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Defect Analysis in Mission-critical Software Systems:
a Detailed Investigation

Gabriella Carrozza§, Roberto Pietrantuono⇤, Stefano Russo‡,†

SUMMARY

The practice of defect analysis is recognized as an essential task for software process measurement, yet its
effective application in the industrial development of large-scale software systems raises several challenges.
We report the results of a study conducted at SELEX ES – a large system integrator leader in the market
of software-intensive mission-critical systems. The article describes the defect analysis approach that we
tailored to evaluate the software development process with respect to the quality of produced software and
its relation with the required effort. Three key phases of the process were addressed, regarding the software
implementation, the testing phase, and the pre-release defect fixing activity, over a set of six Computer
Software Configuration Items (CSCIs) developed from 2009 to 2012 for the naval and maritime domain
product line.
The analysis highlighted efficiency bottlenecks in each of the monitored phases, providing company
engineers with insights about room for process improvement. The implemented approach, the observed
phenomena, and the inferred conclusions are of support to practitioners coping with systems, development
models, and industrial environments similar to the considered one.
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1. INTRODUCTION

Data about defects experienced during the software lifecycle are a valuable source of information for
product and process quality assessment and improvement. Elaborate methods exist that use defect
data (such as the type, the trigger, the injection and detection phase, the impact) for tracking the
quality of development artefacts and of process activities, revealing inefficiencies, and supporting
process improvement. Examples are the Orthogonal Defect Classification (ODC) [1], and the
HP classification [2]. Nonetheless, the effective introduction of defect analysis in the industrial
development of large software-intensive systems is heavily conditioned by the context, which finally
dictates the objectives and the constraints of the analysis. There is, in fact, a trade-off between the
target of the analysis, its potential outcomes, its extensiveness to several process aspects, and the
cost required to implement it. For instance, a simple, widely used, method to track and measure the
testing process is through software reliability growth models (SRGMs); they are easy to implement,
because the defect detection time is the only required input, but, at the same time, they provide
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limited insights into the process. Oppositely, implementing classification schemes as ODC or HP
yields much information on single phases efficiency, but at higher expense and greater intrusiveness.
Their application into real industrial settings can be difficult [3], [4], because of start-up costs (e.g.,
training, process changes), of required customizations (e.g., [5]), of non-immediate visible gain, and
of reluctance of people to change their routine job.

This article presents a study of defect analysis in the domain of mission-critical software systems
aimed at evaluating the software development process with respect to the quality of produced
software and its relation with the effort required to attain that quality. With the objective of
identifying software process improvements, a collaboration was started in 2010 among SELEX ES,
SESM and the Federico II University. SELEX ES is a Finmeccanica company producing mission-
and safety-critical systems in several domains: Avionics, Aerospace, Air Traffic Control, Homeland
Security and Vessel Traffic Management. SESM acts as research centre supporting SELEX ES in
innovating software quality processes. The systems they produce strongly and increasingly rely
on software to satisfy a high number of diverse needs. They are typical large-scale and software-
intensive products (with thousands of requirements and millions of lines of code), subject to
stringent dependability requirements. Their development involves so a large number of people
and teams that a lack of control over the process might easily result in low-quality products and
cost or time overruns. In these critical domains, low quality is likely to lead to huge maintenance
costs, exacerbated by the wide geographical distribution of systems. Thus, the company software
engineering unit - one of the biggest units, accounting for about 1,000 employees in several countries
- is focusing on the improvement of product and process quality.

The objective of the study is to assess the quality-effort trade-off of the current development
process of SELEX ES. We started with an analysis of the existing process, wherein three
key requirements clearly come out for a successful assessment and improvement strategy: low
intrusiveness, low impact on current practices, low setting and execution cost. This limited any
attempt to customize existing approaches (e.g., ODC-based, HP-based) in a top-down fashion. We
implemented a bottom-up strategy, in which: the object of the evaluation (i.e., which aspects of the
process are to evaluate), the type of information to gather or infer (i.e., by what data), the way
to gather or infer them (i.e., by what metrics and measurement procedures), and the way to use it
(i.e., how to interpret and use results) come out from the analysis of the context. The result merges
various types of analyses useful for both product and process evaluation while keeping the impact
on current practices low.

The study consists of a set of Computer Software Configuration Items (CSCIs) developed from
2009 to 2012 for the naval and maritime domain product line. We addressed research questions
on effectiveness and efficiency in terms of quality and effort of the following process phases:
CSCI implementation, CSCI testing, CSCI defect fixing. Results highlight process flaws impacting
production efficiency and their potential root causes. Specifically, we derived: i) estimates of CSCIs
quality; ii) effectiveness and efficiency measures of monitored process phases; iii) indications on
sources of measures variability across process instances; iv) data about the impact of suppliers on
quality indicators, pointing out the best and the worst contributor to process quality. Output data
are supporting SELEX ES engineers to implement proper improvement actions. Besides specific
findings, the analysis exposed patterns of typical problems that we conjecture may occur within
similar contexts. These are used to frame hypotheses for future research.

In the following, we first introduce the development process of SELEX ES. Section 3 describes
the followed method. Section 4 reports results of the analysis, while Section 5 discusses the findings.
Section 6 surveys the related work, and Section 7 concludes the paper.

2. BACKGROUND

2.1. Development Process

The typical software process in the mentioned critical domains is based on some customization
of the V-Model, described by the MIL-498 standard [6] (the SELEX ES version is in Figure 1).
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DEFECT ANALYSIS IN MISSION-CRITICAL SOFTWARE SYSTEMS 3

This model foresees a strong component-based approach, induced by the size and complexity
of systems under stringent time-to-market and quality constraints. Each component, known as
Computer Software Configuration Item (CSCI), is actually a product by itself, highly decoupled
from the others, autonomously deliverable and deployable.

CSCIs are the basic units of development. They are usually implemented by supplier companies
(and in few cases by internal teams). Thus, an important distinctive aspect of this model is the
participation of suppliers. In our study, we refer to such a case, in which CSCIs are implemented by
external supplier companies. Supplier’s implementation teams take care of coding and of internal
pre-release testing of the assigned CSCI. After coding, a CSCI undergoes the qualification testing
stage. Detected defects are notified to the implementation team, which fixes them and iteratively
provides new releases. Thus, a supplier is in charge of both the implementation and the corrective
maintenance (i.e., defect fixing) tasks. Upon CSCI release, an integration testing stage is entered.
System and acceptance testing are performed before final product release.

The main development phases and artefacts are:

• System requirement analysis and specification, that produce a System and Subsystems
Specification (SSS) document, with requirements specified for a number of subsystems; it is
complemented by the Interface Requirements Specification (IRS) with the system interfaces
and data model;

• System design, which, starting from the SSS, produces a System and Subsystems Design
Description (SSDD) document, containing the high-level architecture of the envisaged
solution, and the allocation of requirements to subsystems;

• Software requirements analysis and specification, which, along with the architectural design,
produce Software Requirements Specification (SRS) documents for each identified CSCI.
Each SRS is complemented by an Interface Control Document (ICD) specifying the CSCI
interfaces and the related data model;

• CSCI design, which produces a Software Design Description (SDD) reporting the internal
design of a CSCI, and the allocation of software requirements to its internal subcomponents.
An SDD document is produced for each CSCI. Each SDD is accompanied by an Interface
Design Document (IDD) that specifies the CSCI internal interfaces and exchanged data.

• Coding and Fixing, where the CSCI source code from the SDD is produced, using the
continuous feedback from CSCI qualification testing to iteratively fix detected defects before

Figure 1. The V-Model in the considered industrial setting [7]
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releasing the CSCI to the integration testing stage. CSCI size typically ranges from several
tens to hundreds of KLoC.

Testing phases and artefacts include:

• CSCI Unit (or qualification) testing, specifying the software test plan (STP) and description
(STD) documents, running tests, and producing a Software Test Report (STR);

• Software integration testing, specifying the Software Integration Test Description (SITD)
document, running tests, and producing the corresponding report (SITR);

• System testing and acceptance testing, specifying the Acceptance Test Plan (ATP), running
tests, and producing, respectively, the in-Factory and on-Site Acceptance Test report (FAT and
SAT report), according to the location where tests are performed.

2.2. Defect Lifecycle

The CSCI-based process entails a shared management of defects between supplier and testing teams.
Defects are characterized through issues managed by an issue tracker. The issue tracker adopted by
SELEX ES for the considered CSCIs is Mantis BT†. Not all the issues are defects, as they represent
a generic problem to be managed - for our purpose, we consider only defects, filtering out feature
requests and duplicates. The Mantis BT instance is configured to display the following fields for a
reported issue:

• ID: a unique identifier.
• Summary: a brief text identifying the problem.
• Description: a textual description of the problem manifestation.
• How to repeat: the set of steps to reproduce the anomaly.
• Status, that can be: New, Assigned, Feedback, Acknowledged, Confirmed, Resolved, Closed.
• Resolution, indicating the fixing process status: Open, Fixed, Reopened, Unable to reproduce,

Not fixable, Duplicate, No change required, Won’t fix.
• Priority: Immediate, Urgent, High, Normal, Low, None.
• Severity, whose descending criticality levels are: Block, Crash, Major, Minor, Tweak, Text,

Trivial, Feature.
• Reproducibility: an indication about the complexity of the issue triggering conditions (Not

always reproducible, Always reproducible).
• Release: version in which the issue has been revealed.
• Timestamp, associated with the issue “status” variation.

The workflow defined in Mantis BT is reported in Figure 2. It shows the issue management and
the communication among involved actors, which in our case are: the CSCI implementation team,
the CSCI manager responsible for it, and the CSCI testing team. In the sequence, the testing team
member submits a detected issue setting the status to New. The system notifies the CSCI manager,
who redirects the issue to the implementation team, changing the status to Assigned. Implementer
can ask for further clarification if the description is not clear, changing the status to Feedback. He
changes the status to Acknowledged when has the necessary information to proceed with correction;
if no action is required (e.g., it is not a defect), the status is set to Resolved; otherwise, it is set to
Confirmed and the fixing process begins. When fixing is completed, the status is set to Resolved,
with the implementation team and manager being notified. The manager verifies that the issue is
actually fixed, and sets the status to Closed.

