
For Peer Review

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

DevOpRET: Continuous Reliability Testing in DevOps

Antonia Bertolino1 | GuglielmoDeAngelis2 | Antonio Guerriero3 | Breno

Miranda1,4 | Roberto Pietrantuono*3 | Stefano Russo3

1ISTI, CNR, Pisa, Italy
2IASI, CNR, Rome, Italy
3DIETI, Università degli Studi di Napoli

Federico II, Napoli, Italy
4 Federal University of Pernambuco, Recife,

Brazil

Correspondence

*Roberto Pietrantuono, Email:

roberto.pietrantuono@unina.it

Present Address

DIETI, Università degli Studi di Napoli Federico

II, Via Claudio 21, 80125Napoli, Italy.

Abstract

Toenter theproduction stage, inDevOpspractices candidate software releases have topass qual-

ity gates, where they are assessed tomeet established target values for key indicators of interest.

We believe software reliability should be an important such indicator, as it greatly contributes to

the end-user satisfaction.We proposeDevOpRET, an approach for reliability testing as part of the

acceptance testing stage inDevOps.DevOpRET relies on operational-profile based testing, a com-

mon reliability assessment technique. DevOpRET leverages usage and failure data monitored in

operations to continuously refine its estimate.We evaluate accuracy and efficiency ofDevOpRET

through controlled experiments with a real-world open source platform and with a microser-

vice architectures benchmark. The results show that DevOpRET provides accurate and efficient

estimates of the true reliability over subsequent DevOps cycles.

KEYWORDS:

Acceptance Test; DevOps; Operational Profile; Quality Gate; Software Reliability Testing

1 INTRODUCTION

A relatively recent trend in software production is that of blurring the boundaries between development in laboratory and operations in produc-

tion1. This is the philosophy behind practices namedDevOps2, which in its own name signifies the seamless connection between development and

operations. Despite its spread, there is no commonly agreed definition for DevOps3,4. Some authors describe it as a cultural shift that IT organiza-

tions should undergo to remove technical or managerial barriers between the development and operations teams, and let them collaborate under

shared responsibilities 5. Other authors focus on necessary capabilities and on cultural and technological enablers for DevOps4. Bass et al. define

DevOps as “a set of practices intended to reduce the time between committing a change to a system and the change being placed into normal production,

while ensuring high quality” 2. As quality controls at the boundary between development and operations are central in such practices, we describe

DevOps as the intersection among the scopes of softwareDevelopment (Dev), Operation (Ops) andQuality Assurance (QA), as depicted in Figure 1.

QA can leverage feedback fromoperations to drive quality controls before releasing newproduct versions, in a virtuousDevOps cycling. Indeed,

continuous testing andmonitoring are two key DevOps practices. Continuous testing foresees short and automated testing rounds that can provide

quick quality feedback to continuous integration (CI); an acceptance test stage can check whether the current software candidate can be released

–Humble and Farley state that “without running acceptance tests in a production-like environment, we know nothing about whether the application meets

the customer’s specification” 6 (p. 124).Monitoring consists in collecting data from the system in production, which can be used for measurement and

optimization in the next testing stage. Monitoring and measurement are crucial in DevOps success7, as DevOps adoption is ultimately motivated

and driven by business objectives, which are quantified intomeasurable Key Performance Indicators (KPIs).

In a release cycle, acceptance testing must include the assessment of KPIs of interest and evaluate if the candidate release meets defined target

values. These KPI targets constitute a quality gate before release. Typically, KPIs considered in DevOps include performance8,9 and security10,11.

We believe that software reliability too should be considered an important KPI in DevOps, as it is related to customer satisfaction and to the

organization success in service delivery; it should be part of acceptance testing of a new product release at the quality gate in a DevOps cycle.

Page 1 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2 A. Bertolino ET AL

FIGURE 1DevOps scope

Software Reliability Engineering (SRE) is a discipline pioneered thirty years ago byMusa, who defined it as the “technology for the 1990s” 12.With

Everett, he introduced SRE as the “applied science of predicting, measuring and managing the reliability of software-based systems to maximize customer

satisfaction. Surprisingly, in the scientific literature on DevOps, the assessment of reliability of a new version before release seems to have received

insufficient attention (as discussed in Section 2), yet in the grey literature reliability is advocated as a key user-related quality factor.

The DevOps Research and Assessment (DORA) company publishes since 2014 a periodic survey over more than 30 thousands DevOps profes-

sionals, which provides a comprehensive and up-to-date analysis of observed trends, to be used as a reference by companies. KPIs early listed by

DORA included: Deployment frequency, Lead time for changes, Time to restore service, and Change failure rate. In the 2018 edition13, for the first

time the report has also included a fifth KPI, namely Availability, meant as “ensuring timely and reliable access to and use of information”.

In about the same years Google introduced “Site Reliability Engineering” 14 (a term earlier coined by Google Vice President of Engineering B.

Sloss, notably with the same acronym as Musa’s discipline). Google SRE is conceived as an implementation of the broader DevOps principles, and

practiced as a concrete set of tasks pertaining to the operations team.We find an interesting overlap between the two SREs: both state the need of

establishing customer-related metrics for reliability assessment, and both identify testing as the main assessment technique. In Google’s SRE “one

key responsibility of site reliability engineers is to quantify confidence in the systems they maintain”; this task is performed “by adapting classical software

testing techniques to systems at scale. Confidence can be measured both by past reliability and future reliability. The former is captured by analyzing data

provided by monitoring historic system behavior, while the latter is quantified by making predictions from data about past system behavior” 14 (Ch. 17).

A central tool in software reliability testing is the operational profile, which is a quantitative characterization of how customerswill use the system

in production12. In fact, to satisfy user requirements it is important to be able to profile actual usage, so that the system can then be tested by

reproducing and predicting users’ experience. It is well known that deriving an operational profile before product release is hard, and the overhead

costs often discourage SRE adoption in industry15. However, in DevOps cycles monitoring software behavior in operation is a common practice,

and this provides the opportunity to learn from history of recent executions to improve predictions about the fulfillment of quality targets by next release.

This is what we allow DevOps testers to do by DevOpRET, a black-box testing approach supporting continuous software reliability testing.

DevOpRET is inspired (as suggestedby its name) by the traditional SoftwareReliability EngineeredTesting (SRET) best practice16, andabasic version

of it was early presented in prior work17. The original contributions of this paper include:

• a refined version of DevOpRET: the basic version17 uses operational testing (OT), building on a statistical sampling algorithm to generate

test cases leveraging usage data from operations. The novel version, denoted as WOT, builds on a sampling algorithm based on a weighted

version of the operational profile, leveraging also failure data from the Ops phase. This entails the usage of a different estimation technique

to preserve unbiasedness and improve the confidence in the estimation.

• an extensive evaluation of DevOpRET over two case studies, namely a real-world social platform (Discourse), and a benchmark for microser-

vice architectures (TrainTicket). The results with the first case study show the ability of the approach to provide accurate estimates of

reliability as more operational data are observed. The WOT and OT variants exhibit statistically equivalent accuracy, but WOT shows a

greater confidence and a greater ability in exposing failures thanOT (at the cost of collecting also failure data in theOps phase). The second

case study shows the adaptivity of the reliability estimate provided by DevOpRET (for OT andWOT, as well) when the true reliability of the

subject under test changes.While confirming that both variants get close to the true reliability over cycles as in the first case study, we could

observe that OT performs better in the short term in presence of sudden changes of failure probability.

The rest of the paper is structured as follows. After a comprehensive overview of related work in the next section, Section 3 introduces the pro-

posedDevOpRET approach. Section 4 presents the empirical evaluation with the two case studies, including the research questions, the evaluation

metrics, and the experimental artifacts andprocedure. Section5 reports anddiscusses the results and the threats to validity. Finally, Section6draws

conclusions and outlines future work.

Page 2 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 3

2 RELATEDWORK

The factors driving testing in DevOps are identified by several authors, who analyzed the state-of-the-art in continuous software engineer-

ing18,19,20,21,22. Our research contributes to some of the key activities identified by Fitzgerald and Stol 23, namely Continuous Testing and Continuous

Improvement. By using the actual operational profile as ameans for data-driven planning of the future reliability testing activities,DevOpRET guides

theQA team to solve issues that are closer to the user-significant scenarios, fostering their continuous engagement.

We believe that for a reliability testing technique to be used for quality assurance in a DevOps context, the following requirements have to

be met: i) the technique has to consider usage-related metrics for acceptance testing; ii) it has to leverage data about actual failures observed in

operation (possibly, automatically gathered); iii) it has to take into account constraints on testing time or number of test cases, for it to be used

between (possibly short) release cycles. Clearly,QA teamsmightwell leverage existing techniques, even though not explicitly conceived forDevOps

processes. Although a systematic literature review within software engineering research, strictly following guidelines like those by Kitchenham et

al. 24, is out of the scope of this paper, nevertheless we performed a comprehensive systematic search of related work, which shows that testing in

the context of DevOps still appears to be under-considered in the scientific literature, thus confirming previous similar studies21.

The search has been performed through an automated query over the main popular digital libraries (ACMDigital Library, IEEE eXplore, Scopus,

Springer Link, Wiley Online Library). The search string, shown in Listing 1, relates to the three different domains covered in our work: reliability

testing, continuous development practices and quality assurance. The query has been applied as a full text searchwithin the body of themanuscripts

in the above five libraries.

Listing 1: Literature search string over themain digital libraries

(" reliability testing" OR "reliability estimation" OR "software reliability" OR "acceptance

testing" OR "software testing" OR "operational testing ")

AND (" DevOps" OR "dev -ops" OR "continuous integration" OR "CI")

AND (" acceptance quality" OR "acceptance quality gate" OR "product quality" OR "software

quality" OR "quality gate" OR "operational profile ")

The items returned by the query have been processed to remove duplicates and surveys. The remaining hundreds papers have been manually

filtered to remove items out of scope, first by inspecting title and abstract, thenwhere appropriate by examining their whole content. Paperswhich,

basedon theabove three requirements, donotdealwith techniques that canbeused for reliability assessment atDevOpsquality gateswerefiltered

out. Among the remaining papers, we discuss here those proposing testing techniques, which we envisage aremore related to our work.

