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a b s t r a c t

The impact of software bugs on today’s system failures is of primary concern. Many bugs are detected and

removed during testing, while others do not show up easily at development time and manifest themselves

only as operational failures. Besides the importance of understanding the bug features from the programmer

perspective (i.e., what is wrong in the code), a key role in counteracting bugs is played by the chain that from

the bug activation leads to failure.

This article investigates the characteristics of the bug manifestation process. Through an extensive empiri-

cal study, a set of failure-exposing conditions is first identified as bug manifestation characteristics; 666 bug

reports from two applications are then analyzed with respect to these characteristics under several perspec-

tives. Findings highlight: (i) the main occurrence patterns of bug triggering conditions in the selected case

studies and the role played by the workload, the application and the environment where it runs; (ii) how such

conditions evolve over time; (iii) how they relate to bug exposure and fixing difficulty; (iv) how they impact

the user. Results provide a fine-grain characterization of bug manifestation that is expected to increase the

perceived importance of this dimension in testing, debugging, and fault tolerance strategies.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Understanding software bugs is of paramount importance to

mprove software quality and development processes. Researchers,

cross years, analyzed bugs from different viewpoints to improve the

nowledge about their characteristics. Regardless of the semantics

f the error committed by a developer, a fundamental aspect in bug

omprehension is related to the process by which a bug manifests it-

elf as a failure. Indeed, while static properties of a bug (e.g., its type,

r origin) are related to how a bug is introduced in the code, there

re different causes for a bug provoking a failure. Expectedly, many

ugs systematically cause the same failure on a given (sequence of)

nput(s). Conversely, there is a non-negligible set of bugs that cause a

ailure depending on the state of the execution environment, appear-

ng as non-deterministic or transient, in which the failure does not

ccur unless the environment is in a certain state (Gray, 1985; Grot-

ke and Trivedi, 2007). The latter category contains bugs that likely

scaped testing, since their exposure may be a rare event, and differ-

nt V&V techniques (e.g., static analysis) or runtime fault tolerance
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re the means to cope with them. In general, the effectiveness of fault

etection and tolerance strategies are strictly tied to how bugs mani-

est themselves.

In the past, some broad classifications took into account the prop-

rties of bugs related to the reproducibility of the failures they cause.

ray (1985) distinguished Bohrbugs and Heisenbugs depending on

hether the failure caused by the bug is systematically reproducible

r not (also called hard and soft failures, respectively). Later, Trivedi

nd Grottke define Mandelbug in lieu of Heisenbug (Grottke and

rivedi, 2007), considering the complexity of the bug-failure process

n terms of macro-conditions required for a bug to cause a failure

i.e., influence of the execution environment, timing or ordering of

nputs or operations, time lag between bug activation and failure oc-

urrence). Several researchers conducted empirical studies and indi-

ectly highlighted the importance of distinguishing the environment

s collateral cause of bug exposure (Chandra and Chen, 2000; Lee and

yer, 1995; Grottke et al., 2010). Others have been highlighting some

actors of the execution environment, such as memory (Sullivan and

hillarege, 1991), concurrency (Lu et al., 2008), or resource manage-

ent (Cotroneo et al., 2013b), as relevant failure causes, and moti-

ated subsequent research on developing proper countermeasures

e.g., static and dynamic analysis tools). A few papers clearly distin-

uish the need for studying some characteristic of the bug manifesta-
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Table 1

Summary of findings by type of analysis.

Triggering conditions analysis

#1 Most of the reported bugs (80.71%) needs only workload conditions to surface,

with no environmental condition required

Workload (WL) triggering conditions

#2 For 57.87% of bug reports, the bug manifestation requires a specific request type

For 35.04%, a further additional condition is required

#3 For 35.22% of bug reports, the bug manifestation requires a requests sequence

For 24.78%, a further additional condition is required

#4 For 50.62% of bug reports, the bug manifestation requires a second WL condition, related to

the input type, to the application configuration, or to the input value

#5 For 11.68% of bug reports, the bug manifestation requires a specific input value (e.g., boundary values);

for 4.78%, it requires a specific range of values; for 3.54%, it requires a class of values with a property in common

#6 For 10.79% of bug reports, the bug manifestation requires a specific request type together with

a specific application configuration; for 9.02%, it requires a specific request type together with a specific input value;

for 7.08%, it requires a specific request type together with a specific input type

Environment triggering conditions

#7 63.33% of bug reports with execution environment triggers are caused by “indirect” environmental conditions

#8 For 7.25% of bug reports, the bug manifestation requires a concurrency condition

#9 For 6.19% of bug reports, the bug manifestation is related to memory management

Workload and environment triggering conditions

#10 For 76.15% of environment-dependent bug reports, the bug manifestation requires,

besides the environmental condition, a sequence of request as workload condition

#11 For 7.26% of bug reports, the bug manifestation requires a transient environmental conditions

#12 For 21.24% of bug reports, the bug manifestation requires a specific environment configuration

#13 When a specific environment configuration is required, the necessary factor is: a specific OS (55.83%);

specific system-level or application-level software (24.17 %), a specific hardware/network configuration (20.00%)

Temporal analysis

#14 Environment-dependent bug reports tend to start appearing later and have a slower

increasing rate than workload-dependent ones

#15 The ratio of environment-dependent over workload-dependent bugs in MySQL

is lower in the first 4 years than in the period 4–8 years after the release time

Complexity analysis

#16 For 45.66% of bug reports, the bug manifestation requires at least two conditions to surface,

more often two workload conditions (37.87%)

#17 Bugs requiring one triggering condition (25.49%) are less common than bugs requiring two conditions (45.66%)

#18 For 7.61% of bug reports, the bug manifestation requires 4 conditions together to surface;

for 1.06%, it requires 5 conditions

#19 We cannot state that there is a relation between the bug manifestation, expressed by triggers, and the time to fix a bug

Impact analysis

#20 The manifestation of most of total bugs ended up in an incorrect response provided to the user (62.12%), or in a crash

of the application (26.90%). The remaining bugs resulted in performance issues (5.84%) or omission failures (3.72%)

#21 The failure mode is affected (p-Value < 0.01) by the type of bug, being environment- or workload-dependent

#22 The relative proportions of high and low severity bugs are influenced by the bug type, with the percentage

of environment-dependent bugs being more relevant for the high severity class (p-Value < 0.02).
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tion, such as the number of inputs required for a bug to surface, case

framed within a wider context (e.g., concurrency bugs Lu et al., 2008,

or server bugs Sahoo et al., 2010). Despite the merit of these studies

in pointing out the need for examining the entire bug-failure chain,

none of them sets the goal of systematically investigating the char-

acteristics of the bug manifestation process. In this work, we present

the results of a comprehensive empirical study whose aim is to exam-

ine the fine-grain conditions that make a bug cause a failure. A set of

bugs are analyzed in terms of “triggers” – that is, of necessary failure-

exposing conditions that make a bug surface. These are related both

to the input workload and to the environment necessary for a bug

exposure. By abstracting factors that potentially affect the bug acti-

vation and/or propagation process, a set of conditions are identified

as triggers, and used to categorize the bug manifestation characteris-

tics. On a set of 666 bug reports taken from the Apache Web Server

and the MySQL DBMS, we first analyzed the occurred patterns of bug

triggers, to figure out the most common factors exposing bugs in the

considered case studies. Then, we have investigated the relation of

such triggers with complexity in terms of bug exposure difficulty and

fixing time, to see if they are related only to the detection or also to

the bug fixing process. Their evolution over time is also investigated, so

as to detect possible differences in the way such triggers appear over

time (e.g., if triggers related to the environment differ from triggers
elated only to the workload in terms of occurrence time). Finally, the

elation of triggers with the impact of the failure they cause is stud-

ed, so as to assess if the exposure characteristics of a bug are also

elated to the end-user perception of the caused failure. The study

rovides a set of findings, referred to the selected case studies, sum-

arized in Table 1, which highlight: (i) the impact of each workload

ondition on bug surfacing, both when it is a necessary condition and

hen it is a necessary and sufficient condition; (ii) the additional im-

act caused by the environment conditions, and which factor of the

nvironment is more relevant; (iii) the impact of the combination of a

umber of conditions together; (iv) the occurrence pattern of differ-

nt triggering conditions at operational time; and (v) the relation of

orkload and environment bug triggers with the failure modes and

he perceived severity. Far from claiming the generality of what we

bserved, the study serves to point out the many differences among

ugs in terms of manifestation characteristics. We believe this can

oster further investigation along such an important dimension, con-

ributing to figure out how to exploit the knowledge of bug-failure

hain for improving development processes. In the following, we first

urvey past studies on bug characteristics in the literature (Section 2);

n Section 3, we present the study methodology; Sections 4, 5, 6,

nd 7 discuss, respectively, the results of the bug trigger analysis,

emporal analysis, complexity analysis, and impact analysis; Section 8
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iscusses the limitation of the empirical study; Section 9 concludes

he paper.