†Mantis BT is available at: http://www.mantisbt.org/
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DEFECT ANALYSIS IN MISSION-CRITICAL SOFTWARE SYSTEMS 5

Figure 2. UML Sequence diagram describing the actions upon defect detection. Modified from Mantis issue
workflow at: http://www.mantisbt.org/forums/viewtopic.php?f=2&t=12188, verified on August 8, 2014
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3. ANALYSIS

3.1. Overview

The objective of the study is to evaluate the development process to produce CSCIs, with respect
to the quality vs. effort balance‡. Hence, we consider the CSCI as the basic instance of the process
to evaluate. The stated high-level objective is to be achieved with a minimal impact on current
development practices. Figure 3 represents the steps we followed to this aim.

Figure 3. Process Overview

We started from the analysis of the development process as currently implemented in SELEX
ES. The development model described in the previous Section tells that, in order to focus on CSCIs
evaluation, the starting point is the CSCIs design specification given to suppliers for implementation.
Considering the objective of the evaluation and the CSCI lifecycle, the next step has been the
identification of the key processes to evaluate, along with a tailoring of the high-level objective for
each of the identified process. For each process, we then looked at the effectiveness and efficiency
attributes able to fulfil the evaluation objective. In this step, the important constraint of the low
impact on current existing practices was considered. This is a requirement that we set together with
SELEX ES engineers, in order to get as much information as possible but minimizing the risk of
failure and the cost that a change in the current practices could entail. From analysing the context,
we recognized, on one hand, the strong need of controlling the quality of what produced (low
quality of a maritime traffic control system means huge maintenance cost requiring expensive on-
site interventions), while, on the other hand, we recognized the difficulties entailed by the features
of the systems developed (in terms of size, complexity, quality requirements), and consequently by
the process to build them. Systems are large-scale and software-intensive products with thousands
of requirements and millions of lines of code with strict dependability requirements. One of its key
features of is the strong decoupling among developers and the involvement of external suppliers.
This high modularity and strong component-based approach definitely bring advantages in terms of

‡In this context, quality is intended as level of defectiveness of software, while effort indicates the amount of resources
spent for an activity on that software. Both defectiveness and effort can be measured in several ways, as showed in the
metrics definition Section.

Copyright c
� John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. ()

Prepared using smrauth.cls DOI: 10.1002/smr



DEFECT ANALYSIS IN MISSION-CRITICAL SOFTWARE SYSTEMS 7

reuse and implementation cost, and are likely the best way to build these systems, but they also entail
numerous people and teams being involved, with different skills, working environments, coding
rules and styles, development processes, communication patterns, data tracking and management
practices, terminologies, tools, and internal quality standards. This high heterogeneity made it
difficult to satisfy the low-intrusiveness, low-impact, and low-cost constraint: we agreed with
SELEX and SESM engineers to implement a “black-box” approach, in which there is no need of
knowing internal details on how the activities of the analysed processes are carried out (e.g., which
coding rules, standards, or patterns, which tests generation criteria or tests execution environment,
which code analysis or debugging tools, technologies adopted, organizational aspects, and so on),
but the needed information is inferred only from what these activities produced, namely form
the available defect data, and few other details (e.g., required implementation and testing effort).
This allowed us not requiring any process change or any additional effort to developers (e.g.,
to re-classify defects according to a predefined scheme as could be the case with ODC, HP
schemes), avoiding expensive training, terminology alignment, imposition to suppliers, and other
adaptation activities. The minimal requirement (already met by the existing process) was the usage
of a defect tracking tool and the sharing of defect repositories between the CSCI developers and
the CSCI integrator, namely SELEX ES. From inspecting the bug repositories, we identified the
common defect attributes gathered by suppliers and based our analysis on them. These include
the characteristics of the defects specified in the previous Section. In the “data gathering” step,
we queried the bug repositories to collect the needed data. Finally, by analysing the results of
measurements as explained in the following, we yielded a picture of what and who contributed more
to quality and effort factors, and of possible effectiveness and efficiency bottlenecks. Collected data
and observed patterns also allowed formulating some hypotheses on phenomena needing further
investigation, which SELEX engineers are currently working on. In the following, the outlined steps
are detailed.

3.2. Identification of processes

Referring to the development model phases, we jointly determined three key processes of interest
from the quality and effort perspective: the CSCI implementation process, the CSCI testing
process, and the defect fixing (i.e., pre-release corrective maintenance) process (hereafter simply
implementation, testing, fixing). Implementation and fixing involve several different groups, with
a high degree of heterogeneity and a lack of direct control by the integrator; therefore, they are
potentially subject to a high variability in terms of quality and effort. Testing is monitored because
of its impact on what provided by suppliers: the quality of the delivered CSCI, as well as the release
time and cost, depend heavily on the work of the testing team. The object of the evaluation is
therefore the bottom part of the lifecycle in Figure 1, consisting of the iterative cycle where artefacts
are implemented, tested, and undergo corrective maintenance actions. Actors involved are the CSCI
supplier (for implementation and fixing) and the integrator’s testing teams responsible for CSCI
qualification testing. For these processes, defect data are available through the bug tracker shared
between the testing team and suppliers. With these processes identified, the objective is re-stated
into three research questions:

• RQ1: What are the effectiveness and the efficiency of the implementation process?
As we focus on quality evaluation, with effectiveness we mean the quality – i.e., (un-
)defectiveness – of what produced, while with efficiency we mean the quality with respect
to the effort to attain it.

• RQ2: What are the effectiveness and efficiency of the testing process?
The task of tester is to expose failures, i.e., the defects manifestation. Hence, testing
effectiveness is the level of defectiveness exposed by testers, and efficiency relates this to
the effort required.

• RQ3: What are the effectiveness, the efficiency, and the internal quality of the fixing process?
These are intended, respectively, as: the extent of defectiveness reduction performed by the
fixing team; the latter related to the effort required; the quality attributes of the fixing process,
taken as indirect guarantee of a correct fixing, such as: the continuity of the fixing action over
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time, the homogeneity of the fixing actions across defects, the distribution across priority,
severity, reproducibility categories.

These questions are answered through the analysis of defect data from two perspectives: i)
analysis of the average effectiveness, efficiency, and internal quality measures for CSCIs; ii) analysis
of the variability of these measures across CSCIs. The former provides synthetic indications on the
overall process. The latter indicates the degree of control over the monitored process (with high
variability indicating low control) pointing out the most critical CSCIs.

3.3. Metrics Definition

The following metrics are defined to target the outlined questions. The first set, called basic metrics,
is meant to characterize the defectiveness, used as indicator of poor quality. For CSCI j, we have:

• Defects
j

: number of opened defects;
• EstDefects

j

and EstResiduals
j

= EstDefects
j

- Defects
j

; number of estimated defects, and
number of estimated residual defects, obtained by the cumulative defect count curve.
EstDefects

j

is the fundamental metric to measure the expected quality. To obtain it, we used
software reliability growth models (SRGM) built on the defect count curve. SRGMs are a
widely-used class of models to fit inter-failure times from test data, in order to estimate
the next time to failure based on the observed trend. They are used to predict the number
of (residual) defects, and the testing time needed to detect them (useful for scheduling
the best time to release), to assess or predict reliability, and to allocate testing effort to
system’s components as well (e.g., [8], [9], [10], [11]). These models have been proven to
work well even when the assumptions they ground on are partially violated [12]. SRGMs
are characterized by a mean-value function (MVF) representing the cumulative number of
expected defects detected at time t with respect to the testing effort (e.g., in terms of number
of testing days). Different MVFs give rise to different SRGMs, as the ones adopted here.
We used a subset of the most common class of non-homogeneous Poisson process (NHPP)
models: Exponential [13], S-Shaped [14], Weibull [15], Log Logistic [16], Log Normal [17],
Truncated Logistic [18], Truncated Extreme-Value Max [19], and Truncated Extreme-Value
Min [19]. Since there is no model that fits all the situations, we applied all of them to each set
of CSCI data, and chose the best one based on their Akaike Information Criteria (AIC) value,
as in [20], [21].

• Defects
P

i,j

: defects per priority class P
i

; Defects
S

i,j

: defects per severity class S
i

; Defects
R

i,j

:
defects per reproducibility class R

i

. These metrics are for a finer-grain analysis.

To characterize the Effort spent into an activity we use the measure of man-weeks. Depending on
the target process, it refers either to the implementation or to the testing effort. We distinguish
ImplEffort

j

and TestEffort
j

, respectively, while we use EFFORT
j

to refer to one of both when there
is no ambiguity. For fixing, the effort is measured by the total time required to fix all the defects.
In fact, while the implementation effort is a piece of information shared between the supplier and
SELEX ES, which commissions the implementation, the effort for fixing, e.g., in terms of man-
months, was kept reserved by suppliers. Hence, we use the time to fix as approximation.

3.3.1. Implementation Metrics

• Effectiveness. Estimated expected quality, EstQuality: EQ

j

= Size

j

EstDefects

j

, where Size

j

is
the code size measured as total number of thousands source lines of code (KLoC). The higher
the value, the higher the expected CSCI quality. Note that this is the inverse of the estimated
expected defect density after the implementation, defined as: EstDensity: ED

j

= EstDefects

j

Size

j

.
• Efficiency. Quality-aware Productivity: QP

j

= Size

j

ImplEffort

j

· 1
ED

j

+1 ; this is derived from the
the traditional form of productivity as size over effort, P

j

= Size

j

ImplEffort

j

, adjusted by a quality
factor represented by the second term, varying between 0 and 1. The metric is defined because
the plain productivity only accounts for how much has been produced, without any regard to
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DEFECT ANALYSIS IN MISSION-CRITICAL SOFTWARE SYSTEMS 9

quality (which we are interested in). For instance, spending 10 man-weeks for one KLoC
containing 5 defects is not the same as 10 man-weeks per KLoC with 8 defects. Thus, we
penalize the productivity as defect density increases, ideally achieving 0 under infinite defects,
while we preserve the plain productivity under a perfect zero-defects product. The higher the
value, the higher the actual productivity is, accounting for both the raw productivity and the
quality of what produced.