Marijan25 proposes a multi-criteria test prioritization approach for regression testing under time constraints.While not specifically thought for

DevOps, the approach is conceived for continuous integration environments where teams work in short development cycles. DevOpRET shares

several principles with it. Both are black-box approaches considering failure occurrence and failure impact, defined by Marijan as “a user-driven

measure of the severity of defects of a test case”. However, Marijan’s approach is for regression testing: it assumes test suites exist, and the problem

is their prioritization to maximize the number of test cases detecting severe faults to be executed in a limited test time; failure data concern the

frequency of failures of regression test cases in past cycles; and the failure impact “is calculated based on historical user feedback reports collected from

previous versions”. InDevOpRET, test cases are generated based on failure occurrences actually observed in previousOps phases; failure severity and

failure exposing ability are addressed by ourWeighted Operational Testing algorithm, and severity may be automatically inferred from responses

to user demands; finally, time constraints are taken into account through the efficiency of the input space sampling algorithm.

An approach similar to Marijan’s one25 is proposed by Ali et al. 26, who present test case prioritization and selection techniques for continuous

integration strategies. Like Marijan, they aim at increasing the fault detection rate by relying on the most frequently changed and failed test cases.

Najaf et al. 27 present an experience report of using several similar test selection and prioritization approaches based on test execution history; this

is performed through simulations on industrial data, where test failure results need to bemanually labeled by the testers by the end of each day. In

these works, test cases are engineered by developers independently of the actual demands of users and of failures in operation. DevOpRET takes

into account usage and failures actually experienced by users in the production phase.

Révész and Pataki 28 propose a technique based on field data to drive decisions about the next release of a system. Field data sampled bymeans

of anA/B testing campaign, duringwhichusers are requested to select between twoversions of the considered system.Basedon theusers’ feedback,

developers decidewhich version tomaintain. Themajor differencewith our approach is that decisions about the testing campaign concern usability

orQuality-of-Experienceaspects,while inDevOpRETacceptance testing aimsat exposing failures and it relies on failure-relatedoperationalmetrics.

Mijumbi et al. 29proposed amethod for predicting software defectswithin the context of projects running continuous integration, and continuous

delivery practices. Even though their objective is similar to the goal of our work, the two proposals differ mainly in thatMijumbi et al. do not use the

actual operational profile in order to plan the testing activities for the next release; their model for early defect prediction is based on user stories

together with defect data from a previous release. In our opinion, the main advantage ofDevOpRET is that the QA team involved in the acceptance

testing can tailor the decision based on actual usage of the system (i.e., by considering both correct replies and failures), and not only on the basis of

a combination of revealed defects and user’s intentions (i.e., stories).

Page 3 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4 A. Bertolino ET AL

Janes and Russo30 propose the PPTAM+ tool for automating: i) the collection of field data about application performance degradations, ii) the

building of the operational profile, and iii) regression performance tests on each build in a DevOps process. The tool is conceived for the problem

of migrating amonolithic software to amicroservice architecture, targeting performance testing. In this sense, it is complementary to prior related

ownwork onmicroservice architectures reliability testing31,32; we are currently investigating the integration of the two approaches.

3 DevOpRET

3.1 Overview

Weaim at an approach that guides the acceptance testing conducted by theQA teambefore each release cycle in aDevOps context. In the previous

section we anticipated three main requirements we identified for such a testing technique, i.e.: it should leverage both usage-related metrics and

data about actual failures in operation, and should be efficient enough for being used between the short DevOps release cycles. Our review of liter-

ature revealed that no such an approach exists, and in this sectionwe introduceDevOpRET, the approachwe propose to address such requirements.

Ultimately, we aim at allowing the QA team to obtain an accurate and efficient estimate of reliability, and accordingly we present an assessment of

DevOpRET in the next section.

DevOpRET relies on the following assumptions:

• the input space S of user demands can be decomposed into n partitions S1, . . . , Sn;

• a continuousmonitoring facility is available to trace the user demands in operation and to record responses;

• a test oracle is available and it is possible to determine whether the response to a user demand succeeds or fails.

Partition Si is characterized by the probability pi of being selected by a user demand – the set of pi being the operational profile P - and by the

(unknown) probability fi of that demand with inputs selected from Si to fail – we call the set of fi the failure profile F. Monitoring data are used to

create a characterization of usage and failures which, ultimately, reduces the pre-release uncertainty about the exact knowledge of behavior in

operation. Let us denote with P̂ = (p̂1, ..., p̂n) the estimated operational profile, and with F̂ = (̂f1, ..., f̂n) the estimated failure profile.

Figure 2 depicts the scenario we envisage for the adoption ofDevOpRETwithin the DevOps release cycles. It foresees the following steps:

1. In a DevOps cycle, the version ready to be released is black-box tested for reliability assessment by the QA team. Since the true operational

and failure profiles are unknown, testing is basedon their estimates. Two testing algorithms are presented.Operational testing (OT) generates

a number of test cases for partition S according to the expected usage in operation, given by P̂.Weighted operational testing (WOT) generates

test cases for S according to the expected usage profile P̂ and to the expected failure profile F̂. A maximum number of tests to be executed

(testing budget) is assumed to be defined by theQA team, as a ceiling to cost or duration of step 1.

2. Test results are used to estimate the probability that the softwarewill fail on a user demandby a frequentist approach – i.e., by the probability

of failure on demand (PFD), which is ametric for the operational reliability. Reliability is computed asR = 1 -PFD. If the value ofR satisfies the

quality gate (e.g., a minimum threshold), the software version is released, otherwise it is sent back to the development team.

3. Once released, the end users’ demands aremonitored in theOps phase: data about usage and failures (request/responses) are collected.

4. Based on the gathered information, the estimated profiles P̂ and F̂ are updated.

Opera&on)

Monitor)Requests/Responses)

Probabili(es++
update+

(Weighted)++
Opera(onal+Tes(ng+

Reliability+
es(mate+

Gate+not++
passed+ Dev$

phase$

Development)

Gate+passed:++
OP$phase$

Quality)Gate)

DevOpRET)
DevOps''
cycle'

1)

2)

3)

)4)

New+
release+

Usage+and+
failure+data+

FIGURE 2Continuous reliability testing in DevOps cycles withDevOpRET

Page 4 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 5

On the next release, reliability testing will be carried out based on the updated profile. The estimate of R is likely to be different from the previ-

ous cycle if the estimated operational profile in the last cycle differs from the previous one, and/or if new bugs are triggered, because of different

partitions being stimulated in a different way. By updating the profile at each cycle based on observations, the estimated reliability is expected to

progressively converge towards the actual operational reliability.

Note how this refinement of the operational profile based on the feedback from the actual use is particularly facilitated within DevOps practice,

and is the central concept ofDevOpRET. In fact, the short circuit between users demands and acceptance testing makes it possible to automatically

update the operational test generation at each new cycle, so as to continuously improve the reliability estimation. In contrast, in a traditional life

cycle, a costly andmore static estimation of the operational profile would be used. The next subsections provide details about theDevOpRET steps.

3.2 Step 1: Test generation and execution

The first step ofDevOpRET consists in generating and executing test cases. Test generation for reliability assessment is based on operational testing,

which is awell-knownapproachusing probabilistic sampling. Theprocedure is tofirst select partitions, and then generate a test case fromwithin the

selected partition. The input partitioning can be performed in many ways, e.g., based on the specification or on source code. In specification-based

partitioning (themost common one), the inputs to each functionality are grouped in sets of equivalence classes. Ideally, each class is meant to contain

inputs with the same failing behavior (i.e., either all the inputs fail or none of them); in practice, an approximation of this ideal case is obtained. We

adopt specification-based partitioning based on the type of the input data.

The profiles P̂ and F̂ are used to derive the testing profile⇧ = (⇡1, ...,⇡n), namely the probability distribution over the set of partitions S, driving

the test generation process. For test generation we consider two sampling algorithms:

• Operational testing (OT): the selection of partitions is done according to the estimated profile P̂ (i.e., higher p̂i values havemore chances to be

selected), namely according to the expected usage in operation. Formally, the testing profile⇧ is such that ⇡i = p̂i, meaning the probability ⇡i

of selecting partition Si for a test is the same as the expected probability of Si being selected in a real demand in operation.

• Weighted operational testing (WOT): the selection of partitions is done proportionally to the product of p̂i and f̂i values, namely preferring the

partitions with a higher change of being selected and of failing in operation. Hence, the testing profile⇧ in this case is such that ⇡i = p̂i · f̂i.

In both cases, the test generation within the selected partition is done by uniform random testing, i.e., by taking an input from each class of the

partition according to a uniform distribution (each input having the same chance of being selected).

3.3 Step 2: Reliability estimation

Based on the testing result, reliability is estimated. As anticipated in Section 3.1, the metric we consider for the true reliability R is the reliability on a

single demand, given by:

R = 1� PFD, (1)

where PFD is the probability of failure on demand. This is the reliability of a run, a discrete reliability metric typical of testing research33,34. Let us

denote with ˆPFD the PFD estimated byDevOpRET. TheOT andWOT algorithms entail two different estimators.

OT calls for the conventional Nelsonmodel 35, in which:

R̂ = 1� ˆPFD = 1� NF
N

(2)

namely the PFD is estimated as the proportion of the number of failing demandsNF over theN executed demands. This is an unbiased estimate as

long as the algorithm used to select test cases mimics the way the user selects inputs, i.e., the real operational usage. Its disadvantages are that: i)

it does not target inputs with low probability of occurrence (which often lead to failures), and ii) it may require many test cases to yield confident

estimates (i.e., it may have low efficiency).

WOT aims at spotting those failure regions that contribute more to (un)reliability, namely those with a higher value for the product ⇡i = p̂i · f̂i.
This estimator accounts for the disproportional selection of partitions (with respect to the operational profile), computing the ˆPFD as:

R̂ = 1� ˆPFD = 1� 1
T

P
tc

p̂i·zi,tc
⇡i

(3)

where:

-T is the number of test cases (testing budget);

- zi,tc is a binary value indicating if test case tc taken from partition Si failed (zi,tc=1) or not (zi,tc=0),

- ⇡i = p̂i · f̂i (the ⇡i values are normalized to sum up to 1).

Dividing by ⇡i allows preserving unbiasedness with respect to the truePFD. This corresponds to the Hansen-Hurwitz estimator36.