. Studies on bug characterization

Researchers have spent much effort to study characteristics of

oftware bugs. On the one hand, they proposed classifications meant

o define general characteristics of defects (i.e., the IEEE Std. 1044

cheme I. S., 2010, the Hewlett-Packard (HP) scheme Grady, 1992, and

he Orthogonal Defect Classification (ODC) Chillarege et al., 1992). On

he other hand, they conducted several empirical studies by analyz-

ng problem reports, and outlined bugs’ characteristics from observed

ata. Along the former trend, the ODC is the closest one to our work.

t classifies defects by several attributes, the most important ones be-

ng: the defect type, which captures the semantic of the fix made by

he programmer, and the defect trigger, which relates the defect to

he V&V activities that made it surface. From the bug manifestation

erspective, ODC triggers are interesting in that they are directly re-

ated to bug exposure activities. Several empirical studies analyzed

DC triggers in case studies for V&V improvement (Chillarege and

assin, 1995; Chillarege and Prasad, 2002; Cotroneo et al., 2013d). By

ontrast, our paper examines the conditions necessary for the bug

o surface with a different meaning: while ODC refers to high-level

&V activities (e.g., test sequencing, inspection, black box test), that,

n the considered circumstance, made the defect surface, we look for

he fine-grained inputs and environmental conditions that are nec-

ssarily required for the manifestation, independent of any specific

&V activity.

Regarding empirical studies, there are several papers analyzing

he characteristics of bugs, errors, and failures. These refer either

o specific classes of systems or to classes of problems (e.g., con-

urrency). Many of them classify problems by some features that

an be related to the bug manifestation dimension, different from

tudy to study, and adopting different terminologies. Sullivan and

hillarege (1991) studied the causes and triggers of software defects

n operating systems, distinguishing “regular” from “overlay” (i.e.,

emory-related) defects. Lee and Iyer (1993), 1995) conducted a field

ailures analysis of Tandem GUARDIAN operating system, grouping

ailure causes into computation and data error, missing operations,

ode update, microcode problems, and unexpected situations (e.g.,

ace/timing problems, unexpected error). The work by Gray (1985)

rovided a more general distinction between (i) “solid” or “hard”

aults, for which failures are easily reproducible (named Bohrbugs,

lluding to Bohr’s simple atom model); and (ii) “elusive” or “soft”

aults, for which failure occurrence is not systematically reproducible

named Heisenbugs, referring to Heisenberg’s uncertainty princi-

le). Later, Grottke and Trivedi (2005), 2007) introduced Mandel-

ugs as the complementary antonym of Bohrbug, considered as those

ugs whose activation/propagation appears as non-deterministic or

haotic because of environmental conditions or of time lags between

he bug activation and the failure manifestation. Although the coarse

istinction Bohr- vs. Mandel/Heisenbug is insufficient to account for

he many factors involved in the bug-failure chain, its practical im-

ortance is to explicitly highlight the relevant differences that may

xist in the bug manifestation. Several field studies have found that

significant fraction of problems is due to defects whose features

re attributable to Mandelbugs: besides the above-mentioned ones

i.e., Sullivan and Chillarege, 1991; Lee and Iyer, 1993, 1995), several

ther studies found that Mandelbug-like faults account for the 20–

0% of the total defects (e.g., Chillarege, 2011; Trivedi et al., 2011;

otroneo et al., 2013a; Cavezza et al., 2014), even in critical sys-

ems (Grottke et al., 2010). In Cotroneo et al. (2013b), Bovenzi et al.

2012) and Cotroneo et al. (2010) we focused on a specific class of

andelbugs, namely the aging-related bug, distinguishing memory-

elated problems (e.g., leaks), storage-related (e.g., fragmentation,

eaks), wrong management of other resources (e.g., handles, locks),
nd numerical errors, observing an impact of about 5%. Authors in

u et al. (2008) focus on concurrency bugs; they analyze 105 faults

rom 4 complex systems distinguishing among atomicity violations,

eadlocks, and order-violations. This is a study explicitly analyzing

ug manifestation, limited to concurrency bugs, in terms of num-

er of threads, accesses, and variables involved in the manifesta-

ion. Recent papers (Tan et al., 2013; Li et al., 2006) focus on open

ource software, and propose a taxonomy distinguishing the root

ause (memory, concurrency, semantic), the impact (i.e., the failure),

nd the component affected. Authors in Sahoo et al. (2010) analyzed

ug reports in server applications, and considered the reproducibil-

ty characteristic distinguishing bugs as deterministic, timing depen-

ent, or non-deterministic, studying the number of inputs to trigger

failure. Chandra and Chen (2000) studied the reports of Apache,

NOME, and MySQL to investigate recovery strategies, and distin-

uished environment-dependent (transient or not) from environment-

ndependent faults.

Several other papers perform a classification on bug reports to an-

lyze characteristics not related to the bug manifestation, but that

e also consider in our work, e.g., the bug fixing time and sever-

ty. Specifically, several studies analyzed the fixing process of defects.

hang et al. (2012) studied the bug fixing time and factors influenc-

ng it on three open source software applications. They found the as-

igned severity, the bug description, and the number of methods and

hanges in the code as impacting factors. In Cinque et al. (2014), the

xing time is showed to impact the accuracy of the quality estimation

ade during testing. The work in Ihara et al. (2009) reports a study

pecifically focused on finding bottlenecks in the issue management

rocess, highlighting that the main cause of inefficiency is the time

ag in which the correction is verified. In our analysis, we adopt the

ame approach to approximate the fixing time by selecting only the

hase of the bug lifecycle in which the bug report is actually modified.

uthors in Mockus et al. (2002) analyzed two projects, Apache and

ozilla, to evaluate several aspects of the open source development,

lso considering the fixing time, by extracting the actual modifica-

ion phase of bugs as in Ihara et al. (2009). Nistor et al. (2013) manu-

lly inspected performance bugs, analyzing, among other character-

stics, their fixing process by looking at patches. We also analyzed the

ug fixing process, along with testing, in an industrial context, high-

ighting a remarkable heterogeneity among components in mission-

ritical systems (Carrozza et al., 2014). The severity attribute is an-

lyzed in Lamkanfi et al. (2010), Lamkanfi et al. (2011) and Menzies

nd Marcus (2008). They all analyze the severity as reported by the

ser, recognizing that it is a difficult attribute to assess. They investi-

ated on methods to predict the severity assignment, so as to check

he conformance with the user-assigned severity, by using text min-

ng on bug reports and machine learning techniques. We opted for

he same choices to analyze severity – that is, grouping severity into

igh vs. low categories and discarding the default assignment as it is

hown to be unreliable. In our work, we also analyze fixing time and

everity, but relating them to the bug manifestation type to figure out

f these attributes are impacted by how bugs surface. A different set

f studies argues about the quality of the bug report itself, and thus

n the reliability of analyzes performed on it. Herzig et al. (2013) and

ntoniol et al. (2008) raised the problem of issue report misclassifi-

ation (i.e., reports classified as bugs, but actually referring to non-

ug issues) highlighting that a relevant share (33% and 18–22% in the

wo cases) is misclassified. Bettenburg et al. (2008), 2007) also dis-

uss the quality of bug reports by conducting a survey among devel-

pers to determine the information that is actually used (e.g., steps

o reproduce, stack traces, and test cases) and the information sup-

lied by users. In Wang et al. (2011), authors remark the importance

f an efficient defect reporting on the testing process, demonstrating

hat improving reporting decreases the percentage of invalid reports

rom 26% to 19.53%. These studies suggest that, although analyzes on

ug reports are extremely important to understand characteristics of



30 D. Cotroneo et al. / The Journal of Systems and Software 113 (2016) 27–43

(

s

t

a

w

t

o

w

i

t

c

s

c

3

t

w

t

s

t

d

3

r

b

t

c

s

r

q

t

p

p

o

d

q

v

w

a

b

t

w

e

bugs, care must be taken in interpreting the results, which might be

affected by incorrect or biased classification.

From all the surveyed papers, it is clear that several high-level

characteristics (directly or indirectly) attributable to the bug mani-

festation process are studied separately. Furthermore, these charac-

teristics are inconsistently assigned sometimes to bugs, sometimes

to failures, and conflate disparate factors such as concurrency, mem-

ory, timing, interaction with OS or other applications, wrong resource

management, wrong error handling. In few cases (Lu et al., 2008; Sa-

hoo et al., 2010) , the research explicitly targets bug manifestation,

analyzing few aspects (e.g., number of inputs required) or coarse cat-

egories (e.g., deterministic, non-deterministic), often embedded in

studies with a different primary objective. Other studies examine im-

portant attributes of bugs (e.g., fixing time and severity) but unre-

lated to the bug manifestation. In this work, we have a special focus

on bug manifestation characteristics, and examine them against sev-

eral different attributes, such as opening time, fixing time, severity,

and failure mode.

3. Study methodology

3.1. Characteristics of bug manifestation process

In this Section, we introduce the set of triggering conditions (“trig-

gers”) considered in the analysis. Triggers are viewed as the condi-

tions necessary for the bug to be activated and propagated up to the

user interface as failure. We first introduce a simple system model

framing the considered triggers.