3.3.2. Testing Metrics
Metrics to assess the defect detection phase are based on the number of found defects (Defects

j

),
on the estimate of expected defects, EstDefects

j

, and on the testing effort. Unlike implementation,
where CSCIs are at the same stage (namely, CSCI delivered to the testing team), the testing process
of each CSCI may be at different stages at the time of the inquiry. Hence, the number of found
defects is only a partial indication, as at early testing stage more defects are exposed. We consider:

• Effectiveness. Defect detection state, DetState

j

% = Defects

j

EstDefects

j

· 100, measured as the
percentage of defects found over all the defects expected. It measures the current state of
the testing process (its “maturity”) with respect to the expectation as estimated by the SRGM.

• (Absolute) Efficiency. Defect detection rate, DetRate

j

= Defects

j

TestEffort

j

, measured as number
of found defects over man-weeks of testing that have been spent.

• Percentage detection efficiency = DE

j

% = DetState

j

%
TestEffort

j

= DetRate

j

EstDefects

j

· 100. It measures the
defect detection state relatively to the testing effort spent so far, thus indicating what
percentage of defects, with respect to the expected total, has been found per man-week of
testing. It also corresponds to the normalized detection rate over expected defects.

Both detection rate and DE% indicate the actual efficiency of testing, but they do not allow a fair
comparison of CSCIs, because the number of defects does not vary linearly with testing effort.
Hence, two detection rates or DE% values at different stages are not comparable to each other
(in the beginning, the process is expected to be more efficient, as it exposes more failures per time
unit). For a better comparison, we use a “relative” efficiency measure: given the same detection state,
which testing process exhibited the best (normalized) rate. For instance, considering a maturity of
90%, we compare the efficiency of testing teams in achieving that level. We can define the number
of man-weeks to detect the x% of total estimated defects (TestEffort

x%). This represents a relative
inefficiency measure (i.e., the higher the value, the lower the efficiency). We define its normalization
over the number of estimated defects (to account for differences among CSCIs) as:

• Relative detection effort: RDE

x%,j

= TestEffort

x%

EstDefects

j

3.3.3. Fixing Metrics

• Effectiveness: %Closed
j

= #Closed
j

/#Opened
j

defects for CSCI j, indicating how many
defects are closed with respect to the opened ones.

• Efficiency: we consider the FixRate = 1/TTFix, where TTFix is the average time to fix a
defect. We consider both the mean and the median time to fix, i.e., TTFix

µ,Med

, obtaining:
FixRate

µ,Med

. The TTFix is calculated in days as the time the resolution status is set to fixed
minus the time when it is set to open. This excludes the time during which the manager verifies
the issue and then closes it, to better approximate the actual time in which the developer works
on the bug fix.

As for the Internal Fixing Process Quality, the following metrics provide insights on how the fix
process is conducted. They are based on the time to fix evolution and distribution, and are therefore
better understood by a visual analysis of graphs, as showed in the next Section.
Process continuity:
Consider NOpen

j

(t) and NClosed
j

(t) being two time series representing, respectively, the number
of cumulative defects that are opened and the number of cumulative defects that are closed over
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time, for CSCI j (time is discrete and, for these two series, the time unit is the day). Let us derive,
from them, the following two time series:
FixDiff

j

(t) = NOpen(t)
j

(t) - NClose(t)
j

(t): difference between opened and closed defects at a given
time t (with time unit being the day).
FixTrend

j

(t0) = number of defects closed in a time unit. For this metric, the time unit is the week
(hence t

0 = t/7), since the day granularity hides relevant variations. More formally, FixTrend
j

(t0) =
0 if t0 = 0; FixTrend

j

(t0) = NClosed
j

(t=t

0 · 7) - NClosed
j

(t=(t0-1) · 7) if t0 > 0. Values of both these
series are ideally desired to not change suddenly with time, since this would indicate that the defect
closing trend is approximately the same as the opening one, and that there are no abrupt increases in
the defect closing trend. Both aspects indicate a continuity in the process, intended as smoothness
of the fixing action over time, which is a desirable feature to increase the chance of having good
fixes [22]. We use their basic statistics as metrics to synthetically capture their characteristics:

• FixDiff
MIN

j

, FixDiff
MAX

j

, FixDiff
MEAN

j

, FixDiff
STD

j

, which are, respectively, the
minimum, maximum, mean, and standard deviation, of the values of the FixDiff

j

(t) time
series.

• FixTrend
MIN

j

, FixTrend
MAX

j

, FixTrend
MEAN

j

, FixTrend
STD

j

, namely, the minimum,
maximum, mean, and standard deviation of the FixTrend

j

(t0) series.

Process homogeneity:
A homogeneous fixing process means that most of defects are resolved within a TTFix close
to the average, and that most of the TTFix variance is due to many defects with short TTFix.
The undesirable situation is to have a non-negligible number of defects over all the spectrum of
the TTFix, highly distant from the mean. This characteristic is captured by the empirical TTFix
distribution [22], on which we measure:

• Kurtosis
j

, indicating the peakedness of the distribution. High Kurtosis is good, denoting that
most of variance is due to few peaks. These peaks are of course desired in the left side of the
distribution (i.e., many defects with a short TTFix); this is captured by skewness:

• Skew
j

: a positive skew is desired, denoting a right-tailed distribution.

Fix per Type of Defect:
Finally, for a finer grain analysis, we consider the TTFix per defect category, in order to see if
there are differences in fixing defects of different categories (e.g., high severity with respect to low
severity): TTFixP

i,j

: average time to fix a defect per priority class i; this indicates if the debugging
team conforms to the indication of reporters about which bug is more urgent to fix;
TTFixS

i,j

: average time to fix a defect per severity class i; this indicates if the level of severity if a
bug is correlated with the time to fix it;
TTFixR

i,j

: average time to fix a defect per reproducibility class i; it indicates if defects marked as
not always reproducible are actually more difficult to fix or not, and if the indication is useful to
prioritize defect fixing. Table I summarizes all the presented metrics.

3.4. Data Collection

The process evaluation approach is applied to a set of 6 CSCI developed in the context of the
homeland security domain (specifically in the naval and maritime systems domain), in charge of
managing the port, maritime, and coastal surveillance. In order to find a suitable way to assess the
quality of such products and of the corresponding process, we started the mentioned collaboration
among the University “Federico II”, SELEX ES and SESM at the beginning of 2010 up to august
2012. Thus, the selection of CSCIs that we have used as pilot project was on a temporal basis:
we considered all the CSCIs under development in that period, hence data collected range from
October 2009 to August 2012. The features of CSCIs are summarized in Table II - names of CSCIs
are anonymized as C1, C2, . . . , C6, for confidentiality reason. All the CSCIs are self-consistent
products, and their design and development is completely independent form the specific system they
will be integrated in. A CSCI may be even reused across several domains, e.g., air traffic control.
The considered CSCIs have a large range of variation in terms of size (ranging from 22 KLoC to
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Table I. List of Metrics for CSCI j

Name Description Unit of Measure
Basic Metrics
Defects Level of defectiveness detected by testing Defect
EstDefects Expected level of total defectiveness Defect
EstResiduals Expected level of residual defectiveness Defect
Defects

P

i

,
S

i

,
R

i

Level of defectiveness distinguished per class Defect
of priority, severity, or reproducibility

ImplEffort
j

, TestEffort
j

Effort for implementation, and for detection Man-week
Implementation Metrics
EQ Estimated expected quality KLoC/Defect
ED Estimated expected defect density Defect/KLoC
P Productivity as quantity over effort KLoC/Man-week
QP Quality-aware Productivity KLoC/Man-week
Detection Metrics
DetState % Defect detection state as opened defects Percentage (%)

with respect to the expected total
DetRate Defect detection rate Defect/man-week
DE % Percentage detection efficiency Percentage (%)/man-week
TestEffort

x% Test effort to detect the x% of expected defects Man-week
RDE

x% (Relative) detection effort to detect Man-week/Defect
the x% of expected defects

Fixing Metrics
%Closed Level of defectiveness fixed Percentage (%)
FixRate

µ,Med

Fix rate Day�1

TTFix
µ,Med

Average time to fix Day
FixDiff

MIN

, FixDiff
MAX

Minimum, maximum, mean, and standard Defect
FixDiff

MEAN

, FixDiff
STD

deviation of the FixDiff time series
FixTrend

MIN

, FixTrend
MAX

Minimum, maximum, mean, and standard Defect/week
FixTrend

MEAN

, FixTrend
STD

deviation of the FixTrend time series
Kurtosis Kurtosis of the TTFix distribution -

(coefficient of kurtosis)
Skew Skewness of the TTFix distribution -

(coefficient of skewness)
TTFixP

i

, S
i

, R
i

TTFix per priority, severity, reproducibility class Day

Table II. Features of the analysed CSCIs

CSCI KLoC Implementation Description
Effort (man-weeks)

C1 39.059 44 CSCI assuring interoperability between operative-strategic and
tactical systems for Network-Centric Operations support during
expeditionary warfare operations.

C2 55.154 24 CSCI in charge of managing anomalies, alarms and smart agents
associated with maritime tracks

C3 22.208 40 CSCI in charge of managing presentation layer components
C4 59.535 48 CSCI managing standard-compliant messages and related standard

communication protocols
C5 343.719 144 CSCI responsible for validation of messages of application-level pro-

tocols, and their correct sending and receiving
C6 34.700 42 CSCI managing the representation and publication of

messages through a shared message channel model

343 KLoC), and of implementation effort (ranging from 24 to 144 man-weeks). They have different
missions and offer several functionalities, ranging from low-level drivers to Web applications and
GUIs.

The CSCI C1 has the primary goal of assuring interoperability during expeditionary warfare
operations among different systems. The involved systems are the “operative-strategic system” and
the “tactical system for the support of network-centric operations”, which use different protocols and
heterogeneous channels; the CSCI assures the correct communication among them. C2 is a CSCI
responsible for controlling the maritime traffic. It manages, and presents to the user, anomalies
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and alarms that might be associated with maritime tracks. C3 is a GWT framework to manage
components for the presentation layer. C4 is a CSCI in charge of managing and presenting messages
set up according to various different standards and which utilize different communication protocols.
C5 is a CSCI for verification and validation of messages belonging to application-level protocols.
It is in charge of managing the correct representation of the messages, and the correct sending
and receiving of messages according to a given protocol. Finally, C6 is in charge of managing
the representation and correct publication and retrieval of messages implemented through shared
models for message exchange.