Page 5 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6 A. Bertolino ET AL

Depending on the severity of the failures observed, we compute two values for reliability. The first one considers all the failures occurred (all-

failures reliability, denoted asRA). Besides this, a reliability estimate considering only the high-severity failures is computed (we call it critical-failure

reliability, denoted as RC) – a detailed explanation will be provided in Section 4.6.5. This distinction gives more figures of interest for the QA team,

whichmay prioritizemajor issues over others, thanks to a quantitative characterization ofwhat type of problems the end user could experience and

with what probability.

3.4 Steps 3 and 4:Monitoring and update

When software is in operation, field data are gathered, and used to update the auxiliary information about partitions, which are then leveraged for

reliability testing in the next release cycle. Specifically, the estimates p̂i and f̂i of invocation and failure probabilities for partition Si (i=1, ..., n) are

updated by looking at requests/responses data gathered in theOps phase. The update rules at the end of the k-th DevOps cycle is:

p̂ki = �(p̂k�1
i) + (1� �)

Nk
i

Nk

f̂ki = �(̂fk�1
i) + (1� �)

Qk
i

Nk
i

(4)

where:

-Nk is the total number of requests in cycle k;

-Nk
i is the number of requests to partition Si in cycle k;

-Qk
i is the number of failed requests to partition Si in cycle k;

- � is a learning factor � 2 [0, 1], regulating howmuch we account for the execution history in the previous cycle with respect to observations made

in cycle k (it is � = 0.5 in our experimental settings).

4 EXPERIMENTAL EVALUATION

4.1 Research questions

The experimental evaluation is driven by the overall goal of achieving in DevOps acceptance testing an accurate and efficient estimate of reliability.

We consider two case studies, whose details are provided in the next subsection. The former is an open source project. The aim of experimentswith

this case study is to assess performance of DevOpRET in both configurations (OT andWOT) in terms of estimate’s accuracy and confidence, as well

as in terms of ability to expose failures1. The second case study is a benchmark for microservice architectures. The aim of experiments with this

case study is to investigate if and how the reliability estimate provided by DevOpRET (with both OT andWOT) changes when the true reliability of

the subject under test changes, a circumstance not observed in the first case study.

In the experiments, DevOpRET is first used in its baseline implementation, the one adopting OT. Then, we investigate if and to what extent the

adoption ofweighted operational testing improves results over OT.

The first case study is used to investigate the following research questions:

• RQ1:What is the accuracy and efficiency of the reliability estimate, andwhat is the ability at exposing failures ofDevOpRETwithOperational

Testing? How do they vary over successive DevOps cycles?

• RQ2:DoesDevOpRETwithWeighted Operational Testing perform better thanwithOperational Testing?

The second case study targets the following research question:

• RQ3: How does the accuracy of the reliability estimate changewhen the true reliability across releases changes?

4.2 Experimental subjects

The first subject is Discourse, a discussion platform featuring services for managing mailing lists, forums and long-form chat rooms.2 It is an open-

source platform adopted worldwide by over 1,500 customers, and counting on a community of almost 670 committers. The average number of

lines of code (LoC) of the five versions selected to emulate DevOps cycles is 684 KLoC. From a technical viewpoint, the front-end of Discourse

1A better reliability estimate does not necessarily imply findingmore faults, although the two things are related.
2Available at: https://www.discourse.org/.

Page 6 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.discourse.org/.

For Peer Review

A. Bertolino ET AL 7

is a JavaScript application running in any web browser; the server side is developed mainly in Ruby on Rails. Discourse exposes an Application

Programming Interface (API) allowing to consume the contents as JSON records. The API offers 85methods. Their invocations are HTTP requests

acting on resources via conventional GET, PUT, POST and DELETE operations according to the REST paradigm. In this work the acceptance tests

are executed on the API interface; themain resources accessed are: categories, posts, topics, private messages, tags, users, and groups.

The second experimental subject is TrainTicket3, a microservice system developed as a benchmark for microservice applications by Zhou et

al. 37 It contains 41 microservices, based on several programming languages and frameworks, including Java (Spring Boot, Spring Cloud), Node.js

(Express), Python (Django), and Go (Webgo), MySQL. The specification of the TrainTicket interfaces is in the open API documentation format Swag-

ger4. The application is characterized by threemain releases with 258 commits. The average number of lines of code of the 16 commits selected for

experiments is 518 KLoC.

4.3 Experiment design

To answer RQ1 and RQ2 we conduct three experiments with the Discourse subject, each with a number NR=20 of repetitions for every emulated

cycle. The first experiment computes the reliability estimates with OT in both the all-failures and the critical-failures scenarios. Unlike for OT, with

WOT the failure severity influences the test generation algorithm (through the f̂i values), hence, two experiments are needed for the two scenarios.

To answer RQ3, a fourth experiment is conducted with the TrainTicket subject, performing a single run for each of the 16 cycles, and considering

only the critical-failures scenario.

4.4 Evaluationmetrics

As metrics for DevOpRET accuracy and efficiency we compute, respectively, the mean offset � and the sample variance V over multiple runs with

respect to the true reliabilityR. The smaller the offset, themore accurate the estimate; the smaller the variance, the stronger the confidence, and the

more efficient the estimator.

The true reliability R is computed from the true operational profileP={pi} and the true failure profile F={fi}. It is given by:

R = 1� PFD = 1�
Pn

i=1 pi · fi. (5)

The computation of P and F in the experiments is described in Section 4.6.2. The true reliability is re-computed at every cycle, as the fi values can

change across the subject versions.

TheDevOpRET estimate R̂ = 1 - ˆPFD is computedby theOTandWOTalgorithmswithEquations 2 and3, respectively. For statistical significance,

DevOpRET is runNR times per cycle, yieldingNR estimates per cycle. Themeanoffset� and sample varianceV of the reliability estimate R̂ at a given

cycle over theNR repetitions (indexed by j) are computed as:

�j = |R� R̂j|,

� = Mean(�j),

Mean(R̂) = 1
NR

PNR
j=1 R̂j,

V = 1
NR�1

PNR
j=1[R̂j �Mean(R̂)]2.

(6)

Finally, as metric for the ability at exposing failures we count the number of failing tests.

4.5 Experimental artifacts

The experimental testbed includes four artifacts: a Test Generator, aWorkload Generator, aMonitor, and an Estimator.

The Test Generator encapsulates the test cases generation algorithm and executes tests (step 1). It extracts from monitored data the list of par-

titions with the associated probabilities (p̂i for OT, p̂i and f̂i for WOT), generates and executes the test cases according to the testing profile ⇧

(depending on the algorithm, OT orWOT), and stores the test results. These are used by the Estimator to compute reliability (step 2).

TheWorkload Generator emulates the real usage of the software in the Ops phase, by issuing requests according to the true operational profileP

(while test cases generation uses the estimated profile P̂).

3Available at: https://github.com/FudanSELab/train-ticket/.
4https://swagger.io

Page 7 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/FudanSELab/train-ticket/.
https://swagger.io

For Peer Review

8 A. Bertolino ET AL

The Monitor observes requests and responses and records them in a (textual) log file (step 3). These observations are then used by the Test

Generator in the next cycle to update the testing profile (step 4).

For repeatability and reproducibility, we provide the code of the artifacts for running the experiments.5

4.6 Experimental procedure

4.6.1 DevOps cycles emulation

To emulate DevOps cycles, for theDiscourse case study we consider five consecutive stable (i.e., non-beta) releases.6 For the TrainTicket case study,

16 DevOps cycles are emulated by selecting 16 commits, according to the following criteria: a) the first selected commit corresponds to the first

release (0.0.1); b) only “verified" commits are selected7; c) only one commit per day is selected; d) consecutive commits with only documentation

update are removed.

Each emulated cycle includes an operational testing session (step 1) to decide whether or not the software may be released. We set the testing

budget available per cycle to T = 1,000; this is the number of tests generated and executed to then compute the estimate of reliability R̂ (step 2). If

the reliability requirement at the quality gate is met, the software is released and the operational phase starts: the software is subject to a number

of requests by the Workload Generator, set to N = 5,000, during which data are gathered (step 3) and used to update the probabilities (step 4).

Afterwards, a new release is assumed to be ready, and next cycle starts.

We explicitly point out that, while test cases at step 1 are generated using the testing profile⇧ (Section 3.2), requests of theWorkload Generator

are issued according to the true profileP, computed as described in the next subsection.

4.6.2 True profiles

For the purpose of the evaluation, an operational profile P assumed to be the true one is created by varying the initially estimated profile P̂ by a

variation factor v. In fact, whatmatters to assess theDevOpRET performance is the difference between the expected and the real usage, P̂ andP, and

how DevOpRET adapts and improves its reliability estimate R̂ as P̂ gets closer to P. Specifically, given an estimated profile P̂ and a variation factor

v 2 [0, 1], at the beginning of each experiment we generate the true operational profilePwith the following procedure:

1. Split the set S of n partitions in two subsets in any arbitrary way, S0 with n1 partitions and S00 with n2 partitions (n1+n2 =n).

2. For S0, generate n1 random numbers (r01, ..., r
0
n1) between 0 and 1 such that their sum is v/2.

3. For S00, generate n2 random numbers (r001 , ..., r
00
n2) between -1 and 0 such that their sum is -v/2.

4. Concatenate the two vectors of random values into a single vector r of n elements, and shuffle it.

5. Sum the elements ri to p̂i values, obtaining a new vectorw such that:wi p̂i + ri.

6. If there is at least onewi < 0, sum 1 to all values:wi wi + 1.

7. Normalize the obtained values: pi wi/
P

j wj, so that the sum is 1. The set of pi values is the generated true profileP.

The true failure profile F is computed by exercising every partition to checkwhether it leads to failure or not.We performmultiple runs (namely,

5) to each of the thousands partitions for both subjects (with inputs picked up randomly from that partition under test); then we compute the esti-

mate f̂i as the ratio of failed requests over the number of runs. Since the partitions are relatively “small”, results over runs turned out to be consistent

in almost all the cases: repeated requests to a partition either always failed (hence f̂i = 1) or not (̂fi = 0). Few partitions fail occasionally, depend-

ing on the input values. For Discourse this happens for 67 partitions (average over the 5 cycles) for the all-failures scenario, and for 21 partitions

(average) for the critical-failures scenario, corresponding, respectively, to the 0.76% and 0.24% of the total of n=8,802 partitions. For TrainTicket, it

happens for just 2 out of the n=3,757 partitions for the critical-failures scenario (average over the 16 cycles).

