A Survey of Software Aging and Rejuvenation Studies

DOMENICO COTRONEO, ROBERTO NATELLA, ROBERTO PIETRANTUONO,
STEFANO RUSSO, Universita degli Studi di Napoli Federico IT

Software aging is a phenomenon plaguing many long-running complex software systems, which exhibit per-
formance degradation or an increasing failure rate. Several strategies based on the proactive rejuvenation of
the software state have been proposed to counteract software aging and prevent failures. This survey paper
provides an overview of studies on Software Aging and Rejuvenation (SAR) that appeared in major jour-
nals and conference proceedings, with respect to the statistical approaches that have been used to forecast
software aging phenomena and to plan rejuvenation, the kind of systems and aging effects that have been
studied, and the techniques that have been proposed to rejuvenate complex software systems. The analysis
is useful to identify key results from SAR research, and it is leveraged in this paper to highlight trends and
open issues.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Reliability, availability, and service-
ability
General Terms: Reliability, Performance

Additional Key Words and Phrases: Software Aging; Software Rejuvenation; Performance Degradation;
Aging-Related Bugs; Software Aging Literature

1. INTRODUCTION

The software aging phenomenon consists in the increase of the failure rate or perfor-
mance degradation of a system as it executes, which can be due to the accumulation of
errors in the system state and to the consumption of resources such as physical mem-
ory [Huang et al. 1995; Grottke et al. 2008]. This phenomenon has been known by
practitioners since a long time. Early evidences of software aging were found already
in the 1960s: the Safeguard military system was affected by hangs occurring once er-
ror reporting buffers were full [Bernstein and Kintala 2004]. As software has grown
in size and complexity, software aging has been observed in an increasing number
of long-running systems, including telecommunication switching and billing software
[Huang et al. 1995; Avritzer and Weyuker 1997], and it led to the well-known accident
of the Patriot anti-missile system that caused the loss of human lives [Marshall 1992].
Software aging can be attributed to elusive software bugs: studies in the early 1990s
by Lawrence Bernestein on telecommunication systems [Bernstein 1993] pointed out
the high incidence of bugs that, when triggered, do not immediately cause a software
failure, but manifest themselves as memory leakage, unreleased file locks, data cor-

This work was partially supported by the FP7 project CRITICAL-STEP (http://wuw.critical-step.eu),
Marie Curie Industry-Academia Partnerships and Pathways (IAPP) n. 230672, funded by the European
Commission, and by the TENACE PRIN project (n. 20103P34XC) funded by the Italian Ministry of Educa-
tion, University and Research.

Authors’ email addresses: {cotroneo, roberto.natella, roberto.pietrantuono, sterusso}@unina.it

Authors’ postal address: Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione (DIETTI),
Universita degli Studi di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1550-4832/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

ruption and numerical error accumulation, making the system to slowly degrade its
performance and to eventually fail. Often, such bugs are too subtle or too costly to
be removed during development. Research at the AT&T Bell laboratories on fault-
tolerant software then identified Software Rejuvenation as a cost-effective solution to
counteract Software Aging [Huang and Kintala 1993; Huang et al. 1995; Wang et al.
1995; Bernstein and Kintala 2004]. Software Rejuvenation is a proactive approach for
preventing performance degradation and failures due to Software Aging: it consists in
the occasional or periodical clean-up of aging effects (which can be achieved by a sim-
ple software restart, or by more complex techniques), in order to postpone failures and
to restore performance. Software Rejuvenation represented a novel form of preventive
software maintenance compared to other forms of preventive software maintenance
existing at that time [Kajko-Mattsson 2001], which were focused on the installation of
updates in order to prevent field failures [Adams 1984] or re-engineering a software
program in order to cope with its obsolescence [Parnas 1994].

Since early studies on Software Aging and Software Rejuvenation by the AT&T Bell
laboratories in the 1990s, much efforts have been devoted to characterize the soft-
ware aging phenomenon and to devise cost-effective rejuvenation strategies. After two
decades, a significant body of knowledge has been established and an international
community of researchers in the area of Software Aging and Rejuvenation (SAR) has
grown. It thus becomes important to look at what has been done, in order to identify
what has still to be accomplished to make industry practitioners aware of the Soft-
ware Aging problem and to foster the adoption of Software Rejuvenation approaches,
and which are the future challenges for researchers of the SAR community.

Starting from our preliminary analysis in [Cotroneo et al. 2011al], this paper pro-
vides a comprehensive analysis of SAR literature, by reviewing 495 papers that were
published in the fields of software engineering and software dependability. The aim of
this paper is to provide an overall picture of the state-of-the-art in Software Aging and
Rejuvenation. We survey relevant studies with respect to the approaches that have
been used to forecast software aging phenomena and to plan rejuvenation, the kind
of systems and aging symptoms that have been studied, and the techniques that have
been proposed to rejuvenate complex software systems. The analysis is useful to iden-
tify key results from SAR research, and it is leveraged in this paper to highlight trends
and open issues deserving attention in the near future by the SAR community.

The paper is organized as follows. Section 2 summarizes basic definitions and con-
cepts about Software Aging and Rejuvenation. In Section 3, we describe the procedure
that we followed to collect SAR research papers. Section 4 reviews SAR literature with
respect to different dimensions. Section 5 concludes the paper with a discussion about
open issues and research opportunities.

2. BASIC CONCEPTS ON SOFTWARE AGING AND REJUVENATION

Before analyzing Software Aging and Rejuvenation studies, we briefly provide in this
section some definitions and concepts that will be recalled in this survey. An in-depth
discussion about fundamental concepts can be found in [Grottke et al. 2008]. In general
terms, the Software Aging phenomenon consists in the increase of failure rate and/or
decrease of performance of a long-running software system. In turn, it is due to the
activation and propagation of the so-called Aging-Related Bugs (ARBs), a particular
class of software faults that manifest their effect only after a long period of execution.
The activation of these bugs does not immediately cause a failure of the system: con-
sidering the conceptual fault-error-failure chain proposed in [Avizienis et al. 2004], the
peculiarity of ARBs is that their activation/propagation depends on the total time the
system has been running, and/or that they lead to error accumulation, which causes
the system to gradually shift from a correct state to a failure-prone one. After a long

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

enough execution time has elapsed, or after a significant amount of errors has been
accumulated, ARBs lead to aging-related failures (e.g., an operation that allocates
memory fails, causing the crash of a process). Error accumulation usually takes the
form of bad resource management that leads to resource exhaustion, such as mem-
ory leaks, unterminated threads, and unreleased file locks: in such cases, the expected
time to aging-related failure is referred to as time to (resource) exhaustion (TTE).
Moreover, error accumulation is influenced by the amount and type of work performed
by the system, which is referred to as workload.

Aging effects are the results of error accumulation, in terms of leaked resources or
corrupted state; these effects can be detected by means of aging indicators, that is,
system variables that can be directly measured and that can be related to Software Ag-
ing phenomena. Examples of aging indicators are data about resource usage of the op-
erating system, such as free physical memory, used swap space, file and process tables
size. In [Garg et al. 1998b], an experiment was performed by monitoring OS resource
usage in a LAN of UNIX workstations using a distributed SMNP monitoring tool, in
order to identify software aging trends. Fig. 1 shows the consumption of real memory
and file tables across 53 days. Since aging phenomena may not be evident simply by
visual inspection of data, trend detection techniques are usually adopted to detect the
onset of software aging. In Fig. 1, a trend is detected by smoothing of observed data
by robust locally weighted regression, which provide visual cues that there is a grad-
ual decrease of free memory and and increase of file table size. To make conclusive
statements regarding the presence or absence of software aging trends with statistical
confidence, the use of statistical techniques is required: examples of techniques that
were usually adopted are the seasonal Kendall and the Mann-Kendall tests for trend,
for testing the hypothesis that there is an upward or a downward trend in the observed
data, and the Sen procedure to estimates for the slope of a trend. Using the estimated
slope, it is possible to compute the expected TTE of a given resource.

35000

File Table Size
140 160 180 200 220 240 260

Real Memory Free
25000

15000

Time Time

(a) Free memory. (b) File table size.

Fig. 1: Trend analysis of resource consumption in a UNIX system [Garg et al. 1998b]
© IEEE.

Resource leaking and other aging effects can be due to aging-related bugs in ap-
plication software, in the libraries that the application is using or in the application
execution environment (e.g., the operating system). However, fixing these bugs is not
always feasible, since bugs could be in third-party or reused code for which developers
lack source code and/or expertise on their internals; moreover, it can be very difficult to
identify these bugs in complex software applications. Software rejuvenation is a cost-
effective approach to remove aging effects and avoid aging-related failures, which does
not require to know the location of aging-related bugs, or even the very fact of their

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A4

existence. Software Rejuvenation was defined in [Huang et al. 1995] as the preemptive
rollback of continuously running applications to prevent failures in the future. Since
an application may be unavailable during rejuvenation, rejuvenation can increase the
downtime and incur in some costs (e.g., costs due to the loss of business). However,
these costs can be minimized by scheduling rejuvenation during the most idle times
of an application. Instead, it is likely that the costs of downtime will be high if the
downtime is unscheduled, as it happens during a failure. Rejuvenation can avoid, or
at least postpone, aging-related failures, therefore it can reduce the overall downtime
and related costs.

For this reason, the most important problem in the SAR field is to plan when to
perform rejuvenation during execution (rejuvenation schedule) in order to improve
availability and reduce costs. An example is represented by the simple model based on
continuous-time Markov chains that was introduced in [Huang et al. 1995] to analyze
software rejuvenation (Fig. 2). In this model, after starting the application stays in the
“highly robust state” Sy, in which the probability of aging-related failures is negligible
since the application has not aged. After some time (at a rate o much lower than the
others), the application will go into a failure-probable state Sp (e.g., some resources
have been leaked and are close to be exhausted); in this state, the application can fail
with rate A and go to the failed state Sr, and will be repaired at a rate r;. If the system
performs rejuvenation, it will go from state Sp to Sg at rate r4, and then to the robust
state Sy at rate r3. This model allows to compute the expected downtime (both sched-
uled and unscheduled) and its costs; in turn, it allows to analyze whether, and under
which conditions, software rejuvenation is beneficial to availability. For instance, if the
cost of rejuvenation is small and the failure rate is large, rejuvenation should be per-
formed as soon as the application goes into a failure probable state. However, several
other models, which will be discussed in the following sections, have been proposed in

the SAR literature.

Fig. 2: Probabilistic state transition model for a system with rejuvenation.

A simple way to perform software rejuvenation is to restart the application. Restart-
ing can involve queuing the incoming messages temporarily, cleaning up the in-
memory data structures, respawning the processes at the initial state or at a previ-
ously checkpointed state. Moreover, rejuvenation can be performed at different levels,
ranging from restarting an individual component to rebooting the whole node in which
the application is running. The definition of rejuvenation techniques (i.e., how to
perform rejuvenation), able to reduce the likelihood of aging failures and to keep low
rejuvenation costs, is another important problem of SAR, that will be analyzed in the
following of this paper.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A5

3. ANALYSIS OF LITERATURE

To have a picture of the current status of SAR literature, we analyzed conference pro-
ceedings and journals in the area of software dependability and software engineering.
We collected papers on SAR by following a two-step procedure:

(1) Bootstrap: We obtained an initial set of papers through a keyword-based search of
papers appeared in a selected set of conference proceedings and journals;

(2) Recursive closure: We extended the set of papers by inspecting the reference list of
each paper in the initial set and adding all referenced papers relevant to Software
Aging and Rejuvenation to the set. Moreover, with the aid of search engines, we
identified all papers referencing any paper in the initial set, and relevant to Soft-
ware Aging and Rejuvenation, and we also added these papers to the set. These
operations have been repeated for each newly added paper, until no more papers
could be added to the set, thus obtaining a “recursive closure” of the initial set of
papers.

To perform our analysis, we relied on the SciVerse Scopus (http://www.scopus.com)
and the IEEE Xplore (http://ieeexplore.ieee.org/) search engines. These digital
libraries index and provide access to scientific journals and proceedings from major
computer science publishers. We considered publications from ACM, IEEE, Elsevier,
Wiley, and Springer. During the bootstrap phase, we adopted the following criteria:

— Search keywords. To obtain the initial set of papers, a search has been carried out
by querying for the words “aging”, “rejuvenation”, “restart”, or “leak” in the meta-
data (title, abstract, and keywords) of publications. It is important to note that these
words may not refer to the Software Aging phenomenon as intended in this paper,
and that the results of the search were manually inspected in order to remove ir-
relevant results. For instance, in the case of software engineering studies, the word
“aging” has also been adopted for indicating software obsolescence (e.g., because
of changed requirements or maintenance actions) [Parnas 1994]. Other contexts in
which the word “aging” has been adopted include the wear-out of hardware compo-
nents, and computer systems for aiding elderly people. Similarly, the word ”leak”
has also been adopted in the context of computer security to refer to unauthorized
information disclosure.

— Selection of conferences and journals. The search described above was focused
on a set of relevant publication venues in the fields of software dependability and
software engineering, since the number of papers returned by the search criteria
mentioned above is very large. First, we identified a set of journals and transactions
from the aforementioned publishers that are related to these fields, such as IEEE
Transactions on Software Engineering and Journal of Systems and Software. We
subsequently identified flagship conferences and symposia in these fields (and work-
shops held jointly with them), including the IEEE /IFIP International Conference
on Dependable Systems and Networks, the ACM /IEEE International Conference on
Software Engineering, and ACM SIGMETRICS | Performance. Other journals and
proceedings were added by querying search engines for "software engineering" in
the journal or proceedings title, and by analyzing publications from well-known
SAR researchers (i.e., authors appearing most frequently in our preliminary analy-
sis [Cotroneo et al. 2011a], such as K.S. Trivedi).