3.1.1. System model

We consider the application and the main external entities with a

potential impact, namely the user and the execution environment, sim-

ilarly to Chandra and Chen (2000). We assume an application as com-

posed of processes and/or threads communicating with each other

to accomplish the intended function, with communication channels

implemented by either a global (e.g., shared memory) or a local

model (e.g., message exchange). The state of the application includes

the states of local processes (and/or threads), and of communication

channels among them. A local state is the set of data (e.g., stored as

variables in memory or files) which the processes/threads can op-

erate on (i.e., read from/write to). We assume the execution envi-

ronment as made up of concurrently running software and hard-

ware possibly deployed across multiple machines. Software includes

the system software of each machine (i.e., both operating system

kernel and other system software such as compilers, linkers, de-

buggers, editors, user interface, utility software, libraries), middle-

ware (e.g., virtual machines, middleware for distributed computing),

and application-level programs. Hardware includes the physical ma-

chines on which the application is deployed, I/O devices, as well as

the network connecting them. The user is the other external entity

that interacts with the application by submitting workload requests

and getting results. We assume that a workload request can be repre-

sented as a generic request for service (e.g., a query to a DBMS), char-

acterized by a request type (e.g., query type, like INSERT) among a set

of types, and by input parameters (e.g., values of an INSERT), in turn

characterized by a type and a value. The request is processed and pro-

duces an output result (returned as value(s) or as a state change). To

accomplish a well-defined task, the user can submit a sequence of

(one or more) serial/concurrent requests.1

Triggers refer to conditions of the bug manifestation process (not of

the bug itself) necessary for the bug activation and propagation up to

the user interface. They are required to have the following properties:
1 It may happen that a sequence of requests to accomplish the task is allowed to

be submitted with different timing and/or ordering among requests, i.e., various tim-

ing/ordering alternatives are admissible for accomplishing that task.
i) A trigger is defined in the context of a system model like the de-

cribed one, namely, it refers exclusively to the elements of the sys-

em model (e.g., workload requests, execution environment entities

s abstracted by the model); (ii) a trigger is not meant to be general

ith respect to all systems; but it should be general with respect to

he considered system model. In other words, triggers do not refer to

ne or few specific failure, but they should represent a condition that,

ith respect to the system model, is general, i.e., a trigger observed

n one failure should be, in principle, applicable to failures of a sys-

em that can be described by the same model; (iii) triggers should be

ombinable with each other, under some composition rules, to de-

cribe multiple activation/propagation conditions, where failures are

aused by more conditions together.

.1.2. Trigger types

Considering the model and requirements above, we distinguish

he macro-conditions possibly determining the bug manifestation,

hich may depend on: the submitted workload, the application’s (ini-

ial) states, the execution environment, and the user behavior. Con-

idering these factors, we identify 13 basic conditions as poten-

ial failure-causing triggers. We group them in workload- and state-

ependent, and user- and environment-dependent triggers.

.1.2.1. Workload- and state-dependent triggers. When the workload

equest(s) are the only condition necessary to expose a failure, the

ug manifestation process is systematically reproducible. Intuitively,

his means that repeating the same steps that led to a failure, always

auses the same failure to be observed. In the easies case, the “same

teps” means that it is sufficient to resubmit the last request (or few

equests), and the failure reappears. In the worst case, the same re-

uests sequence submitted by the user from the beginning (i.e., from

he initial state) is needed, denoting a strong dependence on the ap-

lication state. Any intermediate case makes sense, where there is a

artial state dependence only from a certain point on in the sequence

f requests.

More formally, the bug manifestation is “workload- and state-

ependent” if resubmitting (at most a subset of) the same workload re-

uests that caused a failure always produces the same failure, for every

alid state of the environment (i.e., for every state of the environment in

hich the traversed application states are allowed to occur) and for every

dmissible user inputs’ timing/ordering in each request of the sequence.

These are bugs whose activation and propagation are not affected

y the environment or by the user inputs’ timing/ordering. In prac-

ice, there may be different workload conditions activating the bug;

e identify a set of triggering conditions characterizing the failure-

xposing workload:

• ANY. This is the trivial case, when any workload request causes the

failure. It means that the bug is activated with so many failure-

causing inputs that any request type from the initial state will

cause the bug activation and the failure to appear.
• REQUEST TYPE. The necessary failure-exposing condition is a re-

quest of a certain type. This means that whatever the initial and

current (valid) state2 of the application, a request of that type al-

ways causes the application to fail regardless of the type of input

parameters and their values.
• SEQUENCE. More than one workload request is needed to lead the

system to failure. For every (valid) initial state, a specific sequence

of (serial/concurrent) requests is necessary to cause the failure.

The bug-failure path is dependent on the state of the application.

When the sequence is of “concurrent” request, we distinguish the

trigger as CONCURRENT SEQUENCE.

Note that one (and only one) of the first three triggers is necessarily

present in any failure; these are therefore considered “basic” triggers.
2 Valid means admissible with respect to the input request to submit.
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• INPUT TYPE. The failure-causing condition is that one or more in-

put parameters must be of a specific type.
• INPUT VALUE. The failure-causing condition is the value of one or

more input parameters. We distinguish further among SPECIFIC,

RANGE, or CLASS, depending on the value necessary to make the

program fail. In the former case, one or more specific values are

needed (e.g., boundary values); RANGE requires a set of values

grater/less than a value or comprised in given range; CLASS are

values with a (not-range) property (e.g., all string containing com-

mas).
• CONFIGURATION. A specific application configuration is required,

i.e., a proper subset of the initial states in which at least one con-

figuration parameter must take a specific value, or in which a

component is present or not.

It is important to remark that many bugs require more of these

onditions together to surface, e.g., a specific REQUEST TYPE, a spe-

ific INPUT VALUE, and a certain CONFIGURATION. Each of the first

hree triggers represents a potential necessary and sufficient condition

or the failure occurrence; if one of these (mutually exclusive) trig-

ers is not sufficient by itself, one (or more) of the latter three trigger

s also needed. If all of them are still not sufficient, then an external

ondition is required: the trigger belongs to the following high-level

ategory.

.1.2.2. User- and environment-dependent triggers. Bug reproduction

ight depend not only on the submitted program’s inputs. More

ubtle bugs may be activated or not depending on the state of the

nvironment. We capture these factors by user- and environment-

ependent triggering conditions. Specifically:

The bug manifestation is “user- and environment-dependent” if re-

ubmitting (at least a subset) of the same workload requests that caused

failure, there exist at least one (valid) state of the environment or user

nputs’ timing/ordering 3 causing the same failure to not be reproduced

namely, either user- or environment-dependent). Again, in such a range

f possibilities, we abstract a set of triggering conditions capturing

he user and environment influence. We have:

• USER TIMING/ORDERING.The same sequence of requests to ac-

complish the intended task may be submitted with several timing

and/or ordering among requests: if these admissible alternatives

affect the bug surfacing, the bug manifestation is said to depend

on this trigger. Failures caused by concurrency whose activation

depends on the user’s request timing/ordering (e.g., atomicity vi-

olation, order violation Lu et al., 2008) are also labeled with this

trigger. The trigger may appear together with one of the condi-

tions on the execution environment introduced hereafter.

We identify execution environment conditions as characterized

y three-dimensional categories, distinguishing whether: (i) the con-

ition is direct or indirect; (ii) the condition affects the activa-

ion or the propagation; (iii) the condition involves one of these

lements of the execution environment, distinguished according

o the system model: OS kernel’s subsystems (namely: OS memory

anagement, OS device drivers, OS filesystem, OS networking, OS pro-

ess management Love, 2010 and Bovet and Cesati, 2005), other system

oftware (i.e.: utility software, development software, user interface, li-

raries, other), middelware, application-level interacting software, hard-

are platform/resource (e.g., CPU, disk, physical memory, I/O devices,

uses, physical network, others). In particular, with respect to the first

wo dimensions, the four triggers are:

• EXEC-ENVIRONMENT – Direct Conditions (DC), affecting the Acti-

vation (A): there is an environmental condition, which caused the
3 As before, valid means admissible, compatible environment state w.r.t. the input

equests; in the case of user, it means that the same workload request(s) could be sub-

itted in different timing/ordering producing the same result.

3

c

o

bug activation, that: (i) directly affects the state of the application

(i.e., it causes a state change) before the bug activation, and (ii)

does not hold in a successive attempt to repeat the failure-causing

steps (namely, the bug activation is not deterministic). Examples

are failures caused by particular thread scheduling provoking a

race condition (i.e., system-dependent concurrency bugs).
• EXEC-ENVIRONMENT – Indirect Conditions (IC), affecting the Ac-

tivation (A): The same as before, but the state of the application

is not directly affected before the bug activation. For instance, a

resource is temporarily unavailable.
• EXEC-ENVIRONMENT – Direct Conditions (DC), affecting the

Propagation (P): The bug is deterministically activated in an

environment-independent way, but there is an environmental

condition affecting the error propagation, which: (i) causes the er-

ror being propagated in a different way on retry (and a different

failure, or no failure, reaches the interface), (ii) directly affects the

state of the application before the bug activation, and (iii) does not

hold in a successive attempt to repeat the failure-causing steps.

For instance, the application is designed to change a policy when

an environmental condition occurs (e.g., free memory threshold

exceeded), and this change does not affect the bug activation, but

affects the error propagation (i.e., on a retry, the bug is always ac-

tivated, but the policy change causes the error being propagated

differently).
• EXEC-ENVIRONMENT – Indirect Conditions (IC), affecting the

Propagation (P): The same as before, but the state is not affected

before the bug activation. For instance, if a bug causing mem-

ory leak is activated deterministically on a requests’ sequence,

the way it leads to failure changes on a retry, depending on the

available free memory and on the other applications’ tasks dur-

ing that retry. Indirect triggers, IC-A and IC-P, may be seen as

pure environment-dependent conditions, as the state of the ap-

plication is not influenced by the environment before the bug

activation.

These four triggers on execution environment are mutually exclu-

ive. We denote them as a triple, e.g.: 〈DC, A, OS Memory〉 is a memory

tate that directly influences the bug activation. Note that what typ-

cally and ambiguously intended as “bug type” (e.g., resource leak,

oncurrency, OS interaction) may fall in any of the presented cate-

ories depending on how the bug is triggered and surfaces.

