Project:

• Basic testing KPIs, including percentage of failure-exposing tests,
number of wrong tests, effort spent to create and execute the test
suite. They report about the goodness of the test suite observed up to
current time;

• SRGMs-based metrics (e.g., expected total defects, reliability, or
failure intensity) and graphs, describing the expected testing trend
per CSCI/project. From these, testing effectiveness and efficiency at
current/future time is estimated/predicted according to the men-
tioned metrics;6

• Reports of defects detected per CSCI/project split by categories, such
as defect state, defect severity (a team may work well at finding
critical defects than trivial ones), as well as a map of the most cri-
tical CSCIs containing the 80% of defects in a project.

The statistics on average and range of variability across CSCIs/
Projects (computed as 95% mean confidence interval) are useful to
detect discrepancies among engineering teams. This perspective allows
assessing effectiveness and efficiency for single CSCIs or Projects and
the variability across them, so as to spot bottlenecks or best-in-class
elements.

4.1.3. Debugging process quality
For large-scale industrial systems, the management of defect cor-

rection is crucial for quality-effort-time tradeoff. Corrections should be
as prompt as possible, and the way they are scheduled and performed
should not give rise to bottlenecks or further imperfections. SVEVIA
computes the following metrics for effectiveness and (in)efficiency as-
sessment of the correction process [23]:

• Reduction of defectiveness (Fixing Maturity) achieved by the debug-
ging team, as ratio of closed over total bugs:

Table 1
Macrogroups of coding rules.

Macrogroup #Rules Example

BD-G1 Possible bugs 11 Avoid conditions that always
evaluate to
the same value

BD-G2 Resources 4 Ensure resources are freed
BD-G3 Security 7 Protect against integer overflow/

underflow
from tainted data

BD-G4 Threads and synchr. 3 Do not abandon unreleased locks
BD-G5 Other rulesa 13 Ensure resources are deallocated
CR-G1 Formatting rules 5 Each variable shall be declared in a

separate declaration
CR-G2 Metrics rules 1 Source lines shall be kept to a length

of
120 characters

CR-G3 Coding convention 6 Avoid magic numbers
CR-G4 MISRA rules 34 Use parentheses unless all operators

in
the expression

CR-G5 Naming convention 1 Names of parameters in declaration
and definition should be identical

CR-G6 Initialization rules 3 Do not assume that members are
initializ-
ed in any special order in
constructors

CR-G7 Optimization rules 1 Avoid inline constructors and
destructors

CR-G8 Object oriented 5 Avoid declaring virtual functions
inline

Programming rules
CR-G9 Memory and resource 6 Declare a copy constructor for classes

with dynamically allocated memory
CR-G10 Comments rules 1 Each source file shall contain an

header
detailing the owner and information
about
the version and release of the file

CR-G11 Exceptions rules 2 A class type exception shall always be
caught by reference

CR-G12 Other rulesa 67 Limit the maximum length of a line

a For brevity, we grouped in BD-G5 and CR-G12 other rules referring to Java,
numerous yet less relevant as most of the test project code is in C/C++.

6 Note that basic KPIs are based on known metrics, while the defined effectiveness and
efficiency are based on unknown (i.e., estimated) metrics. Being based on an estimate of
total defects, they are less accurate but more informative about the goodness of testing.
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=FM
ClosedDefects
TotalDefects

;
(4)

• Mean and median time to repair defects (MTTRμ, MTTRMdn), as
measure of temporal (in)efficiency. The median is relevant because
the distribution of times to repair a defect is usually non-normal
[24]. MTTR conveys direct information on the debugging time. The
reciprocal are measures of actual fixing time efficiency (FtE):

=FtE
MTTR

1 ; (5)

• Mean cost to repair defects (MCTR) – based on hourly cost of de-
buggers, varying among company sites – and, consequently, cost-
efficiency to repair defects (FcE):

=FcE
MCTR

1 . (6)

In addition, the framework supports assessment of the internal
quality of the debugging process, in terms of these properties:

• continuity of fixing actions over time;

• homogeneity of fixing actions across defects;

• distribution over scales of priority and severity;

• percentage of re-openings.

As for continuity and homogeneity, SVEVIA provides graphs of
closed vs opened defects trend over time, and the empirical distribution
of debugging times (TTR). The graphs show if the correction follows the
detection (basic statistics – min, max, mean, std – are computed on the
closed-opened differences over time to quantify the continuity). The
TTR distribution emphasizes the variability of repair times: the de-
bugging process is homogeneous when most defects have a TTR close to
the average, and most of the TTR variance is due to many defects with
short TTR. These features are quantified by two well-known distribu-
tion metrics: kurtosis7 and skewness.8 The breakdown by priority and
severity shows whether the MTTR is consistent with defect priorities and
categories set by testers. Inconsistencies raise warnings about proper
scheduling of corrections (which bugs are removed first). Finally, the
number of times a bug gets re-opened indicates the rework it

Fig. 4. A code quality assessment view in SVEVIA.

Table 2
Software reliability growth models.

Model m(t) function

Exponential [18] − −a e·(1 )bt

S-shaped [19] − + −a bt e·[1 (1 ) ]bt

Weibull [12] − −a e·(1 )btκ

Log logistic [20]
+

a· λt κ

λt κ
( )

1 ( )

Log normal [21]*
⎜ ⎟
⎛
⎝

⎞
⎠

−a·Φ log t μ
σ

( )

Truncated logistic [22] − −

+ − −a· e t κ

e t λ κ
(1 / )

(1 ( )/ )

Truncated extreme-value max [17] ⎛

⎝

⎜
⎜
⎜

−

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜−

+ ⎞

⎠
⎟

−
a· 1

exp e
t λ

κ

exp eλ κ

( )

( / )

Truncated extreme-value min [17] ⎛

⎝

⎜
⎜
⎜

−

⎞

⎠

⎟
⎟
⎟

− ⎛

⎝
⎜−

− − ⎞

⎠
⎟

− −
a· 1

exp e
t λ
κ

exp eλ κ

1
( )

1 ( / )

*Φ indicates the normal distribution. a is the total # of expected defects; t is the
independent variable. b and λ are rate/scale parameters; κ is the shape para-
meter.