By querying search engines, we obtained a list of 1,021 publications. These publica-

tions were analyzed in order to discard irrelevant results: in most cases, the analysis
of the abstract was enough to identify with confidence whether the publication was

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

actually related to Software Aging and Rejuvenation. This process produced a set of
204 publications.

Although the bootstrap phase allowed us to find a large number of SAR papers, it
cannot assure that the sample of papers is comprehensive and unbiased (e.g., results
could be biased due to the choice of keywords and of publication venues). Therefore, we
extended the set of papers by recursively including papers referencing or referenced
by the papers in the set (i.e., we checked references and citations of papers in the ini-
tial set of papers, as well as of each newly added paper), in order to obtain a recursive
closure. Again, papers were manually inspected in order to make sure that they were
actually related to the SAR field. This procedure allowed us to include 291 additional
relevant studies, thus obtaining a set of 495 papers. These papers constitute a large
bibliography about Software Aging and Rejuvenation, and it can provide a comprehen-
sive picture of the state of the art in this field. These papers were further analyzed as
discussed in the following sections.

It is important to note that there are some redundancies among the analyzed papers
due to papers that are based on previous papers from the same authors (e.g., a journal
paper based on a previous conference paper). However, in peer-review research venues,
the degree of originality is one of the most important evaluation criteria, and extended
versions of previously published papers should provide new material in order to be
accepted for publication. Therefore, we assume that every paper has some original
contents, even in the presence of redundancies. Although the extent of new material
can be substantial in some cases and marginal in others, this is a subjective judgement
and we do not have available a way to measure originality in a quantitative way (in
fact, reviewers typically evaluate originality in a qualitative way, on the basis of their
own knowledge and perception of the value of paper contributions). Therefore, we in-
cluded in our analysis both extended papers and their preliminary versions. However,
counting both types of papers in the analysis of the literature reflects the fact that
more work than an individual paper has been devoted to a given problem, therefore
this approach does not severely affect the analysis of the topics on which SAR research
has been focused.

In Figure 3, the number of papers per year is reported. An increasing trend can
be noticed. A sharp increase in the number of SAR-related papers was fostered by
the 2008 WoSAR workshop, which took place for the first time in that year. A sharp
decrease occurred in 2009 due to the absence of WoSAR in that year. The workshop
took again place in 2010 and 2011, along with the publication of the Special Issue on
Software Aging and Rejuvenation (based on WoSAR 2008 papers) on the Journal of
Systems and Software in 2010. This is confirmed by the high number of papers dis-
cussed at WoSAR and JSS, as shown in Figure 4, which provides the number of pub-
lications for venues with at least 2 SAR papers. In the area of software dependability,
the venues preferred for SAR studies were ISSRE, DSN (and satellite workshops), and
PRDC. However, several studies also appeared in software engineering conferences,
such as ICSE, PLDI, and several other conferences published in the LNCS series. The
journals with the highest number of SAR studies are JSS, TR, TDSC, SPE, and PEVA.

4. DETAILED ANALYSIS OF SOFTWARE AGING AND REJUVENATION STUDIES

In order to provide a framework for analyzing the state-of-the-art in SAR research, we
introduce four orthogonal dimensions, that we believe can provide a comprehensive
overview of the literature and insights on future research directions that could be
pursued by the Software Aging and Rejuvenation community. Each dimension consists
of a set of classes that are used to classify the surveyed studies. The dimensions are:

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A7

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Year

Fig. 3: Number of SAR publications per year.

— Type of analysis: This dimension reflects the type of analysis that is conducted in
the studies. It includes model-based, measurement-based, and hybrid studies about
strategies for planning software rejuvenation, studies that deal with the detection
and the avoidance of aging-related bugs respectively during software verification
and development, studies that propose novel rejuvenation techniques, and field fail-
ure data studies.

— Type of system: This dimension classifies the system in which the Software Aging
phenomenon has been studied, in terms of domain and criticality of the system.

— Aging effects and aging indicators: This dimension classifies the studies with re-
spect to the system resources or performance indicators in which effects of Software
Aging were experienced, and which can be adopted for planning Software Rejuve-
nation.

—Rejuvenation techniques: This dimension describes the technique which is
adopted or proposed in the study in order to clean-up the system state and reduce
the likelihood of aging failures.

4.1. Type of analysis

This section deals with the type of analysis that researchers undertook in these years
to study Software Aging and Software Rejuvenation.

Model-based studies: Software Aging has been analyzed starting from the empir-
ical observation that several long-running systems are affected by transient failures
and need, from time to time, to be rebooted. As early studies on telecommunication
and transactional systems demonstrated [Gray 1985; Bernstein 1993], there is a high
incidence of bugs that manifest themselves as memory leakage, broken pointers, un-
released file locks, and numerical error accumulation, making the system to slowly
degrade its performance and to eventually fail. Therefore, practitioners adopted some
form of software rejuvenation since a long time, in order to counteract aging effects
[Bernstein and Kintala 2004]. This approach raised the problem of optimal scheduling
of rejuvenation actions, in order to be cost-effective. [Huang et al. 1995], followed by
others in the subsequent years [Garg et al. 1998a; 1995; Garg et al. 1996], attempted
to model the phenomenon in order to provide an abstract view of it and a mathemat-
ical treatment. This allowed researchers to cope with software aging by formulating
analytically the phenomenon, focusing the attention on how to optimally schedule re-
juvenation actions.

Analytical models were first employed in order to prove that software rejuvenation
can reduce the costs of system downtime [Huang et al. 1995] and minimize program

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

papers

- N
o o

0
S
0T
T4
o]
SE

WOSAR
LNCS
DSN
ISSRE
PLDI
PRDC

1ss
OOPSLA
ICSE
ARES
TSE

SPE
PEVA
IEICE TIS
FTCS
COMPSAC
USENIX
TR

TDSC
ISSTA
ISAS
ICSEA
ESEC/FSE
ASPLOS
WCSE
TOCS

TC

SRDS
SOSE
RESS
PEVAR
0osDI
NCA
ISPA
ISADS
IPDPS
SMC
ICPADS
EUROMICRO
DepCoS
AlSC)
ASE
APSEC
ACM SIGPLAN Notices
TOPLAS
SHAMAN
SERE
SELF-STAR
asic
PPP)
POPL
PEPM
JSEE
JHSN
Jest
ISMM
ISIP

INM
1IRQSE
1ICA

IET Software
|EEE Computer
ICSM
ICCSA
ICAS

anuaa uoyediqng

2
lllllllllllllllllllllllll||||||||||||||||||||||||llllIIIIIIIIIIII||||

IBM-IRD
HPCC
HASE

Fig. 4: Number of SAR publications in major journals and conference proceedings.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A9

completion time [Garg et al. 1996] in the presence of software aging. Model-based
studies can be distinguished by the type of stochastic process used to model the phe-
nomenon. There are many type of models adopted, typically Markov-based. These in-
clude:

— Markov processes and semi-Markov processes: this type of processes with their vari-
ants are today the basis for model-based SAR analysis. The first work on software
aging by Huang et al. modeled the phenomenon using a four-state Continuous-Time
Markov Chain (CTMC), which still represents the basic model of the phenomenon
(as discussed in Section 2).

This basic model has been extended in many ways, using Markov and Semi-Markov
processes. Examples are [Garg et al. 1998a], in which a non-homogeneous CTMC is
used (i.e., in which the sojourn time in each state is not exponentially distributed),
and [Bao et al. 2005], where Semi-Markov Processes are used (i.e., in which the
transition rates from one state to another depend, besides the current state, on the
time spent in it) to model proactive fault management.

Markov chains are still widely used in their basic form, basically to: i) analyze more
complex systems, possibly with multiple rejuvenation strategies (e.g., in [Xie et al.
2004] cluster systems behavior is described by CTMC), to ii) analyze aging in new
contexts, such as systems using virtualization technologies (examples are given by
the works in [Myint and Thein 2010] and [Kourai and Chiba 2007], where aging
and rejuvenation is studied for virtualized servers), or to iii) describe more complex
failure manifestation (instead of modeling one failure state causing the total service
unavailability, various degrees of “failures” are considered for modeling a gradually
decreasing service rate, i.e., a performance degradation; in [Du et al. 2009], [Pfening
et al. 1996], [Koutras and Platis 2011], [Okamura and Dohi 2011], multiple degra-
dation systems performance is described by a CTMC).

— Other Markov-based models: although most of studies adopt the classical Markov
and semi-Markov processes, some papers explored different types of modeling. For
instance, authors in [Garg et al. 1995; 1998a; Wang et al. 2007] used Markov Regen-
erative Processes (MRGP), in conjunction with Stochastic Petri Nets (SPN), in order
to build a simple but general model to estimate the optimal rejuvenation sched-
ule in a software system. Markov regenerative processes are a generalization of
Markov and semi-Markov processes, which can capture the behavior of real systems
with both deterministic and exponentially distributed event times. Thus, while the
first models consider exponentially distributed rejuvenation rate from the failure
probable state, authors using MRGP coped with deterministic rejuvenation interval,
starting from the robust state. Authors show the effect of the such a deterministic
rejuvenation interval on the steady state expected down time and cost.

The problem of finding the optimal rejuvenation schedule has been formulated also
as a Markov Decision Process (MDP) where: the time is discretized and represents
one dimension of the state description, the decisions at each state determines if the
system should be rejuvenated or not, and the solution consists in finding the optimal
policy so that a cost function is minimized. An example is represented by one of the
first SAR works, in [Pfening et al. 1996], where authors adopted a Markov decision
process to build a software rejuvenation model in a telecommunication system in-
cluding the occurrence of buffer overflows. A more recent example is represented by
the work [Okamura and Dohi 2011], in which Partially Observable Markov Decision
Processes (POMDP) are also used to model the phenomenon. In their future work,
authors plan to include in the formulation information coming from the system (i.e.,
“signs of aging”) in order to build online adaptive algorithms to control the software

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

rejuvenation, in which case the strategy would be an example of Aybrid approach
(i.e., both model- and measurements-based), described later in this section.

— Petri Nets: Petri Nets and their numerous variants are formalisms strictly related to

Markov-based models, but that are more compact and in some cases easier to define.
This formalism allows more easily to express performability metrics with multiple
levels of performance, and is particularly useful to express metrics in more complex
systems, such as systems with multiple nodes (e.g., clusters).
For instance, Deterministic and Stochastic Petri Nets (DSPN) were employed in
[Wang et al. 2007] in order to build a model to analyze performability of cluster sys-
tems under varying workload. Similarly, Stochastic Reward Nets (SRN) were used
by [Vaidyanathan et al. 2001] to model clustered systems. A recent approach based
on Petri nets has been presented by [Salfner and Wolter 2010], in which authors
focused on the evaluation of time-triggered system rejuvenation policies using a
queuing model, formulated as an extended stochastic Petri net. More recently, the
work in [Andrade et al. 2011] combined Stochastic Reward Nets (SRN) with SysML
to make it easier for system administrators to analyze rejuvenation in their server
systems. Their goal is to adopt a semi-formal language, SysML, to describe the sys-
tem configurations and maintenance operations, allowing people not having exper-
tise in availability modeling to design and study the effects of different rejuvenation
policies deployed in server systems.

Model-based studies analyze abstract models, making some simplifying assump-
tions about a system, such as assumptions about the underlying stochastic distribu-
tions that characterize the system. These models can apply to a wide range of
systems, therefore model-based approaches can provide more general find-
ings and can be more portable across systems than measurement-based ap-
proaches. However, model-based software rejuvenation can be less effective
than measurement-based approaches, since it may not exploit some peculiarities
of a specific system, and may not be able to adapt to conditions different than expected.
In any case, model-based approaches rely on real data in order to populate model pa-
rameters, which could be obtained from measurement-based analysis.

Measurements-based studies: a considerable attention has also been devoted to
the empirical analysis of Software Aging based on measurements from real systems.
Since the phenomenon manifests itself as performance degradation and/or resources
consumption [Huang and Kintala 1993; Huang et al. 1995], researchers focused on ap-
proaches for exploiting empirical measurements from the system, in order to identify
whether the system is in a failure-prone state due to Software Aging, to forecast the
time-to-aging-failure, and to plan Software Rejuvenation. Measurements-based stud-
ies also provide detailed information about aging phenomena in real systems, which is
useful to better understand the nature and the extent of Software Aging and to raise
the awareness on this issue.

The basic idea of measurement-based rejuvenation approaches is to directly moni-
tor system variables, namely aging indicators, that can denote the onset of software
aging, and predict the occurrence of aging failures by analyzing the collected runtime
data statistically. This will provide hints about the best time to perform rejuvenation.
Several approaches have been proposed to perform prediction, that can be grouped in:

— Time series analysis: a widely used approach is adopting time-series analysis on
monitored resources. Time series are typically analyzed by first using trend tests
to accept/reject the hypothesis of no trend in data (e.g.,, Mann-Kendall, t-student,
Seasonal Kendall tests), and using techniques to estimate such trend and possi-
ble seasonality in data (e.g, multiple linear regression, regression smoothing, Sen’s
slope estimate procedure, autoregressive models).