TRANSIENT: it is a further trigger about possible transient behav-

or. In fact, the velocity at which an environmental condition changes

lays a key role in the bug manifestation (Chandra and Chen, 2000).

here may be cases (e.g., race condition due to OS threads scheduling)

n which it is almost sure that the environment changes in a succes-

ive retry and the same bug may not surface. Other cases (e.g., a disk

emporarily full) may require more time, and the bug may re-appear

n a given time interval. We introduce the condition TRANSIENT,

dded to the previous ones whenever an environmental change oc-

urs faster than the time to process the failure-causing requests’ se-

uence: in such a case, the request repetition will find a diverse state.

EXEC-ENVIRONMENT CONFIG: this condition refers to bug mani-

estations exhibiting a deterministic behavior, but requiring a specific

xecution environment. We refer to the same environment values de-

ned above (namely, OS memory, device drivers, hardware platform,

tc.), but, in this case, they play a different role. For instance, a bug

urfaces with a given workload sequence, but only under a specific

lesystem, or because of a specific library. Unlike the previous en-

ironment conditions, repeating the steps that led to failure in that

pecific environment causes always the same failure to appear again.

.2. Bug sources and classification procedure

The analysis is conducted on two open source software appli-

ations, Apache Web Server and MySQL DBMS. These are instances

f modern large and complex software systems widely adopted in
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Table 2

Criteria to classify bugs according to the analysis.

Category Description

Analysis of:

NOT A BUG Request for new feature, enhancements, documentation, build, operator errors

Trigger WL-DEPENDENT Bug report assigned with only workload triggers

ENV-DEPENDENT Bug report assigned with at least one environmental trigger

NOT SUFF. INFO Reported information is not enough to classify it as WL or ENV-dependent

Complexity UNMODIFIED Bug report lifecycle goes directly from the “untreated” to the “resolved” phase

MODIFIED Bug report lifecycle goes from the “untreated” to the “modification” phase

Temporal evolution Bugs from MySQL 5.1 and Apache 2.0 release time up to the second next major release (5.6 and 2.4)

OMISSION The server does not respond to an input

TIMING The server responds untimely

Failure mode RESPONSE The server responds incorrectly

CRASH The server, after a first omission, keeps on not responding until restart

UNKNOWN Reported information is not enough to distinguish the failure mode

Severity HIGH Severity is “major”, “critical”, “blocker” for Apache;

“critical” and “serious” for MySQL

LOW Severity is “trivial” and “minor” for Apache, “performance” for MySQL

DEFAULT Severity is “normal” for Apache, “non-critical” for MySQL
business-critical contexts in their respective categories (Web Servers

and DBMSs). The analysis is not intended to have a generally valid

empirical characterization of triggers occurrence; we want to under-

stand how triggers may occur in real-scale systems, not how they

generally occur. Observed patterns and findings will therefore refer

to the specific systems under analysis.

Apache has been using Bugzilla4 as Bug Tracking System (BTS),

whereas MySQL BTS is based on a PHP BTS5. Since both Apache and

MySQL development started many years ago, tens of thousands of

problems have been reported since then: to conduct the analysis, we

focused on the following (stable) versions and on their principal com-

ponents: Apache v2 core and MySQL v5.1 server. In order to work with

mature and reliable bug descriptions, we filtered the repositories by

extracting only reports that have been solved (marked as “closed”).

Bugs explicitly marked by the reporter as duplicate and bugs marked

as enhancement or feature request in the “severity” field have been

excluded from the analysis. From this, a set of 666 problem reports

came out, namely 98 and 568 for Apache and MySQL respectively.

These have been manually inspected in each of the following sec-

tions provided in a report: (i) the textual description of the steps to

repeat the failure; (ii) the textual discussion and comments of devel-

opers/users working on that bug; (iii) the final patch that has been

committed, along with the description note in the change log; (iv)

the possible attached files (e.g., test cases, environment configuration

files). The criteria used to categorize the bugs for each of the con-

ducted analyzes are reported hereafter and summarized in Table 2.

3.2.1. Criteria for trigger analysis

Each report is categorized into the following macro-classes:

NOT A BUG, NOT SUFFICIENT INFO, WORKLOAD-DEPENDENT,

ENVIRONMENT-DEPENDENT. Each report not falling in the categories

NOT A BUG and NOT SUFFICIENT INFO is labeled with the failure-

causing triggers responsible for the bug manifestation. Specifically, to

assign bugs to classes, the following rules are followed:

• NOT A BUG: a report is classified as NOT A BUG if it reports: (i)

a request for new features or for enhancement not marked erro-

neously as such6; (ii) a documentation issue (either of the source

code or of test cases), such as missing, ambiguous, or outdated
4 https://www.bugzilla.org.
5 https://bugs.php.net.
6 The indication reported in the severity field, which should help distinguishing bugs

from feature requests or enhancements, are known to be unreliable (Herzig et al., 2013;

Antoniol et al., 2008) – thus the exclusion performed solely based on the severity field

is not enough, and is integrated with the manual inspection

A

i

(

a

f

documentation; (iii) build-time errors (e.g., compilation or link-

ing errors); (iv) operator errors.
• In each section of the report mentioned above, the inputs required

for the bug manifestation (i.e., the failure-causing workload) are

examined, along with the application configuration. One or more

workload- and state-dependent triggers (in the following, simply

WL triggers) are assigned to the report whenever the workload

and/or application configuration match the definition provided

in Section 3.1.2, representing necessary conditions for the failure.

The report is labeled with these triggers.
• In each section of the report mentioned above, the possible condi-

tions related to the execution environment or to user actions (in ac-

cordance with the definitions of Section 3.1.2) are examined (user-

and environment-dependent triggers, in the following USR/ENV).

One or more USR/ENV triggers are assigned to a report if there is

any user/environment conditions described in the report match-

ing the definitions of Section 3.1.2. Besides WL triggers, the report

is labeled also with USR/ENV triggers if any of them is applicable.
• WORKLOAD-DEPENDENT: the report is classified as WORKLOAD-

DEPENDENT if it has been assigned only WL triggers.
• ENVIRONMENT-DEPENDENT: the report is classified as

ENVIRONMENT-DEPENDENT if, beside WL triggers, at least

one ENV trigger is present as necessary failure condition.
• In each report (WORKLOAD-DEPENDENT or ENVIRONMENT-

DEPENDENT), we examine if a specific execution environment con-

figuration is reported as condition to make the bug surface. In such

a case, the EXEC-ENVIRONMENT CONFIG trigger is also added as

label to that report.
• NOT SUFFICIENT INFO: a report is classified as NOT SUFFICIENT

INFO if the information contained in any of the inspected sec-

tions does not allow to classify a report in any of the previous

categories (e.g., a bug that is closed as soon as it is reported be-

cause corrected by a new minor release). Note that even though

the report contains some information useful for the subsequent

analyzes (i.e., complexity, temporal, and impact analysis), but not

enough information to be classified in terms of triggers, it is dis-

carded from all the analyzes, because, in any case, we are inter-

ested in investigating the relation of triggers with the factor under

analysis.

From the initial set of 666 reports, 18 out of 98 reports for

pache (18.37%) and 51 out of 568 reports for MySQL (8.97%) are

dentified as NOT A BUG; 4 out of 98 (4.08%) and 28 out of 568

4.93%) reports for Apache and MySQL, respectively, are classified

s NOT SUFFICIENT INFO. The remaining 565 reports (76 and 489

or Apache and MySQL, respectively) are WORKLOAD-DEPENDENT or

https://www.bugzilla.org
https://bugs.php.net
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7 As mentioned above, reports marked explicitly as feature requests and enhance-

ments are not inspected and soon discarded from the analysis; reports found to be fea-

ture requests and enhancements during the manual inspection are classified as NOT A

BUG and discarded.
NVIRONMENT-DEPENDENT bugs. This dataset of 565 reports (let us

all it D1) is used in the other analyzes described in the following.

.2.2. Criteria for complexity and temporal analysis

We analyze the correlation of triggers with fixing time of bug. To

his aim, the history of each bug report is examined. The lifetime of a

ug report is considered as the time difference between the bug clos-

ng time and the bug reporting time. To extract the fixing time of a

ug, we adopt the same method as Ihara et al. (2009), and Mockus

t al. (2002) as well: the lifetime of a report is split in three phases:

ntreated phase, modification phase, and verification phase. Bugs re-

orted in the BTS but that have not been accepted or assigned yet

re untreated. As soon as a bug is accepted and assigned to anyone,

t is in the modification phase. In this phase, there is the actual dis-

ussion and action by developers to find a patch for the bug. When

he developers finish to modify the bug, it is marked as “resolved”.

t that point, the verification phase occurs, where the correction is

erified by the quality assurance team. For the purpose of our analy-

is, we thus consider the modification phase as actual working phase

y the developers on the bug report. This phase is hereafter denoted

s time to fix. Moreover, in the case of bugs got re-opened (i.e., going

rom “resolved” state back to the modification phase), the total time

o fix is computed as sum of times in which the bug has been in the

odification phase. Finally, as in Ihara et al. (2009), bug reports go-

ng directly from untreated to verification (i.e., unmodified but closed

ugs) are labeled as UNMODIFIED and not considered in the time to

x computation. Thus, each report is labeled either as MODIFIED or

s UNMODIFIED. Out of the initial 565 bug reports of D1, 19 are found

o be UNMODIFIED and discarded from this analysis. The final dataset

or complexity analysis is of 546 reports: we denote it as D2.