7 A high kurtosis is good, meaning that variance is mostly due to few peaks.
8 A positive skew denotes that peaks are in the left side of the distribution, i.e., many

defects have a short TTR.
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underwent. This evidences the amount of non-perfect fixes, which can
increase the likelihood of introducing regression bugs. Values of all the
above metrics are provided also per CSCI and Project, to spot differ-
ences among them.

4.2. Decision support

Product and process metrics are a valuable basis for decision-
making. They support the judgment by engineers who can quantify
trade-offs between quality, cost and time for coding, testing and de-
bugging. Some planning decisions, however, demand for more ad-
vanced support. The framework implements sophisticated prediction
and optimization algorithms, in a user transparent way. They concern
test prioritization, code sanitization and test optimization.

4.2.1. Inspection/CSCI test prioritization
Static analysis results are used to provide feedback to drive code

inspection/testing. A correlation has been demonstrated in the litera-
ture between infringements of coding rules and defects [25,26].
SVEVIA exploits infringements data to predict CSCIs defectiveness. The
prediction process is shown in Fig. 5. The input is the number of rule
infringements of a CSCI. The output is two-fold: (i) a binary indication
of whether the CSCI is defect-prone or not; (ii) a relative ranking of
CSCIs based on defect-proneness. The binary information is provided
with higher confidence, but it is less accurate and useful. Ranking
quantifies the relative degree of defectiveness of CSCIs. Managers can
prioritize the most critical components for code inspection and unit
testing, before delivering them to the next stages.

Several combinations of algorithms and metrics are tried during
training, in order to identify the model with the best prediction power.
Currently, six algorithms are used (Decision Trees, Bayesian Network,
Naive Bayes, Logistic Regression for binary classification and Linear
Regression, Support Vector Machine for ranking), and two metrics
(number of violations and defects, violations/defects density per
KLOC). In the binary classification scheme, three criteria are tried to
label a CSCI as defective:

• a CSCI is considered defective if the density is greater than the
normal statistical upper cut-off (UCO);9

• if the density is higher than the 90th percentile of the defect density
distribution over CSCIs used for training (useful due to the strong
non-normality of distribution);

• if the density is higher than the 3rd quartile of the defect density
distribution over CSCIs used for training.

Following the scheme in Fig. 5, the steps are:

1. Models are trained with samples of data about CSCIs produced in
the past. Training is run by a well-known method, i.e., through 10-
fold cross-validation, repeated 100 times per classifier.

2. Performance of each run of cross-validation is assessed, for binary
classifiers, by means of the Balance10 indicator, commonly adopted
for defect prediction [27–30] wherein the dataset is unbalanced
[31,32]. For ranking models, the Fault Percentile Average (FPA) is
used.11The algorithm with the best Balance/FPA (for binary classi-
fication or ranking, respectively) is selected as predictor;

3. The algorithm selected and trained with available data – where
defect (density) is known – is used for prediction for CSCIs with yet
unknown defect (density). The output is the list of CSCIs deemed as
dangerous (either with a binary label – defect-prone or not – or by a
ranking).

4. The most impacting rules are selected. Attributes are ranked by their
contribution to the gain, using the Information Gain algorithm [34].

The output of this framework service are:

• the list of risky CSCIs; developer should focus upon them for im-
proving quality (both quantitatively, in terms of relative effort
spent, and qualitatively, as more complex techniques should be used
for risky CSCIs);

• the list of highest prediction-impacting rules. This serves e.g. for as-
sessing programmers’ training needs, and is used by the next algo-
rithm for code sanitization optimization.

4.2.2. Code sanitization
With the huge amount of LoC and number of CSCIs involved, it is

important to minimize the effort spent in code sanitization (correction
of coding rule infringements) to attain a target objective. SVEVIA

Fig. 5. Defect prediction process in SVEVIA.

9 = +UCO μ z σ N[( ]* / ( ),α/2 where μ is the mean defect density of CSCIs, σ its stan-
dard deviation, N the number of CSCIs, zα/2 the upper α/2-quantile of the standard normal
distribution, α the desired significance level ( =α 0.05 in our case) [26].

10 Balance computation is based on true/false positives (TPs/FPs), and true/false nega-
tives (TNs/FNs) (i.e., CSCIs are TPs if they are correctly classified, FNs otherwise; non-
defective CSCIs are TNs if correctly classified, FPs otherwise), as:

= − − + −Bal 100 ,PF PD(0 )2 (100 )2

2
where PD (Probability of Detection) is

+
·100%,TP

TP FN
PF

(Probability of False Alarms) is
+

·100%FP
TN FP

. It represents the trade-off between a high PD
and a low PF, being based on the Euclidean distance from the ideal objective PD = 100%
and PF = 0%.

11 Given k modules, it is the average of the proportions of actual defects in the top m
( = …m k1, , ) modules to the whole defects [33].
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implements three variants of an optimization model targeting trade-off
between the desired quality goal in terms of rules infringements and
cost required to attain that quality. The user specifies the quality target
in three possible ways (for BD and CR rules):

• Target Average (T-A): the mean number of violations across CSCIs
has to be under a specified target vmax ;

• Target Average and Standard Deviation (T-A & T-STD): this re-
quires the standard deviation to be under a user-specified target
stdmax;

• Target Number (T-N): the number CN of CSCIs which have to have
less violations than a threshold vmax.

The algorithm computes: (i) the minimal effort (man-hours) to at-
tain the target; (ii) how such effort should be allocated to each CSCI and
(iii) to each type of rules among the violated ones, based on their se-
verity and expected mean removal effort. The solution focuses on CSCI
and rules more likely leading to a reduction of cost (both actual cost
and monetary risk).

Let vi denote the total number of violations of type i, and vi, j the
number of violation of type i in the jth CSCI. A violation not removed
can result in a software defect; on the other hand, its removal has a cost.
The violation removal effort at coding stage is lower than the effort to
remove a defect in later stages. We assume each type of violation (e.g., a
rule) being characterized by a pair < REi, wi> , where:

• REi (Removal Effort) is the effort (e.g., in man-hours) per unit needed
to remove one violation of the ith type;

• wi is a [0,1] weight rating the type of violation i with respect to the
expected impact that its non-removal has on the system quality.