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A1

One of the first measurement-based analyses is reported by [Garg et al. 1998b]: in
that paper, a set of 9 Unix Workstations was monitored for 53 days using an SNMP-
based monitoring tool. During the observation period, 33% of reported outages were
due to resource exhaustion, highlighting that Software Aging is a non-negligible
source of failures in computer systems. In [Li et al. 2002; Grottke et al. 2006], the
authors analyzed performance degradation also in the Apache Web Server by sam-
pling web server’s response time to predefined HTTP requests at fixed intervals. Col-
lected data were analyzed using similar techniques adopted in [Garg et al. 1998b].
Seasonal patterns analysis have been also considered in [Grottke et al. 2006], in
which trends are analyzed also in presence of seasonal variation in data. Time-
series ARMA/ARX models have been also used by [Li et al. 2002] on the Web Server
Apache, in order to estimate the resource exhaustion. Compared with the linear re-
gression and extended linear regression models, ARX model incurs higher initial
overhead, but once it is established, it can be used for prediction for a long period
without reestimating the parameters in the model.

Time-series analysis has been also adopted to study the relationship of the Software
Aging phenomenon with workload in complex systems, including the Linux Kernel
code [Cotroneo et al. 2010], and the Java Virtual Machine [Cotroneo et al. 2011b].
In both cases, the analysis of workload parameters is used to provide indications on
potential sources of Software Aging, by highlighting the subsystems whose param-
eters are correlated to the experienced aging trends. Principal Component Analysis
(PCA) followed by multiple linear regression are adopted in such works, in order to
remove first-order correlation among predictors and then to provide linear estimates
of aging trends, by regression, reducing the problem of multicollinearity.

ARIMA (Autoregressive Integrated Moving Average) and Holt-Winters (Triple Ex-
ponential Smoothing) models have been used in [Magalhaes and Silva 2010], where
authors developed a framework for detection of performance anomalies caused by
aging, which is targeted to web and component-based applications. In particular,
the framework monitors application/system parameters, used to determine the cor-
relation between the application response time and the input workload, in turn used
to train machine learning algorithms. At run-time, parameters collected by monitor-
ing are estimated ARMA and Holt-Winters algorithms, and the estimations classi-
fied by the trained ML algorithms to determine if the application may incur in some
performance anomaly.

Four different time-series models have been used in [Araujo et al. 2011b] in order
to schedule software rejuvenation properly. Used models are: the linear model, the
quadratic model, the exponential growth model and the model of the Pearl-Reed
logistic. They have been adopted for predicting memory consumption trends on the
Eucalyptus cloud computing framework.

One more paper considering non-linear models is in [Jia et al. 2008], in which ag-
ing is studied in Apache by constructing a dynamic model to describe the software
aging process following the method of nonlinear dynamic inversion. Software aging
process is shown to be nonlinear and chaotic.

In the best practice guide by Hoffmann et al. [Hoffmann et al. 2007], multivariate
non-linear models (support vector machines, radial, and universal basis functions)
have been compared with multivariate linear models. The former ones have shown
better performance than linear models in the benchmarking case studies.

— Machine learning: Machine learning approaches are a more sophisticated form of
data analysis, which adopt algorithms from the field of Artificial Intelligence (e.g.,
classifiers and regressors) to identify trends and classify a system state as robust
or failure-prone. A work in this regard appeared in [Cassidy et al. 2002], in which
authors adopt pattern recognition methods to predict Software Aging phenomena in

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

shared memory pool latch contention in large OLTP servers. The approach applies
non-linear, non-parametric regression to a large set of system variables, and ana-
lyze the residual error between the predicted and the actual system values using
a sequential probability ratio test, in order to predict the onset of Software Aging
effects. Results showed that these methods allowed to detect significant deviations
from “standard” behavior with a 2 hours early warning. Another example of the ap-
plication of machine learning approach to predict software aging failures is explored
in [Alonso et al. 2011a] in the context of a three-tier J2EE system; in that work,
Alonso et al. propose a machine learning approach to build automatically regression
trees models that relate several system variables (e.g., number of connections and
throughput) to aging trends, based on the observation that Software Aging trends
can be approximated using a piecewise linear model. The models were trained us-
ing data samples collected in preliminary experiments, and were used to predict
the TTE of system resources under conditions different than the ones observed dur-
ing the training phase. Three different machine learning algorithms (namely, naive
Bayes classifier, decision trees and a neural network model) have been also used, in
combination with time-series models, in the previously mentioned work [Magalhaes
and Silva 2010], in order to predict aging in web applications.

— Threshold-based approaches: differently from the previous ones, this kind of ap-
proaches define thresholds for some aging indicators, and the rejuvenation is trig-
gered when the monitored indicators exceed such thresholds. For instance, indica-
tors may refer to resource consumption. Difficulties arise in identifying the best
indicators and the right thresholds for them, that are able to prevent actual failures
and useless rejuvenation actions at the same time. An examples of this approach is
in the work [Silva et al. 2009], which adopts thresholds on mean response time and
on quality of service indicators. Authors propose a rejuvenation approach based on
self-healing techniques, that exploits virtualization to optimize recovery. They im-
plemented a rejuvenation framework, called VM-Rejuv, in which an Aging Detector
module detecting aging conditions based on the mentioned thresholds.

The work in [Silva et al. 2006] is a further example of threshold-based approach;
the paper presents an analysis of software aging in a SOAP-based server, in which a
dependability benchmarking study is conducted to evaluate some SOAP-RPC imple-
mentations, focusing in particular on Apache Axis, where they revealed the presence
of aging by parameters monitoring.

In [Matias Jr. 2006], authors presents an evaluation of aging effects in Apace Web
server, based on a controlled experiment. In that work, the memory consumed by
Apache was observed together with three controllable workload parameters: page
size, page type (dynamic or static) and request rate; authors adopted thresholds
on the usage of virtual memory as aging indication. The work in [Araujo et al.
2011b] combines threshold-based approach (wit ha threshold on memory utiliza-
tion) with time-series analysis. It implements a rejuvenation policy in the Euca-
lyptus cloud computing infrastructure, by using multiple thresholds and forecast-
ing by time series analysis models. Time-series models adopted are: linear model,
quadratic model, growth curve model, and S-curve trend model. Thresholds on re-
sources are also adopted in [Avritzer and Weyuker 2004], where threads and mem-
ory are monitored and actions a re taken when they exceed some thresholds (e.g.,
garbage collection).

Measurement-based studies forecast software aging based on direct measurements
(e.g., based on time series), and provide empirical data about software aging phenom-
ena. The advantage of this kind of approach is that software aging forecasting
can adapt to the current condition of the system (e.g., the current operational

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

profile, which may not have been foreseen before operation), and can accurately pre-
dict the occurrence of aging phenomena. However, this kind of approach may
not be easily generalizable, since they exploit some peculiar aspect related to the
nature of the considered system (e.g., the fact that some particular resource exhibits
seasonal or fractal patterns [Garg et al. 1998b; Shereshevsky et al. 2003]). Moreover,
measurement-based approaches are not meant to estimate long-term dependability
measures such as availability.

Hybrid studies: remarkable attempts have been made to combine the benefits
of both model-based and measurement-based approaches, by describing the
phenomenon analytically, most often by Markov-based models, and determining the
model’s parameters through measurement, i.e., via observed data. These works are
here referred to as hybrid, in that they combine aspects of the previous two approaches.
Despite the practical importance of hybrid approaches, only a minority of
studies has been made to exploit measures for feeding models.

Interesting examples are represented by the papers [Vaidyanathan and Trivedi
1999] and [Vaidyanathan and Trivedi 2005]. They presented results of an analysis
conducted on the same set of Unix workstation used in [Garg et al. 1998b]. While
the latter considered only time-based trend detection and estimation of resource ex-
haustion without considering the workload, these papers took the system workload
into account and built a model to estimate resource exhaustion times. They consid-
ered some parameters to include the workload in the analysis, such as the number
of CPU context switches and the number of system call invocations. Different work-
load states were first identified through statistical cluster analysis and a state-space
model was built, determining sojourn time distributions; then, a reward function,
based on the resource exhaustion rate for each workload state, was defined for the
model. By solving the model, authors obtained resource depletion trends and TTE for
each considered resource in each workload state. The methodology allows carrying out
a workload-driven characterization of aging phenomena. The second one of these two
works [Vaidyanathan and Trivedi 2005] is a clearer example of a hybrid approach, in
which: i) a measurement-based semi-markovian model for system workload is built, i7)
TTE for each considered resource and state (using reward functions) is estimated, iii)
and finally a semi-Markov availability model is provided, based on field data rather
than on assumptions about system behavior.

A further noticeable attempt is the work carried out by Eto, Dohi and Ma [Eto et al.
2008], who used reinforcement learning to estimate the optimal rejuvenation schedule
adaptively, i.e., by considering runtime data to update the estimation. Thus, their esti-
mation technique does not require the complete knowledge on system failure (degrada-
tion) time distribution in the operational phase, even if the underlying state transition
of software is governed by models, i.e., by CTMCs or SMPs.

In all the three classes of studies, one more factor to be considered is the inclusion
of workload dependency in the analysis. Since aging has been shown to be clearly
correlated with workload variation, several authors accounted for its impact. Thus,
many authors, such as [Andrzejak and Silva 2007; Vaidyanathan and Trivedi 2005;
Bao et al. 2005; Garg et al. 1998a; Matias Jr. 2006; Bovenzi et al. 2011] considered
the workload in their analyses, too, and vary the estimate of the time-to-aging-failure
at a given time as a function of the workload actually experienced by the system.
Several different approaches have been taken for this purpose: for instance, in the
discussed study [Vaidyanathan and Trivedi 2005] authors modeled the workload by a
semi-Markov process, whereas in [Matias Jr. 2006; Carrozza et al. 2010; Bovenzi et al.
2011] the design of experiment technique is used to plan experiments with varying
workload in a pure measurement-based approach.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

Studies on rejuvenation techniques: one important area that is being investi-
gated by researchers is about the different techniques of rejuvenation; these works
do not focus on rejuvenation scheduling only, but face the problem of the efficiency of
the rejuvenation action in terms of cost or downtime, by proposing or comparing sev-
eral rejuvenation techniques. While model-based and measurement-based studies aim
to determine the best time in which to execute rejuvenation by assuming that some
software rejuvenation technique will be adopted, the aim of studies on rejuvenation
techniques is to define and analyze rejuvenation approaches from a technical point of
view (e.g., how to adopt virtualization not to interfere with the running service [Silva
et al. 2009], or the definition of rejuvenation scheduling models for HPC systems via
OS restart based on TTF or on Reliability data [Naksinehaboon et al. 2010]). We refer
to this category as Rejuvenation Techniques, which cannot fall in none of the previ-
ous category. Section 4.4 reports more in detail on the different types of rejuvenation
methods proposed.

Studies on avoidance, verification, and debugging of software affected by
aging-related bugs: a parallel track should be taken into account, regarding many
works that faced problems connected to Software Aging, but from a different perspec-
tive than the SAR research community. This track is considerably growing in the area
of software engineering, and addresses problems like verification, testing, debugging,
and fault avoidance, applied specifically to aging-related bugs. Examples are works
on static and dynamic code analysis for aging-related fault detection such as memory
leaks [Xu et al. 2011; Xu and Rountev 2008a; Weimer 2006; Heine and Lam 2006].
These works are here referred to as Verification / Testing /| Debug [Avoidance studies.

Finally, some few works provide insights into aging-related bugs and failures from
real field data (i.e., not obtained from controlled experiments); these are reported as
Field Failure Data papers. An example of these works is the one by Grottke et al.
[Grottke et al. 2010] that analyzes the reports from NASA/JPL space missions, and
classifies bugs as Bohrbugs, Mandelbugs and Aging-Related Bugs. In that case, there
is no aging analysis as conducted typically (i.e., analysis on the effect of aging), but the
analysis is on the source of aging, i.e., aging-related bugs.

Other
4%\
Field failure data

1% _\

Rejuvenation

techniques
4% Y

Model-based
25%

\ Measurement-

Verification/ based
Testing/ 18%
Debugging/ N Hybrid
Avoidance 7%
21%

Fig. 5: Type of analysis.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

20
18 T —e—Model-based
16
- =—Measurement-based
o 12 — Hybrid
]
g 10
a
*= 8 -
6 1+ —
4 .
2 - i
0 T T T LE
o~ M wn

199
199
1994
199

Fig. 6: Type of analysis per year.

140

120

100
g2
380 OExperiments,
2 irical data
2.0 empirica

BModel analysis,
40 simulations
0 S D .

Model-based Measurement-based Hybrid

Fig. 7: Type of validation in mode-based, measurement-based and hybrid studies.

Figures 5, 6, and 7 synthesize the share of each class of works. Figure 5 shows
the distribution of the type of analysis. Model-based, measurement-based, and hybrid
classes cover most of the papers (50.10%, 248 papers). A significant slice of the SAR lit-
erature is represented by the “Verification/Testing/Debugging/Avoidance” class (21%),
meaning that several other communities deal with topics related to Software Aging.
This also highlights the need for increasing the connection and cooperation
among research groups coming from the dependability and the software en-
gineering fields, in order to get to a more uniform treatment of the problem.