4.6.3 Profiles initialization

DevOpRET step 1 uses the testing profile ⇧ built with the information associated with partitions. In the k-th cycle, the OT algorithm uses the val-

ues p̂ki ; the WOT algorithm used both p̂ki and f̂ki . Initial values for p̂
0
i and f̂0i are needed. They can be assigned by the tester in several ways. If the

tester has some prior knowledge about the system (or about similar services/systems), s/he can initialize the values of p̂0i considering the expected

5Artifacts are available at: https://github.com/dessertlab/DevOpsTesting.
6TheDiscourse consecutive versions considered are: 2.1.6, 2.1.7, 2.1.8, 2.2.0, 2.2.1 (available at https://github.com/discourse/discourse/releases).
7These commits are signedwith signatures verified by GitHub, to let people know the commits come from trusted sources.

Page 8 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/dessertlab/DevOpsTesting
https://github.com/discourse/discourse/releases

For Peer Review

A. Bertolino ET AL 9

TABLE 1 Input classes forDiscourse partitions

Input type Input class Class description Input type Input class Class description
String StrValid Valid string, as per documentation Date DateValid Value is a date (format

StrEmpty Empty string as per documentation)
StrNull String with null value DateInvalid Value is not a date
StrVeryLong String length> 216 DateEmpty Empty value
StrInvalid String with non-printable characters

Numeric NumValidNormal Value within interval [�231; 231] Color ColValid Value represents a color (6-digits
(Java integer limits) hexadecimal number)

NumValidBig Value out of interval [�231; 231] ColInvalid Value is not a color
NumInvalid Not a number ColEmpty Empty value
NumEmpty Empty value
NumAbsMinusOne Value is equal to -1
NumAbsZero Value is equal to 0

Boolean BooleanValid Valid boolean value List ListValid List with valid values
BooleanInvalid Value not in {True,False} ListEmpty Empty list
BooleanEmpty Empty value ListNull List with null value

Enum EnumValid Value is one of the enumeration Email EmailValid Value is an email address
EnumInvalid Invalid enumerative value (format ’aaa@bbb[.ccc].zzz’)
EnumEmpty Empty value EmailInvalid Value is not an email address

EmailEmpty Empty value

usage in operation. In the sameway the failure probability of each partition can be initialized considering the previous knowledge about the failure-

proneness of partitions (for instance, the outcome of pre-release tests such as unit tests, or the tester’s belief used for input space partitioning - e.g.,

the partitions with invalid input type are deemed to be more prone to fail). Alternatively, in case of complete ignorance, the operational profile is

initialized uniformly, and the failure probability of all partitions is initialized by a same default value ✏ � 0.

Whatever the initial profile and failure probability are, DevOpRET foresees their continuous update as monitoring data are gathered in the Ops

phase, getting closer to the true usage and failure profile, and thus yielding a reliability estimate converging to the true one.We highlight that such

capability to refine the operational profile leveraging users’ demands naturally descends from theDevOps practice andmakes reliability estimation

easier. Clearly, the better the initial estimates the sooner the approachwill converge.

As for the initialization of the values p̂0i , assuming complete ignorance of the expected real usage, they are initialized by randomly assigning a

probability according to a uniform distribution in (0,1) to each partition: p̂0i = rand(0, 1), then normalized so as:
P

i p̂
0
i = 1.

As for the initialization of the values f̂0i , for the first case study we make it proportional to the number of invalid equivalence classes of the

partition: f̂i =
|invalidClasses|
|allClasses| , assuming invalid classes are more failure-prone. For the second case study, where we perform a run for each partition,

we set f̂0i to 1 if the run fails, 0 otherwise.

At subsequent cycles, the probabilities are updated according to the Equations 4.

4.6.4 Test cases generation

Test cases are generated by the OT and WOT algorithms described in Section 3.2. For both subjects, the input space is partitioned according to a

specification-based criterion, on the basis of the API documentation. A fine-grain partitioning is applied; the input arguments of API methods are

grouped in sets of equivalence classes based on their type. For each input type, common corner cases are considered too (e.g., empty string) as well

as values clearly invalid for that type (e.g., numbers with alphabetical characters), as is usually done in black-box robustness testing38.

Table 1 lists the equivalence classes we defined for the Discourse API inputs. It is worth to note that although they were derived manually, par-

titioning can be automated by parsing documentation, as long as a complete API documentation is available (e.g., in the Swagger format). Table 2

shows an excerpt of the API methods with their input classes and partitions. Every partition is a specific combination of input classes, one for each

argument of amethod. Similar classes and partitions are produced for the interfaces of TrainTicketmicroservices. The total number of partitions n is

8,802 forDiscourse and 3,757 for TrainTicket.

4.6.5 Tests execution

For both subjects a test case is a RESTHTTP request to themethodwhich the selected partition refers to.We have verified if any preconditions on

the used resources (e.g., categories, posts, users, topics) hold before issuing a request: when needed, we have added the code to meet the precon-

dition before the test (e.g., for a GET request to retrieve a resource, the precondition is that at least one instance of the resource is available; if not,

our code performs a PUT before the GET). Dependencies between API methods aremanaged in the sameway.

Page 9 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10 A. Bertolino ET AL

TABLE 2An excerpt of the signature, input classes and partitions forDiscourseAPImethods

Resource Type Endpoint Arg 1 type #Classes Arg 2 type #Classes Arg 3 type #Classes Partitions
Categories POST /categories.json String 5 Color 3 Color 3 45
Post POST /posts.json Numeric 6 String 5 Date 3 90
Users PUT /users/username Numeric 6 Enum 3 String 5 90

/preferences/avatar/pick

The application responses to requests are characterized by theHTTP status code andmessage.We distinguish two types of output (test oracle):

1. Correct reply: the status code is consistent with the input submitted, e.g.: a) a 2xx status code (indicating success) for a request with inputs

belonging to the StrValid class, or b) a 4xx status code (indicating a client error) for an incorrect request (e.g., a numeric input containing

alphabetical characters). These responses are correct replies to incorrect requests, which the API client is required tomanage.

2. Failure: a) the application raises an unmanaged exception, sent to the client, which is reported with a 5xx status code (server error), or b) the

returned status code and message are inconsistent with the input submitted. We consider the former a high-severity failure, the latter a

low-severity failure.

The results of tests’ execution are used to estimate the overall reliabilityRby theOTandWOTalgorithms (through theNelson andHansen-Hurwitz

estimators of Equations 2 and 3, respectively). Depending on the severity of failureswe observe, we compute bothRA and ofRC, indicating, respec-

tively, the case in which we consider all the failures indistinguishably (all-failures scenario) and the case in which we consider only the high-severity

(“critical”) failures (critical-failures scenario). In the remainder,R, F and f are used in turn to refer to both scenarios.

5 RESULTS

5.1 RQ1: Accuracy, efficiency, failing tests

The first research question addresses: a) accuracy and efficiency of the reliability estimate; b) number of failing tests, and c) how they vary over

successive DevOps cycles, for DevOpRET with the OT algorithm. The experimental subject is Discourse. Table 3 reports the average true reliability

values for the five cycles in the all-failures (RA) and in the critical-failures (RC) scenarios.DevOpRET tries to estimate them as accurately as possible.

Figure 3 shows the absolute value of the offset between the true and the estimated reliabilities over cycles for the two scenarios. Expectedly, the

offset decreases over releases, as the estimate of the true operational profile becomesmore andmore accurate. In the all-failures case, the offset is

equal to or below 0.10 in the first cycle, and then suddenly drops to around 0.05 in the second cycle. The extent of the improvement is tied to the

update rule used for monitoring (through what we called the learning factor �, set to 0.5). In this experiment, a larger learning factor could further

reduce the offset after the first cycle, as the true profile P does not change. In the critical-failures case, a larger offset is observed for the first cycle,

likely due to the smaller number of detected failures, which penalizes the estimator.

Table 4 shows the sample variance and semi-interquartile range (IQR) of theRA andRC reliability estimateswith theOT algorithm. In both cases,

the values change by a small amount over releases: while the better knowledge gained about the operational profile improves the accuracy, by

reducing the offset, it is scarcely influent in terms of efficiency of the estimator. Sample variance values are in the order of magnitude of 1.0E-4

in both all-failures and critical-failures cases, which denotes a quite stable performance (coefficient of variation is in the same order of magnitude,

between 1.0E-4 and 2.0E-4, the average reliability being around 0.5 and 0.8 in the two scenarios). Considering only critical failures has a negligible

influence on the sample variance. The same considerations stand for the interquartile range, as there is no outlier significantly affecting the result.

Figure 4 shows the box plots of the number of failing tests observed using theOT version ofDevOpRET, for both the all-failures and critical-failures

scenarios. It can be seen that the number increases over releases regardless the type of failure considered.

TABLE 3 True reliability values (subject:Discourse)

Subject Emulated all-failures critical-failures
release DevOps cycle RA RC

2.1.6 1 0.5297 0.7978

2.1.7 2 0.5308 0.7982

2.1.8 3 0.5305 0.7978

2.2.0 4 0.5290 0.7983

2.2.1 5 0.5279 0.7971

Page 10 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 11

●

●
●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs
et

(a) all-failures

●
●

●
●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs
et

(b) critical-failures

FIGURE 3Accuracy: offset between true and estimated reliability over cycles (subject:Discourse, algorithm: OT)

TABLE 4 Efficiency: variance and IQR of the estimated reliability (subject:Discourse, algorithm: OT)

(a) all-failures

Cycle �2 IQR

1 3.33e-4 2.10e-3

2 3.44e-4 3.10e-3

3 2.43e-4 1.70e-3

4 1.59e-4 1.20e-3

5 1.31e-4 2.00e-3

(b) critical-failures

Cycle �2 IQR

1 4.51e-5 6.00e-3

2 1.94e-4 1.70e-3

3 2.45e-4 2.10e-3

4 1.41e-4 2.00e-3

5 1.25e-4 1.40e-3

●

●

●

0

100

200

300

400

500

1 2 3 4 5
DevOps_cycle

Fa
ilin
g_
te
st
s

(a) all-failures

●●

●

●

0

100

200

300

400

500

1 2 3 4 5
DevOps_cycle

Fa
ilin
g_
te
st
s

(b) critical-failures

FIGURE 4Number of failing tests over cycles (subject:Discourse, algorithm: OT)

From all these results we see thatDevOpRET’s estimates converge to the true reliability over emulated cycles.