REi values are established by querying company historical data
about the removal of violations of the ith type. Weights are derived by
one of two ways: they may be assigned by experts judgment (company
engineers), who gives more importance to specific types of violation
deemed more critical (based on rules severity); alternatively, the list of
rules more correlated to defects (an output of the previous prediction
algorithm) is used.12 Weights represent the likelihood that a violation of
a given type results in a defect. Let us denote with Ed the effort per unit
to remove a defect in the system/acceptance testing phase; this is es-
timated by querying the repository tracking the man-hours devoted to
defect removal activities; clearly, Ed>> REi. Then, the Non-Removal
Effort (NRE) is defined as the expected effort per unit incurred if the
violation of type i is not removed: it is assessed as NREi = wi*Ed. NRE is
a measure of the monetary risk incurred by leaving the violation in the
code, given by the unitary effort for a defect removal weighted by the
impact of violation i.

It would be extremely expensive to eliminate all violations from all
CSCIs. The algorithms find the optimal trade-off between the number
and the type of violations to remove, and the risk of not removing them.
Formally, denoting by xi, j the number of violations of the ith type that
the algorithm proposes to eliminate from CSCI j, the cost for CSCI j of
removing ∑ixi, j violations plus the expected cost of not removing them
(the residual monetary risk) is:

∑ ∑= + −
= =

C x RE v x NRE· [( )· ].j
i

m

i j i
i

m

i j i j i
1

,
1

, ,
(7)

Thus, the basic optimization model is:

= ∑ = ∑ ∑ + ∑ −= = =C C x RE v x w EMin! [ ( * ) [( )*( * )]]j
n

j j
n

i
m

i j i i
m

i j i j i d1 1 , 1 , ,

(8)

subject to:
where = …j n1 are the CSCIs, xi, j the decision variables, and STD

denotes the standard deviation. The model is solved by a sequential
trustregion algorithm with a linear approximations approach [35]. The
solution of the model provides a bi-dimensional matrix reporting the
amount of violations engineers have to remove for each type (column)
and for each CSCI (row), as well as the estimated cost of violation removal
(i.e., the first addend of the objective function) and the associated
“residual” monetary risk, namely expected technical debt, after removal
(second addend). These are used to meet the desired quality objectives
at minimal cost. It can happen that no solution is available to meet two
constraints together in the T-A & T-STD model (i.e., average and stan-
dard deviation together); in such a case, the framework relaxes the
standard deviation constraint incrementally, warning the user of this
choice, until the target on the average is met. Fig. 6 shows an optimi-
zation plan for CSCIs of a test project. The minimum target set for CR
and BD violation density is 50 and 10, respectively, and referring just to
the top 20 rules; the initial situation is 93.03 and 15.31 violation
density in the two cases. The algorithm suggests allocating a minimum
budget of 890 h to reach the target, which would yield a final value of
48.17 and 8.25 for CR and BD violations (under both targets) over the
top 20 rules. It also provides a matrix, in the bottom part of the view,
with the list of violations to remove for each rule and for each CSCI in
order to achieve the target with that budget.

4.2.3. Test optimization
Optimization-based planning algorithms for efficiently allocating

resources are a powerful means for decision support [36]. SVEVIA ex-
ploits optimization models for the testing resource allocation problem.
Specifically, it supports strategic decisions on how to effectively dis-
tribute the testing resources available to each CSCI’s team. The opti-
mization tool suggests the test effort distribution under defined objec-
tives and constraints. It builds analytical models of testing trends of
each CSCI by means of SRGMs; these are then used to get the ex-
pectations of detectable defects, and the time and effort that will be
spent. The relation between testing time t and testing effort (cost) W is
expressed by a testing effort functions (TEF) embedded in the SRGM
[37,38], allowing an accurate characterization of testing time-cost-
quality relation. SVEVIA implements flexible optimization models, al-
lowing to specify various objectives and constraints. The general form
of the multi-objective implemented models is:

= ∑ − +

=

= ∑ + + − +

+ +

∑ ≤

=

= ⋯

=

min E ResidualDefects EST m W W

min E TestingTime t

min E Cost C m W W C EST m W W

C m W W dt

s t W B

! [ ] ( ( * ))

! [ ] min ( )

! [ ] · ( * ) ·( ( * ))

( * )

. . *

i
N

i i i i

i N
i

i
N

i i i i i i i

i i i

i

1

1

1 1 2

3

(9)

where: N is the number of CSCIs; ESTi is the number of expected defects
in the ith CSCI estimated by SRGMs; Wi is the test effort to allocate to
the ith component; W *i is the effort already spent on the ith CSCI;

+m W W( * )i i i is the number of defects that would be removed if com-
ponent i receives an effort of +W W( * )i i – it is the mean value function
(mvf) of the SRGM selected for the ith CSCI; ti is the testing time; C1 is
the cost to correct a bug during testing; C2 is the cost of correcting a
residual bug in operation (typically C2 > C1 [39]); C3 is the cost
testing per effort unit W; B* is the residual budget. Cost parameters C1,
C2, C3 are estimated based on historical data.

SVEVIA implements the mvf of the eight SRGMs listed in Table 2. If
the user assumes a testing time t varying linearly with testing effort W,
then no TEF is needed and the testing effort allocation corresponds to a
testing time allocation: +m W W( * )i i i = +m t t( * )i i i . Alternatively, the
framework implements a TEF. The TEF chosen is the most common one,

12 Based on the average rank obtained over a 10-fold cross-validation, rules are rated
by their importance; weights are taken as the min–max normalization of the average rank
value (i.e., = − −w r min r max r min r[ ( )]/[ ( ) ( )]i i i i i with ri being the average rank value.
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that is the logistic TEF [37,38,40]. It represents the usual trend of
testing effort by this equation:

B

A
=

+ −
W t

exp αht
( )

1 [ ]h (10)

where B is the total amount of testing effort to be consumed; α is the
consumption rate of testing-effort expenditures; A is a constant; h is a
structuring index (a large value models well-structured software de-
velopment processes); andW(t) is the testing effort consumption at time
t. The latter is used in lieu of testing time t in the mvf expressions in
Table 2 to implement TEF-aware SRGMs. In such a case, testing time is
obtained by the inverse of the TEF:

A

B

=
⎛

⎝

⎜
⎜

−
⎛

⎝

⎜
⎜

− ⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟

( )
t

α h
ln1

*
·

1
.W

h

(11)

The model can be specialized for various goals. Managers may wish to
compute the effort allocation to CSCIs which maximizes the delivered
quality under a given budget. In this case, just the former objective
function is considered [41] and the effort is a constraint. Similarly, in
order to determine the allocation which minimizes the time (or cost) for
achieving a target quality level, the quality objective is changed in a
constraint, and the second (or third) objective function is considered
[42]. More in general, multi-objective approaches consider a set of
solutions optimizing trade-offs between testing cost, achieved quality in
terms of expected residual defects, and testing time [43] and solutions
are obtained by a well-known Multi-objective Evolutionary Algorithm
(MOEA), NSGA-II [44], as default. Three further MOEAs are im-
plemented: IBEA [45], MOCELL [46], PAES [47]. The provided output

is the list of Pareto front solutions with Hypervolume, Inverted Genera-
tional Distance (IGD) and Spread as quality indicators The test manager
can select a unique solution from the set of Pareto front solutions by a
loss function depending on the importance given to these objectives –
i.e., the solution minimizing the loss function is provided. Importance
can be expressed by the user by means of [0,1] weights given to the
(normalized) objectives. Denoting the three values of a given allocation
solution X as Y(X) = {y1, x, y2, x, y3, x} for the three objective functions,
we normalize them in [0,1] over the entire Pareto front:

′ =
−

−y ,i x
y min y

max y min y,
( )

( ) ( )
i x x i x

x i x x i x

, ,

, ,
with =i 1, 2, 3. The chosen solution X* is the

one with the minimum loss function value: L(Y′(X)) = ∑ ′= w y· ,i i i x1
3

, with
wi being the weights assigned to each objective. For instance, a ba-
lanced tradeoff is obtained with 0.33 given to all three objectives. The
framework is extensible by adding models reflecting further needs
about constraints and objectives, and the uncertainty of input para-
meters [48].

4.3. Productivity

Productivity is measured by a set of KPIs about the items produced
by the teams, adjusted by a quality factor. This gives rise to what we
call quality-aware productivity. KPIs are basically given by produced
items over employed effort. Items cover each phase, including: number of
new and changed requirements; new and changed CSU; new and
changed models; produced LLOC; new and changed test cases; new and
changed test runs; closed SPR (software problem reports); fixed CR and
BD. The adjustment is required because the plain productivity accounts
only for how much has been produced, without any regard to quality.
For instance, spending 10 man-weeks for one KLoC containing 5 defects

Fig. 6. Code sanitization view for a test project.
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is not the same as 10 man-weeks/KLoC with 8 defects.
For coding, we consider the produced LLOC over effort adjusted by

a quality factor varying between 0 and 1:

=
+

QA LLOC
Effort ED

· 1
1 (12)

where ED is the estimated defect density (ExpDefect, obtained by the
SRGM, over LLOC). The metric penalizes the productivity as defect
density increases, ideally achieving zero under infinite defects, while
we preserve the plain productivity under an ideally perfect (zero-de-
fects) product. The higher the value, the higher the actual productivity
is, accounting for both the raw productivity and the quality of what
produced. Values of both raw and quality-aware productivity are
monitored, for each CSCI team, unit or capability in the organization.

Fig. 7 shows an example for unit involved in a test project for ATC.
In that case, the productivity decreases up to July, and then starts in-
creasing in September, and so does the quality-aware productivity (red
bar in the graph). However, in the last month (November), the plain
productivity increases while the quality-aware productivity decreases
with respect to the previous month, denoting that more LLOC are being
produced but with relatively more defects inside. This raises a warning
on the unit being monitored. Details about each KPI at the bottom of the
view can help further spotting the problem.

5. On-field experience

In 2013 the industrial partner started a process for quality assess-
ment based on static analysis, comprising the following steps: (i) defi-
nition of coding standards policies; (ii) ASA tools scouting and

selection; (iii) infrastructure setup, tools deployment and staff training;
(iv) analysis running on regular basis, quarterly and at product releases.

In this process, SVEVIA provided an important contribution through
both quality assessment and decision support models. The first step was
to exploit ASA data for quality assessment (through new metrics such as
monetary risk) and efficient code improvement (through the optimal
code sanitization). Then, the defect management process was ad-
dressed, wherein SVEVIA coped with the high heterogeneity of data
gathered (by means of the capability to import data from the many bug
trackers in use). Defect data were exploited for quality assessment of
coding (from the expected defectiveness point of view), of testing and of
bug fixing processes, as well as for the planning of optimal release time,
and for the optimal allocation of testing efforts. Finally, the focus was
shifted on the definition of a plan for exploiting static analysis and
defect data together, so as to (i) use violations and historical defect data
to predict future defectiveness of CSCIs, and (ii) to use of violations and
defects to “weigh” the actual productivity (i.e., quality-adjusted pro-
ductivity).

All the introduced models were validated during the project on se-
lected CSCIs and included in the framework. After validation, the fra-
mework entered regular use and it was gradually extended to the whole
software division, accounting, at the end of the project, for about 900
CSCIs, with benefits on quality (e.g., in terms of reduction of violations)
and productivity. We hereafter first report experimental results ob-
tained on the three decision support models, which were recognized as
a key aid by both company managers and developers (Sections 5.2 and
5.3). Then, high-level achievements across the 2013–2015 period are
summarized (Section 5.4).