Figure 6 focuses the attention on papers coming from the main track of Software
Aging and Rejuvenation community, i.e., model-based, measurement-based and hybrid
papers. The figure depicts the evolution over time of the three classes. For all the
classes, the number of papers is increasing in the last years. In several cases, model-
based papers result the largest share. The reason for this predominant trend may
be that models can be used to analyze many different hypothetical situations
(e.g., different types of systems, different rejuvenation strategies) without having to
obtain experimental data, which allows to analyze several facets of the phenomenon
by tuning or varying the analyzed model. It can also be noted that the high number of

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

model-based and measurement-based studies in 2008 and 2010 reflect the appearance
of WoSAR and its Special Issue, as mentioned in Section 3.

Measurement-based approaches, which could be more expensive to apply, were also
performed in many cases, in order to provide evidences of software aging on a
specific system. For sure both kind of papers are needed to study the phenomenon in
a wide perspective. However, hybrid approaches represent a small part of SAR stud-
ies (7%), even though it seems to increase. We believe that hybrid studies can
play an important role and deserve more attention, since they explore how to
mix the best of both model- and measurement-based approaches in order to achieve
efficient and adaptive rejuvenation schedules, and to be generically applicable at the
same time. Indeed, hybrid approaches can provide strategies and examples on how
measurements, which are typically collected by modern systems for monitoring and de-
bugging purposes, can be exploited to mitigate software aging and improve availability
and performability. Furthermore, the application of software rejuvenation schedules to
real systems could serve to provide evidence that model-based approaches are effective
at improving availability and performability. A remarkable example of cross-check be-
tween models and real failures can be found in [Matias et al. 2010b], where the actual
time-to-failure of the Apache Web Server is compared with the prediction obtained
from Accelerated Life Tests.

Finally, Figure 7 compares the mentioned approaches with respect to the type of
validation that authors proposed in their work. The plot only includes publications
that are model-based, measurement-based, or hybrid studies since we are considering
how software rejuvenation scheduling is validated in these three types of studies. Most
of model-based works are validated through simulation and/or numerical analyses, as
well as measurement-based approach are mostly validated by experiments on real
data. It is interesting to note, that some (very few) works among the model-based
ones are validated through empirical data. For instance, the work in [Zhao et al. 2010]
proposes a BP (Error Back Propagation Network) model validated through actual data
from the Apache web server. Similarly, few works of the measurement-based class
are validated by model-based analyses. An example is in [Kim et al. 2007], in which
authors evaluate the survivability of sensor nodes in a sensor network under Denial of
Service (DoS) attacks, and validate their approach through simulation.

4.2. Type of system

Software aging has been shown to affect many kinds of long-running software systems,
ranging from business-oriented to highly critical systems. It is important to figure out
on what class of systems researchers mainly focused their attention when studying
the aging phenomenon. Different domains also mean different development practices,
cycles, techniques, and methodologies, which may affect the probability of the final
system of being affected by aging.

In this Section, we first roughly distinguish papers in three classes, according to
the scenario in which the system is adopted: safety-critical systems, non-safety-
critical systems, and unspecified. Then, a more detailed analysis on subclasses of
systems is presented.

The first class indicates systems employed in scenarios that are critical from the
safety point of view, i.e., systems whose malfunctioning may cause serious damages
or loss of human lives, such as military systems or space systems. The non-safety-
critical systems class includes business and mission-critical applications, but not
safety-critical ones, such as Web Servers or DBMSs typically employed in business
applications. The class unspecified refers to papers that do not present an experimen-
tation on real systems, but that use simulations or numerical examples to demonstrate
the validity of their results.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A7

Figure 8 shows the proportion of the three classes. Papers on non-safety-critical sys-
tems are the greatest part of the literature, while safety-critical systems are discussed
in a minority of cases. This can be explained in part by the fact that the latter are fewer
and are much better designed and tested. Figure 9, which shows the time evolution of
the two considered classes, confirms that non-safety-critical systems have always been
the greatest slice, and that the distance between the number of papers on non-critical
vs. critical systems seems to increase with time.

However, from the figure it is important to note that, although safety-critical sys-
tems are designed to respect stringent dependability requirements and are tested ex-
tensively, a non-negligible percentage of papers have considered aging phe-
nomena in safety-critical systems. On one hand, this confirms that aging problems
are very difficult to detect during the development phase: the percentage suggests that
even though safety-critical systems are usually developed through well-defined devel-
opment practices and undergo to extensive testing activities, aging can manifest itself
during operation. In fact, being a subclass of Mandelbugs, aging-related bugs are hard
to reproduce—even when activated, their manifestation takes long time to become ev-
ident, and this makes the testing time insufficient to reveal the problem in most of
cases. On the other hand, this suggests that software aging should be systemati-
cally taken into account by developers of critical systems, both in early phases
of the lifecycle and at operational time.

It should be also noted that many papers do not perform experiments on real soft-
ware systems (the unspecified class). The greatest part of these papers present model-
based approaches for time-based rejuvenation, and validate their approach by numer-
ical examples, as pointed out in the previous section.

Unspecified
39%

Not safety
critical
55%

Safety critical
6%

Fig. 8: Type of system.

Figure 10 reports a more detailed analysis of system categories analyzed in the
SAR literature. It should be noted that the sum can be different than the number
of surveyed papers, since in some cases a paper may belong to more than one cate-
gory (e.g., papers that analyze more than one system). The first evidence is that a
quite large variety of systems has been shown to suffer from aging. It in-
cludes, among others, web applications, web servers, OSs, DMBSs, cloud computing
and virtualization environments, middleware, and server applications. Among these,
web applications and web servers represent a relevant slice. Indeed, this type of ap-
plications is widely spread in the market and are used by large communities in the

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

45
40 =& Not safety critical
35 = Safety critical
30
2
g 25
m
2 20
E-3
15
10
5
0
N M s N O N0 00O dao Mg N W00 OO o
o OO OO 00O O 0O 0O 0O 0 QO 0 Q0 O o o
a oo 00 0y h O O o O 0O O O O O QO O
™ A H A A AN NN NN NN NN NN
Year
Fig. 9: Type of system in past studies per year.
200
180
160
140
4
a120
3100
- 80
60
40
2 HHH
[11 E T T T T e |
0
S EEEEE 58 EEEEEESSEESSEGEES
EEE8EEE 2532 TEeR8 5238588
S ¥R ERDS R wt 6w E L EL O
gB8v 8= 20ve g e~ 83 2£C ¢
2288 e35 B3£€£9 = =g £9 -3 8=
S&=28EE s8°§% 5 zE §5 E3FE
= = = E a & E §F£o IS 8 £ 3
@ 2 BSOS g v x [= 2 =3
2 5 2 = S] 2 E T &
“ w @] H o > o £ A
£ =] 7] =
£ =z]
o
E
o
o
o
=
5
o
System type

Fig. 10: System categories considered in past work.

Internet: this partially justifies their attractiveness as case-study for researchers. Ex-
amples of web applications used for these studies are web services and service-oriented
applications (e.g., [Silva et al. 2009],[Andrzejak 2008], [Wolter and Reinecke 2010]),
application servers (e.g.,[Ning et al. 2007; Silva et al. 2006]), e-commerce applications
(e.g., [Alonso et al. 2011b; Avritzer and Weyuker 2004; Alonso et al. 2010; Magalhaes
and Silva 2010]). Some commonly mentioned technologies in these studies are J2EE
as application server, Tomcat/AXIS for web services support, and the TPC-W bench-
mark especially for simulating e-commerce applications. There is also a study on aging
effects in client-side web applications (e.g., [Kiciman and Livshits 2007]).

The web server class, which is tightly related to the previous class, is also a rele-
vant one. One of the most noticeable examples and the most studied application is
the Apache Web Server. Several measurements-based analyses have been carried out
on this system, especially by researchers closer to the dependability and fault toler-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

ance rather than to software engineering community. Such analyses better character-
ized the phenomenon using this server as case study. Some of the most well-known
measurements-based studies adopted Apache as case study: for instance, the work in
[Li et al. 2002; Matias Jr. 2006; Grottke et al. 2006; Bovenzi et al. 2011] collect mea-
sures from Apache execution regarding resources usage, such as memory consumption,
swap space, cache usage, and response times, and apply statistical techniques to pre-
dict aging. Apache data analysis also allowed to further develop solutions for coping
with seasonality patterns in aging data [Grottke et al. 2006].

Server applications also account for a significant share; some relevant examples
of such works are in [Castelli et al. 2001], where the impact of different (time- and
prediction-based) rejuvenation policies on availability has been evaluated by means
of analytical models based on stochastic reward nets (SRNs), in the IBM Director for
xSeries\Y servers; in [Okamura et al. 2003], in which authors derive analytically the
optimal software rejuvenation policies, under some system dependability measures, in
a Transaction-Based Multi-Server System, also comparing single-server with multi-
server configuration; in [Oppenheimer et al. 2003] failure causes using data from three
large-scale Internet services are first analyzed, such as operator errors, configura-
tion errors, failures in custom-written front-end software, and then various preventive
maintenance techniques are compared to each other, finding that improvement in the
maintenance tools and systems used by service operations staff would decrease time
to diagnose and repair problems. Benchmark category is also relevant; the most of pa-
pers in this category is however related to static/dynamic analysis for memory leak
detection, which adopt benchmark suites to test their result (e.g., [Novark et al. 2009;
Jung and Yi 2008]).

It is interesting to note that the third class of systems is represented by cloud com-
puting, which a relatively young research area. They have appeared mainly after 2007,
after the widespread adoption of this kind of systems. In such studies, researchers of-
ten analyze several rejuvenation policies based on virtual machine and/or virtual ma-
chine monitor reboot/rejuvenation. Such strategies are then evaluated both by model-
based approaches (e.g., [Machida et al. 2011]), and by measurements (e.g., [Kourai and
Chiba 2007; Araujo et al. 2011b]). The availability of cloud computing software to ex-
periment such strategies without excessive costs is favoring aging analysis on cloud. A
relevant example is represented by the studies on Eucalyptus cloud-computing frame-
work ([Araujo et al. 2011a; Matos et al. 2011; Araujo et al. 2011b]). Aging papers in
this area are in a growing trend, since most of them have been published in 2011.

Telecommunication systems are among the first class of systems considered for ag-
ing analysis. Early examples of software aging and rejuvenation on communication
systems come from AT&T labs, such as the ones provided in [Huang et al. 1995]. In
those years, other studies on software aging considered telecommunications systems
in their experiments: in [Huang et al. 1996] the fault tolerance capabilities of several
communication products and services enriched with rejuvenation components is stud-
ied; in [Balakrishnan et al. 1997] software aging is analyzed in telecommunications
billing applications, as well as in the related switching software. In subsequent years,
some other papers dealt with telecommunication applications, such as the papers in
[Liu et al. 2002; Liu et al. 2005] where software rejuvenation is proposed as a proactive
system maintenance technique deployed in a CMTS (Cable Modem Termination Sys-
tem) cluster system, and the work in [Okamura et al. 2005], in which authors evaluate
dependability performance of a communication network system with the software re-
juvenation. Approximately half of the found work on telecommunication systems are
published before 2000.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20

Some interesting aspects in the remaining classes are worth to mention: in the OS
class, the greatest slice is represented by works on Unix and Linux systems (e.g.,
[Vaidyanathan and Trivedi 1999; Yoshimura et al. 2011; Cotroneo et al. 2010]); but it is
worth to note also some papers on other OSs, such as Solaris [Ni et al. 2008], Windows
NT [Robb 2000], and Android [Park and Choi 2012]. Works in the DNS server cate-
gory are mainly aimed at preventing security-related failures by rejuvenation, such
as [Huang et al. 2006] (see also 4.3), and at detecting security vulnerabilities causing
aging effects [Antunes 2008]. It is finally worth to point out the Space system category,
which is one of the most relevant and studied type of critical systems: examples are
in [Tai et al. 1999], which describes the X2000 computing system for NASA’s 15-year
long Pluto-Kuiper Express mission, and the empirical study on bugs in space missions
[Grottke et al. 2010].

4.3. Aging effects and aging indicators

The analysis of aging effects (i.e., the kind of erroneous states caused by aging) and
aging indicators in this section shows how Software Aging has been manifesting itself
in complex software systems. Aging indicators are an important area of study, since
they are instrumental for detecting when the system state is prone to aging-failures,
by monitoring them during the system execution. Aging indicators can be indicators
of resource usage and performance indicators. The following classes of aging indicators
were identified among the surveyed studies:

Memory consumption: Empirical evidence showed that free memory exhibits the
shortest Time to Exhaustion (TTE) among system resources [Garg et al. 1998b], and
that memory management defects are a significant cause of failures [Sullivan and
Chillarege 1991]. Therefore, many studies on Software Aging and Rejuvenation ana-
lyze Software Aging phenomena affecting free memory, by measuring the amount of
free physical memory and swap space [Grottke et al. 2006; Vaidyanathan and Trivedi
1999], and several measurement-based approaches apply time series and statistical
models to these variables.

Performance degradation: SAR studies have often reported performance degra-
dation in software systems affected by Software Aging. A cause of performance degra-
dation is the depletion of system resources: for instance, the consumption of physical
memory increases the time required by memory allocation procedures and garbage col-
lection mechanisms, since their computational complexity is a function of the amount
of memory areas that have been allocated [Carrozza et al. 2010; Ferreira et al. 2011;
Cotroneo et al. 2011b]. An increasing request response time and a decreasing through-
put have been reported for web applications [Silva et al. 2006], web servers [Grottke
et al. 2006; Matias Jr. 2006], and CORBA-based applications [Carrozza et al. 2010]. In
the presence of this kind of phenomena, software rejuvenation can be triggered when
the quality of service (e.g., in terms of response time or throughput) is below a given
threshold.