We now present a sensitivity analysis for the OT algorithmwith respect to the number of tests performed at quality gate (the testing budgetT),

and the initial error on the estimate of the operational profile. In addition, we discuss two different ways to get the initial testing profile, to simulate

the case of a complete ignorance and the case of the availability of an initial tester’s belief based on valid/invalid classes. In the former case, the

testing profile ⇧ is generated by uniform random sampling, as explained in Section 4.6.3. In the latter case, ⇧ is generated by giving smaller usage

probability to partitions with corner cases and invalid input classes, namely by assigning: p̂i =
|validClasses|
|allClasses| , normalized to sum up to 1.We call them

uniform and proportional profile, respectively.

Figure 5 reports the offset varying the number of test cases for the uniformandproportional profiles, assuming the estimated profile differs from

the true one by 30% (v = 0.3). Expectedly, increasing the number of tests improves considerably the estimate accuracy, with an offset under 0.5%

Page 11 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12 A. Bertolino ET AL

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

Of
fse

t

DevOps cycle

T=100
T=200
T=500
T=1000

(a) Initial estimated profile: uniform

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

Of
fse

t

DevOps cycle

T=100
T=200
T=500
T=1000

(b) Initial estimated profile: proportional

FIGURE 5Accuracy: sensitivity to the testing budgetT under a 30% error on the initial profile estimate (subject:Discourse, algorithm: OT)

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

Of
fse

t

DevOps Cycle

Uniform Profile. True Rel: 0.9136

Proportional Profile. True Rel: 0.9278

(a) 30% error onOP (same as for T=100 in Fig. 5a and 5b)

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5
Of

fse
t

DevOps Cycle

Uniform Profile. True Rel: 0.9078

Proportional Profile. True Rel: 0.8974

(b) 70% error onOP

FIGURE 6Accuracy: sensitivity to different errors in the initial operational profile estimate (subject:Discourse, algorithm: OT; T=100)

in the best case of 1,000 test cases. Considering that the input space we derived has 8,802 partitions (an indirect indicator of the maximum testing

cost), a testing budget amounting to about 1/8 of the number of partitions has been spent to achieve an accuracy of the reliability estimate of 99.5%.

Let us consider the lowest testing budget, namelyT=100 test cases. Figure 6b refers to the situation when the estimated profile differs from the

true one by 70% (v=0.7), meaning that in the estimate of the usage profile the QA team has missed the true profile by a much larger extent than in

Figure 6a, where v=0.3. We can see that the offset for v=0.7 is generally higher than for v=0.3, especially for the proportional profile. In fact, with

a profile proportional to valid classes but under a larger initial error (v=0.7), the derived true profile is more likely to exercise the invalid classes

compared to the case of a smaller error (v=0.3). We also see how DevOpRET’s use of data gathered in operation helps in both cases to correct the

initial estimate – at cycle 4, the offset for both scenarios goes below 0.01.

To sum up, our conclusions about RQ1 are the following.

DevOpRET accurately estimates the reliability of the experimental subjects.

The estimations becomemore precise over subsequent DevOps cycles.

While the knowledge of the operational profile improves the estimator accuracy, its influence in the estimator’s efficiency is scarce.

The type of failures (all or critical) has a negligible influence onDevOpRET efficiency.

5.2 RQ2:WOT vs.OT

The second research question concerns whether or notWeighted Operational Testing performs better thanOperational Testing.

Figure 7 shows box plots of the absolute value of the offset between the true and the estimated reliability with theWOT algorithm, for both the

all-failures and critical-failures scenarios. Figure 8 shows the number of failing tests with WOT. The previous results with OT from Figures 3 and 4

are shown too, for visual comparison. Table 5 reports the p-values of theWilcoxon signed ranked test for paired samples applied in both scenarios

to the 5 subject releases; values in bold highlight a significant difference between OT andWOT (with a significance level ↵=0.05). Finally, Figure 9

compares the sample variance ofDevOpRET usingWOT to the one using OT;WOT yields estimates with lower variance inmost of the cases.

The results show that OT andWOT yield statistically equivalent results in terms of offset, namely they provide estimates with a similar level of

accuracy. When they learn from histories with the same length, the results are equivalent (the comparison for all cycles does not reject the null

hypothesis of no difference between the two algorithms). However, OT andWOTdiffer – to a significant extent - in terms of failing tests: all p-values

Page 12 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 13

●

●

●
●

●

●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs
et

OT
WOT

(a) all-failures

●
●

●

●

●

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
DevOps_cycle

O
ffs
et

OT
WOT

(b) critical-failures

FIGURE 7WOT vsOT - Accuracy: offset between true and estimated reliabilities over DevOps cycles (subject:Discourse)

●

●

●

●

●

●

●

0

250

500

750

1 2 3 4 5
DevOps_cycle

Fa
ilin
g_
te
st
s

OT
WOT

(a) all-failures

●●

●

●

●

0

250

500

750

1 2 3 4 5
DevOps_cycle

Fa
ilin
g_
te
st
s

OT
WOT

(b) critical-failures

FIGURE 8WOT vsOT - Number of failing tests over DevOps cycles (subject:Discourse)

TABLE 5WOT vsOT - Statistical comparison: p-values of theWilcoxon test (subject: Discourse)

(a)Offset

Cycle all-failures critical-failures

1 0.4091 0.2162

2 0.3884 0.5459

3 0.0696 0.2611

4 0.7285 0.8695

5 0.4091 0.8124

(b)Number of failing tests

Cycle all-failures critical-failures

1 9.556e-05 5.138e-04

2 1.907e-06 9.556e-05

3 9.475e-05 9.489e-05

4 1.601e-03 9.556e-05

5 9.529e-05 9.556e-05

in Table 5 are much smaller than 0.05. As we can see from Figure 8, the number of failing tests for the all-failures scenario for OT ranges from an

average of 369.10 (cycle 1) to 462.15 (cycle 5), while for theWOT it ranges from 320.90 to 843.10, with a drastic improvement over versions.

An even more pronounced trend occurs for the critical-failures scenario: OT ranges from 54.4 (cycle 1) to 196.75 (cycle 5); WOT ranges from 66.90

to 656.55 (Figure 8b). This means that, while for the first cycle both algorithms show the same number of failing tests,WOT exploits the knowledge

progressively gained about failures of partitions to direct testing toward more failing-prone partitions. The higher number of failing tests of WOT

has a strong impact on the variance of the estimates, which are always smaller compared toOT, especially in the critical-failures scenario. Thismay be

attributed to the adopted testing strategy. Testing is done at the API level in a black box fashion based on input types: because of the several invalid

equivalence classes used to generate the tests, we exposedmany failures due to the incorrectmanagement of invalid requests. TheWOT algorithm

favors cases whose probability of failure is expected to be high, in order to expedite the reliability assessment (see the initialization of the failure

profile in Section 4.6.3). It should be noted also that more than one failure of an API methodmay be related to a same fault.

In principle, the better ability of WOT at exposing failures could also impact the accuracy (offset) of its estimates. Indeed, prior own work on

reliability testing has shown that techniques likeWOT (based on a sampling scheme that exploits auxiliary information) are able to provide better

Page 13 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14 A. Bertolino ET AL

0.0E+00
5.0E-05
1.0E-04
1.5E-04
2.0E-04
2.5E-04
3.0E-04
3.5E-04

1 2 3 4 5

Va
ria

nc
e

DevOps cycle

OT
WOT

(a) all-failures

0.0E+00
5.0E-05
1.0E-04
1.5E-04
2.0E-04
2.5E-04
3.0E-04
3.5E-04

1 2 3 4 5

Va
ria

nc
e

DevOps cycle

OT
WOT

(b) critical-failures

FIGURE 9WOT vsOT - Sample variance over DevOps cycles (subject:Discourse)

offset, besides detectingmuchmore faults andwith higher efficiency (i.e., smaller variance), especially under a scarce testing budget39,40. However,

in this case studywe do not observe this phenomenon. This is duemainly to two reasons: i) since the number of partitions is large (8,802), the failure

probability of each partition (i.e., the fi value) is small (and is also multiplied by pi): therefore, a more accurate knowledge of such fi values, which

are those exploited byWOT with respect to OT, has a negligible impact on the final estimate; ii) the number of tests is enough for both techniques

to provide a close estimate (they, in a sense, are both saturated). We also explicitly point out that WOT entails an additional cost with respect to

OT, namely the need formonitoring failures, besides the usage profile. Overall, we advise to useWOTwhenever the cost of gathering failure data is

acceptable and the testing budget is significantly limited.

To sum up, our conclusions about RQ2 are the following.

TheOT andWOT versions of DevOpRET yield statistically equivalent results in terms of accuracy of estimates.

WOT is generally able to provide estimates with higher confidence (lower variance).

WOT results in more failing tests compared toOT (consistently with its ability to direct testing towardsmore failing-prone partitions).

WOT requires failure data; it should be preferred toOTwhen the testing budget is low and the failure data gathering cost is acceptable.

5.3 RQ3: Adaptivity

The third research question investigates the adaptivity of the DevOpRET reliability estimate to changes of the true reliability over DevOps cycles.

The goal is to assess if and how promptly DevOpRET reacts to changes of the actual failure probability across product releases. This experiment is

conductedwith the TrainTicket case study. The true operational profile, generatedwith a variation factor v = 0.8, is kept constant in the experiment.

Figure 10 plots the true reliability over emulated cycles. Figure 11 plots the absolute value of the offset between the estimated and the true

reliability. The results show that the estimate tends to follow the true value using both OT and WOT. The two techniques show however some

differences. We see that WOT exhibits performance worse than OT in cycles number 2 and 8. These two commits correspond to two significant

changes in the reliability of the case study which can be seen in Figure 10. OT is less impacted by the changes of failure probability. However,WOT

performs better than OT 12 times out of 16; in particular, WOT provides better estimates of the true reliability (the offset is lower) starting from a

couple of cycles after the sudden changes (from 4 to 7 and from 10 on).