All the CSCIs have been designed by SELEX ES teams, provided to different companies for
implementation, integrated and tested by SELEX ES supported by SESM. In particular, the latter
supports SELEX ES for software verification and validation (V&V) activities of these CSCIs.
Defects management is performed through the shared Mantis bug tracker, from which we extracted
data. The resulting set of defects is of 1,296 opened issues, of which 950 (i.e., the 73.3%) were
closed. We included in the analysis all the issues except the ones marked as duplicate and request
of new features.

4. RESULTS

This Section reports the result of the analysis of each monitored process. Table III reports the basic
metrics, as derived by the cumulative defect count graph (Figures 4(a)-4(f)) by means of the above-
mentioned SRGMs. The estimation of the expected number of total defects (EstDefects) provided
by SRGMs is in the second row. In fact, the different types of SRGMs can be described by their
mean value function appearing in the form m(t) = aF (t), where a is the expected number of total
defects (corresponding to EstDefects), and F (t) is a distribution function, which can take several
forms depending on the fault detection process. Parameters of SRGM (both a and parameters of
F (t)) are estimated by adopting the expectation-maximization (EM) algorithm as described in [20].
In the analysed cases, the best fitting models, according to the mentioned AIC value, have been the
truncated logistic (m(t) = a · (1�exp(�t/)

(1+exp(�(t��)/) ) in four out of six cases, and the truncated extreme-

value min (m(t) = a · (1� 1�exp(�exp(�(t��)


))
1�exp(�exp(�/)) ) in the remaining 2 cases. The adjusted coefficients

of determination are R̄

2
> 0.96 in all the cases but C4, where it is R̄

2 ⇡ 0.93. From graphs, a
remarkable difference is between C4 and all the other CSCIs, having the former still a high detection
rate in the final part of the curve, that causes an estimate of residual defects significantly higher
than the others (this is better investigated in the testing process analysis). Overall, according to the
estimate, there are still 1,476 - 1,296 = 180 defects to detect, with pronounced differences among
CSCIs (the standard deviation of residuals is very high due to C4 and C6).

Table III. Values of Basic Metrics for each CSCI

Basic Metrics C1 C2 C3 C4 C5 C6 Mean. Tot Standard Deviation
Defects

j

206 166 283 152 177 312 216 1,296 66.21
EstDefects

j

216 168 288 287 179 338 246 1,476 68.38
EstResiduals

j

10 2 5 135 2 26 30 180 52.21

4.1. Implementation Process

Both the trend of the graphs and the number of detected defects reflect more the different stages of
testing than the quality of the implementation. This is better described by the expected defectiveness
as estimated by SRGMs. Table IV reports the implementation metric values. The expected quality is
in the average 0.469 KLoC per defect (corresponding to a defect density of 6.1 defects per KLoC).
It is not as high as desired, but it should be considered that the value refers to defectiveness at the
end of the implementation process, not as usually taken (i.e., accounting for number of post-release
defects); the CSCIs must still undergo testing and pre-release corrective maintenance. As such, the
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measure is to evaluate just the implementation stage, not the CSCI as finally released. The average

Table IV. Values of Implementation Metrics for each CSCI

C1 C2 C3 C4 C5 C6 Mean Standard Deviation
ED

j

5.530 3.046 12.968 4.820 0.520 9.567 6.104 4.535
EQ

j

0.181 0.328 0.077 0.207 1.920 0.103 0.469 0.716
P
j

0.887 2.298 0.555 1.240 2.38 0.826 1.365 0.787
QP

j

0.136 0.568 0.039 0.213 1.569 0.077 0.434 0.588

productivity is 1.36 KLoC per man-week. The last row reports the quality-aware productivity,
indicating the productivity adjusted by the quality factor. In the average, this factor causes a
reduction, with respect to plain productivity, of almost 70%, leading to a quality-aware productivity
of 0.434. Focusing on single values, we notice some cases significantly different from the mean,
which cause a high standard deviation (compared to the mean) especially in the estimated expected
quality (EQ) and quality-aware productivity (QP ) values. We observe two extreme situations that
determine most of the variability: C5 with the highest expected quality and the highest productivity,
and C3, with the opposite result. Correspondingly, these CSCIs also experience the best (C5) and the
worst (C3) quality-aware productivity, as well as the smallest (C5) and the biggest (C3) reduction
from productivity to quality-aware productivity (of about 34% and 92%, respectively). C6 indicators
report a bad performance too, very close to C3.

(a) CSCI 1 (b) CSCI 2

(c) CSCI 3 (d) CSCI 4

(e) CSCI 5 (f) CSCI 6

Figure 4. Cumulative number of detected defects for each CSCI
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It is interesting to observe that the supplier producing more (C5’s supplier) is also the one
producing with higher quality, and the opposite is also true for C3. This suggests that there may be
a systematic reason for the observed differences, and the results concordance between the expected
quality and quality-aware productivity is not by chance. From the implementation quality point
of view, engineers are called to investigate the single processes implemented by the best and the
worst case, trying to foster the replication of best practices across all the suppliers, with the double
objective of: improving the mean values of expected quality and quality-aware productivity, and
having more homogeneous results (i.e., lowering the standard deviation). Further indications come
from the following fine-grain analysis and the final discussion targeting the processes altogether.

4.2. Testing Process

Table V reports the testing process analysis results. The detection state represents the current
effectiveness of testing, while the detection rate (DetRate) and percentage detection efficiency
(DE%) value are the current efficiency measures. In the average, testers have detected about 3.7
defects per man-week of effort, detecting the 89.43% of the total expected defects. The standard
deviation (STD) values of all the metrics (compared to their mean) is relatively low compared to
implementation. This is explained by considering that testing is carried out entirely in SELEX ES,
with lower heterogeneity with respect to implementation teams.

Table V. Values of Testing Metrics for each CSCI. Bold texts are the main effectiveness and efficiency
metrics

C1 C2 C3 C4 C5 C6 Mean STD
TestEffort

j

52 40 123 57 56 63 65.16 31.93
DetState

j

% 95.37% 98.81% 98.26% 52.96% 98.88% 92.31% 89.43% 18.05%
DetRate

j

3.96 5.19 2.26 2.98 3.05 4.73 3.69 1.03
DE

j

% 1.83% 2.47% 0.80% 0.93% 1.77% 1.47% 1.54% 0.62%
TestEffort50%,j

33 26 22 53 23 39 32.67 11.87
RDE50%,j

3.27 3.23 6.54 2.70 3.89 4.33 3.99 1.37
TestEffort90%,j

49 34 61 85 37 52 53 18.55
RDE90%,j

3.97 4.45 4.25 3.04 4.35 5.85 4.32 0.91

Looking at CSCI values, data highlight that all of them but C4 have detected over 90% of expected
defects, denoting that testing is in an advanced state; C4 is instead at 53%. To figure out if the low
value is due to bad testing or to the testing process being at its early stage, we have to turn out to
efficiency metrics. We notice that the C4 detection rate is almost the worst one, although we would
expect a higher rate than the others. Typically, at later stages of testing, the number of defects found
in a time unit gets decreasing, meaning that few defects are remaining and the work of tester is much
harder (as a lot of effort is needed to detect further defects). Instead, C4 has approximately the same
rate as C5, which has however detected almost all the defects (i.e., 98.8%). It means that the effort
devoted to C4 testing has been spent badly so far. Contrarily, C2 and C5 have a very high detection
rate if we consider that they are close to the end of testing (over 98%).

For a clearer picture, the fourth row reports the detection efficiency metric. In the average, the
detection process has revealed the 1.54% of total expected defects per man-week. Focusing on the
single values, we note that, for C2, the percentage detection efficiency (DE%) is 2.47% (best value),
while C3 and C4 have been the most problematic ones. At a closer look, while C3 has achieved
roughly the same state as C2 (98%), C4 has detected only the 53% of total defects, as discussed
earlier. Since the detection rates do not increase linearly with testing effort, the similar DE% values
of C3 and C4 do not indicate a similar situation, because they are at very different stages; C4 has
more serious problems.

The percentage detection efficiency, DE%, provides the efficiency at the current time; therefore,
for a fair comparison, we can use the relative detection effort metrics. We consider the relative
detection effort at two maturity levels: 50% and 90 % of total defects as reference detection state,
representing early and late testing stages (RDE50% and RDE90%). The former metric is based
on the actual man-weeks employed for each CSCI to detect 50% of defects; however, for the latter
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metric (RDE90%) there is one case in which the percentage of detected defects does not achieve the
90% yet, which is C4 (it is at 53%). Hence, for C4, we use the prediction of the man-weeks required
to achieve the 90% of defects, obtained by the corresponding SRGM on the base of data collected
up to 53%. Despite the goodness of the prediction (the goodness-of-fit measure of the SRGM for
C4 is R̄

2 ⇡ 0.93 over 152 data points), this is a source of uncertainty that can in principle change
the result. On the other hand, the C4 value of RDE90% is consistent with that of RDE50% (it is
again the worst one) and with all the effectiveness and efficiency metrics discussed above: the value
just confirms that C4 testing team exhibited the lowest detection power.

Analysing the effectiveness and efficiency indicators altogether, we note that, contrarily to the
expectation, the detection rate of all CSCIs except C3 increases with testing effort; namely, the
relative detection effort at 90% values (RDE90%) are greater than the corresponding ones at 50%,
and the variation decreases. This is, in general, unexpected, as we would like to expose most of
defects as early as possible. At 50% of the work, C3 and C6 have the best detection rate. At 90%, C6
remains the best one, while C3 rate decreases, lower than C2 and C5, even though still high. After
90% (i.e., from 90% to the current state), comparing the detection rate (DetRate) with RDE90%

we observe that: i) C1 performance decreases very slightly; ii) C5 and C6 decrease considerably
(more than 1 defect per man-week); iii) the biggest decrease is for C3, whose rate drops down of
about 2 defects per man-week; iv) C2 rate, contrarily, keeps increasing. This means that the knee
point, where defects detection starts decreasing, is after the 90% for C1, C4, C5, and C6, while it
is between the 50% and 90% for C3. While this is a good behaviour for C3 early testing, the final
actual efficiency depends on the release criteria: if it is at 90 % of the total estimated defects, C3
testing team did a good job (the rate is close to the average); if it is higher, for instance at 98%,
C2 and C5 are better than C3, despite an early testing not as good as C3. Considering that all the
CSCIs but C4 have overcome the 90%, and taking this threshold as optimal release criterion, the
best testing process has been observed in C6, while the worst one is C4.