Fig. 7. Productivity assessment view for a test project.
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5.1. Prediction model

To test the prediction ability of defective CSCIs (i.e., the model
described in Section 4.2.1), we considered violations and pre-release
defect reports observed on a subset of 29 CSCI on the last 3 months of
2013 and the first 3 months of 2014. The model trained by these data is
then used to predict defectiveness on a set of 156 CSCI (11.6 Millions of
LoC) and 167 coding rules as predictors. All the six configurations were
used, differing in the metrics used (absolute numbers or density) and in
the criterion to label defect data (by UCO, 90th percentile, 3rd quar-
tile), thus obtaining six datasets. On these datasets, we first compared
the classifiers (Decision Trees, Bayesian Networks, Logistic Regression and
Naive Bayes) through 10-fold cross-validation repeated 100 times per
classifier, and measured performance by the balance metric. Results are
in Tables 3 and 4, for the model built with the BD rules and the CR
rules, respectively. The tables highlight in boldface the columns in
which the classifier in the corresponding row provided the statistically
(i.e., with 95% of confidence) highest values. The Nemenyi test is used
for multiple classifiers statistical comparison [49]. Underlined there is
the highest among these, denoting the best classifier/dataset pair.

Decision Tree and Bayes Net classifiers performed remarkably better
than Logisitc and Naive Bayes. Among these combinations, we selected,
for the BD model, the Decision Tree on the quartile dataset (i.e., when the
third quartile criterion is used for establishing defectiveness), which
has: =PD 85.70%, =PF 4.50%, =Bal 89.40%; whereas, for the CR
model, we selected the Decision Tree on the 90th percentile dataset,
having: =PD 100.00%, =PF 3.80%, =Bal 97.31%. Information Gain at-
tribute ranking algorithm was then applied. The rules turned out to be
more important for the prediction point of view are, for the BD model:
(i) avoid dereferencing before checking for null); (ii) Avoid overflow due to
reading a not zero terminated string, and (iii) avoid conditions that always
evaluate to the same value. In the CR model, they are: (i) each variable
shall be declared in a separate declaration statement; (ii) Multiple variable
declarations shall not be allowed on the same line; and (iii) Source lines
shall be kept to a length of 120 characters or less.

The selected models was then applied to the dataset of 156 CSCIs.
The BD model predicted 18 CSCI (i.e., 11.54%) as being defective; the
CR model predicted 16 CSCI (i.e., 10.25%) as being defective; 7 CSCIs
were predicted to be defective by both models. Testing of all the CSCIs
was then monitored (by looking at the defects in the issue tracking
systems) and, after one year from the prediction, these 7 CSCIs turned
out to be among the first 8 most defective CSCIs. This result allowed
managers having confidence in the prediction models to be used for
prioritizing test activities. As consequence, the models were improved

and integrated in the framework; currently they are trained on a set of
763 CSCIs and their training can be repeated periodically by means of a
back-end SVEVIA functionality. On the same dataset, we then also
trained the two ranking algorithms (Linear Regression, Support Vector
Machine for regression) and obtained a model for ranking whose per-
formance is currently measured by an FPA = 87%, meaning that, given
k CSCIs, the average of the proportions of actual defects in the top

= …m m k( 1, , ) CSCIs to the whole defects is 0.87.

5.2. Optimal code sanitization

This section reports the results of applying static analysis and op-
timal code sanitisation (i.e., the model described in Section 4.2.2) to the
same set of 156 CSCIs and 167 rules as above. For validation purposes,
we compared the three model variants against each other and against a
Random (R) strategy. The latter roughly reflected the state of the
practice, where each CSCI manager independently decided how many
violations to remove for its CSCI, arbitrarily choosing the type of vio-
lation. We forced the random strategy to consume all the available
budget so as to have a fair comparison with the other strategies. Since
the solution provided by the random allocation may be different from
run to run, the random strategy is repeated 50 times and taking the
average solution in terms of total cost, so as to have statistically
meaningful results.

Results are on a budget of maximum 800 man-hours for BD and 800
man-hours for CR treatments and the following quality objectives for
the three models: (i) average number of violations (vmax) reduced by at
least 40% for BD rules (25% for CR rules); (ii) standard deviation stdmax

reduced by at least 75% along with an average reduced of at least 30%
for BD rules (stdmax reduced by 30% and average reduction by 20% for
CR rules); (iii) at least the 70% of CSCIs with a number of violations less
than 50% of the pre-optimization average for BD rules (25% for CR
rules). Given the same budget, the comparison is on the following re-
lative metrics with respect to the random case: the percentage gain of
number of violations suggested to remove; the percentage reduction of
the total estimated cost (TOTCost, namely, the sum of cost of removal
and of non-removal, as described by the objective function); the per-
centage reduction of the average number of violations across CSCIs
after applying the solution; the percentage reduction of the standard
deviation of the number of violations across CSCIs; the number of CSCI
with ∑ivi, j< vmax.

Table 5 reports the percentage gain or reduction with respect to

Table 3
Balance comparison among classifiers for BD. Legend: UCO = upper cut-off,
DEN-UCO = , 90 = 90th percentile, DEN-90 = , Q = 3rd quartile, DEN-Q =.

Algorithm UCO DEN-UCO 90 DEN-90 Q DEN-Q

DT 29.10 29.23 75.83 29.29 89.40 29.00
BNet 29.24 29.29 29.24 29.29 86.04 29.29
Log 29.24 39.78 75.09 52.14 69.50 44.73
NB 28.85 18.15 52.14 44.15 48.60 43.33

Table 4
Balance comparison among classifiers for CR. Legend: UCO = upper cut-off,
DEN-UCO = , 90 = 90th percentile, DEN-90 = , Q = 3rd quartile, DEN-Q =.

Algorithm UCO DEN-UCO 90 DEN-90 Q DEN-Q

DT 29.28 45.00 97.31 28.82 89.39 64.04
BNet 29.28 29.28 76.30 29.28 86.05 45.94
Log 29.28 41.55 51.59 49.14 68.99 34.16
NB 29.24 27.77 75.83 27.99 48.60 52.11

Table 5
Results of the allocation for BD and CR rules compared to the random solution.
Legend: A: % Gain on total # of violations to remove; B: percentage reduction of
total cost; C: percentage reduction of avg. number of violations (reduction w.r.t.
initial average); D: reduction of the standard deviation of # violations (reduction
w.r.t. initial standard deviation); E: number (and %) of CSCI with v< vmax.