We draw the following conclusion about RQ3.

OT is less affected thanWOT by perturbations of the true reliability due to sudden changes of the failure probability on user demands.

5.4 Threats to validity

The results of experimentsmust be considered in light of potential threats to validity. Following the guidelines by Runeson andHöst41, we consider

four aspects: construct validity, internal validity, external validity, and reliability.

Construct validity (Is the experimentwedesigned appropriate to answer our researchquestions?) Themetricsweused for answering the research

questions (probability of failure on demand, true and estimated reliability, sample variance, number of failing tests) are standard in the software

Page 14 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 15

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Re

lia
bi

lit
y

DevOps Cycle

FIGURE 10 True reliability under constant operational profile over cycles (subject: TrainTicket)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Of
fs

et

DevOps Cycle

OT
WOT

FIGURE 11Offset between estimated and true and reliability over cycles (subject: TrainTicket)

reliability literature. The choice of true reliabilitymight bias the result.Whilewe could assumea true operational profile (pi values) for our purposes,

to control this threat we have computed the true failure probability (fi values) by exercising each partition 5 times, for each of the 5 releases of

Discourse and for each of the 16 commits of Train Ticket. This allowed us to spot failing partitions with a satisfactory confidence: on average over the

releases, just 0.76%and0.24%ofDiscoursepartitions and0.05%ofTrain Ticket ones gave inconsistent results, whereas the vastmajoritywere either

always failing or not. Two further factors in the construction of experiments which might have influenced the results are the number of test cases

and the initial profile. To control this threatwe have performed a sensitivity analysis, which shows thatDevOpRET estimates are anyway close to the

true reliability, although they influence the speed of the convergence. Another factor in the construction of experiments which might influence the

results is the partitioning of the input space into equivalence classes, which could be performed differently by different experts. This, however, is

not really a threat to validity: it only implies that the proposed approach has to be evaluated by further researchers applying different partitionings.

Internal validity (Are there factors different from the treatment that could affect the observed behavior?) A common internal threat is the accu-

racy ofmeasures,which canbe affectedby random factors. Tomitigate it, all the codedevelopedwas carefully inspected, and all experiments related

toRQ1andRQ2 (concerning the performance ofDevOpRET and the comparison between itsOT andWOT strategies)were repeatedmultiple times.

Another common threat is the selection of experimental subjects. To favor repeatability of experiments under different possibly influencing factors,

we chose an open-source and a publicly available benchmark as subjects, and all code and artifacts are made available for further inspection. The

results might change depending on the value N of user requests we emulate with theWorkload Generator. To control this threat, we did a conserva-

tive choice for N with respect to the number of tests T, since in a real deployment the ratio N/T would be much greater. Greater values of N with

respect to T allow for larger data as feedback fromOps, and amore accurate learning of the usage and failure probabilities.

External validity (Is it possible to generalize the results beyond the experimental subject?) Although we stated the DevOpRET assumptions, our

results might be influenced by specific characteristics of the chosen subjects. From current observations we cannot draw fully general conclusions,

claiming results hold for any application; to this aim, more case studies are needed.

Reliability (Whether and to what extent can the observations be reproduced by other researchers?) To support reproducibility by other

researchers, and possible experimentation with different subjects, wemake available the code of the components of theDevOpRET testbed.

Page 15 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

16 A. Bertolino ET AL

6 CONCLUSIONSANDFUTUREWORK

In “traditional” software development, reliability testing practices can be hindered by the cost and difficulty of specifying the operational profile. In

DevOps, thanks to the short-circuit between development and production, we claim that reliability testing is facilitated because the development

andQA team can i) leverage usage data coming fromOps throughmonitoring as a feedback to adjust estimates of the operational profile, and ii) rely

on it for the next acceptance testing cycle to refine reliability assessment.

In this view, we propose the DevOpRET approach that supports continuous testing based on the operational profile within DevOps cycles. The

idea behind the approach – earlier introduced in preliminary own work17 - is to leverage usage information monitored in operation for refining

the estimate of the operational profile, which is then used during the next acceptance testing cycle. The approach has been here enhanced to also

leverage actual failure information, bywhich aweighted version of the operational profile is obtained.We have empirically evaluated both versions

ofDevOpRET in two case studies, a real-world open source platform and a microservice architectures benchmark. The controlled experiments rely

on synthetically generatedworkload. The results showhow fromone release to the next the operational profile estimate improves steadily for both

versions, but the weighted version is more effective as for the number of failing tests.

Our survey of literature showed thatDevOpRET is the first framework supporting reliability-assessment in DevOps using actual data monitored

in operation. As such, it contributes to include reliability as a key performance indicator at quality gates in DevOps practices13,42.

We envisage several future research directions for improving the approach:

• We intend to work on automatic partition extraction (from documentation) and update (frommonitoring data);

• To further expedite the convergence of the estimated profile to the true one, we aim at investigating the adoption of machine learning to

characterize the profile;

• We intend to experiment more sophisticated testing algorithms based on probabilistic sampling, as developed in previous work39;

• We plan to consider similar approaches that leverage usage data for improving the testing of other non-functional properties, such as

performance or usability;

• Finally, we aim at performing extensive empirical evaluations, by deploying the approach under a true workload.

In pursuing the above future research directions, we foresee both technical challenges related to the need of minimizing the impact of the

approach to the users and to the tight and agile DevOps schedules, and practical challenges, descending from the paucity of real-world benchmarks

for experimentation.Wehope that our promising results canmotivate other researchers andpractitioners that reliability estimation can and should

be naturally included in DevOps acceptance testing.

ACKNOWLEDGMENTS

This work has been partially supported by the PRIN 2015 project “GAUSS" funded by MIUR (Grant n. 2015KWREMX_002). The work by G. De

Angelis has also been supported by the Italian Research Group INdAM-GNCS.

References

1. Baresi L, Ghezzi C. TheDisappearing Boundary BetweenDevelopment-time and Run-time. In: Proceedings of the FSE/SDPWorkshop on Future of

Software Engineering Research (FoSER), ACM; 2010: 17–22

2. Bass LJ,Weber IM, Zhu L.DevOps - A Software Architect’s Perspective. SEI series in software engineering. Addison-Wesley . 2015.

3. Dyck A, Penners R, Lichter H. Towards definitions for release engineering and DevOps. In: IEEE/ACM 3rd International Workshop on Release

Engineering (RELENG), IEEE; 2015: 3–3.

4. Smeds J, Nybom K, Porres I. DevOps: A Definition and Perceived Adoption Impediments. In: Lassenius C, Dingsøyr T, Paasivaara M., eds. Agile

Processes in Software Engineering and Extreme Programming, Springer International Publishing; 2015; Cham: 166–177.

5. WallsM. Building a DevOps culture. O’ReillyMedia, Inc. . 2013.

6. Humble J, Farley D. Continuous delivery: reliable software releases through build, test, and deployment automation. Addison-Wesley . 2011.

7. Forsgren N, KerstenM. DevOpsMetrics. Communications of the ACM 2018; 61(4): 44–48.

Page 16 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Bertolino ET AL 17

8. Brunnert A, Hoorn vA,Willnecker F, et al. Performance-oriented DevOps: A Research Agenda. CoRR 2015; abs/1508.04752.

9. Mazkatli M, Koziolek A. Continuous Integration of Performance Model. In: Companion of the 2018 ACM/SPEC International Conference on

Performance Engineering, ICPE ’18. ACM; 2018: 153–158

10. RahmanAAU,Williams L. Software Security in DevOps: Synthesizing Practitioners’ Perceptions and Practices. In: 2016 IEEE/ACM International

Workshop on Continuous Software Evolution and Delivery (CSED), IEEE; 2016: 70–76

11. Lee JS. The DevSecOps and Agency Theory. In: IEEE 29th International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE;

2018: 243–244

12. Musa JD, EverettWW. Software-Reliability Engineering: Technology for the 1990s. IEEE Software 1990; 7(6): 36–43.

13. Forsgren N, Humble J, Kim G. Accelerate: State of DevOps, Strategies for a New Economy. https://cloudplatformonline.com/2018-state-of-

devops.html; 2018. Accessed: 2020-03-02.

14. Beyer B, Jones C, Petoff J, Murphy NR. Site Reliability Engineering: How Google Runs Production Systems. O’Reilly . 2016.

15. LyuMR. Software reliability engineering: A roadmap. In: Future of Software Engineering (FOSE), IEEE; 2007: 153–170.

16. Musa JD. Software-Reliability-Engineered Testing. IEEE Computer 1996; 29(11): 61–68.

17. Pietrantuono R, Bertolino A, De Angelis G, Miranda B, Russo S. Towards Continuous Software Reliability Testing in DevOps. In: Proceedings of

the 14th InternationalWorkshop on Automation of Software Test, IEEE; 2019: 21–27

18. Fitzgerald B, Stol KJ. Continuous software engineering and beyond: trends and challenges. In: Proceedings of the 1st International Workshop on

Rapid Continuous Software Engineering, ACM; 2014: 1–9.

19. Soni M. End to end automation on cloud with build pipeline: the case for DevOps in insurance industry, continuous integration, continuous

testing, and continuous delivery. In: IEEE International Conference on Cloud Computing in EmergingMarkets (CCEM), IEEE; 2015: 85–89.

20. Di Nitto E, Jamshidi P, Guerriero M, Spais I, Tamburri DA. A software architecture framework for quality-aware DevOps. In: Proceedings of the

2nd InternationalWorkshop on Quality-Aware DevOps (QUDOS), IEEE; 2016: 12–17.

21. Angara J, Prasad S, Sridevi G. The Factors Driving Testing in DevOps Setting - A Systematic Literature Survey. Indian Journal of Science and

Technology 2017; 9(48): 1–8.

22. Soares Cruzes D, Melsnes K, Marczak S. Testing in a DevOps Era: Perceptions of Testers in Norwegian Organisations. In: Misra S. et al. ., ed.

International Conference on Computational Science and Its Applications (ICCSA), . 11622 of LNCS. Springer, Cham; 2019: 442–455.