Other resource consumption: Software Aging can impact on several kind of re-
sources. Besides memory-related resources (e.g., physical memory, virtual memory,
swap space, cache memory), analyzed papers deal with the these type of resources:

— filesystem-related resources, such as stream descriptors and file handles [Weimer
2006; Zhang et al. 2011; Garg et al. 1998b];

— storage, whose space may be consumed by bad management [Bobbio et al. 2001];

— network-related resources, such as socket descriptors [Weimer 2006];

— concurrency-related resources, such as locks, threads and processes [Zhang et al.
2011; Garg et al. 1998b];

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

— application-specific resources, such as DBMS shared pool latches [Cassidy et al.
2002] and OSGi references [Gama and Donsez 2008].

It should be noted that in several papers, the approach being proposed is not con-
strained to a specific resource, but is focused on detecting incorrect API usage and
incorrect exception handlers that may cause a resource leakage. For instance, the
work in [Zhang et al. 2011] presents an approach that dynamically mines resource
usage patterns by monitoring API calls, and provides an experimental evaluation on
open source programs based on the Java I/O and concurrency APIs. A frequent kind
of resource leak in Java programs is represented by sockets and file handles, due to
faulty exception handlers that do not release these resources [Weimer 2006; Zhang
et al. 2011]. Other resources can also be affected by Software Aging depending on the
kind of system, such as free disk space in DBMS systems [Bobbio et al. 2001]. Some
papers analyze a wider set of resources. In [Garg et al. 1998b], a network of UNIX
workstations was monitored in order to identify aging trends in the consumption of
several resources (related to virtual memory, the OS kernel, the filesystem, the disk,
and the network), and a statistically significant aging trend was noticed in the process
table size and in the file table size (although their TTE is lower than the TTE of free
memory).

In addition to the aging effects mentioned above, there exists other kind of aging
effects that have been studied only in recent works. A field in which software re-
juvenation has been recently studied is related to security attacks, that is, attempts
of malicious users to access unauthorized resources or to make the system unavail-
able. In fact, security attacks may take place and gradually compromise a system over
a long period of time (e.g., password theft through bruteforce guessing, or flood at-
tacks that trigger software aging phenomena), which can be mitigated by periodically
rejuvenating a system, such as by changing cryptographic keys, by restarting compro-
mised processes, and by randomizing the location of data and instructions in memory
[Sousa et al. 2010; Tai et al. 2005; Valdes et al. 2003; Cox et al. 2006; Huang et al.
2006; Roeder and Schneider 2010]. A challenge in deploying software rejuvenation for
security purposes is to define precise aging indicators that can be related to security
attacks. Currently, the aging rate has to be assumed at design time [Sousa et al. 2010;
Nguyen and Sood 2009] or should be based on imperfect attack/intrusion detectors
that could raise false alarms and miss attacks [Aung et al. 2005; Nagarajan and Sood
2010].

Another kind of aging effects that have been discussed in a few recent works, which
we refer to as other aging effects, are related to the accumulation of numerical er-
rors [Grottke et al. 2008] and memory fragmentation [Grottke et al. 2008; Macedo
et al. 2010]. This kind of aging effects are not necessarily caused by bugs in the soft-
ware, but are related to the nature of floating-point arithmetic and memory allocation
algorithms, respectively. In the case of numerical errors, we did not found in the
literature aging indicators able to estimate the extent of such errors in the
system state.

Finally, it should be noted that many studies propose models and approaches for
dealing with Software Aging regardless of which specific kind of resource depletion or
aging effect is experienced, which is usually the case of model-based studies. We denote
these papers as unspecified aging effects.

Fig. 11 shows the number of papers related to each class of aging indicators. Most
of past studies focused on software aging effects are related to memory consumption
[Garg et al. 1998b; Matias et al. 2010a; Shereshevsky et al. 2003], performance degra-
dation [Magalhaes and Silva 2010; Zhao and Trivedi 2011] or both [Grottke et al. 2006;
Silva et al. 2006; Cotroneo et al. 2007; Carrozza et al. 2010; Silva et al. 2009; Matias Jr.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22

2006]. These two aspects are the most frequent issues occurring in non-safety-critical
systems (see section 4.2), and they are considered by an increasing number of SAR
studies (Fig. 12). These issues have less relevance for safety-critical systems. For in-
stance, in the case of software that undergoes a safety certification process, dynamic
memory management is typically avoided in order to accomplish the most stringent
safety integrity levels. By contrast, none of analyzed papers tackled arithmetic
issues, such as the accumulation of round-off errors. These errors are much
more relevant in safety-critical contexts, given the fact that software is responsible for
controlling physical actuators and an erroneous output may have severe consequences.
A well-known example of aging failure related to numerical errors occurred in the Pa-
triot missile system, which was caused by a round-off error in the conversion of the
total execution time from an integer to a floating-point number [Grottke et al. 2008].

200
180
160
w 140
& 120
E 100
80
* 60
40
2 N
0 |
(\o“\ -Qo(\ -Qo(\ q&‘b G)@ .g@b
K D & & & &
S & & e (&
N & & &
@ Q’b & & (7,% N
oﬁ‘\ ’o(& & s '((‘Q'
& & oy o
Y © &
® &
O\'

Fig. 11: Aging effects considered in past work.

35

30 =&=Memory consumption
25 == Performance degradation
20 Other resource consumption

papers

15 =>é=Security attacks

10

SN M s N W~ 0O
o O OO o g o O O
O OO OO O O O O
L I B B I B I B B o]

Fig. 12: Aging effects in past studies per year.

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

4.4. Software rejuvenation techniques

The fourth dimension against which we evaluated SAR studies is with respect to the
software rejuvenation techniques that were proposed or adopted to counteract software
aging. As discussed in Section 4.1, most of the SAR papers are focused on determining
the optimal schedule to perform rejuvenation, by either analytical models (i.e., time-
based rejuvenation), or by measurements (i.e., inspection-based rejuvenation). In this
section, the attention is focused on techniques adopted to rejuvenate a system. Reju-
venation aims to bring the software from a failure-prone state (e.g., errors have been
accumulated due to resource leakage) to an aging-free state. Therefore, rejuvenation
techniques can be compared with respect to how the state is processed and to the re-
sulting aging-free state that is achieved after rejuvenation.

When reviewing SAR studies, we recognized two broad classes of software rejuve-
nation techniques, respectively application-specific actions, i.e., techniques that take
advantage of special feature of the application domain or architecture, and application-
generic actions, i.e., techniques that restart the system or its parts and that are not
specific to a particular class of systems. Whenever a study did neither propose nor sug-
gest rejuvenation techniques, it was classified as unspecified. We identified the follow-
ing categories among application-generic techniques, discussed in the following para-
graphs: Application Restart, OS Reboot, Virtual Machine Monitor (VMM) and Virtual
Machine (VM) Restart, and Cluster Failover.

Application Restart: The whole application is restarted (e.g., all processes of the
application are shut down and restarted). This is the simplest form of software rejuve-
nation [Huang et al. 1995; Huang et al. 1998]. It relies on state initialization mecha-
nisms available at the OS level, which de-allocates all resources that were part of the
application’s state when a process is terminated, such as dynamic memory areas, open
file handles and sockets. Moreover, this rejuvenation takes advantage of initialization
mechanisms that programmers introduce in their application to bring it in its initial
state. This type of rejuvenation does not affect the part of the state that belongs to the
software environment (i.e., the OS or other applications). For instance, OS resources
that are not released when a process is terminated (e.g., a temporary file stored into
a disk, or leaked memory allocated by other applications) are not reclaimed by rejuve-
nation.

OS Reboot: This action restarts the OS, and typically all the applications running in
the same OS. This form of rejuvenation is also referred to as node reboot in distributed
systems. Although it is possible to preserve the state of applications and restore it after
the reboot, this possibility is never considered in SAR studies. In its simplest form, the
OS reboot involves a hardware reset (memory and hardware devices are re-initialized
and tested before software is started), the boot of the OS kernel, and the restart of all
user-space applications. More sophisticated schemas reduce the time required to OS
reboot, by bringing the OS in its initial state without involving a hardware reset [Nel-
litheertha 2004; Oracle 2012; Alonso et al. 2011b], as in the case of the Linux and the
Solaris OSs. This is achieved by invalidating the contents of main memory and restart-
ing the execution of the OS from its entry point. Another problem is represented by the
loss of performance after the OS reboot: since the contents of the file cache (i.e., a copy
of file contents stored in main memory to speed up file accesses) are lost after the re-
boot, the performance of the system is degraded until the file cache is re-populated. To
solve this problem, the warm-cache reboot mechanism [Kourai 2010] preserves the file
cache on main memory during the reboot and enables an operating system to restore
the file cache after the reboot. Moreover, this mechanism must handle the problem of
file cache inconsistency with disks (i.e., files contents that have been modified in main
memory, but have not been written back to the disk before the reboot—since pending

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24

modifications may be incomplete or affected by data corruption, they should be dis-
carded after the reboot). CacheMind [Kourai 2010] handles this problem by running
the OS in a virtual machine, and by using the Virtual Machine Monitor (i.e., a soft-
ware layer that creates a virtual machine environment for an OS and its applications)
to keep track of the status of file cache pages, in order to guarantee consistency after
the reboot. It should be noted that, when an OS runs in a virtual machine and it is
rejuvenated by an OS reboot, the virtual machine infrastructure (i.e., the VMM and
the virtual machine instance in which the OS runs) is not affected by rejuvenation.

Virtual Machine Monitor (VMM) and Virtual Machine (VM) Restart: Soft-
ware rejuvenation can act on a virtual machine infrastructure, by restarting the VMM
and/or its VMs. In [Machida et al. 2010], several alternative strategies are devised,
depending on whether rejuvenation only affects the VMM, or also involves VMs run-
ning on top of the VMM. In Cold-VM rejuvenation, the VMs are also restarted when
the VMM is rejuvenated. In Warm-VM rejuvenation, the execution state of each VM
(including the OS and applications running in the VM) are stored to persistent mem-
ory, and resumed after the restart of the VMM, in order to reduce the downtime of
restarting VMs and their services (although the software running in the VMs is not
rejuvenated). This operation can be quickly performed by adopting an on-memory sus-
pend /[resume mechanism, in which the memory images of VMs is preserved in main
memory during the VMM restart, in order to avoid slow read/write operations to per-
sistent storage (as in the case of RootHammer [Kourai and Chiba 2007; 2011]). In
Migrate-VM rejuvenation, the downtime is further reduced by migrating a VM to an-
other host while the VMM is being rejuvenated, in order to make them available dur-
ing rejuvenation. This latter schema also does not rejuvenate VMs, and is limited by
the capacity of other hosts to accept migrated VMs. The best technique (or the best
combination of them) depends on the speed of storing/migrating the state of VMs and
on the capacity of hosts, as well as on the aging rate of VMs and VMMs, therefore the
rejuvenation policy should be determined according to these factors [Machida et al.
2010].

Cluster Failover: A cluster system is a system composed by a set of replicated
servers that provide the same service, with the aim to provide high performance and
reliability. In a cluster system, an individual server can be rejuvenated (e.g., by means
of application restart or OS reboot) while the other replica are active and the workload
is redirected to them (at the cost of reducing cluster performance during rejuvenation)
[Avritzer et al. 2007; Wang et al. 2007; Xie et al. 2004]. Another approach is to activate
a standby (i.e., idle) replica of the system when rejuvenation is triggered [Park and
Kim 2002]. In [Silva et al. 2007; Silva et al. 2009], a cluster failover framework for web
applications based on virtualization is proposed, namely VM-Rejuv. The framework
consists of a Load Balancer, an Active Server, and a Standby Server, each running
in a dedicated VM. The Load Balancer redirects requests to the Active Server while
it is correctly working, and monitors the Active Server for aging symptoms (e.g., per-
formance falls below a threshold). When rejuvenation is triggered, new requests are
redirected to the Standby Server; the Active Server is rejuvenated only after that all
pending requests have been processed and session data have been migrated to the
Standby Server, in order to assure a clean restart (i.e., rejuvenation does not cause the
loss of session data and the failure of user requests). This framework can be imple-
mented in a cost-effective way by using off-the-shelf application servers, monitoring,
and load balancing software, at the cost of a moderate overhead.

Application-generic actions do not make use of application-specific features, but rely
on restarting the system or its components to perform software rejuvenation, or they
activate a replica of the system. By following this approach, the system or the compo-
nent being rejuvenated is brought to its initial state, which is assured to be aging-free.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

This kind of rejuvenation is simple to implement since it makes use of initialization
mechanisms of the system.