Model A B C D E

T-A +16.1% −32.9% −14.9%
(−55.8%)

−33.1%
(−57.6%)

122 (78.2%)

T-A & +16.1% −29.1% −14.9%
(−55.8%)

−59.6%
(−75.4%)

110 (70.5%)

T-STD
T-N +16.8% −25.1% −15.6%

(−56.1%)
−57.6%
(−73.1%)

110 (70.5%)

(a) Model applied to BD violations
Model A B C D E
T-A +78.4% −42.2% −15.9%

(−30.2%)
−14.5%
(−28.8%)

117 (75.0%)

T-A & +22.0% −2.8% −4.5%
(−20.6%)

−21.6%
(−34.7%)

110 (70.5%)

T-STD
T-N +22.6% −2.3% −4.6%

(−20.7%)
−22.8%
(−35.8%)

110 (70.5%)

(b) Model applied to CR violations
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random case,13 and the reduction achieved with respect to the initial
average and standard deviation, indicating to what extent targets have
been met. They show that:

• the T-A model meets its target on the average number of violations;
the number of violations suggested to remove is 16% higher than the
random solution (in the BD case), and it is impressive in the CR case
where a +78% is achieved. The total cost is reduced of 32% and
42% in the two cases. This solution allows removing much more
violations than the other cases, and also the most cost-impacting
ones;

• the T-A & T-STD model achieves its targets on average and standard
deviation. The gain in terms of standard deviation is paid in terms of
number of removed violations and total cost, where the gains are
much more limited than the T-A model; it focuses on acting more on
the few CSCIs with a high number of violations to meet the standard
deviation target than on most impacting rules;

• the T-N model achieves its target too. Results are very similar to the
standard deviation model.

The T-A model is able to select the best types of violations to re-
move, because its target is met early, and thus the residual effort is
devoted to lower the non-removal effort value by selecting the most
impacting types of violation. Of course, the choice of the target influ-
ences the output; thus the user can relax constraints on T-A & T-STD
and T-N solutions to reduce the total expected cost. Conversely,
whenever the targets are met with margin (e.g., in the T-A case), en-
gineers can decide to spend less money and re-compute a solution with
a lower available budget (e.g., 600 man-hours). They both represent
ways in which company engineers were used to exploit the models
during (and after) the project. The models most used by company en-
gineers are the average model (as their primary objective was to reduce
the average number of violations) and the T-N model in order to isolate
problematic CSCIs. However, all the three models were included in the
SVEVIA framework after this evaluation.

5.3. Test planning

Test optimization (i.e., the model described in Section 4.2.3) was
evaluated retrospectively on the testing process of a case-study system
for homeland security in charge of managing the port, maritime, and
coastal surveillance. The system is made up of 5 CSCIs with size ranging
from 22KLoC to 59KLoC and total time taken for development ranging
from 6 to 12 months. These were tested between 2009 and 2012, using
a total amount of testing resources of 326 man-weeks, and detecting in
total 1119 bugs. The aim of the experiment was to figure out, after the
testing completion, how many defects would have been detected by
allocating the testing effort according to various competing schemes.
Compared schemes were: (i) uniform allocation (same resources to all
CSCIs), (ii) size-based allocation (a common rule-of-thumb approach),
proportional to the size of CSCIs; (iii) two versions our allocation
scheme, in a single-objective setting, named defect-based and defect
density-based, where the objective to minimize are, respectively, the
first objective of Eq. (9) and its variant with the number of defects over
size (i.e. density) instead of absolute number of defects. Thus, we used
the same data for all the cases, so as to avoid the bias that could be
introduced by using different testing techniques, different testers,
technologies, environment, and in general different testing processes.
An initial budget of 150 man-weeks of testing to allocate to CSCIs is
assumed. In both defect- and density-based schemes the “update” step
was set to 4 weeks, namely the allocation to CSCIs was recomputed
each month.

Fig. 8 summarizes the results in terms of total number of defects

found by the various approaches as time (weeks) proceeds. The bars
have the same value for the first 12 weeks; then, the dynamic schemes
outperform the others. Detailed results on re-allocated weeks are in our
previous work [41]. Besides the benefit of an optimized allocation, the
evaluation shows that a dynamic allocation, with periodic updates, is
important to be robust to violations of SRGM’s assumptions (such as
perfect or immediate debugging, inter-failure times independence,
equal testing quality over time, no differences among testing teams). In
the studied case, for the extent of assumptions’ violations, the model
fitted with 25% of time was statistically valid but turned out to be not
the definitive ones; in the remaining 75% of time, the selection of the
best SRGM changed several times, because of data variability. For in-
stance, testing of components C1 and C2 gave no result at all for months
(ten/fifteen weeks) and then abruptly improved after week 20: defects
revealed in the later weeks clearly show that this is not because of the
components’ greater quality, but more likely because of a lack of good
testing before week 20. This may depend on several reasons, related to
human, technical, environmental, or technological factors changing
over time; in any case, it is a clear example of violation of SRGM as-
sumptions. The periodic re-computation of SRGMs makes the allocation
method a robust solution to such variations. The functionality was in-
tegrated into SVEVIA in order to provide quantitative reasoning support
for the management of testing resources, complemented by expert
judgment about testing teams composition. It indeed also contributed to
the increment of productivity observed in 2013–2015 in terms of total
project delivery time and milestone hits, thanks to the improvement of
the testing phase efficiency.

5.4. High-level achievements

After validation, the experimented models were incrementally
added to the framework. Engineers started adopting the SVEVIA models
to take quality improvement actions, for instance by exploiting the
violation removal plans suggested by SVEVIA each 3 months; by ana-
lyzing the defect detection trends of integration/system testing activ-
ities and the V&V resource management with predictions made by
SVEVIA (hence spotting problems with the testing process/teams pre-
ventively); by reasoning, at management-level, on quality-aware pro-
ductivity trends as computed by SVEVIA. Users at different level (cf.
with Fig. 2) started producing periodic reports/plans tailored for their
profile and on data they could access – automatically managed by
SVEVIA utilities – on all these aspects (code quality, testing and de-
bugging and productivity measurements/prediction/optimization) and
to use them as quantitative support for their decisions (e.g., during
meetings). These practices entered (and contributed to) the overall
structured processes about quality management created in those years.

Fig. 8. Number of detected defects over testing time.