4.3. Fixing Process

We analyse the results of fixing effectiveness and efficiency. The sample size is of 950 defects, since
it accounts only for closed defects. As overall indication, we look at the percentage of closed defects
with respect to the opened ones, and the mean and median fix rates (with the corresponding time to
fix). Closed defects are 73.3%, with a mean fix rate of 0.0323 defects per day (mean time to fix a
defect of 30.92 days), and a median of 0.0841 defects per day (mean time to fix of 11.89 days). The
difference between mean and median is high because of the strong non-normality of the distribution
(the Shapiro-Wilk test p-value is:< 10�5).

The high standard deviation of the time to fix (54.03) leads to investigatethe differences at CSCI
level. Table VI reports the results per CSCI. C1 is clearly an outlier, having much fewer closed
defects and lower fix rate. The best fix rate is for C2 (0.07 and 0.16 defects per day, corresponding
to 12.65 and 5.93 days to close a defect, for mean and median indicators, respectively), even though
the defects to close at the time of the inquiry are only 63.25% of opened ones. Looking at the
trade-off between effectiveness and efficiency, we notice that C3 and C5 have good performance
in terms of percentage of closed defects (both over the 90%) and of fix rate mean and median.
Standing with these indications, engineers should target C1 to lower the variability among results
and improve the overall average indicators. In the following, we look at the process continuity
and homogeneity of each CSCI for a deeper understanding of effectiveness and efficiency measures.

Process Continuity and Homogeneity
Process continuity is inferred from the time series of opened and closed cumulative defects (Figure
5(a)-5(f)). Table VII reports the continuity metrics of closed-opened difference (FixDiff metrics)
and closing trend (FixTrend metrics). The former metrics indicate how the closing curve follows the
opening one (i.e., suppliers promptly fix defects), the latter ones indicate if the increase is smooth
or not. They provide insights on the evolution of corrective maintenance process over time.
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Table VI. Time to Fix per CSCI

CSCI C1 C2 C3 C4 C5 C6 (Inter-CSCI)
Mean (STD)

Sample Size 57 105 273 129 160 226 158.33 (79.62)
% Closed 27.67% 63.25% 96.47% 84.87% 90.39% 72.43% 72.51% (25.07%)
FixRate

µ

0.0099 0.0790 0.0404 0.0183 0.0489 0.0427 0.0399 (0.0244)
(TTFix

µ

) (100.34) (12.65) (24.74) (54.42) (20.43) (23.40) 39.33 (33.12)
FixRate

Med

0,0095 0,1686 0,1563 0,0294 0,0901 0,0714 0,0876 (0,0649)
(TTFix

Med

) (105.24) (5.93) (6.40) (34.00) (11.10) (14.00) 29.44 (38.53)

(a) Trend for CSCI 1 (b) Trend for CSCI 2

(c) Trend for CSCI 3 (d) Trend for CSCI 4

(e) Trend for CSCI 5 (f) Trend for CSCI 6

Figure 5. Fixing Process Continuity: Opening and Closing Curves
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Table VII. Values of Fix Process Continuity Metrics for each CSCI

FixDiff
j

Metrics FixTrend
j

Metrics
CSCI MIN MAX MEAN STD MIN MAX MEAN STD
CSCI 1 1 175 70.33 65.22 0 40 1.07 5.56
CSCI 2 1 61 14.12 17.06 0 35 3.28 7.06
CSCI 3 6 46 15.80 5.25 0 25 2.12 4.88
CSCI 4 1 73 27.53 20.79 0 24 2.52 5.73
CSCI 5 4 33 17.10 7.83 0 15 2.4 3.72
CSCI 6 1 86 40.23 27.61 0 22 3.53 5.09

We observe that:

• C1 has always a high number of non-closed (pending) defects (with a maximum of 175 around
week 45). Its bad performance, already verified by the final low effectiveness, is stable along
the entire period of observation. We see that the opening trend increases while the closing
trend remains approximately constant (Figure 5(a)).

• For C6, despite both the curves increase quite smoothly, numbers highlight some problems,
since, toward the end of testing, there is a maximum of 80 defects left open. Contrarily to C1,
this has more likely been a temporary problem, as the number of pending defects increased
only after week 40 (Figure 5(f)). Besides this effectiveness problem, the closing trend standard
deviation (FixTrend

STD

j

) is high compared to the mean, indicating a high variability in the
fixing time, despite the graph appearance (the high number of defects make it appear as
smooth).

• C2 has a good performance (the mean closing-opening difference, FixDiff
MEAN

j

, is 14.12),
although the final pending defects are 100%-63.25%=36.75%. A summary conclusion could
be that the team fixes few defects but in a short time (the time to fix median is the lowest
one, 5.93). Looking at the closing trend, the high standard deviation indicates an abrupt
increase of fixing. This, in general, is not a desirable behaviour, as it might indicate that
many fixes are performed altogether and can have a negative impact on the fixing process
quality [22], with high likelihood of introducing new defects. However, only considering
these values is inconclusive: if we look together at the good closing-opening difference
mean (FixDiff

MEAN

j

) and consider the trends of both curves, we see that the there is an
abrupt increase of both opening and fixing graphs, and that the final moderate effectiveness is
more likely due to the sudden increase of defect defection than to slow fixing. All the other
indicators show that C2 fixing team is able to keep a very high fix rate and a good average
effectiveness.

• In C4, the maximum closing-opening difference is FixDiff
MAX

j

= 73 and the standard
deviation is high. The corresponding graph shows a non-smooth increase of the opening and
closing curves, and an irregular trend with respect to the other CSCIs. In this case, unlike
C2, the high standard deviation of the closing trend (FixTrend

STD

j

) along with the values
of FixDiff

j

metrics confirm that the discontinuity is due to both detection and fixing actions.
Both behaviours are not desirable and need investigation.

Further considerations on homogeneity are made looking at the time to fix distribution. Figure 6
reports the distribution over the entire dataset, which shows good properties (high positive skewness:
� = 8.5872, and high kurtosis:  = 97.4564), with about the 80% of defects fixed within 50 days.
There are some exceptional cases requiring more than 150 days.

Table VIII reports the kurtosis and skewness values of each CSCI, highlighting that:

• C2 and C3 are confirmed to be the best ones; the high kurtosis and skew, along with the low
mean and median time to fix, indicate that most of defects are fixed in very short time.

• The worst ones, for these indicators, are C4 and C6. While for C4 this is in line with the
discontinuity observed before and with the high time to fix (mean= 54 days; median = 34 days),
the values for C6 call for deeper analysis. In fact, although the graph with so many points
hides the variability, both the previous analysis and these indexes suggest that there are not
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Figure 6. Distribution of the Time to Fix (in days) for all data

few peaks deviating from the mean. Overall mean and median are good, but the homogeneity
of fixing actions should be improved for more consistent and controlled measures.

• C1 does not show the lowest kurtosis and skew values: this means that the bad results observed
before are not due to some outliers that influence the mean, but most of the samples are around
the high mean: the time to fix is systematically bad, around 100 days. The positive skew is
explained by the initial phase of testing, where the opening and closing curves are close (due
to the very few opened defects).

Table VIII. Time to Fix Distribution Kurtosis and Skewness

CSCI C1 C2 C3 C4 C5 C6 Mean Standard deviation
Kurtosis 66.8 100.7 78.7 18.1 58.2 10.4 55.5 35.04
Skew 6.9 9.5 8.0 4.0 6.6 3.1 6.4 2.4

In the following, we report a finer grain analysis, referred to the three processes, aimed to
highlight aspects not captured by the previous metrics.

4.4. Fine-grain Analysis

We investigate the impact of Priority, Severity, and Reproducibility assigned by reporters during
testing. Percentages over the entire dataset reveal that: the Normal priority is the most assigned level
(55.94%); 25.77% of defects are marked as High priority, whereas the very high priority categories
(that is: Immediate and Urgent) are used in 14.89% of cases. As for perceived severity: Major and
Minor categories are used in 52.08% and 27.08% of cases, respectively; Block category is assigned
in 9.34% of cases, which is not a negligible proportion. The remaining categories are used in less
than 2% of cases, except the Feature category (4.40%). Table IX provides a combined view of
the two features. Defects at high severity (such as the with category Block and Crash) have almost
always an Immediate, Urgent, or High priority; thus the most critical defects are the ones at the right-
bottom of the Table, which overall account for 474 defects (36.57%) considering Major, Crash and
Block severity categories along with High, Urgent, and Immediate priority categories.