By contrast, application-specific rejuvenation is tailored for a specific system: it aims
at reducing the cost required to perform rejuvenation, in terms of time to rejuvenate
and system downtime, by cleaning a specific aging-affected resource. This kind of re-
juvenation exploits peculiar features of the system, such as the peculiarities of the do-
main, of the software architecture, and of the kind of resources being managed. Some
examples of application-specific rejuvenation in the context of OSs are represented by
flushing of kernel tables and filesystem de-fragmentation. Other application-specific
approaches have been discussed by SAR papers in the following contexts:

Component-based systems: An individual component or part of an application
can be restarted to perform software rejuvenation. Compared to an application restart,
this kind of rejuvenation focuses on a subset of the application state, such as the set
of resources allocated by an individual process in a multi-process application. This
rejuvenation approach aims to reduce the time required for rejuvenation and the ap-
plication downtime, by avoiding the restart of parts of the application that are not
affected by software aging. A well-known example is represented by the Apache web
server [Matias et al. 2010b; Grottke et al. 2006], in which a master process spawns
a set of concurrent child processes that handle client requests. This system is rejuve-
nated by restarting a child process after it has handled a given number of requests, or
when the process is killed by the user or by other applications (e.g., in [Grottke et al.
2006], child processes are periodically restarted by the cron daemon to perform log ro-
tation). A more general form of component restart is represented by microrebootable
software [Candea et al. 2002; Candea et al. 2004], in which a system is decomposed
in components that are loosely-coupled (e.g., they do not share the same memory ad-
dress space) and stateless (e.g., important state is located in dedicated storage outside
the application), in order to quickly restart a component without affecting the other
ones. This approach has been successfully implemented in a J2EE application [Can-
dea et al. 2004] (in which individual Enterprise Java Beans can be restarted) and in a
mission-critical system [Candea et al. 2002] (consisting of a set of components running
in different Java Virtual Machines). A limitation of component rejuvenation is that it
can be applied only in systems made up of individually-restartable components; if this
is not the case, the system has to be modified based on the microreboot schema.

Embedded systems: Modern embedded systems are characterized by a high degree
of complexity. These systems are resource-constrained, therefore the dynamic memory
requirements of software tasks have to be carefully estimated at design time. These as-
pects expose them to subtle aging-related bugs. In [Sundaram et al. 2007], the Oppor-
tunistic Micro-Rejuvenation approach was proposed for resource-constrained multi-
tasking embedded systems. This approach is based on a Shared Supplementary Mem-
ory (SSM), which is a shared memory area used by tasks that exceed their stack or
heap limits: when a stack or heap overflows, it is reallocated in order to grow in the
SSM. When the SSM usage is greater than a threshold, the task that consumes most
of the SSM is rejuvenated. This approach allows to mitigate inaccurate estimations of
memory requirements and to increase the reliability of embedded systems.

Long-running desktop applications: The Libckp checkpointing library has been
proposed in [Wang et al. 1995] for increasing the reliability of long-running UNIX
applications. This library provides an API that allows programmers to save the pro-
gram state at a given point in the program, and to restore that state in the case of
failures. [Wang et al. 1995] proposed several usage scenarios of this library related to
software rejuvenation. A first scenario is to bypass long program initialization (e.g., a
large amount of data is read from a remote database), by storing the program state
just after initialization, and using that state to restart the program. Another scenario

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26

is to periodically revert the program to a previously checkpointed clean state in order
to avoid aging symptoms and to restart the program. A requirement for this solution is
that the state in which rejuvenation is performed does not contain any useful informa-
tion, which makes this solution application-specific. This schema has been proposed for
long-running programs that consist of a large number of independent iterations, and
has been experimented in the context of CAD (Computer-Aided Design) applications,
simulation programs and signal processing applications.

Stateful distributed systems: In distributed systems with replicas (e.g., cluster
systems), software rejuvenation can be performed by deactivating a replica while the
load is redirected to the remaining ones. However, this schema assumes that the sys-
tem is stateless; if this is not the case, the state of the replica being rejuvenated may
become obsolete and therefore be inconsistent with the other replicas that continue to
execute. In order to apply rejuvenation to stateful distributed systems, a framework
has been proposed in [Tai et al. 2005] based on the notion of eventual consistency, that
is, a concurrency control protocol is adopted that guarantees eventual rather than im-
mediate consistency among replicas. When a replica undergoes rejuvenation, update
requests are saved in a buffer and are replayed by a sequencer, i.e., a node in a dis-
tributed system that assures that all replica receive requests in the same global order.
In this way, the rejuvenated replica will appear as a “slow” replica and its state will
eventually converge to the state of the other ones.

Database management systems: Software rejuvenation approaches have been
devised specifically tailored for software aging phenomena in DBMSs. An instance
of software aging phenomena is represented by the gradual increase in shared pool
latches contention, that is, the increase of the waiting time for accessing shared mem-
ory areas due to synchronization mechanisms [Tsai et al. 2006; Cassidy et al. 2002]:
this phenomenon is caused by the exhaustion and/or fragmentation of shared mem-
ory areas, and can be mitigated by flushing data in shared memory areas to the disk.
Another instance is the exhaustion of disk space in DBMS systems due to the growth
of the redo log file (i.e., a file that keeps track of committed transactions, and that
is used to restore the database state from the last database backup in the case of a
failure). The analysis in [Bobbio et al. 2001] copes with this phenomenon by regularly
archiving the redo log file to a secondary disk. In [Baker and Sullivan 1992] an OS ex-
tension, namely the Recovery Box, is proposed to provide a quick recovery mechanism
for UNIX server applications, which has been adopted to improve recovery of a DBMS
system. The Recovery Box provides an API (to be used by both the applications and the
0OS itself) to save and restore relevant system state across reboots (e.g., session data
in transaction-based systems), which is stored in non-volatile memory. This recovery
speed of the Postgres DBMS is improved by storing in the Recovery Box initialization
data (e.g., a cache with system catalogs), internal data structures such as hash tables
and linked lists, and client connections (which have to be detected through a timeout
and restarted from the client side, and requires the client to check whether its last
transaction committed). Using the Recovery Box (or similar supports), a DBMS can be
quickly rejuvenated by reducing its restart time.

Runtime supports in programming languages and frameworks: a well-
known approach that mitigates software aging phenomena is represented by garbage
collection, which inspects the software state in order to reclaim resources that are
not reachable (i.e., there are no references to the resource) and therefore represent
a waste. It is adopted in several programming languages (e.g., Java and C#) to re-
lieve programmers of memory management duties and therefore to prevent memory
and resource leak bugs, and it is provided by runtime supports in programming lan-
guages and frameworks. Garbage collection cannot assure the absence of aging-related
bugs, since the leaked resource (i.e., a resource that will not be used anymore by the

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:27

program but that it is still allocated) may have references and therefore is not re-
claimable [Carrozza et al. 2010]. The Melt approach [Bond and McKinley 2008] has
been proposed for mitigating this problem through leak tolerance: it identifies reach-
able objects that are not accessed, and moves them to the disk in order to free memory.
This approach does not completely rejuvenate the software, but increases its time-to-
aging-failure in order to improve the user experience and to give developers more time
and information to fix leaks. Other approaches have been proposed for detecting and
diagnose leaks in garbage-collected environments. In [Gama and Donsez 2008], stale
references in the OSGi web application framework (i.e., references to services that
have been unloaded and therefore are invalid) are identified by tracking service refer-
ence objects through Aspect Oriented Programming. In [Xu and Rountev 2008b], Java
containers (e.g., hashmaps and lists) are profiled in order to identify stale objects in the
containers, by analyzing the time since last retrieval and memory consumption of ob-
jects. In order to make garbage collection application-independent, the Kernel-Assisted
Leak toleration (KAL) schema, proposed in [Jeong et al. 2010], introduces a OS kernel
extension to reclaim leaked memory in C/C++ software with low intrusiveness and
overhead. KAL takes a snapshot of memory while the application is running (using
a precopy schema that avoids to suspend the application), analyzes the snapshot to
identify leaks (this analysis can be performed on a remote host in order to reduce the
overhead), and reclaims memory by invoking standard memory management routines.

Several SAR studies are not based on any particular rejuvenation technique,
and assume some form of application-generic rejuvenation (e.g., application restart or
OS reboot). This is the case of most of model-based studies [Huang et al. 1995; Pfening
et al. 1996; Suzuki et al. 2003; Koutras and Platis 2008]. Therefore, we introduce the
“unspecified rejuvenation” class. This class includes studies that focus on determining
the optimal rejuvenation time, no matter what specific rejuvenation policy is adopted,
as in the case of model-based studies that are not tailored to a specific system.

Figure 13 shows the number of times each rejuvenation approach has been proposed
among the surveyed papers. We found that about two out of three papers belong to the
“unspecified” class, that is, no particular rejuvenation technique is mentioned. The
high number of ”unspecified rejuvenation” papers denotes that the focus is
often on optimal time scheduling rather than on the design of effective re-
juvenation actions. Among the remaining studies, application-generic actions are
evenly distributed, where Application Restart is the most commonly adopted [Huang
et al. 1995; Silva et al. 2006; Machida et al. 2011; Koutras and Platis 2011].

Application-specific rejuvenation techniques represent a minority of approaches,
where Component Restart is the most studied form of application-specific approach,
due to the remarkable number of studies on the Apache Web Server that exploit the
multi-process architecture of this software. Other techniques that rejuvenate the sys-
tem state at a more detailed level, such as ad-hoc state checkpointing mechanisms
[Wang et al. 1995], are seldom considered.

Application-specific approaches have the greatest potential to improve the
speed of rejuvenation and reduce the probability of failures. These techniques
are effective at reducing the cost of rejuvenation since they do not bring the system
to its initial state, and avoid to redo work for reconstructing the relevant system state
(e.g., to restart transactions that were taking place at the time of rejuvenaton). This
issue is negligible in the case of stateless applications (e.g., a web server) [Matias Jr.
2006; Candea et al. 2004], although it has great importance in the case of stateful ap-
plications [Tai et al. 2005; Baker and Sullivan 1992; Wang et al. 1995]. However, this
kind of approach is perceived as not cost-effective, since it needs to be tailored to the
specific application in order to save only the relevant part of the system state and avoid
to include aging-related errors in the checkpoint [Wang et al. 1995], which requires de-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28

velopment efforts and can be error-prone. This area has received little attention
among SAR studies at the time of writing, and may deserve attention in future in
order to further advance the field of software rejuvenation.

300
250
@ 200
a
& 150
(=9
* 100
* | I
,. - mm W
& g & & & & &
& of;& ra‘;@ &° '§°‘& & (}K\e
(\(R < 0{_,\ (\fb (\;,Q %QQ,
&) < \\V\\ %e «© &
N W & o &
2 W) &
&

Fig. 13: Software rejuvanation approaches.

5. DISCUSSION

This paper surveyed and analyzed the literature of Software Aging and Rejuvenation
with respect to four relevant aspects: the type of studies that have been conducted, the
type of systems that exhibited aging phenomena, the type of aging effects that have
been observed in real systems and their related aging indicators, and the techniques
that have been proposed so far to rejuvenate software systems.

The first dimension (Section 4.1) highlighted that many studies have been devoted
on designing analytical models for scheduling the rejuvenation time. These models are
becoming more and more refined and comprehensive. However, the works addressing
model-based rejuvenation often lack experimentation on real systems, and in most
cases models are validated by numerical examples, or by simulations. This is an im-
portant concern towards making these studies useful for practical scenarios, because
(i) models make some kind of assumptions about the system being modeled, which can
be validated only by comparing the actual behavior of the system with the prediction
of models, and (ii) the deployment of model-based rejuvenation on real systems can
reveal practical issues that would be neglected otherwise, such as the problem of relat-
ing measurements of aging indicators with the parameters of the models and with the
rejuvenation schedule. Moreover, experimentation on real systems would also provide
examples of how software rejuvenation strategies can be applied, and encourage their
adoption by practitioners.

A remarkable trend, which represents an interesting research area, is the devel-
opment of hybrid approaches in the context of real-world systems, which leverage
measurement-based approaches to exploit model-based approaches. A future direction
is the implementation of frameworks for online monitoring and aging estimation to
enable the adoption of Software Rejuvenation in existing systems, in order to increase
in the industrial world the perception and the awareness of the Software Aging prob-
lem. A noteworthy case that pioneered this direction is the Software Rejuvenation
Agent integrated in the IBM Director® server management tool, which allows system

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:29

administrators to schedule Software Rejuvenation of IBM xSeries® cluster servers
[Castelli et al. 2001].

The need for additional studies on real systems is also highlighted in the analysis of
the second dimension (Section 4.2). The non-negligible percentage of studies on Soft-
ware Aging in safety-critical systems suggests that it is worth to further investigate
this issue in safety-critical systems. In fact, safety-critical systems and their software
are increasingly complex, and consequently it is more and more difficult to assure that
the software is free from aging-related bugs. Therefore, it becomes important to re-
search means to take into account aging-related bugs in the design and validation
process of safety-critical software, since these bugs can affect safety requirements that
are imposed on long-running systems by safety certification standards [RTCA 1992].
The analysis of the type of systems also highlighted that Software Aging has been
experienced in novel application scenarios such as cloud computing systems and em-
bedded and ubiquitous systems. It is therefore likely that this phenomenon will have
to be studied and mitigated in future generations of software systems.

The analysis of aging effects and aging indicators in Section 4.3 reports that mem-
ory and performance issues were the most studied in the literature. However, further
research is needed for the investigation of other kinds of Software Aging phenom-
ena. There is evidence of several other types of aging bugs, such as numerical errors,
storage-related bugs, and bugs related to the management of system-dependent data
structures [Huang et al. 1995; Bobbio and Sereno 1998; Grottke et al. 2008]. In par-
ticular, there is no suitable approach among the analyzed studies that copes with the
accumulation of numerical errors, for which there is not an aging indicator that could
be used by traditional measurement-based approaches. We also believe that it is impor-
tant to analyze more in-detail the kind of aging-related bugs that affect real systems,
in order to extend SAR research towards aging effects that have been neglected in the
past. Past field failure data studies [Grottke et al. 2010; Chillarege 2011] provided an
estimate of the extent of aging-related bugs, although SAR researchers would benefit
from studies that look at the kind of aging effects caused by aging-related bugs, as well
as from data about more software systems. This analysis pointed out that Software Re-
juvenation is also being considered for improving the security of software systems, by
cleaning-up the system state and regenerating compromised code and data (e.g., by
replacing passwords and cryptographic keys, or by adopting a new system configura-
tion). The problem of scheduling software rejuvenation is still open, since it is unclear
what is the best way to detect the onset of security-related aging effects and to predict
the time to security-related failures.