13 Absolute number of violations cannot be disclosed for confidentiality.

G. Carrozza et al. Information and Software Technology xxx (xxxx) xxx–xxx

13



In December 2015 company’s engineers assessed the SVEVIA con-
tribution to the following high-level achievements:

• Implementation of structured processes for quality/productivity
measurement, and for better defect management exploitation;

• Implementation of estimation, prediction and optimization algo-
rithms for systematic quality/productivity assessment and im-
provement;

• Integration of tools already in use under a unique framework for
software quality management.

The relevance of the SVEVIA support is highlighted by the following
indicators in the years 2013–2015 (Table 6):

• The number of projects analyzed, as high as 144;

• The increase of tracked CSCIs, by 30.64% up to about 2500 CSCIs.
The CSCIs measured by ASA and analyzed by SVEVIA are about 900,
a number increased by 127% since 2013 (Fig. 9 shows the trend
until 2015 3Q);

• The decrease in the number of different bug and issue trackers from
20 to 7, resulting in higher homogeneity of defect data;

• The boost in the LLOC analyzed in 2015, 6.7 times higher than in
2013.

SVEVIA has contributed to the following company achievements:

• Software quality: reduction of about 25% per year of the absolute
number of rule infringements. Fig. 10 shows the trend of violation
density (every 1KLOC for CR and 10KLoC for BD rules) in the time
frame 2013 to 2015, denoting a total reduction of 33.5% for CR and
34.6% for BD rules.

• Software productivity – time: increase of milestone hits (i.e.,
projects delivered on time), where SVEVIA impact was assessed at
about 90%.

• Software productivity – outsourcing: reduction of coding activ-
ities outsourced, where SVEVIA impact was assessed to be as high as
100%.

Currently, the framework is continuously fed with data of about 900
CSCIs belonging to tens of Projects of real-world large-scale mission-

critical systems.

6. Lessons learnt

Today’s large-scale mission-critical systems are software-intensive
systems, typically manufactured by big companies, where the system
engineering culture prevails over the software engineering one.
Innovation in software quality management is not simply a matter of
applying established techniques and adopting proper tools. It is a goal
to be pursued in the medium-long term, yet the benefits need to be
concrete, quantifiable and progressively visible. Support for strategic
decision-making is crucial to this aim. Advanced software quality
techniques, algorithms and methodologies are available in the scientific
literature, but far from direct applicability in real industrial production
environments. This is due to cost, skills, as well as organizational,
cultural and human factors.

The approach followed by SVEVIA, and the key for its success, was
bottom-up: rather than introducing sudden changes from the top, we
experienced that starting from exploiting the information available al-
most ‘for free’ is by far more useful, as it requires low effort, invest-
ments and training, and very limited modifications to the way engineers
use to work. We learned the following lessons:

• Tracking of engineering activities produces large amounts of data,
which can be mined for extracting are highly valuable information
to drive strategic decisions. Data-driven analysis techniques should
be context-driven; they are best defined after careful identification
of available data sources. Sometimes relevant information is hidden
and needs to be made explicit.

• Quality and heterogeneity of data have to be carefully considered. In
a large company, different units/teams use rather different ap-
proaches and tools, and collect data in many formats and with only
apparently same semantics. One of the first functionalities devel-
oped in SVEVIA was an import of defect data and of code violations
data from the various tools adopted across the company. While this
may appear technically trivial, actually it required to analyze teams’
practices and fill semantic gaps among similar data. Domain
knowledge is essential: understanding differences among teams in
various plants and countries is best accomplished by software en-
gineers together with domain experts.

• Decision support is provided by sophisticated models and algo-
rithms requiring data quality. Indeed, the more detailed and com-
plete the information, the more types of analysis are enabled, and
the more accurate their output. However, there is a trade-off be-
tween data quality and availability. The general principle we fol-
lowed is to rely on data collectable with minimal impact on the
workload of company engineers. The presented framework is
adaptive with respect to the available data: modules can be added
incrementally when more detailed data are made available.

Table 6
Company boost in quality management.

2013 2015

Tracked CSCIs 1912 2498
Used bug trackers 20 7
Monitored projects 0 144
Analyzed LLOCs 24.5M 163.5

Fig. 9. CSCIs analyzed per trimester in 2013–2015.

Fig. 10. Code quality improvement in years 2013–2015.
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Moreover, it may be important to provide stakeholders with incre-
mental deliveries of small yet tangible results.

• The success of models is directly related to the visibility of results.
For instance, the optimal code sanitization approach was the most
successful functionality because of the immediate visible feedback:
the measurements of violations regularly each 3 months favored a
regular and clear feedback on the effect of optimization, hence
boosting the adoption of this practice since the early phases of the
project. Similarly, prediction was appreciated as another key func-
tionality but only once observed its real “outcomes” (i.e., once ob-
served that CSCI predicted as most defective were actually the most
problematic ones), and not after the cross-validation of models (see
Section 5.1). The effect of productivity of all the other activities
(quality measurements, planning) was appreciated just later, be-
cause the cause-effect relation is less clear and explicit (hence the
effect less visible) and comes out only after some time.

• The complexity of statistical and optimization models need to be
made transparent to decision-makers. Moreover, separation of re-
sponsibilities is crucial to involve various managers in the company
hierarchy. We used role profiling – the framework has a uniform
interface, but differentiates the abstraction level of the information
displayed depending on the role.

• Historical product/process data are very valuable for tailoring pre-
diction and optimization techniques. As usual when introducing
innovations in consolidated processes, they need to be non intrusive
initially, yet they induce changes in practices over time. In the long
term this results in quality data which can be mined for making
explicit the knowledge traditionally implicit in the experience of
company professionals.