Histograms in Figure 7-8-9 show the defect count per priority, severity, and reproducibility for
each CSCI. The priority attribute regards more the fixing process (it is an indication that should
be used by the fixing team to prioritize defects) and will be investigated later on; whereas, for
implementation and testing teams, we focus on severity and reproducibility. As for severity, we first
conjecture whether the CSCI implementer impacts the observed number of high severity defects.
To simplify the reasoning, we consider two classes of severity: Low severity, from Trivial to Minor,
and High severity including Major, crash, and Block categories. We test the null hypothesis that:
the proportion of high severity defects is the same across all the CSCI, which is rejected at p < .05
(the �

2 test of independence is used for comparison among proportions). The pairwise comparisons
(with p-values adjusted using the Benjamini-Hochberg procedure) reveal 8 out of the 15 significant
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Table IX. Defects Severity and Priority

Priority None Low Normal High Urgent Immediate Total Percentage
Severity
Feature 6 8 38 4 1 1 57 4.40%
Trivial 0 2 2 1 1 0 6 0.46%
Text 1 2 12 12 0 0 27 2.08%
Tweak 0 4 23 2 0 0 29 2.24%
Minor 1 13 305 21 7 3 351 27.08%
Major 0 6 331 270 47 21 675 52.08%
Crash 0 1 5 8 13 3 30 2.31%
Block 0 0 9 16 33 63 121 9.34%
Total 8 36 725 334 102 91 1,296 -
Percentage 0.62% 2.78% 55.94% 25.77% 7.87% 7.02% - 100%

Figure 7. Defects percentage of priority
categories per CSCI

Figure 8. Defects percentage of severity
categories per CSCI

Figure 9. Defects percentage of reproducibility
categories per CSCI

pairwise differences, the biggest one being between C1 (with the biggest high-severity defects
proportion) and C4 (with the smallest) – p-value =.032. The implementation metrics in Table IV
suggested that the most critical CSCI is C3; at the same time, this result suggests also putting some
more focus on C1, since, even though it does not exhibit a high defect density as C3 (and as C6),
it introduced the most severe defects. On the other hand, we also test whether severity, in turn, is
related to testing performance metrics. We observe that there is no significant correlation between
proportions of high severity defects and any of the testing metrics (coefficients are never over 0.6,
and in no case statistically significant at ↵ < .05). If severity were related to testing metrics, then
the evaluation of the testing teams could change: if a team receives a CSCI with more high-severe
defects its worse performance is partly justified. However, we cannot state, from observing data,
that differences in testing are due to defect severity.

Reproducibility (Figure 9) is a relevant attribute especially for the testing process. It indicates if
testers experienced a situation in which he has not been able to reproduce the defect. In 78% of
the cases, defects have been marked as Always reproducible, in 19% as Not tried or Not Available
and in the remaining 3% as Not always reproducible. There is a high percentage of Not tried or
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Not Available cases, in which reporters did not care about this aspect or were not able to establish
this value§. Considering that, in the literature, this type of defects are reported with percentages
around 20-40%, even in critical contexts [23], [24], the low percentage can be justified by the scarce
focus on establishing if a defect is always reproducible or not. Although the testing phase is not
the final one, and more bugs of this type are expected to surface in later stages, our conjecture is
confirmed by the high percentage of Not tried or Not Available cases. Considering their high impact
at operational time [25], [26] this aspect should be improved. On single CSCIs, we observed again
no significant correlation among the proportion of Not Always Reproducible defects and any of the
testing metrics. Thus, differences among CSCI are likely not due to reproducibility.

We investigate the impact of Priority and Severity on the time to fix. Table X shows the median
time to fix per priority for each CSCI (the corresponding count of defects is in Figure 7). The
distributions of datasets are all non-normal (the Shapiro-Wilk test gives p-value < 0.0001 in all
cases) - thus we use medians. We split data into high priority (including: Urgent, Immediate, High
categories) and low priority (Normal, Low, None categories), and investigate the null hypothesis
that the time to fix for high and low priority is sampled from the same distribution. The hypothesis
is rejected with a confidence of 95% (↵ < .05) in two cases, namely in C2 and C6. The hypothesis
test adopted depends on the properties of data. In all the cases data are non-normal: when they are
homoscedastic, we apply the Wilcoxon Mann-Withney U test. As it is sensitive to highly unequal
variances [27], [28], [29], when data are heteroscedastic we transform data in ranks and use the
t-test on ranks, with the version of t-test dependent on new variances on ranks: the classical t-test
if variances are equal, the Welch’s t-test otherwise [29], [28], [30]. Again, p-values are adjusted by
the Benjamini-Hochberg procedure for multiple comparison protection.

From results, there is not a uniform indication: high priority defects take much longer than
low priority ones in C2, while the opposite happens in C6. In the other CSCIs, the difference is
not statistically relevant at 95%, but the same behaviour as C2 is observed in C1, C4 and C5. If
we assume that the expected behaviour is the high priority defects being solved in shorter time,
implementers of these CSCIs seem to neglect the priority indication as set by the testing team.
Contrarily, C6 solves correctly the high priority defects earlier (as well as C3). This raises a warning
about the way priorities are assigned or managed. Engineers are called to better investigate if this is
due to: inappropriate assignments of priorities, to priorities being neglected by suppliers, or to the
actual fixing difficulty of bugs at higher priorities. In order to gain deeper understanding of this, we
analyse the difference, in the time to fix, between defects at different levels of severity. In fact, if
we assume severity as an indirect indication of fixing difficulty, we can verify if differences are due
more to the actual difficulty of fixing rather than to developers neglecting priorities.

Table X. Priority vs. Time to Fix Medians for each CSCI.

CSCI C1 C2 C3 C4 C5 C6
High 107.18 12.96 5.31 69.17 13.08 12.20
Low 86.88 1.02 7.22 30.98 11.07 15.26
Normality <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Shapiro-Wilk test
Unequal variance 0.0105 0.0546 0.0039 0.0007 0.8153 0.0164
Levene’s test
High vs. Low test 0.7675 0.0004 0.1817 0.9323 0.4436 0.0415
(adj. p-value)

Table XI shows the time to fix medians for high and low severity. Like for priority, the tested
hypothesis is whether the time to fix for high and low severity is sampled from the same distribution.
In all the cases but C6, the high severity defects take longer than low severity ones. Among these,
the significant differences rejecting the hypothesis are in C2 and C6, which have again opposite

§It should be observed that the Always reproducible defects are overestimated, since, in principle, the tester cannot state
that a bug is “always reproducible” (he could have not tried enough); contrarily if tester experiences one case in which
defect is not reproduced he can mark it as Not always reproducible with certainty
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results. The reason behind this should be investigated, to figure out if C6 team decided to neglect
low severity defects and fix them later, or the severity indication by the testing team is inappropriate.

Observing the entire dataset, we noticed that: i) except for C3, there are very similar differences
in the time to fix between high vs low priority and high vs low severity; ii) the 89.94% of defects
(Table IX) at high priorities (i.e., Urgent, Immediate, High categories) are also at high severity
(i.e.,Major, Crash, Block categories). These remarks are in favor of the conjecture that developers
are not neglecting priorities, but that high priorities defects are actually the most severe ones and
the most difficult to fix; hence, the behaviour about priority observed in C2 (and C1, C4, C5 too,
but with p-value > .05) can be partially justified. For such a behaviour, it should be decided, at
policy level, if it is acceptable or not, namely if high severity defects are accepted to take longer
even though marked with a high priority. On the other hand, although this seems the most likely
hypothesis to investigate, we also notice that the differences are significant at 95% only for two out
of six components – therefore data are not sufficient to statistically support the provided explanation.
Besides the mentioned cases of C2 and C6, the insignificant difference in all the others confirms that
severity, as priority, did not make the difference among CSCIs in terms of fixing effectiveness and
efficiency.

Table XI. Severity vs. Time to Fix Medians for each CSCI

CSCI C1 C2 C3 C4 C5 C6
High 108.53 7.36 6.95 69.09 12.97 13.93
Low 82.97 0.97 3.22 23.60 11.07 17.74
Normality <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Shapiro-Wilk
Unequal variance <0.0001 0.5760 <0.0001 <0.0001 0.37 0.0009
Levene’s test
High vs. Low test 0.8220 0.0051 0.7917 0.8640 0.3721 0.0267
(adj. p-value)

5. DISCUSSION

5.1. Global results

Results of the study focused on the implementation, detection, and fixing evaluated globally and at
CSCI-level. Besides the presented results, we summarize some further global findings (F

i

) that may
be useful in contexts resembling the one outlined here.

Regarding the first research question, we observed that the implementation phase effectiveness,
measured as expected quality, is, in the average, 0.469 KLoC per defect corresponding to a defect
density of 6.104 defects per KLoC, while the efficiency, measured as productivity and its adjusted
value (i.e., quality-aware productivity), turned out to be 1.365 and 0.434 KLoC per man-week,
respectively. About variability across CSCIs, we observed that:
F1: in this type of process, even with requirements specification and design phases under the control
of the same entity, the effectiveness and efficiency of the implementation given to suppliers are
highly variable, with coefficient of variation (CoV) of metrics greater than 50%: we had CoV% =
74.3%, 152.66%, 57.69%, and 135.48% for, respectively, expected defect density, expected quality,
productivity, and quality-aware productivity. This indicates much margin for improvement by just
levelling the performance of the single CSCIs around the same values, reducing the heterogeneity.
The adoption of stricter coding rules to impose to supplier is an action supposed to improve this
aspect. More specific actions can be taken by considering results at CSCI-level (see the next
Section).

As for the second research question, the effectiveness of the testing process in terms of defect
detection state turned out to be of 89.43% in the average, whereas the testing efficiency is of 3.69
defects per man-week, corresponding to 1.54% of total expected defects detected per man-week.
Relatively to the predefined levels of 50% and 90% of total expected defects, the average number
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of man-weeks required to achieve those levels is 32.67 and 53. The normalized values, i.e., man-
weeks per defect to achieve those levels, are 3.99 and 4.32, respectively. Coefficient of variations
are in this case much lower than implementation and fixing processes; they are: 20.18%, 27.79%,
and 40.25%, 34.33%, and 21.06% for, respectively, the detection state, detection rate, percentage
detection efficiency, and the two relative detection effort values, at 50% and 90%. In this case,
there is a smaller variability with respect to the implementation process, reflecting the fact that
the detection of all the CSCIs is done internally (with roughly the same process, even though by
different team). There is however margin for improvement too. Additionally, a common pattern that
should be improved is the low detection rates experienced at early testing stages, namely:
F2: in testing (externally supplied) components, the detection rate in the first 50% of testing time is
lower than the rate at 90% . We observed this in most CSCIs; a possible explanation is related to the
complexity of CSCIs that causes a slow start-up by testers in learning its behaviour and in setting
up the test scaffolding.

The third research question was about the fixing process. In this case, the percentage of closed
defects is of 73.3%, with a rate of 0.084 defects per day taking the median, corresponding to an
average time to fix of 11.89 days. The time to fix distribution shows good properties in terms of
skew and peakedness, but it exhibits high variability (like the implementation). CoV%s are: 34.57%,
61.15%, 84.21%, 74.08%, 130.87% for, respectively, the percentage of closed defects, the fix rate
and time to fix taking the mean, the fix rate and time to fix taking the median. This reflects the fact
that:
F3: the variability of implementation and fixing process is greater than the variability of the testing
process, presumably because they are carried out by (different) suppliers, while testing is done
internally.