Finally, in Section 4.4 we analyzed software rejuvenation techniques. This topic
received less attention than the determination of the optimal rejuvenation schedule
(Fig. 5). However, rejuvenation techniques are useful to keep low the cost of software
rejuvenation, to achieve high availability and to reduce performance loss. Most stud-
ies adopt or assume an application-independent approach, that involves a software
restart. Other approaches are being developed that are application-specific, that is,
they exploit special features of the system in order to improve the efficiency of Soft-
ware Rejuvenation. Research on this topic has provided interesting results in several
contexts, such as embedded systems, distributed systems, and DBMSs. In particular,
the problem of accounting for the state in stateful systems has to be addressed in some
domains in order to avoid service disruption and data loss, and to make Software Re-
juvenation affordable in these contexts. Another remarkable result is the selective re-
juvenation of parts of the system by using component restarts. Since these approaches
are application-dependent, additional research could be devoted to provide methodolo-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30

gies and frameworks for integrating Software Rejuvenation in their specific system in
a cost-effective way.

REFERENCES

ADAMS, E. 1984. Optimizing preventive service of software products. IBM Journal of Research and Devel-
opment 28, 1, 2-14.

ALONSO, J., BELANCHE, L., AND AVRESKY, D. 2011a. Predicting software anomalies using machine learn-
ing techniques. Proceedings - 2011 IEEE International Symposium on Network Computing and Appli-
cations, NCA 2011, 163-170.

ALONSO, J., MATIAS, R., VICENTE, E., CARVALHO, A., AND TRIVEDI, K. 2011b. A comparative evaluation
of software rejuvenation strategies. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on. 26 —31.

ALONSO, J., TORRES, J., BERRAL, J., AND GAVALDA, R. 2010. J2ee instrumentation for software aging root
cause application component determination with aspectj. Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010.

ANDRADE, E., MACHIDA, F., KiM, D., AND TRIVEDI, K. 2011. Modeling and analyzing server system with
rejuvenation through sysml and stochastic reward nets. Proceedings of the 2011 6th International Con-
ference on Availability, Reliability and Security, ARES 2011, 161-168.

ANDRZEJAK, A. AND SILVA, L. 2007. Deterministic models of software aging and optimal rejuvenation
schedules. 10th IFIP/IEEE International Symposium on Integrated Network Management 2007, IM
07, 159-168.

ANDRZEJAK, L. SILVA, A. 2008. Using machine learning for non-intrusive modeling and prediction of soft-
ware aging. In IEEE Network Operations and Management Symposium.

ANTUNES, dJ. 2008. Detection and prediction of resource-exhaustion vulnerabilities. In International Sym-
posium on Software Reliability Engineering.

ARAUJO, J., MATOS, R., MACIEL, P., MATIAS, R., AND BEICKER, I. 2011a. Experimental evaluation of
software aging effects on the eucalyptus cloud computing infrastructure. In Middleware.

ARAUJO, J., MATOS, R., MACIEL, P., VIEIRA, F., MATIAS, R., AND TRIVEDI, K. 2011b. Software rejuve-
nation in eucalyptus cloud computing infrastructure: A method based on time series forecasting and
multiple thresholds. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third International
Workshop on. 38 —43.

AUNG, K., PARK, K., AND PARK, J. 2005. A model of its using cold standby cluster. Lecture Notes in Com-
puter Science 3815 LNCS, 1-10.

AVIZIENIS, A., LAPRIE, J., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and taxonomy of de-
pendable and secure computing. Dependable and Secure Computing, IEEE Transactions on 1, 1, 11-33.

AVRITZER, A., BONDI, A., AND WEYUKER, E. 2007. Ensuring system performance for cluster and single
server systems. Journal of Systems and Software 80, 4, 441-454.

AVRITZER, A. AND WEYUKER, E. 1997. Monitoring smoothly degrading systems for increased dependability.
Empirical Software Engineering 2, 1, 59-717.

AVRITZER, A. AND WEYUKER, E. J. 2004. The role of modeling in the performance testing of e-commerce
applications. IEEE Transactions on Software Engineering 30, 12, 1072-1083.

BAKER, M. AND SULLIVAN, M. 1992. The Recovery Box: Using Fast Recovery to provide High Availability
in the UNIX Environment. In Proc. Summer 1992 USENIX Conference. 31-43.

BALAKRISHNAN, M., PULIAFITO, A., TRIVEDI, K., AND VINIOTIS, Y. 1997. Buffer losses vs. deadline vio-
lations for abr traffic in an atm switch: a computational approach. Telecommunication Systems 7, 1-3,
105-123.

Bao, Y., SUN, X., AND TRIVEDI, K. 2005. A workload-based analysis of software aging, and rejuvenation.
Reliability, IEEE Transactions on 54, 3.

BERNSTEIN, L. 1993. Innovative technologies for preventing network outages. AT & T TECH J. 72, 4, 4-10.

BERNSTEIN, L. AND KINTALA, C. 2004. Software rejuvenation. CrossTalk 17, 8, 23-26.

BOBBIO, A. AND SERENO, M. 1998. Fine grained software rejuvenation models. In Computer Performance
and Dependability Symposium, 1998. IPDS’98. Proceedings. IEEE International. IEEE, 4-12.

BOBBIO, A., SERENO, M., AND ANGLANO, C. 2001. Fine grained software degradation models for optimal
rejuvenation policies. Performance Evaluation 46, 1, 45-62.

BoND, M. AND McKINLEY, K. 2008. Tolerating memory leaks. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA, 109-125.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:31

BOVENZI, A., COTRONEO, D., PIETRANTUONO, R., AND RUSSO, S. 2011. Workload characterization for
software aging analysis. In Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International
Symposium on. 240 —249.

CANDEA, G., CUTLER, J., FOX, A., DOSHI, R., GARG, P., AND GOWDA, R. 2002. Reducing recovery time in
a small recursively restartable system. In Dependable Systems and Networks, 2002. Proc. Int’l. Conf.

CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G., AND FOX, A. 2004. Microreboot—a technique for
cheap recovery. In Proc. Symp. on Operating Systems Design & Implementation. USENIX Association,
31-44.

CARROZZA, G., COTRONEO, D., NATELLA, R., PECCHIA, A., AND RUSSO, S. 2010. Memory leak analysis of
mission-critical middleware. Journal of Systems and Software 83, 9, 1556—1567.

CAssSIDY, K., GROSS, K., AND MALEKPOUR, A. 2002. Advanced pattern recognition for detection of com-
plex software aging phenomena in online transaction processing servers. In Dependable Systems and
Networks, 2002. Proc. Int’l. Conf.

CASTELLI, V., HARPER, R., HEIDELBERGER, P., HUNTER, S., TRIVEDI, K., VAIDYANATHAN, K., AND
ZEGGERT, W. 2001. Proactive management of software aging. IBM Journal of Research and Develop-
ment 45, 2, 311-332.

CHILLAREGE, R. 2011. Understanding bohr-mandel bugs through odc triggers and a case study with em-
pirical estimations of their field proportion. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE
Third International Workshop on. 7 —13.

COTRONEO, D., NATELLA, R., PIETRANTUONO, R., AND RUSSO, S. 2010. Software aging analysis of the
linux operating system. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st Int’l. Symp.

COTRONEO, D., NATELLA, R., PIETRANTUONO, R., AND RUSSO, S. 2011a. Software aging and rejuvenation:
Where we are and where we are going. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on. 1 —6.

COTRONEO, D., ORLANDO, S., PIETRANTUONO, R., AND RUSSO, S. 2011b. A measurement-based ageing
analysis of the jvm. Software Testing Verification and Reliability.

COTRONEO, D., ORLANDO, S., AND RUSSO, S. 2007. Characterizing aging phenomena of the java virtual
machine. In Reliable Distributed Systems, 2007. 26th IEEE Int’l. Symp.

Cox, B., EVaNS, D., FILIPI, A., ROWANHILL, J., HU, W., DAVIDSON, J., KNIGHT, J., NGUYEN-TUONG,
A., AND HISER, J. 2006. N-variant systems: a secretless framework for security through diversity. In
Proceedings of the 15th conference on USENIX Security Symposium-Volume 15. USENIX Association,
9

Du, X, Q1, Y., Hou, D., CHEN, Y., AND ZHONG, X. 2009. Modeling and performance analysis of software
rejuvenation policies for multiple degradation systems. Proceedings - International Computer Software
and Applications Conference 1, 240-245.

ETo, H., DoHI, T., AND MA, J. 2008. Simulation-based optimization approach for software cost model with
rejuvenation. Lecture Notes in Computer Science 5060 LNCS, 206-218.

FERREIRA, T., MATIAS, R., MACEDO, A., AND ARAUJO, L. 2011. An experimental study on memory alloca-
tors in multicore and multithreaded applications. In Parallel and Distributed Computing, Applications
and Technologies (PDCAT), 2011 12th International Conference on. 92 —98.

GAMA, K. AND DONSEZ, D. 2008. Service coroner: A diagnostic tool for locating osgi stale references. EU-
ROMICRO 2008 - Proceedings of the 34th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, SEAA 2008, 108-115.

GARG, S., KINTALA, C., HUANG, Y., AND TRIVEDI, K. 1996. Minimizing completion time of a program by
checkpointing and rejuvenation. Performance Evaluation Review 24, 1, 252—261.

GARG, S., PULIAFITO, A., TELEK, M., AND TRIVEDI, K. 1995. Analysis of software rejuvenation using
markov regenerative stochastic petri net. In Software Reliability Engineering, 1995. Proc., Sixth Int’l.
Symp.

GARG, S., PULIAFITO, A., TELEK, M., AND TRIVEDI, K. 1998a. Analysis of preventive maintenance in
transactions based software systems. Computers, IEEE Transactions on 47, 1.

GARG, S., VAN MOORSEL, A., VAIDYANATHAN, K., AND TRIVEDI, K. 1998b. A methodology for detection
and estimation of software aging. In Software Reliability Engineering, 1998. Proc. Ninth Int’l. Symp.

GRAY, J. 1985. Why Do Computers Stop and What Can Be Done About It? In Proc. Symp. on Reliability in
Distributed Software and Database Systems. 3—11.

GROTTKE, M., L1, L., VAIDYANATHAN, K., AND TRIVEDI, K. 2006. Analysis of software aging in a web
server. Reliability, IEEE Transactions on 55, 3.

GROTTKE, M., MATIAS, R., AND TRIVEDI, K. 2008. The fundamentals of software aging. In Software Reli-
ability Engineering Workshops, 2008. IEEE Int’l. Conf.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32

GROTTKE, M., NIKORA, A., AND TRIVEDI, K. 2010. An empirical investigation of fault types in space mis-
sion system software. In Dependable Systems and Networks (DSN), 2010 Int’l. Conf.

HEINE, D. AND LAM, M. 2006. Static detection of leaks in polymorphic containers. Proceedings - Interna-
tional Conference on Software Engineering 2006, 252-261.

HOFFMANN, G., TRIVEDI, K., AND MALEK, M. 2007. A best practice guide to resource forecasting for com-
puting systems. Reliability, IEEE Transactions on 56, 4.

HUANG, Y., ARSENAULT, D., AND SO0OD, A. 2006. Scit-dns: Critical infrastructure protection through secure
dns server dynamic updates. Journal of High Speed Networks 15, 1, 5-19.

HUANG, Y., CHUNG, P., KINTALA, C., LIANG, D., AND WANG, C. 1998. Nt-swift: Software implemented
fault tolerance on windows nt. In Proceedings of the 1998 USENIX WindowsNT Symposium.

HUANG, Y. AND KINTALA, C. 1993. Software implemented fault tolerance: Technologies and experience. In
1993 IEEE International Symposium on Fault-Tolerant Computing.

HUANG, Y., KINTALA, C., KOLETTIS, N., AND FULTON, N. 1995. Software rejuvenation: analysis, module
and applications. In Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers, Twenty-Fifth Int’l.
Symp.

HUANG, Y., KINTALA, C. M. R., BERNSTEIN, L., AND WANG, Y.-M. 1996. Components for software fault
tolerance and rejuvenation. AT&T technical journal 75, 2, 29-37.

JEONG, J., SEO, E., CHOL, J., KIiM, H., JO, H., AND LEE, J. 2010. Kal: Kernel-assisted non-invasive memory
leak tolerance with a general-purpose memory allocator. Software - Practice and Experience 40, 8, 605—
625.

JIA, Y.-F., ZHAO, L., AND CAI, K.-Y. 2008. A nonlinear approach to modeling of software aging in a web
server. In Software Engineering Conf.,, 2008.15th Asia-Pacific.

JUNG, Y. AND YI, K. 2008. Practical memory leak detector based on parameterized procedural summaries.
In Proceedings of the 7th international symposium on Memory management. ACM, 131-140.