23. Fitzgerald B, Stol KJ. Continuous software engineering: A roadmap and agenda. Journal of Systems and Software 2017; 123: 176–189.

24. KitchenhamB, Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Tech. Rep. EBSE 2007-001,Keele

University and DurhamUniversity Joint Report; 2007.

25. Marijan D. Multi-perspective Regression Test Prioritization for Time-Constrained Environments. In: IEEE International Conference on Software

Quality, Reliability and Security (QRS), IEEE; 2015: 157–162.

26. Ali S, HafeezY,Hussain S, Yang S. Enhanced regression testing technique for agile software development and continuous integration strategies.

Software Quality Journal 2019.

27. Najafi A, Shang W, Rigby PC. Improving test effectiveness using test executions history: an industrial experience report. In: IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice (ICSE- SEIP), IEEE; 2019: 213–222.

28. Révész Á, Pataki N. Containerized A/B Testing. In: Proceedings of the 6th Workshop of Software Quality, Analysis, Monitoring, Improvement, and

Applications (SQAMIA), CEURWorkshop Proceedings; 2017.

29. Mijumbi R, Okumoto K, Asthana A, Meekel J. Recent Advances in Software Reliability Assurance. In: IEEE 29th International Symposium on

Software Reliability EngineeringWorkshops (ISSREW), IEEE; 2018: 77–82

Page 17 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

18 A. Bertolino ET AL

30. Janes A, Russo B. Automatic PerformanceMonitoring and Regression Testing During the Transition fromMonolith toMicroservices. In: 2019

IEEE International Symposium on Software Reliability EngineeringWorkshops (ISSREW), IEEE; 2019: 163–168.

31. Pietrantuono R, Russo S, Guerriero A. Run-time Reliability Estimation of Microservice Architectures. In: IEEE 29th International Symposium on

Software Reliability Engineering (ISSRE), IEEE; 2018: 25–35.

32. Pietrantuono R, Russo S, Guerriero A. Testing microservice architectures for operational reliability. Software Testing Verification and Reliability

2020; 30(2). doi: 10.1002/stvr.1725

33. Frankl PG, Hamlet RG, Littlewood B, Strigini L. Evaluating testing methods by delivered reliability [software]. IEEE Transactions on Software

Engineering 1998; 24(8): 586–601.

34. Cai KY. Towards a Conceptual Framework of Software Run ReliabilityModeling. Information Sciences 2000; 126(1-4): 137–163.

35. Thayer TA, LipowM, Nelson EC. Software Reliability. North-Holland Publishing, TRWSeries of Software Technology, Amsterdam . 1978.

36. Chaudhuri A. Survey Sampling Theory andMethods. Chapman &Hall/CRC, Second Edition, Taylor & Francis Group . 2005.

37. Zhou X, Peng X, Xie T, et al. Fault Analysis and Debugging ofMicroservice Systems: Industrial Survey, Benchmark System, and Empirical Study.

IEEE Transactions on Software Engineering 2018.

38. Laranjeiro N, Vieira M, Madeira H. A robustness testing approach for SOAP Web services. Journal of Internet Services and Applications 2012;

3(2): 215–232.

39. Pietrantuono R, Russo S. On adaptive sampling-based testing for software reliability assessment. In: IEEE 27th International Symposium on

Software Reliability Engineering (ISSRE), IEEE; 2016: 1–11.

40. Pietrantuono R, Russo S. Probabilistic Sampling-Based Testing for Accelerated Reliability Assessment. In: 18th IEEE International Conference on

Software Quality, Reliability and Security (QRS), IEEE; 2018: 35–46

41. Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering 2009;

14: 131–164.

42. Sloss BT, Nukala S, Rau V.Metrics ThatMatter.Queue 2018; 16(6): 86–105.

How to cite this article: A. Bertolino, G. De Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo (2020), DevOpRET: Continuous

Reliability Testing in DevOps, Journal of Software: Evolution and Process.

Page 18 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://dx.doi.org/10.1002/stvr.1725

For Peer Review

Dear Guest Editors,

We are very grateful to you and to the anonymous reviewers for the in-depth evaluation of the
manuscript with ID JSME-19-0214, entitled "DevOpRET: Continuous Reliability Testing in DevOps",
submitted for consideration for the Special Issue “Automation of Software Testing and Continuous
Deployment” of Journal of Software: Evolution and Process.
We are submitting herewith the revised version of the manuscript. The paper has been thoroughly
revised according to reviewers’ suggestions. The main changes are the following:

- The Abstract has been re-written, as per reviewer #2 comment;
- The Related Work section has been moved to Section 2, as per reviewers #2 and #3 comments,

and it has been re-written, as per reviewer #2 comments;
- A new case study has been added, as per reviewer #3 suggestion;
- Figures and Tables have been revised to improve presentation and readability, as per

reviewers #1 and #3 comments;
- The whole text has been thoroughly revised, in order to address comments concerning

clarifications or sources of confusion, and also as a consequence of the introduction of the
second case study.

In the remainder of this letter, we list in detail all reviewers’ comments, corresponding answers and
modifications made in the revised version of the manuscript.

We wish to thank the reviewers for their valuable hints, which we believe greatly helped us to improve
the manuscript.

Antonia Bertolino, Guglielmo De Angelis, Antonio Guerriero,
Breno Miranda, Roberto Pietrantuono, Stefano Russo

Answers to comments by reviewers.

Reviewer #1
Comment 1.1
The paper proposes an original approach to continuous testing in a DevOps environment that
leverages operational profiles obtained from the usage of a system to estimate the reliability of
the system prior to the deployment in production. Experimentation is performed using an open
source system and simulating the operational profile using a synthetic workload generator.
This article is an extension of a previous recent work published at the IEEE AST workshop and
mainly includes as new material an alternative approach (called WOT) that considers the
probability of failure in production. The new experimentation compares WOT with the previous
approach (called OT) and discuss the improvements.
The paper fits very well in the scope of the journal. It is clearly written, and the results are
promising. The below comments are mainly clarifications of a few issues regarding the
experimentation.
- Section 3.4 distinguishes between two kind of failures. Critical failures are easy to detect, but how
are the non-critical failures detected? Is the checking for inconsistency between input submitted and
message received automated?

Page 19 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Answer
The testing oracle implemented for the experiments is based on the HTTP response codes. In
particular, we focused on three different classes:

- 2xx: Success
- 4xx: Client errors
- 5xx: Server errors

As defined in Section 4.6.5: Critical failures are those with a 5xx response code.
Non-critical failures are those for which the returned status code and message are inconsistent with the
input submitted. The check for inconsistencies is automated: whenever the input data of a client
request are taken from a valid partition and the response code is “client error” (4xx), or the input data
are taken from an invalid partition and the response code is “success” (2xx), then there is an
inconsistency, which is detected automatically.
The text in Section 4.6.5 has been revised for better clarity.

Comment 1.2
- I’m a little bit confused with the procedure at section 3.6. What is “budget”? Is the number of tests
that are made prior to release to estimate reliability (T=1000)?
- Later, the operation of the system is simulated using N=5000 executions generated using the
workload generator. Where do the tests (T=1000) came from? Are these tests a subset of the N=5000
executions or a different test suite?

Answer
Yes, the testing budget T is the number of tests made prior to release to estimate reliability. These tests are
NOT a subset of the N executions. The latter are the synthetic workload, generated and submitted to
emulate normal requests by users in the operational phase.
We have removed sources of confusion and potential inconsistencies, revising subsection 4.6. The
expression “testing budget” and its motivation have now been introduced in Section 3.1 in the
description of Step 1 of Figure 2.

Comment 1.3
- There is any reason for choosing these numbers given the amount of partitions available? In a real
operation the number of available executions (N) would be much larger than the number of tests (T).
Could this have some influence on the results? Maybe this discussion is worth to be included in
threats to validity.

Answer
We agree with this remark. Indeed, the effect that we would observe with a much larger N (that could
be more realistic) is that the estimate gets more accurate release by release, since the learning process
with a larger N would be more robust (the real profile and failure probabilities are learnt better). This
is true both for a stable and for a variable operational profile and failure probabilities. In this sense, our
choice of N with respect to T can be considered "conservative", since in real deployment N/T would
be much greater. This discussion is now included in the threats to validity, as per suggestion.

Page 20 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Comment 1.4
- A surprising and positive result is the large number of faults detected. I assume that this is due to
the testing was made at the API level and in an exhaustive way, but, the real system is used and was
only tested at the front-end level. A short discussion on this could be incorporated in the paper.

Answer
We have included the suggested discussion in Section 5.2. The explanation is related to how testing
was performed and, possibly, to fault-failure proportion.
Testing was done in a black box fashion at the API level considering several valid and invalid input
types. Because of the invalid classes, we were able to expose many failures due to the incorrect
management of invalid requests.
Moreover, the WOT algorithm favors cases for which the probability of failure is expected to be
“high”, in order to expedite the reliability assessment (the estimates of failure probabilities of
partitions used by the algorithm are initialized as “number of invalid classes” over “number of classes”
of the partition).
Finally, it should be noted that several failures (i.e., wrong responses) on an API method may well be
originated by the same fault - to avoid confusion, in the revised manuscript we have replaced “number
of detected faults” with “number of failing tests”, which more accurately reflects the obtained results.

Comment 1.5
- Related to the above, at the end of section 4.1 (RQ1) figures including the fault detection trend are
presented (fig 4). But the discussion of this result is very short. As reliability of each version (table 3)
is similar, the explanation of the increasing trend may be the “learning” effect achieved by the
approach. Nevertheless, this and the possible practical implications are worth to be discussed in more
depth.

Answer
The impact of the “learning effect” has now been explained more explicitly in the text. In particular,
we added the following sentence in the summary of the RQ1: “The estimations become more precise
over subsequent DevOps cycles. While the knowledge of the operational profile improves the
estimator accuracy, its influence in the estimator’s efficiency is scarce”.
Moreover, the new RQ3 further discusses such a "learning effect" in relation to a changing true
reliability.

Comment 1.6
- Tables 1 and 2 provide some insight on the kind of test cases that are executed, but there is no
information on the kind of faults that are detected. This fault-related information may be included
and discussed in the results section.