Further indications come from the fine-grain analysis. As for severity, we see that:
F4: there are significant differences among CSCIs in terms of high-severe defects, but we cannot
state that severity has an impact on the performance of the testing team. Regarding reproducibility,
the low number of not-always reproducible defects, compared to the literature, would induce
to formulate the hypothesis that hard-to-reproduce defects are fewer in mission-critical systems;
however, for what said in Section 4.4, this is more likely due to an inaccurate classification:
F5: despite its importance, especially in these contexts, testers overlook the reproducibility
classification, not focusing properly on establishing if a defect is always reproducible or not.

Finally, priority and severity analysis vs time to fix reveals, besides what mentioned, some
contradiction with respect to the expectation:
F6: the time to fix for high priority and high severity defects is not significantly lower than the
low priority and low severity ones. In the case of severity, this is not so relevant; indeed, a defect
with high impact is not necessarily more difficult to fix. In the case of priorities, managers should
investigate if priority levels are set by the testers shallowly, or if suppliers neglect them. In both
cases, precise guidelines and instructions are needed to make this attribute useful.

5.2. CSCI results

In all the cases, CoVs tell that there is high room for improvement by a better control of
heterogeneity. Hereafter, we summarize the bottlenecks at CSCI- (hence at supplier-) level:

• C1 implementation indicators highlight productivity and quality indicators rated as fourth
in the ranking. At the same time, the severity analysis denoted this CSCI as the one with
highest percentage of most severe defects. Thus, a better work is required to C1’s implementer
to reduce high severity defects (e.g., by conducting the internal testing more focused on
high impact functionalities). The same supplier is in charge of maintenance: the C1 fixing
team showed by far the worst performance. All the indicators pinpoint problems in fixing
effectiveness, efficiency, and internal quality. Instead, the SELEX testing team for this
CSCI showed performance in the average (metrics are in the middle of the ranking - some
improvements are required for the relative detection effort at 90%, RDE90%).

• C2 has a very good implementation and fixing process. In fact, the only metric rated in the
fifth position is the fixing effectiveness, but, as discussed, a deeper analysis showed that this
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Table XII. Ranking per CSCI with respect to the most relevant metrics

CSCI C1 C2 C3 C4 C5 C6
Implementation Metrics
EQ 4th 2nd 6th 3rd 1st 5th

P 4th 2nd 6th 3rd 1st 5th

QP 4th 2nd 6th 3rd 1st 5th

Detection Metrics
State 4th 2nd 3rd 6th 1st 5th

Rate 3rd 1st 6th 5th 4th 2nd

DE% 2nd 1st 6th 5th 3rd 4th

RDE50% 4th 5th 1st 6th 3rd 2nd

RDE90% 5th 2nd 4th 6th 3rd 1st

Fixing Metrics
%Closed 6th 5th 1st 3rd 2nd 4th

FixRate
Med

6th 1st 2nd 5th 3rd 4th

metric has been influenced by the abrupt increase of defect detection. Testing is good in terms
of effectiveness and efficiency; however, the relative detection effort at 50% (RDE at 50%)
is low, while it increases at 90%, and keeps increasing at 98%. Since the overall rate is the
best one, the suggestion is to anticipate this ability, improving the defect detection in the early
stage.

• C3 has the worst implementation as for quality and productivity; the overall detection rate and
testing efficiency are also unsatisfactory. A positive note regards the detection trend, which
decreases over time (at 50%, at 90% and at 98%). The process is continuous and regular, but
the detection rate is too slow. From the fixing point of view, C3 is the best one as number of
pending defects, and the second one as time to fix. C3 supplier provides a bad implementation
partially “compensated” by a good fixing team.

• C4 has a close-to-average implementation, with the lowest percentage of high severity defects,
but a non-satisfactory fixing. The latter should improve both the fix rate and the continuity and
homogeneity of the process. The testing team is still at early stage. The detection is at 53% of
the total estimated defects, and, in this 53%, all the detection rate indicators are bad. Testing
and fixing for C4 need substantial improvement.

• C5 supplier is the best one in terms of productivity and defect density; at the same time, fixing
is very satisfactory. Testing is almost at its final stage (98.88% of total defects), and the rate
indicators are in the average. As for the continuity of testing, an increase from RDE50% to
RDE90% of the rate indicates the need to improve the early detection, like C2, whereas at the
end the rate correctly goes toward the saturation.

• C6 implementation is close to the worst one; the defectiveness introduced is also reflected
by the good job of the testing team (whose process achieved the 92% of defects, which is
good although is the fifth one, and the best rate at 90%). The detection rate is also correctly
decreasing from 90% to 92% , even though not from 50% to 90%. Fixing is rated as fourth;
we showed that some problems are present in terms of continuity of the process that leads to
many pending defects. Stricter rules for a more continuous fixing should be imposed to this
supplier too.

Both global and CSCI-level remarks are being used by SELEX engineers to implement
improvement policies internally and toward each CSCI supplier as well.

5.3. Threats to Validity

In this subsection, we discuss the potential threats to validity, using the scheme by Wohlin et al.
[31].

• Construct validity: the computation of the estimated number of total defects (EstDefects),
used for constructing implementation and testing metrics, is based on SRGMs. These models
rely on a set of assumptions (e.g., independent inter-failure times, equal probability to find a
failure across time units, immediate repair, no change to the code during testing), which are
easily violated in the practice. However, SRGMs have been demonstrated to provide good
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results in terms of prediction accuracy, even when these assumptions are partially violated
[12] (especially in the presence of numerous data points as in our case), and are therefore
regularly used in the practice since more than 30 years. Additionally, to mitigate the threat,
we relied on a set of eight SRGMs, of which the best one is selected in terms of AIC, resulting
in high R̄

2 goodness-of-fit measures.
In the implementation process analysis, we opted for a structural metric, namely the number
of KLoC, to measure the size of the software. Although functional size measures could also
be adopted for the same type of analysis, the number of KLoC is judged reliable enough in
this context, since the chosen CSCIs are written in the same language and all CSCIs stem
from the same design process used by SELEX ES design teams (e.g., they adopt the same
internal design guidelines and rules).
As for the testing process, the relative detection effort metric using the 90% of expected
defects (RDE90%), when computed on C4, is based on a prediction of effort rather than on
the actual effort as in the rest of CSCIs. This is because the percentage of detected defects
for C4 did not achieve the 90% yet, but it is at 53%. We therefore used the predicted effort
required for C4 testing to achieve the 90% of total defects, by using its SRGM, rather than
the actual effort. The uncertainty associated with the prediction might bias the evaluation
of C4. However, while we suggested care to SELEX ES engineers in interpreting the value
of RDE90% for C4, there are several reasons reducing its potential impact on the overall
evaluation of C4 testing process: i) both testing effectiveness and efficiency metrics pinpoint
the bad performance of C4; ii) the same metric evaluated at 50% (where defect data are
available for C4 as for the other CSCIs) confirms the worst performance of C4 like the
RDE90% metric; iii) the prediction is carried out through a model with a goodness-of-fit
measure of R̄

2 ⇡ 0.93 obtained over 152 data points, i.e., the 53% of expected total ones.
Overall, consistency of metrics along with the goodness-of-fit of the model for C4, allow us
to confidently confirm the results discussed for C4.
Finally, in the fixing process, the time to fix is calculated as the time when the resolution
status is set to fixed minus the time when it is set to opened. Although we exclude the time in
which correction is verified (which may be highly impacting [32]), this may be not the exact
amount of time in which the developer actually works on the bug fix. This might mislead the
judgement about the root cause of the inefficiency of suppliers’ fixing process. If this is the
case, what changes is the action that suppliers would implement to get better times to fix:
instead of improving the fixing activity in itself, it would simply impose, internally, to use the
bug tracking system correctly in the maintenance process so that values would represent the
actual fixing time.

• Internal validity: some considerations derived from priority, severity, and reproducibility are
under the assumption that detection teams within SELEX ES use the same criteria to judge
and assign these attributes to defects, and, hence, the bias due to different people doing this
task is minimized. More generally, results could be not representative of the context if people
involved in the evaluated processes were aware of the project; however, we assured that neither
developers, nor testers, nor suppliers, as well as project managers of these CSCIs were aware
of the study until the end of data collection; hence results are free from potential psychological
bias.
A further treat is that we are considering only the discovered defects; there are possibly others
with a different distribution that can change the result. Additional threats to internal validity
include the correctness of scripts for data collection process as well as of implementation
of the fitting algorithm (namely, the EM algorithm [20]) for SRGMs construction done by
authors.

• External validity: results rely on six CSCIs analysed within one industrial context in the field
of large-scale mission-critical systems. Results observed on a single case are not statistically
generalizable; rather, reported findings, supported by data, serve as basis to develop testable
hypotheses for contexts (namely, type of systems and development models) similar to the
considered one, which researchers can verify by replicating our analysis in similar industrial
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settings. We believe that, since analyses on proprietary industrial systems are scarce in the
literature, the reported results provide an important contribution despite the limitations in
terms of external validity.

• Conclusion validity: conclusions about the effectiveness and efficiency of analysed processes
are drawn from the considered CSCIs. Due to the information available about the process
(hence, to metrics derived from it) and to the limited number of CSCIs, we have based most
of the analyses on average and standard deviation figures, limiting the application of statistical
tests to fine-grain analysis on severity, priority, and reproducibility. More CSCIs and further
insights in the process could entail stronger conclusions in terms of statistical validity.

These threats have been presented to SELEX engineers as possible causes of bias; they should be
had in mind before drawing conclusions based on the observed results.