Regarding the temporal analysis, we consider the opening time

f each report of the dataset D1. This is then used to distinguish the

emporal evolution of WORKLOAD-DEPENDENT and ENVIRONMENT-

EPENDENT bugs. However, comparing bugs of the two applications

rom their release time up to now is inconclusive, because MySQL 5.1

as released in 2005, while Apache 2.0 in 2002. Therefore, we con-

ider the bugs from the release time of MySQL 5.1 and Apache 2.0

p to the second successive major release, namely to MySQL 5.6 and

pache 2.4 (in fact, we may generally consider that after new ma-

or releases, the usage of older versions, and thus the bugs reported,

rogressively decreases). This choice led us to discard 4 bugs in

ySQL and 2 bugs in Apache from D1, with temporal frames going

rom 2005 to 2011 for the former (i.e., up to MySQL 5.6) and from

002 to 2012 for the latter (up to Apache 2.4). The data set for tem-

oral analysis is of 559 bug reports denoted as D3.

.2.3. Criteria for impact analysis

To perform the analysis relating the bug manifestation to the per-

eived impact by the user, we categorize each report of D1 with re-

pect to the perceived failure mode and severity. Specifically, as for

ailure modes, we borrow the following well-known classification by

ristian (1991a), Cristian (1991b):

• OMISSION: a report is labeled with this failure mode when the

server omits to respond to an input.
• TIMING: a report is labeled with this failure mode when the

server’s response is functionally correct but untimely. Timing fail-

ures thus can be either early or late timing failures (performance

failures).
• RESPONSE: a report is labeled with this failure mode when the

server responds incorrectly: either the value of its output is in-

correct (value failure), or the state transition that takes place is

incorrect.
• CRASH: a report is labeled with this failure mode when, after a

first omission, the server omits to produce output to all subse-

quent inputs until its restart.
• UNKNOWN: a report is labeled in this way when it is not pos-

sible to distinguish the failure mode from the filed bug report

description.

The severity field assigned by the reporters has been shown to be

nreliable (Herzig et al., 2013; Antoniol et al., 2008) although there

xist guidelines on how to assign the severity of a bug. One of the

ain reasons is that many BTSs use default values which are never

pdated by the reporter, because they might not be able to assess

everity at the initial stage of bug lifecycle, and then there is no ben-

fit to update the value when the bug is going to be fixed. To reduce

he impact of incorrect assignments, we have:

• Enlarged the grain of the analysis, by splitting data into HIGH vs.

LOW severity categories, similarly to the work by Lamkanfi et al.

(2011). HIGH severity class for Apache reports includes: major,

critical, blocker, while for MySQL it includes critical and serious.

severity for Apache includes: trivial and minor, while, for MySQL,

it includes performance. Enhancement (for Apache) and feature re-

quest (for MySQL) are discarded.7

• Discarded the default assignment field values (labeled as DE-

FAULT), i.e., normal for Apache, and non-critical for MySQL so as

to rely only on cases where we are sure that the severity was set

by the reporter (Lamkanfi et al., 2011). Specifically, from the con-

sidered dataset D1, we have discarded 40 bugs for Apace and 260

for MySQL, getting to a dataset, for this analysis, of 265 out of 565

bug reports; we call it D4. This way, we have a considerably re-

duced but more reliable dataset for the impact analysis.

.2.4. Procedure

Summarizing, based on the above criteria, the manual classifica-

ion was conducted in the following way:

• Two authors independently inspected all the reports classify-

ing them according to criteria described above. From the initial

set of 666 reports, 69 reports (18+51) are identified as NOT A

BUG; 32 (4+28) are classified as NOT SUFFICIENT INFO. The re-

maining reports are classified as either workload-dependent or

environment-dependent ones, and assigned the corresponding

triggers (WL and or ENV triggers).
• During the inspection, both authors examined the bug history,

and label the bug as MODIFIED or UNMODIFIED according to the

criterion described above. If the bug is MODIFIED, they compute

and record the time to fix as time in which the bug is in the modi-

fication phase (possibly accounting for re-openings as described).

The bug reporting timestamp is also recorded, for the temporal

analysis.
• During the inspection, both authors assign a label for the failure

mode analysis, among: OMISSION, TIMING, RESPONSE, CRASH, or

UNKNOWN, and a label for severity: HIGH, LOW, or DEFAULT.
• Conflicting cases for each field are resolved by discussions to reach

a consensus among all the authors. An immediate consensus was

reached for all but 7 reports (1.05%), for which an agreement about

triggers was not achieved even after the discussion. In those cases,

we needed to actually reproduce the failures to dispel any doubt

about necessary triggers.
• Once labels are assigned, we performed the counting for each

analysis using the corresponding datasets: D1 for trigger and fail-

ure mode analysis; D2 for complexity analysis; D3 for temporal

analysis; D4 for severity analysis.

The impact of the assumptions entailed by the described empirical

tudy set up are discussed in Section 8.
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Fig. 1. WL triggers as necessary failure condition.

Fig. 2. WL triggers as necessary and sufficient WL condition.
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4. Trigger analysis

This Section reports the results of the trigger analysis in terms

of findings and their implication. We use, for brevity, “workload-

dependent” (WL) and environment-dependent” (USR/ENV) triggers

in lieu of workload- and state-dependent and user- and environment-

dependent triggers, respectively. The whole set of findings is listed

hereafter.

Finding #1: the manifestation of most of the reported bugs (80.71%)

needs only one or more workload conditions to surface, with no environ-

mental condition required.

In particular, this percentage is 69.73% (53 out of 76) in Apache

and 82.41% (403 of 489) in MySQL, while the remaining 23 and 86,

respectively, are USR/ENV. Workload-dependent bugs are easier to

expose, as their activation and propagation is not affected by the cur-

rent environment. The share of environment-dependent bugs (≈20%)

basically confirms the similar percentages reported in those studies

that in some way consider the environment as a factor for reproduc-

tion (e.g., Trivedi et al., 2011; Grottke et al., 2010). More details follow

in the analysis of workload and environment-dependent bug surfac-

ing characteristics.

4.1. Workload conditions

4.1.1. Basic conditions

Fig. 1 shows the total number of reports in which each workload

trigger was necessary for the reproduction. Since, for many bugs,

more than one condition is needed, the sum over all the triggers is

greater than the total number of reports analyzed, while the sum of

the first three mutually exclusive triggers amounts to the total. Fig. 2

shows the number of cases in which each workload trigger is the only

necessary workload condition for making the bug surface (namely, the

trigger appears alone or in conjunction with a USR/ENV trigger).

Bugs activated only by the ANY trigger are in principle too triv-

ial to escape testing, resulting in very few cases. Most of bugs are

either dependent on a request type or on a sequence of requests.

Specifically:
Finding #2: for 57.87% of total bugs, the manifestation requires a spe-

ific request type; in most cases (35.04%) it requires a further additional

ondition to expose the failure.

This is consistent between MySQL and Apache, with REQUEST

YPE being 58.04% and 56.58% respectively. It also appears relatively

any times as a necessary and sufficient WL condition (Fig. 2), but in

hat case it does not overcome the SEQUENCE trigger. Examples are

ugs activated with a specific query type (e.g., bug #24562: MySQL

aises an assertion on an ‘ALTER TABLE t ORDER BY n’ instruction; or

ug #23379: MySQL provides a wrong time value on the ’SHOW PRO-

ESSLIST’ request).

Finding #3: the manifestation of 35.22% of total bugs are due to se-

uences of requests, and are dependent on the state of the application.

n 24.78% of cases, the sequence is sufficient by itself to make the bug

urface.

The SEQUENCE trigger is very relevant especially for MySQL,

here many more “state-dependent” failures (activated through se-

ies of queries) are observed compared to Apache. We observe that it

ften appears as necessary and sufficient workload trigger (131 cases

ut of 181 for MySQL and 10 out of 18 for Apache – Fig. 2), being

he most frequent condition able of causing a failure by itself. More-

ver, 20% of them for MySQL and 22% for Apache refer to sequences

f concurrent requests, which, in many cases, are present along with

nvironment triggers. An example is bug #11983 in Apache, where

onnection is closed prematurely on a sequence of concurrent CGI

equests.

Implications: while the bugs that need a specific request type plus

ome other conditions may be complex, and thus naturally escape

esting, there is a percentage of bugs requiring only a request type as

ondition that is still unexpectedly high. This might indicate that: (i)

poor basic functional testing on input commands was conducted

compared with other V&V strategies more suitable for other trig-

ers), which should be improved, and/or that (ii) a continuous intro-

uction of changes (e.g., due to frequent development and mainte-

ance) are likely to introduce new bugs (e.g., regression bugs) that

emain undetected. In both cases, a persistency of testing strategies

or basic functional testing (with respect to other V&V activities tar-

eting other trigger types) should be implemented along all the prod-

ct lifecycle.

Finally, the high percentage of bugs requiring “sequences” of re-

uests suggest that a majors focus on bug detection activities that

onsider the state of the application can expose more bugs. Exam-

les of these techniques are: state-based (e.g., model-based) testing,

tress (long-running) testing, interaction testing.

More conditions together

Besides basic triggers, bugs surfacing is often due to more work-

oad conditions together:

Finding #4: the manifestation of 50.62% of total bugs require a sec-

ndary WL condition, related to the input type (present in 18.05% of total

ugs), to the application configuration (23.54%), or to the input value

20.00%).

INPUT TYPE, CONFIG, and INPUT VALUE triggers have similar val-

es for MySQL (Fig. 1), whereas we notice a slight peak of the CONFIG

rigger in Apache, indicating more failures due to untested configu-

ation options. As for sub-categories of the INPUT VALUE trigger, we

bserved that:

Finding #5: INPUT VALUEs causing more often failures are due to one

r more specific values. Particularly, the manifestation of 11.68% of total

ugs require a specific value, 4.78% require a specific range of values, and

.54% require a class of values.