• Setting up such a quality management framework encountered dif-
ficulties too. The initial cultural barrier and skepticism towards
novelty in this type of industries (with consolidated and well-proven
practices) was a first hurdle, but it was overcome quite soon thanks
to a clear commitment at management level and to our bottom-up
approach discussed above. The tailoring of scientific methods and
techniques to real-world systems was a further hard engineering
work, especially whenever the assumptions made by models were
systematically violated and required more robust approaches (e.g.,
the dynamic test resources allocation). Academics and industrials
worked constantly together on looking for good trade-offs between
novelty of proposals and working prototypes. Validation on real
systems was the key feedback to turn research ideas into innovative
and concrete solutions. Finally, the integration on the existing pro-
cess took several months: it involved the company organization at
different sites on a global scale, engineers and developers from
several departments, requiring changes in the process (e.g., new
policies was released), in the tools (e.g., homogeneity of data col-
lected by all the used issue trackers), and in the engineers’ mentality
(e.g., considering the central role of quality measurements as sup-
port for decision making and not as a control means).

7. Related work

There are many commercial or open source tools for software
quality. Tools for accomplishing specific tasks such as code complexity
metrics measurement, automatic static analysis, and bug tracking are
sources of data leveraged by SVEVIA. The more detailed and fine-
grained the data gathered, the more accurate the SVEVIA predictions
and optimizations. On the other side of the spectrum, there are tools to
provide project management services complementary to those for de-
cision support offered by SVEVIA. Examples are: the mentioned
Atlassian JIRA for software planning, tracking and release;
RationalPlan14 for resources allocation, workload analysis, progress

tracking, costs estimation.
The tools more closely related to SVEVIA are those for product

quality management (e.g., SonarQube, IBM Rational Quality Manager
and HP Enterprise Quality Center) and for business intelligence (e.g.,
JReport, SAP, Qlik, ORACLE, Tableau). The formers support continuous
monitoring, inspection and analysis of code quality, and offer reporting
functionalities about phases of the software lifecycle – requirements
management, project/process metrics, management of test cases, (non-
optimal) test planning. To the best of our knowledge, none of such tools
incorporates the analytical models peculiar of SVEVIA. While they
feature management of resources, time, cost and quality, they offer
neither prediction nor optimization services, able to quantitatively
support managers in informed decision-making. Often, decision makers
about software quality keep on relying on their own intuition and ex-
perience.

Business intelligence tools do provide advanced visualization and
interactive dashboard reporting capabilities supporting quality-related
decisions. Although several techniques they employ have some com-
monalities with those implemented in the SVEVIA framework (e.g.,
predictive modelling, data mining, reporting and visualization), their
focus is not on software, but on aspects of business such as adminis-
tration, customer relationship management, business and strategic
planning, budgeting, operations and distributions, accounting and fi-
nancials. SVEVIA techniques are grounded on software-specific models
we developed for quality/cost/time prediction and optimization. They
embrace several research areas in the software engineering field, in-
cluding our own research work about reliability growth modeling [50],
defect analysis [23], test planning [41], optimal resource allocation
[42,51], defect prediction [52]. Unlike other tools, defect prediction in
SVEVIA exploits both SRGMs and the so-called fault-proneness models.
These approaches exploit different principles and use different data to
train models, as the former predicts the number of remaining defects by
observing the trend of inter-failure times during testing or operational
phase, whereas the latter exploit code-level metrics (in our case, ASA
violations) and a global history of pairs metrics-defects information to
train machine learning models and predict which component is defec-
tive (by a binary or ranking outcome), rather than predicting the
number of defects. SVEVIA provides both, as they can be exploited in
different phases (e.g., the SRGM-based prediction is useful during
testing or for release planning, the fault-proneness prediction is useful
before testing to spot critical components) and by different actors, de-
pending on the information available at a given stage.

SVEVIA uses SRGMs also for test planning. This functionality is
embedded in a dynamic approach that can re-evaluate the best allo-
cation on-demand, based on the available test data, in a multi-objective
setting (to balance cost, time and reliability), and by comparing eight
different models to give faithful predictions. These are all features not
available in existing tools either for test planning and/or for defect
prediction. Optimization for code sanitization is a further key novelty.
Indeed, tools for static analysis, like SonarQube or Cast, offer facilities to
suggest the violations to remove, based on the severity of violated rules.
They do not employ, however, an optimization model to minimize a
cost/technical-debt function able to tell how many violations and of
which type should be removed from which single component in order to
attain a desired quality target in terms of number of violations.

Finally, although existing tools do provide numerous metrics for
assessing the quality of processes, SVEVIA exploits prediction to build
more informative metrics. For instance, stating that testers have de-
tected 10 defects in a component is not informative about the quality of
their work nor about the quality of the component. There is a big dif-
ference if the component has 15 or 50 total defects: including the es-
timated number of defects (as we did with SRGMs-based estimation) is
indeed more informative, despite the metric is a statistical estimate and
not a deterministic one. Another example is the quality-aware pro-
ductivity, where quality information is embedded in the productivity
figure. The metrics in SVEVIA support a quality assessment of the three14 http://www.rationalplan.com.
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key processes – coding, testing, bug fixing – more oriented to decision
making.

In summary, the added value of SVEVIA services comes from:

• statistical techniques (time series analyses, stochastic modeling and
multi-objective optimization) applied to software quality assess-
ment/improvement and test planning;

• reliability growth models and fault-proneness models for prediction;

• code infringements and tests prioritization algorithms;

• innovative metrics and key performance indicators suited to support
decisions related to software quality;

• an integrated framework where all the presented models and me-
trics about the three key processes are provided together in a single
platform.

8. Conclusions

Large-scale software-intensive mission-critical systems are en-
gineered in ecosystems centered around big industries or system in-
tegrators, and encompassing tool providers and external suppliers.
Innovations in software quality management processes in these in-
dustries are constrained by cost, organizational, cultural and human
factors. We have presented the SVEVIA framework for supporting
strategic decisions concerning software quality and productivity as-
sessment and improvement, and effective planning of resources usage.
It features low intrusiveness in existing quality monitoring practices, by
exploiting data from available heterogeneous sources, including auto-
mated static analysis and test management tools, and issue trackers.

Based on advanced mathematical models and algorithms, made
transparent to decision-makers, the framework provides support for
software quality estimation, for prediction of quality-cost-time trends,
and for optimization of the allocation of resources to software ver-
ification and validation activities.

The results and the lessons learnt with an ATC pilot project and with
three years of field data of tens of projects in various mission-critical
system domains show the effectiveness at supporting managers in
making thoughtful decisions concerning software quality and en-
gineering processes.
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