Answer
DevOpRET tests reveal failures based on the HTTP response code, and we fear our previous incorrect
use of the term fault may have generated some confusion (see also answers to Reviewer #1 comments
1.1 and 1.4). Clearly, these failures are related to faults into the system under test, and gaining insight
about faults into the subjects require manual inspection, but this is out of the scope of the experiments

Page 21 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

we designed to answer the research questions about the proposed black-box testing approach for
reliability assessment (not improvement, as in debug testing) at DevOps quality gates.

Comment 1.7
- Please, review box-plots to homogenize the presentation and improve readability and figure
placement

Answer
We apologize for the quality of some previous figures. Box-plots have been made homogeneous.
Figure 7 and several other figures have been re-done to improve readability. Better care has been taken
in the placement of figures, with the aim to improve ease of reading.

Page 22 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Reviewer #2
Comment 2.1
It is a good article, simple to read and well presented, which nevertheless has some shortcomings
which, in my opinion, prevent me from recommending its publication. I detail these points for
improvement below:
- The main problem I find in the article has to do with the order of presentation of some contents and
with the validation methodology used. I believe that section 5, Related Work, should be much
broader, and should be taken to section 2 of the document. In this chapter I would develop a
systematic review of the existing literature in a much more complete way, and above all, I would
create a frame of reference with other similar solutions, indicating in each case similarities,
differences, pros and cons with respect to the authors' proposal.

Answer
Thanks for the suggestions for improvement.
Related work has been moved to Section 2.
A strict Systematic Literature Review is clearly out of the scope of the paper and would deserve a
publication of its own. However, we have conducted a more systematic analysis of the existing
literature, and thoroughly revised the Related work section accordingly. The revision is aimed not only
to broaden the scope of the analysis, but also to create a frame of reference with other similar
solutions, as per suggestion.

Comment 2.2
- It would take this incorporated systematic review as the basis for a test bench in the validation
section. That is to say, it would compare at a quantitative level what results are obtained in similar
scenarios with other proposals, in order to put in value the profit and the contribution to the state of
the art.

Answer
The systematic review steps we have performed and described in the new related work section show
that testing for quality assessment in the context of DevOps still appears to be under-considered in the
academic scientific literature. We have not found proposals of techniques addressing reliability testing
in DevOps, which DevOpRet can be quantitatively compared to. We believe this is also a clear
indicator of the novelty of our contribution.
Hence, the new related work Section discusses qualitatively related testing techniques which -
although possibly not specifically conceived for DevOps or for reliability assessment - might
nevertheless in principle be considered for adaptation to the problem we target (testing for reliability at
DevOps quality gates).
The discussion shows that the proposals we consider more related (among hundreds of papers we
found in our search and analyzed) are very few and they do not fulfill the requirements of the problem
we identified, either because these proposals are tailored to different problems (like regression testing,
or test prioritization, or fault detection) or because they target different quality attributes (like usability
and performance).

Page 23 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Comment 2.3
- I am not clear about the scientific methodology used by the authors. It may be that sketching an
initial research question that spins all the research, and giving a coherent answer to that question will
help in this sense.

Answer
Following this suggestion, we have now better explained our research methodology. In particular, we
aim at an approach that can be used by the QA team in acceptance testing, and we propose to use
reliability estimation leveraging usage and failure data from operation. We also explain that such an
approach has to be accurate and efficient, and the experimental evaluation is designed accordingly
along such requirements.
In the paper, we anticipate such requirements in the Related work section (see also answer to comment
2.2) and then explain our goal at the beginning of Section 3.1, and finally we have also revised the
formulation of Research questions in Section 4.1.

Comment 2.4
- I believe that the abstract can be improved, and would link its ideas following a typical scheme of
context - motivation - proposal - methodology - results and conclusions, so that it is more
self-complete. The abstract is the part of the article that most readers will read and it needs to be
given more care and attention.

Answer
Thanks for the useful suggestions. The abstract has been entirely re-written according to the suggested
scheme.

Comment 2.5
- It would further develop the future lines seen by the authors, indicating what they will contribute,
what challenges they will have, etc.

Answer
Following this suggestion, we have extended the conclusion section by including and briefly
commenting more future research directions.

Comment 2.6
- 90% of the references are 2 or more years old. This, together with the vagueness of the current
section 5 makes us think that authors should really make an effort to update, complete and improve
all the background, related work and systematic and updated review of similar solutions.

Answer
The background (in the introduction) and the related work have been thoroughly revised (according
also to comment 2.2 above), and references have been updated accordingly.

Page 24 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Reviewer #3
Comment 3.1
The paper focuses on the interesting approach of determining accuracy and efficiency of the
reliability estimation. This approach can be used for continuous reliability testing.
Unfortunately, the article has some vulnerabilities and does not differ clearly enough from the
previous article by the same authors: Pietrantuono R, Bertolino A, De Angelis G, Miranda B, Russo
S. Towards Continuous Software Reliability Testing in DevOps. In: Proceedings of the 14th
International Workshop on Automation of Software Test, IEEE; 2019: 21-27
- The same database is used as in the IEEE article.
- Some sections in chapters 2.1, 3.2, 3.3, 3.4 (and probably other chapters as well) are literally
identical. In the result about 3 pages are identical.
- The IEEE article uses a meaningful and good heading beginning with "Towards...". But a follow-up
article should not have the same Case Study and dataset.
Especially if the authors want to show that the analysis via WOT leads to better results than an OT
analysis, explicitly different Case Studies should be used.

Answer
We would like to point out that this manuscript is an extended version of the AST 2019 paper,
submitted to the Special Issue of the journal devoted to the theme of that ICSE workshop, and
expressly soliciting submissions of extended versions of the workshop papers. A common
rule-of-thumb for journal versions of conference papers is that at least 30% of the content should be
new: our rough estimate, especially for this revised version, is that the journal version now contains
60% new material, and moreover the text has been extensively revised throughout, notably also
including the new abstract, introduction and related work section.
We accept the suggestion that in order to show that the analysis via WOT leads to better results than
via OT, a different case study should be used. Therefore, we added a further subject (a microservice
benchmark); the aim of the experiments with this case study is to investigate if and how the reliability
estimates provided by DevOpRET (with both OT and WOT) change when the true reliability of the
subject under test changes, a circumstance not observed in the first case study.

Comment 3.2
Chapters 4.1 and 4.2: Please repeat the Research Question at the beginning of the chapter and
carefully explain the results of these Research Questions in the chapter. Currently, the answer to
RQ1 can only be taken implicitly from the graphs. Also, the graphs should have the same scaling and
the error bars should be explained.

Answer
Thanks for the comment. RQs have been repeated at the beginning of the corresponding results’
subsections, and key results for each RQ have been highlighted at the end of these subsections.
Graphs’ scaling has been corrected as per suggestion and several figures have been re-done, including
those for RQ1. Better explanations to all figures are now provided in the text.

Page 25 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Comment 3.3
The scales in Fig. 7 are not readable.

Answer
We apologize for the quality of the figure. Figure 7 has been re-done.

Comment 3.4
It is the first article where the Related Work section comes after the results. This is not a good idea.

Answer
Although we are aware of many articles with Related Work at the end, we accept the suggestion.
Related work has been moved to Section 2. It has also been thoroughly revised (as per comments 2.1
and 2.2 of Reviewer #2).

Comment 3.5
Since it is a work in a research network of 6 authors, different case studies should not be a problem,
so that a follow-up article can have a high value.

Answer
We have added a further case study (see answer to comment 3.1 above), which we hope improves the
value of the article.

Page 26 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

DevOps scope

209x297mm (300 x 300 DPI)

Page 27 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Continuous reliability testing in DevOps cycles with DevOpRET

250x127mm (300 x 300 DPI)

Page 28 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: offset between true and estimated reliability over cycles (subject: Discourse, algorithm: OT). a)
all-failures

127x101mm (300 x 300 DPI)

Page 29 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: offset between true and estimated reliability over cycles (subject: Discourse, algorithm: OT). b)
critical-failures

127x101mm (300 x 300 DPI)

Page 30 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Number of failing tests over cycles (subject: Discourse, algorithm: OT). a) all-failures

127x101mm (300 x 300 DPI)

Page 31 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Number of failing tests over cycles (subject: Discourse, algorithm: OT). b) critical-failures

127x101mm (300 x 300 DPI)

Page 32 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: sensitivity to the testing budget T under a 30% error on the initial profile estimate (subject:
Discourse, algorithm: OT). a) Initial estimated profile: uniform

203x88mm (300 x 300 DPI)

Page 33 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: sensitivity to the testing budget T under a 30% error on the initial profile estimate (subject:
Discourse, algorithm: OT). b) Initial estimated profile: proportional

203x88mm (300 x 300 DPI)

Page 34 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: sensitivity to different errors in the initial operational profile estimate (subject: Discourse,
algorithm: OT; T=100). a) 30% error on OP (same as for T=100 in Fig. 5a and 5b)

165x88mm (300 x 300 DPI)

Page 35 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Accuracy: sensitivity to different errors in the initial operational profile estimate (subject: Discourse,
algorithm: OT; T=100). b) 70% error on OP

165x88mm (300 x 300 DPI)

Page 36 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Accuracy: offset between true and estimated reliabilities over DevOps cycles (subject:
Discourse). a) all-failures

127x101mm (300 x 300 DPI)

Page 37 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Accuracy: offset between true and estimated reliabilities over DevOps cycles (subject:
Discourse). b) critical-failures

127x101mm (300 x 300 DPI)

Page 38 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Number of failing tests over DevOps cycles (subject: Discourse). a) all-failures

127x101mm (300 x 300 DPI)

Page 39 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Number of failing tests over DevOps cycles (subject: Discourse). b) critical-failures

127x101mm (300 x 300 DPI)

Page 40 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Sample variance over DevOps cycles (subject: Discourse). a) all-failures

139x76mm (300 x 300 DPI)

Page 41 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

WOT vs OT - Sample variance over DevOps cycles (subject: Discourse). b) critical-failures

139x76mm (300 x 300 DPI)

Page 42 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

True reliability under constant operational profile over cycles (subject: TrainTicket)

373x191mm (300 x 300 DPI)

Page 43 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Offset between estimated and true and reliability over cycles (subject: TrainTicket)

373x191mm (300 x 300 DPI)

Page 44 of 44

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