The conditions on the INPUT VALUE triggers are: 56, 22, and 12 for

PECIFIC, RANGE, CLASS respectively, in MYSQL; whereas they are:

0, 5, 8 for the same categories in Apache. The most frequent con-

ition is when one or more specific values are needed (e.g., bound-

ry values), the least frequent one is the “class” values (e.g., values

ith a property in common, as multiples of a given value, string
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Fig. 3. Counts of top-5 WL trigger combinations.
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Table 3

Involved execution environment item.

MySQL Apache

DC IC DC IC

A P A P A P A P

OS memory mng. 2 0 3 28 0 1 2 7

OS device dirvers 0 0 1 0 0 0 0 0

OS filesystem 0 0 3 1 0 0 0 1

OS network 0 0 1 0 0 0 0 2

OS process mng. 23 0 4 0 3 0 0 2

Other system sw 1 0 0 0 0 0 0 0

Middleware 0 0 0 0 0 0 0 0

App-level sw 1 0 0 0 0 0 0 0

Hardware 0 0 0 0 0 0 0 0

Unknown 0 0 0 0 2 0 2 0

Total 27 0 12 29 5 1 4 12
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ontaining commas, non-Latin chars, etc.). Examples of input-related

riggers are: bug #23653, where MySQL crashes if the last_day() func-

ion is used with a zero date; bug #20404 of MySQL: query fails

ith inputs containing Turkish char; bug #31237 of Apache triggered

hen the input file given in the URL is greater than 2GB.

Fig. 3 reports the count of the top-5 combinations of WL triggers,

ighlighting the most common patterns that we encountered.

Finding #6: most of bugs requiring at least two workload conditions

s caused by a specific request type together with a specific configura-

ion (10.79% of the total bugs). The occurrence of a request together with

specific input value is also a relevant combination (9.02% of the total

ugs). The third most relevant combination is a request type together

ith a specific input type, occurring in 7.08% of cases.

The most frequent patterns are the REQUEST TYPE together with

ne more trigger (with CONFIG being the most frequent in both sys-

ems). It is interesting to note that among the top-5 combinations

here is also one requiring three triggers together, that can represent

uite hard-to-reach bugs.

Implications: the second workload condition, when present, is

uite evenly distributed; this means that, as half of the analyzed bugs

equire at least two workload conditions, bug detection activity must

onsider different types of testing/analysis to capture them (Cotroneo

t al., 2013c). While configuration problems require more extensive

eld testing, the detection of bugs related to the input type or input

alue calls for strategies acting on input data classes, e.g.: robustness

esting, boundary-value analysis, interaction/integration testing. For

nstance, the mentioned example bugs (#23653, #20404, #31237)

ould have been detected with boundary-value and robustness

esting.

.2. Environment conditions

Fig. 4 reports the number of times each environment trigger is

resent as necessary condition, along with some workload trigger(s).

n EXEC-ENV-∗ trigger can occur along with a USR-TIM/ORD trigger.

ote that the figure, for sake of clarity, does not distinguish the en-

ironment subsystem involved, which is reported in Table 3. Patterns

or MySQL and Apache are different. In MySQL, relatively many more

ailures depend on user timing (and less often on ordering), which is

adly managed by the system. Apache presents few failures exposed

y user timing/ordering, and more cases regarding the bug propa-

ation (i.e., deterministically activated) than the activation (13 vs. 9)

ifferently from MySQL (29 vs. 39). About the execution environment

excluding the user timing/ordering), we can distinguish some pat-

erns common to the two studied application, while others are com-

letely different. Specifically, we have that:

Finding #7: the manifestation of most of total bugs due to the execu-

ion environment is caused by indirect environmental conditions (60.29%
nd 72.73% for MySQL and Apache respectively) – namely, what we

alled “pure” environment-dependent bugs.

As an example, consider the bug #13543 of MySQL: the server

rashes when creating a stored procedure from the command line

ecause of the data files being corrupted.

On the other hand, there are differences in the most impacting

nvironment factors. Table 3 reports the details. Unlike Apache, most

f the 〈DC, A, ∗〉 in MySQL are race conditions, and some of them

ccur along with a user timing trigger. A big share is due to 〈IC, P,

SMemory〉, where problems related to memory corruption, use of

ninitialized data, buffer overflows, and memory leak are preponder-

nt. 〈IC, A, ∗〉 failures are due to memory management, network re-

ources, process management; one 〈DC, P, ∗〉, a memory-related prob-

em, is observed only in Apache. An interesting pattern regards con-

urrency bugs:

Finding #8: the manifestation of 7.56% of total bugs of MySQL are

ue to concurrency. In Apache, this percentage is lower, 5.26% over the

otal. The total share of concurrency bugs is 7.25% of bugs

This percentage refers to bugs requiring (i) either a specific timing

r ordering of user requests (USR TIM/ORD trigger), (ii) or a system-

elated concurrency trigger (e.g., a 〈DC, A, OS Process management〉
ike a race condition among scheduled processes/threads), (iii) or

equiring both of these triggers. However, the opposite is not true:

here are few USR TIM/ORD cases not related to concurrency prob-

ems, e.g., a delay between two sequential requests is required for

he bug to occur. In particular, concurrency bugs are those requiring

lso a “concurrent sequence” as workload condition (and not just a

equence), besides these environmental triggers. As for instance, con-

ider MySQL bugs: the manifestation of 9 bugs (i.e., 1.84% of the to-

al) requires both USR TIM/ORD and 〈DC, A, OS Process management〉
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Fig. 4. USR/ENV reports per trigger.
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8 There is the additional category “OS other” including: the cases where there is no

sufficient information to understand which part of the OS the report refers to, as well

as the cases where the problem is due to the specific implementation of the software

for that OS.
trigger; 16 bugs (i.e., 3.27%) require only USR TIM/ORD, and 14 bugs

(i.e., 2.86%) require only 〈DC, A, OS Process management〉: in total,

7.97%. The residual 0.41% (7.97 %−7.56%) are USR TIM/ORD not due

to concurrency. Examples of concurrency bugs are: bug #38691 of

MySQL, which provokes a server crash caused by concurrent execu-

tion of multitable update with a join and a ’flush table’ or ’alter table’

query; Apache bug #11983: connection closed prematurely on con-

current high load of CGI requests.

A second observation coming from the same Table is the following

one:

Finding #9: the 6.19% of total bugs (32.11% of environment-

dependent ones) are related to memory management issues (〈IC,P, OS

Memory management〉).

This percentage is 5.72% and 9.21% in MySQL and Apache, respec-

tively, equivalent to 32.55% and 30.43% of environment-dependent

ones, revealing a high sensitivity to memory problems in both cases

(e.g., memory leaks, uninitialized memory, buffer overflow). An ex-

amples is the apache bug #29962, due to a wrong management of

memory acquired via the ’byterange’ filter and no longer released,

or the MySQL buffer overflow bug (#28361). Overall, user/system

concurrency and memory issues are the most influencing factors for

manifestation of environment-dependent bugs.

Implications: in general, the influence of conditions external to

the application, as the IC,P category, suggests including the real op-

erational environment in bug detection activities, where the influ-

ence of other applications, of configurations (e.g., disk usage, mem-

ory usage, concurrency with other programs), and of field usage is

exercised. For instance, the mentioned bug #28361 of MySQL was

activated by the interaction with JDBC on windows and was de-

tected by running the JDBC compliance testsuite. Operational fault

tolerance means are also a powerful tool to deal with environment-

related problems and mitigate their effect (Trivedi et al., 2011), such

as restart application/components, retry operations, failover to repli-

cas. Activities targeting concurrency and memory problems would

improve the detection of many of the observed bugs, such as static

and dynamic memory and point-to analyzes, concurrency (e.g., lock-

set) analysis, workload stress and robustness testing, finite state ver-

ification (e.g., model checking) techniques, and manual inspection.

For instance, several memory-related bugs (e.g., #24403, #24486,

#27733 of MySQL) was actually detected by the dynamic analysis tool

Valgrind.

4.3. Workload and environment conditions

Fig. 5 reports environment-dependent bugs separated by work-

load trigger. The third column confirms that SEQUENCE is by far the

most common workload trigger for environment-dependent bugs.

Finding #10: the manifestation of 76.15% of environment-dependent

bugs requires a sequence of requests as basic workload condition, besides

the environmental condition.
SEQUENCE is the most complex of the three basic triggers; when

ppearing together with USR/ENV triggers, the corresponding bug is

sually a hard to reach one. This behavior is less pronounced with

pache (47.82%), in which REQUEST TYPE is also remarkably present

long with USR/ENV triggers: in line with previous remarks, Apache

eems to have less residual state-dependent bugs, but more bugs ac-

ivated by a single request, which should have been easier to reveal

hrough testing. As for transient bugs:

Finding #11: the manifestation of 7.26% of total bugs occurs only in

resence of environmental conditions that are “transient”.

Percentages are very similar in MySQL and Apache: 7.15% (35 of

89) and 7.89% (6 of 76), respectively. These bugs never appeared

ith only user timing-ordering trigger, but along with an environ-

ent trigger (in most cases), or with both an environment and user

iming-ordering trigger. Many of them are, in fact, due to system-level

oncurrency management, appearing together with “concurrent se-

uence” and 〈DC, A, OS Process management〉 triggers. Note that the

ifficulty in reproducing TRANSIENT failures may be exacerbated by

he other triggers required, like a case in MySQL requiring 5 condi-

ions together: SEQUENCE, CONFIG, USR TIM/ORD, 〈DC, A, OS Process

anagement〉, TRANSIENT. An example of such bugs is bug #36579

f MySQL, in which the dump of information about locks in use may

ead the server to crash because of a wrong management of a mutex

ausing potential race conditions among threads.