KAJKO-MATTSSON, M. 2001. Can we learn anything from hardware preventive maintenance? In Engineer-
ing of Complex Computer Systems, 2001. Proceedings. Seventh IEEE International Conference on. IEEE,
106-111.

KICIMAN, E. AND LIVSHITS, B. 2007. Ajaxscope: A platform for remotely monitoring the client-side behavior
of web 2.0 applications. SOSP’07 - Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, 17-30.

Kim, D., YANG, C., AND PARK, J. 2007. Adaptation mechanisms for survivable sensor networks against
denial of service attack. Proceedings - Second International Conference on Availability, Reliability and
Security, ARES 2007, 575-579.

KoURAI, K. 2010. Cachemind: Fast performance recovery using a virtual machine monitor. In Dependable
Systems and Networks Workshops (DSN-W), 2010 International Conference on. 86 —92.

KoURAI, K. AND CHIBA, S. 2007. A fast rejuvenation technique for server consolidation with virtual ma-
chines. In Dependable Systems and Networks, 2007. 37th Int’l. Conf.

KoURAI, K. AND CHIBA, S. 2011. Fast software rejuvenation of virtual machine monitors. Dependable and
Secure Computing, IEEE Transactions on 8, 6.

KOUTRAS, V. AND PLATIS, A. 2008. Modeling perfect and minimal rejuvenation for client server systems
with heterogeneous load. In Dependable Computing, 2008. 14th IEEE Pacific Rim Int’l. Symp.

KOUTRAS, V. AND PLATIS, A. 2011. Applying partial and full rejuvenation in different degradation levels.
In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on. 20 —25.

L1, L., VAIDYANATHAN, K., AND TRIVEDI, K. 2002. An approach for estimation of software aging in a web
server. In Empirical Software Engineering, 2002. Proc. 2002 Int’l. Symp.

L1Uu, Y., MA, Y., HAN, J. J., LEVENDEL, H., AND TRIVEDI, K. S. 2005. A proactive approach towards always-
on availability in broadband cable networks. Computer Communications 28, 1, 51-64.

L1y, Y., TRIVEDI, K., MA, Y., HAN, J., AND LEVENDEL, H. 2002. Modeling and analysis of software rejuve-
nation in cable modem termination systems. In Software Reliability Engineering, 2002. Proc. 13th Int’l.
Symp.

MACEDO, A., FERREIRA, T., AND MATIAS, R. 2010. The mechanics of memory-related software aging. In
Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

MACHIDA, F., KiM, D. S., AND TRIVEDI, K. 2010. Modeling and analysis of software rejuvenation in a server
virtualized system. In Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop
on.

MACHIDA, F., NIcOLA, V., AND TRIVEDI, K. 2011. Job completion time on a virtualized server subject
to software aging and rejuvenation. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on. 44 —49.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:33

MAGALHAES, J. AND SILVA, L. 2010. Prediction of performance anomalies in web-applications based-on
software aging scenarios. In Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Work-
shop on.

MARSHALL, E. 1992. Fatal error: how patriot overlooked a scud. Science 255, 5050, 1347-13417.

MATIAS, R., BARBETTA, P., TRIVEDI, K., AND FILHO, P. 2010a. Accelerated degradation tests applied to
software aging experiments. Reliability, IEEE Transactions on 59, 1.

MATIAS, R., TRIVEDI, K., AND MACIEL, P. 2010b. Using accelerated life tests to estimate time to software
aging failure. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st Int’l. Symp.

MATIAS JR., R., F. P. 2006. An experimental study on software aging and rejuvenation in web servers.
Proceedings - International Computer Software and Applications Conference 1, 189-196.

MATOS, R., MACIEL, P., AND MATIAS, R. 2011. Software aging issues on the eucalyptus cloud computing
infrastructure. In IEEE International Conference on Systems, Man, and Cybernetics.

MYINT, M. AND THEIN, T. 2010. Availability improvement in virtualized multiple servers with software
rejuvenation and virtualization. SSIRI 2010 - 4th IEEE International Conference on Secure Software
Integration and Reliability Improvement, 156—162.

NAGARAJAN, A. AND SOO0D, A. 2010. Scit and ids architectures for reduced data ex-filtration. In Dependable
Systems and Networks Workshops (DSN-W), 2010 International Conference on. IEEE, 164-169.

NAKSINEHABOON, N., TAERAT, N., LEANGSUKSUN, C., CHANDLER, C., AND SCOTT, S. 2010. Benefits of
software rejuvenation on hpc systems. Proceedings - International Symposium on Parallel and Dis-
tributed Processing with Applications, ISPA 2010, 499-506.

NELLITHEERTHA, H. 2004. Reboot Linux faster using kexec. In developerWorks technical library.

NGUYEN, Q. AND S00D, A. 2009. Quantitative approach to tuning of a time-based intrusion-tolerant system
architecture. In Proc. 3rd Workshop Recent Advances on Intrusion-Tolerant Systems. 132—-139.

NI, Q., SUN, W., AND MA, S. 2008. Memory leak detection in sun solaris os. In International Symposium on
Computer Science and Computational Technology.

NING, M., YONG, Q., D1, H., XIA, P., AND YING, C. 2007. Application server aging prediction model based
on wavelet network with adaptive particle swarm optimization algorithm. Lecture Notes in Computer
Science 4682 LNAI, 14-25.

NOVARK, G., BERGER, E., AND ZORN, B. 2009. Efficiently and precisely locating memory leaks and bloat.
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 397-407.

OKAMURA, H. AND DOHI, T. 2011. A pomdp formulation of multistep failure model with software rejuve-
nation. In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on. 14
-19.

OKAMURA, H., MIYAHARA, S., AND DoHI, T. 2003. Dependability analysis of a transaction-based multi-
server system with rejuvenation. IEICE TRANSACTIONS on Fundamentals of Electronics, Communi-
cations and Computer Sciences E86-A, 8, 2081-2090.

OKAMURA, H., MIYAHARA, S., AND DoOHI, T. 2005. Rejuvenating communication network system under
burst arrival circumstances. IEICE TRANSACTIONS on Communications E88-B, 12, 4498-4506.

OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A. 2003. Why do internet services fail, and what
can be done about it? In Proceedings of the 4th conference on USENIX Symposium on Internet Technolo-
gies and Systems - Volume 4. USITS03. USENIX Association, Berkeley, CA, USA, 1-1.

ORACLE. 2012. Booting and Shutting Down Oracle Solaris on x86 Platforms. Oracle Solaris 11 Information
Library.

PARK, J. AND CHOI, B. 2012. Automated memory leakage detection in android based systems. International
Journal of Control and Automation 5, 2, 35—-42.

PARK, K. AND KiM, S. 2002. Availability analysis and improvement of active/standby cluster systems using
software rejuvenation. Journal of Systems and Software 61, 2, 121-128.

PARNAS, D. 1994. Software aging. In Proceedings of the 16th international conference on Software engineer-
ing. IEEE Computer Society Press, 279-287.

PFENING, A., GARG, S., PULIAFITO, A., TELEK, M., AND TRIVEDI, K. 1996. Optimal software rejuvenation
for tolerating soft failures. Performance Evaluation 27-28, 491-506.

ROBB, D. 2000. Defragmenting really speeds up windows nt machines. Spectrum, IEEE 37, 9, T4-77.

ROEDER, T. AND SCHNEIDER, F. 2010. Proactive obfuscation. ACM Transactions on Computer Systems
(TOCS) 28, 2, 4.

RTCA. 1992. DO-178B Software Considerations in Airborne Systems and Equipment Certification. Require-
ments and Technical Concepts for Aviation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34

SALFNER, F. AND WOLTER, K. 2010. Analysis of service availability for time-triggered rejuvenation policies.
Journal of Systems and Software 83, 9, 1579-1590.

SHERESHEVSKY, M., CROWELL, J., CUKIC, B., GANDIKOTA, V., AND LIU, Y. 2003. Software aging and
multifractality of memory resources. In Dependable Systems and Networks, 2003. Proc. 2003 Int’l. Conf:

SILVA, L., ALONSO, J., SILVA, P., TORRES, J., AND ANDRZEJAK, A. 2007. Using virtualization to improve
software rejuvenation. Proceedings - 6th IEEE International Symposium on Network Computing and
Applications, NCA 2007, 33—-42.

SILVA, L., ALONSO, J., AND TORRES, J. 2009. Using virtualization to improve software rejuvenation. Com-
puters, IEEE Transactions on 58, 11.

SILVA, L., MADEIRA, H., AND SILVA, J. 2006. Software aging and rejuvenation in a soap-based server.
Proceedings - Fifth IEEE International Symposium on Network Computing and Applications, NCA
2006 2006, 56—65.

SOUSA, P., BESSANI, A., CORREIA, M., NEVES, N., AND VERISSIMO, P. 2010. Highly available intrusion-
tolerant services with proactive-reactive recovery. Parallel and Distributed Systems, IEEE Transactions
on 21, 4,452 —465.

SULLIVAN, M. AND CHILLAREGE, R. 1991. Software Defects and Their Impact on System Availability—A
Study of Field Failures in Operating Systems. In Fault-Tolerant Computing, 1991. FTCS-21. Digest of
Papers., Twenty-First International Symposium. IEEE, 2-9.

SUNDARAM, V., HOMCHAUDHURI, S., GARG, S., KINTALA, C., AND BAGCHI, S. 2007. Improving depend-
ability using shared supplementary memory and opportunistic micro rejuvenation in multi-tasking em-
bedded systems. In Dependable Computing, 2007. 13th Pacific Rim Int’l. Symp.

Suzuki, H., DoHI, T., KA10, N., AND TRIVEDI, K. 2003. Maximizing interval reliability in operational
software system with rejuvenation. In Software Reliability Engineering, 2003. 14th Int’l. Symp.

TAI, A., ALKALAI, L., AND CHAU, S. 1999. On-board preventive maintenance: A design-oriented analytic
study for long-life applications. Performance Evaluation 35, 3, 215-232.

TAI A., Tso, K., SANDERS, W., AND CHAU, S. 2005. A performability-oriented software rejuvenation frame-
work for distributed applications. In Dependable Systems and Networks, 2005. Proc. Int’l. Conf.

Tsal, T., VAIDYANATHAN, K., AND GROSS, K. 2006. Low-overhead run-time memory leak detection and
recovery. In Dependable Computing, 2006. 12th Pacific Rim Int’l. Symp.

VAIDYANATHAN, K., HARPER, R., HUNTER, S., AND TRIVEDI, K. 2001. Analysis and implementation of
software rejuvenation in cluster systems. Performance Evaluation Review 29, 1, 62-71.

VAIDYANATHAN, K. AND TRIVEDI, K. 1999. A measurement-based model for estimation of resource ex-
haustion in operational software systems. In Software Reliability Engineering, 1999. Proc. 10th Int’l.
Symp.

VAIDYANATHAN, K. AND TRIVEDI, K. 2005. A comprehensive model for software rejuvenation. Dependable
and Secure Computing, IEEE Transactions on 2, 2.

VALDES, A., ALMGREN, M., CHEUNG, S., DESWARTE, Y., DUTERTRE, B., LEVY, J., SAIDI, H., STAVRI-
DOU, V., AND URIBE, T. 2003. An architecture for an adaptive intrusion-tolerant server. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 2845, 158-178.

WANG, D., XIE, W., AND TRIVEDI, K. 2007. Performability analysis of clustered systems with rejuvenation
under varying workload. Performance Evaluation 64, 3, 247-265.

WANG, Y.-M., HUANG, Y., VO, K.-P., CHUNG, P.-Y., AND KINTALA, C. 1995. Checkpointing and its appli-
cations. In Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth Int’l. Symp.

WEIMER, W. 2006. Exception-handling bugs in java and a language extension to avoid them. Lecture Notes
in Computer Science 4119 LNCS, 22-41.

WOLTER, K. AND REINECKE, P. 2010. Stochastic models for dependable services. Electronic Notes in Theo-
retical Computer Science 261, 5-21.

XI1E, W., HONG, Y., AND TRIVEDI, K. 2004. Software rejuvenation policies for cluster systems under varying
workload. In Dependable Computing, 2004. Proc. 10th IEEE Pacific Rim Int’l. Symp.

XU, G., BOND, M., QIN, F., AND ROUNTEYV, A. 2011. Leakchaser: Helping programmers narrow down causes
of memory leaks. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 270-282.

XU, G. AND ROUNTEV, A. 2008a. Precise memory leak detection for java software using container profiling.
Proceedings - International Conference on Software Engineering, 151-160.

XU, G. AND ROUNTEV, A. 2008b. Precise memory leak detection for java software using container profiling.
In Software Engineering, 2008. ACM /| IEEE 30th Int’l. Conf.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:35

YOSHIMURA, T., YAMADA, H., AND KONO, K. 2011. Can linux be rejuvenated without reboots? In Software
Aging and Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on. 50 —55.

ZHANG, H., WU, G., CHOW, K., YU, Z., AND XING, X. 2011. Detecting resource leaks through dynamical
mining of resource usage patterns. In Dependable Systems and Networks Workshops (DSN-W), 2011
41st Int’l. Conf.

ZHAO, J. AND TRIVEDI, K. 2011. Performance modeling of apache web server affected by aging. In Software
Aging and Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on. 56 —61.

ZHAO, J., TRIVEDI, K., WANG, Y., AND CHEN, X. 2010. Evaluation of software performance affected by
aging. In Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop on.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