5.4. Remarks on the implemented evaluation method

We hereafter briefly discuss about the potential benefits and the drawbacks we found in applying the
described evaluation method. The key for success has been definitely the very low effort required
to SELEX ES engineers, which has been a driving criterion from the beginning. As experienced by
many researchers in software engineering, it is often the case that industry is, with reason, anchored
to their consolidated processes to build this kind of (slowly changing) systems. Instead of trying
of changing their processes from the top, we experienced that starting from their daily work and
from exploiting the information available “for free” is by far more useful. This, in fact, produces
immediate and visible feedbacks, which more easily expose the need for implementing improvement
actions. In terms of effort, one engineer from SESM, during the project, acted as interface between
the academic and industry part, interpreting the SELEX management needs and procuring the
needed data. Other engineers, working on the specific CSCI, were occasionally asked for small
technical issues to facilitate the data gathering. Compared with more rigid defect analysis solutions,
this approach required no training, no process change, no customization, and no modification to the
way people are used to work routinely.

Moreover, since basic information is required to obtain the presented evaluations, the reusability
of the approach is expected to be high. Defect tracking and analysis is indeed a practice
recommended by the most important software process standards [33], [34], [35], and the attributes
chosen for the analysis are very basic ones (e.g., opening and closing time, defect severity, priority).
These are supposed to be collected by most of companies, at least in the context of mission-critical
systems. Reusing the approach requires therefore a preliminary analysis of the context, in order to
infer process phases, lifecycle model features, and defects data available; once data are collected,
the same analyses reported in this paper are easily applicable to other contexts, provided that such
basic attributes are collected. Finally, from the academic point of view, such an approach allowed
setting up a concrete experience in an industrial scenario, which is often the missing link to convince
people that certain changes are possible and worthwhile.

On the other hand, there are limitations of the adopted strategy. Being it based on a black box
approach, we had a partial view of the process internals; consequently, deeper analyses were not
possible. For instance, we could not perform evaluations based on: defect type, defect trigger, fault-
slip-through analysis about phases where defects were injected, detected, and corrected, source
code-defects relationship, and many others. Additionally, while we rely on existing data, the other
side of the coin is that the applicability is fully dependent on which information is collected. With an
ODC-like approach, this is established a priori at the expense of starting collecting data from scratch.
A suitable strategy to profitably apply defect analysis in industry could be to start from applying a
lightweight and flexible approach like ours at the beginning, providing immediate evidence, and
then turning to more complex methods once people are convinced of their potential usefulness.
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6. RELATED WORK

Defect analysis is widely used in software quality assurance and process improvement. The
mentioned schemes of HP classification and ODC have been implemented with success into several
contexts (e.g., [36], [37], [38], [39], [40] [41]). The board characterization they provide is useful
especially for companies willing to setup a defect tracking process from scratch, and yields a rich
feedback to the process. On the other hand, several difficulties have been experienced, for training,
start-up, and customizations or adaption to existing processes [5], [3], [4], [42], [43], [44]. These
difficulties are exacerbated as the software development process within the organization is hard
to change (e.g., it involves several independent groups, is geographically distributed, unstructured,
etc.), and the type of documents and considered defects differ from traditional ones.

Defect analysis for process improvement has been used in [45], where authors apply it as feedback
to improve quality and productivity in an iterative development model. In [46], authors classify
and analyse about 12,000 defects taken from bug tracking of three companies, showing that most
of defects, 65.5%, are functional (computation or logic); results are supposed to support software
process improvement. Other works focus on specific aspects of the defect analysis cycle; in [47]
authors remark the importance of an efficient defect reporting on the testing process, demonstrating
that improving reporting decreases the percentage of invalid reports from 26 to 19.53%. Several
studies analysed the fixing process of defects. The study in [48] reports an analysis on 1500 defects
revealed in 5 years on an IBM middleware, classifying defects per topic and developer expertise,
showing that the time to fix is impacted from these two factors. Zhang et al. [49] found some factors
influencing the time lag between the defect assignment to a developer and the actual starting of
the fixing action, through a case-study on 3 open source software applications. They found that the
assigned severity (unlike our case), the bug description, and the number of methods and changes in
the code as impacting factors.

The work in [32] reports a study specifically focused on finding bottlenecks in the issue
management process, through a case-study of the Apache web-server and the Firefox browser. The
main cause of inefficiency in that case is the time lag in which the correction is verified aimed
at confirming the correct resolution. We, in fact, excluded this time from the TTFix computation.
Authors in [22] analyse the performance of the fixing process in nine open source projects, focusing
on continuity and homogeneity, which we also borrowed for our analysis. Mockus et al. [50]
conducted an analysis on two case studies, Apache and Mozilla, aimed at evaluating several aspects
of the open source development. This study is close to ours with respect to the extensiveness
of the analysis, even though focused on different questions, on a different class of systems, and
on different goals: they evaluate aspects related to the implementation (e.g., the development
community largeness, the community contribution and coordination, the introduced defectiveness),
and to the fixing (time to fix problems, and priority analysis) in open source settings.

These works differ in several aspects from ours, the most important ones being: i) the processes
evaluated, wherein most of the surveyed works focuses on one specific aspect (e.g., defect type,
defect fixing, defect reporting); ii) the procedure adopted for the evaluation; iii) the object of the
evaluation, that in our case is oriented toward component-based processes, with possibly external
actors involved, and toward the class of mission-critical large-scale industrial systems with their own
peculiarities (e.g., high cost of a defect, very high maintenance cost, complex and heterogeneous
development process, closed source code, etc.).

7. CONCLUSION

We investigated software process evaluation through defect analysis in a large system integration
company. We applied a defect analysis procedure conceived to avoid introducing heavy cost and
intrusive inspections into the current process. Results provided a set of insights on the overall
development efficiency, on each of the monitored activities, and on potential causes of inefficiencies,
as critical phases, critical teams on a specific component, or unsatisfactory suppliers.
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Findings are of support to practitioners dealing with medium and large-scale systems developed
according to a component-based approach, having the same problems entailed by this type of
development model. The “lightweight” procedure can also be borrowed for similar analyses,
especially by those researchers involved into industrial environments. Additionally, individual
results on implementation, detection, and fixing can be compared to other contexts where it makes
sense to see pros and cons of such a development model. We expect that future research will
address such a kind of process evaluation, considering several aspects together, including issues and
challenges that come out from industrial contexts to go toward actionable evaluation frameworks.
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31. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers: Norwell, MA, USA, 2000.

32. Ihara A, Ohira M, Matsumoto K. An analysis method for improving a bug modification process in open source
software development. Proc. of the joint Int. and Annual ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops, 2009; 135–144.

33. ISO/IEC 15504:2012 - Information technology – Process assessment 2012.
34. ISO/IEC 12207-2008. Systems and software engineering - Software life cycle processes 2008.
35. CMMI Product Team. CMMI for Development, Version 1.2, CMMI-DEV, V1.2, CMU/SEI-2006-TR-008, ESC-

TR-2006-008. Pittsburgh: Software Engineering Institute. 2006.
36. Butcher M, Munro H, Kratschmer T. Improving software testing via ODC: Three case studies. IBM Systems Journal

2002; 41(1).
37. Mullen R, Hsiao D. Orthogonal Defect Classificiation at Cisco. Proc. ASM Conference, 2002.
38. Chillarege R, Chillarege KRPR, Chillarege KRPR, Prasad KR. Test and Development Process Retrospective - a

Case Study using ODC Triggers. Proc. Int. Performance and Dependability Symposium, 2002.
39. Bridge N. Orthogonal defect classification using defect data to improve software development. Software Quality

1998; 3.
40. Cotroneo D, Pietrantuono R, Russo S. Testing techniques selection based on odc fault types and software metrics.

Journal of Systems and Software 2013; 86(6):1613 – 1637, doi:http://dx.doi.org/10.1016/j.jss.2013.02.020.
41. Grady RB. Successful Software Process Improvement. Prentice Hall, 1997.
42. Li J, Stalhane T, Conradi R, Kristiansen JMW. Enhancing defect tracking systems to facilitate software quality

improvement. IEEE Software 2012; 2(29):59–66.
43. Dubey A. Towards adopting odc in automation application development projects. Proc. 5th India Software

Engineering Conference, 2012; 153–156.
44. Wagner S, Jurjens J, Koller C, Trischberger P. Comparing bug finding tools with reviews and tests. Proc. 17th Int.

Conference on Testing of Communicating Systems, vol. 3502, Springer, 2005; 40–55.
45. Jalote P, Agrawal N. Using defect analysis feedback for improving quality and productivity in iterative

software development. Proc. ITI 3rd Int. Conference on Information and Communications Technology. Enabling
Technologies for the New Knowledge Society, 2005; 703–713.

46. Raninen A, Toroi T, Vainio H, Ahonen JJ. Defect data analysis as input for software process improvement. Proc.
13th Int. Conference on Product-Focused Software Process Improvement, Lecture Notes in Computer Science, vol.
7343, Springer, 2012; 3–16.

47. Wang D, Wang Q, Yang Y, Li Q, Wang H, Yuan F. Is it really a defect? an empirical study on measuring and
improving the process of software defect reporting. Proc. Int. Symposium on Empirical Software Engineering and
Measurement, 2011; 434–443.

48. Nguyen TT, Nguyen T, Duesterwald E, Klinger T, Santhanam P. Inferring developer expertise through defect
analysis. Proc. 34th Int. Conference on Software Engineering (ICSE), 2012; 1297–1300.

49. Zhang F, Khomh F, Zou Y, Hassan A. An empirical study on factors impacting bug fixing time. Proc. 19th Working
Conference on Reverse Engineering (WCRE), 2012.

50. Mockus A, Fielding RT, Herbsleb JD. Two case studies of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodolology 2002; 11(3):309–346.

Copyright c
� John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. ()

Prepared using smrauth.cls DOI: 10.1002/smr

http://dx.doi.org/10.1007/978-3-319-09156-3_33

	1 Introduction
	2 Background
	2.1 Development Process
	2.2 Defect Lifecycle

	3 Analysis
	3.1 Overview
	3.2 Identification of processes
	3.3 Metrics Definition
	3.3.1 Implementation Metrics
	3.3.2 Testing Metrics
	3.3.3 Fixing Metrics

	3.4 Data Collection

	4 Results
	4.1 Implementation Process
	4.2 Testing Process
	4.3 Fixing Process
	4.4 Fine-grain Analysis

	5 Discussion
	5.1 Global results
	5.2 CSCI results
	5.3 Threats to Validity
	5.4 Remarks on the implemented evaluation method

	6 Related Work
	7 Conclusion
	8 Acknowledgement