Finally, we analyze the bugs depending on a specific environment

onfiguration, which we tagged as EXEC-ENVIRONMENT CONFIG:

Finding #12: the manifestation of 21.24% of total bugs requires a spe-

ific environment configuration. This condition is more pronounced in

pache than in MySQL.

Specifically, we found this to be a necessary condition for Apache

n 31 cases (i.e., 40.79%), many of which (14 of 31) are USR/ENV. For

ySQL, we found 89 reports (i.e., the 18.2%), of which much fewer

12) were USR/ENV. Thus, bugs of Apache requiring a specific environ-

ent are much more prone to be also USR/ENV-dependent (namely,

fixed environment is required, as a specific filesystem, and an en-

ironment condition must also occur during the execution, e.g., the

isk is temporary full), while in MySQL most of them are completely

deterministic” in that fixed environment (e.g., a given request type

s needed, but it causes failure only with a specific filesystem, or be-

ause of a specific library).

Table 4 shows the count separated by type of environmental con-

guration item required for reproduction.8

Finding #13: most of bugs requiring a specific environment configu-

ation occur only under a specific OS (67 of 120, namely, 55.83%); 24.17
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Fig. 5. WL Triggers in USR/ENV triggers.

Table 4

Environment-specific bugs count and % share.

Apache % MySQL %

OS device drivers 0 0.00 1 1.12

OS filesystem 5 13.51 16 17.97

Network 2 5.40 2 2.25

OS other 23 74.19 22 24.72

Other system sw 0 0.00 22 24.72

Middelware 0 0.00 0 0.00

App-level sw 1 2.70 6 6.74

Hardware platform/resources 0 0.00 20 22.47

Total 31 100 89 100
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Fig. 6. Major and minor release dates for Apache and MySQL.
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require other (system or application-level) software, the remaining

0.00% require a specific hardware/network configuration to surface.

In particular: in Apache, we have a big percentage of bugs due to a

pecific OS, where there is often no detail to discriminate which part

f the OS is involved; the second category is a particular filesystem

equired for the bug to appear. In MySQL, there is a high percent-

ge of Other system software, namely, of bugs strictly requiring a spe-

ific library or a complier (option), and a high number of hardware-

ependent bugs (i.e., requiring a specific platform); filesystem is a

elevant item also in MySQL. Sometimes, bugs require a specific in-

eracting software to surface, such as specific clients or connectors.

Implications: transient behaviors are very difficult and expen-

ive to catch. Depending on the context, developers might decide

o avoid spending effort for this category of bugs in favor of other

ategories (i.e., finding more but simpler bugs), or they might be

orced to address as many bugs as possible (e.g., in critical systems,

here these behaviors cannot be neglected). Often, such bugs may

esult in undefined behaviors and may appear or not depending on

ncontrolled factors like the thread scheduling. These problems can

e addressed either by bug detection or by runtime fault tolerance

trategies, or by both of them. As for bug detection, suggested ac-

ivities include all those hunting very rare situations, such as model

hecking, stress/concurrency and robustness testing, testing or anal-

sis for exception handling. Formal methods as model checking, sym-

olic execution, and/or static/dynamic analysis tools on concurrency

nd memory properties are the most indicated ones for a prelim-

nary analysis. Stress/robustness testing can be a valuable follow-

p at system/acceptance testing stage. Fault tolerance includes op-

ration retry, application restart, node reboot, failover. If a system

lready foresees fault tolerance means, a technique that can be

articularly useful to verify the appropriateness of such means
gainst transient behaviors is fault-based testing. As for bugs depend-

ng on the environment configuration, an intensive activity of testing

n different configurations, e.g., operating systems, hardware plat-

orms, and of testing the interaction with dependent software, as li-

raries, complier, and third-party software applications, is definitely

suggested task to reduce the occurrence of runtime problems.

. Temporal analysis

We analyze the temporal evolution of workload-dependent (WL)

nd environment-dependent (USR/ENV) bug triggers. For a more ac-

urate analysis, we consider how the observed trends are related to

he occurrence of major and minor releases. Fig. 6 shows minor and

ajor releases of MySQL and Apache, starting from MySQL 5.1 and

pache 2.0., while Fig. 7(a) and (b) shows bugs reported over time.

e assume that minor releases of a version (which can be due to im-

rovements, new features, or bug fixes) indicate that the community

s still active on that version. Based on this, upon a major release it

ay happen that:

1. There are many following minor releases and many bugs be-

ing detected. This might be the case of MySQL soon after the

5.5 release (December 2009): there are several minor releases

and bugs were still being found roughly at the same rate of the

previous year (almost 50 bugs per year).

2. There are many following minor releases and few bugs being

detected. This is the case of MySQL after the 5.6 release (April

2011): there are still many minor releases up to 2014, as can
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Fig. 7. Reporting time of bug reports.
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be seen in Fig. 6, but the rate of reported bugs is considerably

lower: 4 bugs are found since April 2011 up to 2014.

3. There are few following minor releases and few detected bugs.

This is the case of Apache, as there is a sudden decrease of

reported bugs soon after Apache 2.2 (3 bugs after November

2005 up to 2014) and also a sudden stopping of minor releases.

This suggests that people migrated to Apache 2.2.

4. There are few following minor releases and many detected

bugs. We did not encounter such a situation; it might be due

to people still using a version, but developers focused only on

subsequent versions.

Therefore, although we adopt the same criterion, there is a re-

markable difference between the two case studies. For instance, for

the purpose of analyzing triggers temporal evolution, data of Apache

2.0 are not much indicative after the 2.2 release time, as people

likely migrated to the latter version. Oppositely, in MySQL, we have

a smoother decrease and a different relation with the number of

releases. There is an inflection around January 2008 (from more

than 100 bugs per year to about 50), which is not related to the

occurrence of any major release (it is in the middle between 5.5

and 5.6 release time); from 2008 to half 2010, there is an inten-

sive usage and a product still not mature (many bugs still found

at a constant pace); finally, form half 2010 on, there are many mi-

nor releases and few bugs reported up to 2014 (just 4), likely in-

dicating a stabilization of MySQL 5.1 in quality (minor releases are

likely more focused on small improvements and on few remaining

bug fixes). Since MySQL 5.1 is actively used up to 2014, we consider

these bugs as a good material to conjecture about triggers temporal

evolution.

With this difference in mind, let us observe the temporal trend

of WL and USR/ENV bugs manifestation. Bugs in MySQL span from

2005 to 2011. USR/ENV bugs start appearing later than workload-

dependent ones. Then, their manifestation rate increases almost con-

stantly until the last report time, whereas WL bugs have an inflection

around January 2008. The trend of USR/ENV bugs supports the con-

jecture that they surface more rarely, and tend to require more oper-

ational time for the necessary conditions to occur. But, at the same

time, we observe also a continuous increase of WL bugs, despite the

inflection in January 2008: the hypothesis that these simpler bugs

disappear early is not supported by data. This can be explained by

considering that not all the WL bugs are so simple as one may be-

lieve: for instance, bugs requiring long and complex input sequences

or specific values to be activated need time to be discovered, even

though they are viewed as “deterministic”. Moreover, the introduc-

tion of new features or the fixing of older bugs has a non-negligible

chance of introducing new (and regression) bugs, keeping the WL

bugs trend increasing.
In the case of Apache, USR/ENV bugs start appearing only slightly

ater than WL ones, and the two curves have similar shapes from

002 to 2006, although the rate of WL bug is higher. However, as

entioned, data from 2006 to 2012 of Apache are not indicative (as

here is no bug and very few minor releases). Fig. 8(a) and (b) shows

he (non-cumulative) proportion between USR/ENV and WL bugs. As

or MySQL, since the beginning of 2008, the ratio has higher values

there are 8 four-month periods with a ratio over 0.25 – i.e., at least 1

ug out of 4 was USR/ENV, while, before 2008, this happened only

n 2 four-months slots). The inflection of WL bugs around January

008 (Fig. 7(a)), along with the nearly constant increase of USR/ENV-

ependent bugs, confirm the proportion trend. The same does not

tand for Apache, as both curves are saturated at Apache 2.2 release

ime, 2006. Overall, we can infer that:

Finding #14: environment-dependent bug manifestations start ap-

earing later and have a slower increase rate than workload-dependent

nes. This is more evident in MySQL than Apache, but essentially con-

rmed in both cases.

Finding #15: the ratio of environment-dependent over workload-

ependent bug manifestations in MySQL is lower in the first 4 years than

n the period 4–8 years after the release time. In Apache, this trend is not

bserved because of the sudden stopping of both bug types, which

akes data less reliable for this analysis.

Implication: besides what already discussed about USR/ENV trig-

ers, findings of this analysis (especially referred to MySQL) suggest

hat: (i) after an initial operational stage, whose duration depends

n the application, a special focus could be put to hard-to-activate

L bugs (i.e., where more WL triggers together are needed). These,

owever, may require expensive bug detection activities, like com-

ining different testing strategies, or using static analysis and inspec-

ion. Depending on the effort spent in previous phases and on bug

ypes that are being observed, one could opt whether to devote more

ffort to reduce USR/ENV bugs or hard WL bugs. The second impli-

ation is that: (ii) the characteristics of development paradigms with

requent releases, which is a common practice today, calls for greater

ttention to bugs introduced in new features and to regression bugs.

continuous functional testing activity is required to implement this

ype of development; such an activity is also to be considered when

eciding how to spend testing effort at later development (or even

perational) stage.

. Complexity analysis

We analyze reports from the complexity perspective in terms

f bug manifestation and bug fixing. We first consider the number

f contemporary conditions required to make a bug surface, and

hen explore the relation between the bug manifestation and the

xing time. Fig. 9 shows the number of triggers required for bug
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Fig. 8. Proportion of environment-dependent bugs: number of USR/ENV over number of WL occurred in a time frame of 4 months. ’UND’ indicates 0 USR/ENV over 0 WL bugs.

Fig. 9. Number of reports vs. number of required triggers.
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Table 5

Impact of bug triggers on time to fix.

Project Median time to fix p-Value (adj.)

(st. dev.)

WL USR/ENV

MySQL 39.81 59.59 0.3162

(534.87) (278.69)

Apache 19.00 27.34 0.61

(278.97) (106.81)
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9 As multiple comparisons are performed, we adopt the procedure of Benjamini and

Hochberg (1995) to derive adjusted p-Values, to control the false rejection probability.
anifestation. It is a rough indication of the difficulty for making a

ug surface, as bugs requiring more conditions together to appear

re likely to present a more complex manifestation process. How-

ver, complexity depends also on the type of trigger required and

n the operational profile (e.g., environment triggers are typically

arer conditions than the workload ones). Hence, a bug with two trig-

ers such as a requests “sequence” and an environment-dependent

rigger may be much harder to expose than a bug with three WL

riggers.

Finding #16: the 45.66% of the total bugs require two conditions to

urface, more often two workload conditions (in 37.87% of total bugs)

Finding #17: bugs requiring one condition to manifest themselves are

ess common than bugs requiring two conditions, meaning that the for-

er are too trivial to survive early testing.

Finding #18: the 7.61% of total bugs require 4 conditions together to

urface; the 1.06% require 5 conditions. All these represent hard-to-reach

ugs, that are very difficult to uncover by bug detection activities and are

ikely to surface only after some operational time.

Patterns of Fig. 9 reveal no remarkable differences between

pache and MySQL.

While the number and type of conditions indeed affect the bug

anifestation, it is not clear if they have an influence on the debug-

ing process. On one hand, the bug surfacing characteristics should

ave no effect on the difficulty in fixing the bug, since, at reporting

ime, the bug could already have a test case to be reproduced and

hen fixed. On the other hand, if the way in which a bug is activated

nd propagates to the interface is hard to reproduce, it could be dif-

cult to obtain a test case for it. This would impact also the reported

ebugging time. We study the correlation of triggers with the time

o fix a bug, computed as the time in which the report lifecycle is in

he modification phase (detailed in Section 3.2). We apply hypothesis

esting on different combinations. First, we test the time to fix differ-

nce between WL vs. USR/ENV bugs, to see if the type of trigger(s) has

n impact. The Wilcoxon rank-sum test (Siegel and Castellan, 1988)

s used to assess whether one of two independent samples tends to
ttain larger values; the null hypothesis that the time to fix of both

ategories is sampled from the same distribution. Results are in

able 5.9 The null hypothesis of no significant difference cannot be

ejected (with 95% of confidence). Thus, although USR/ENV bugs ac-

ually take more time to be fixed, we cannot reject the hypothesis that

his difference occurred by chance.

In Table 6, we test the hypothesis that the number of triggers im-

acts the time to fix. Here, the Kruskal–Wallis test is adopted (Siegel

nd Castellan, 1988), being multiple levels involved. Results show

gain no significance at 95% of confidence, although the median time

o fix is higher as the number of triggers increases. Finally, to take

he type of trigger into account along with the number of triggers,

e consider two combinations that can be assimilated to high and

ow complexity bug activation conditions: Combination 1: bugs with

t most 2 triggers (≤ 2) and 0 USR/ENV triggers, as low complexity

ituations; Combination 2: bugs with at least 3 triggers (≥3) and at

east one USR/ENV trigger. Table 7 shows that even in this case the

ime to fix is not impacted significantly. Results tell that:

Finding # 19: we cannot state that there is a relation between the

ug manifestation, expressed by triggers, and the time to fix a bug. The
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Fig. 10. Failure modes distribution.

Table 6

Impact of number of triggers on time to fix.

Project Mediantime to fix p-Value (adj.)

(st. dev.)

#Triggers 1 2 3 4 5

MySQL 32.97 42.02 57.81 63.11 229.23 0.1620

(1147.82) (253.71) (242.32) (287.47) (263.37)

Apache 5 18.41 57.57 15.49 66.25 0.2754

(11.04) (357.20) (135.43) (134.48) (9.61)

Table 7

Impact of trigger number and type combination on time to fix. Com-

bination 1: reports with at most 2 triggers (≤ 2) and 0 environment

triggers. Combination 2: reports with at least 3 triggers (≥ 3) and at

least one environment trigger.

Project Median time to fix (st. dev.) p-Value (adj.)

Combination 1 Combination 2

MySQL 63.41 (233.30) 37.08 (803.72) 0.056

Apache 28.59 (113.75) 13.52 (341.79) 0.1746
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time to fix a bug in the analyzed data was not impacted by the type of

trigger, by the number of triggers, as well as by both factors together.

This corroborates the hypothesis that (number and type of) triggers

impact more on the way in which a bug is detected and exposed

(a step typically done before the actual fixing work) than the fixing

time itself. However, the high standard deviation of data suggests that

more samples are needed to verify more accurately the influence of

these factors in the future.

Implications: the type of occurred triggers is indeed a valuable

feedback for the bug detection process, as observed in previous Sec-

tions. The number of triggers is also a suitable indication in this re-

gard, since more triggers means more conditions together to detect a

bug. Any unbalance in the patterns of Fig. 9 can reveal anomalies in

the operational bug occurrence, and thus in future testing activities

with respect to the operational profile. For instance, although in both

cases two-trigger bugs are the majority, MySQL counts a high number

of one-trigger bugs (almost 140); these are supposed to be easy cases

to remove during testing, and call for a better basic testing. Oppo-

sitely, suppose to have a lot of multiple-triggers cases (i.e., with 4 or 5

triggers together), including many USR/ENV triggers; then, this would

push engineers to invest either in more specialized testing tools or

in runtime fault tolerance. As for debugging, different tools could be

needed depending on the most frequent triggers, ranging from simple

single-stepping executions to execution trace analysis through pro-

gram instrumentation (e.g., for memory-related problems). A thor-

ough characterization of bug detection and correction techniques for

different trigger types would provide a feedback to understand where

to improve, and, more in general, where to invest research and devel-

opment efforts.
. Impact analysis

Fig. 10 (a) and (b) shows the failure mode counts for MySQL and

pache.

Finding #20: the manifestation of most of total bugs ended up in

n incorrect response provided to the user (62.12%) or in a crash of the

pplication (26.90%). The remaining bugs resulted in performance issues

5.84%) or omission failures (3.72%).

The percentages for MySQL and Apache are quite close for

ESPONSE (61.34% and 67.10%, respectively),OMISSION (3.47% and

.26%), and TIMING (5.11% and 10.52%), while a larger difference

s about CRASH failures, which are 28.4% in MySQL and 17.10% in

pache. Table 8 shows the contingency tables for bug type and fail-

re mode. We aim at figuring out whether failure modes depend

n the trigger type (USR/ENV or WL). The Pearson chi-square test

Agresti, 2007) is adopted, assessing the null hypothesis that two cat-

gorical variables are independent. The null hypothesis is clearly re-

ected at values greater than 99% for both projects; namely, the failure

ode is influenced by the bug type. We conclude that:

Finding #21: for the considered projects, the failure mode is affected

y the type of bug manifestation classified as environment- or workload-

ependent.

USR/ENV bugs are observed to be consistently more related to

rash (40.19%) and to timing (28.04%). Crash failures are tied to bugs

ctivated with high non-determinism, which lead often to memory

orruption problems; timing failures are mainly late timing, i.e., re-

ated to performance issues, due to erroneous management of re-

ources (e.g., transient unavailability of resources, resource leaks, or

ore generally software aging (Huang et al., 1995)) whose propaga-

ion and perceived failure is “environment-dependent”. With respect

o the transient behavior, failure modes counts are: of 35 transient

ailures in MySQL, 13 are crash failures, 10 are due to an incorrect re-

ponse, 9 are performance issues, 3 are omission failures; in Apache,

were crash failures, 2 were incorrect responses and 1 was timing.

Crash” is the most commonly observed failure mode subject to tran-

ient behaviors. Finally, Table 9 provides the contingency tables for

ug type and severity classified in HIGH vs. LOW by the reporter. We

im at figuring out if USR/ENV bugs are perceived to be more severe

han WL ones. The null hypothesis is rejected for both projects, at val-

es greater than 98%:
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Table 8

Contingency tables for bug type and failure mode.

(a) MySQL (outcome = reject, adj. p-Value = < 0.0001) (b) Apache (outcome = reject, adj. p-Value = < 0.0001)

WL ENV WL ENV

Response 280 (93.33%) 20 (6.67%) Response 45 (88.23%) 6 (11.77%)

Crash 104 (74.82%) 35 (25.18%) Crash 5 (38.46%) 8 (61.54%)

Omission 12 (70.59%) 5 (29.41%) Omission 3 (75.00%) 1 (25.00%)

Timing 3 (12.00%) 22 (88.00%) Timing 0 (0.00%) 8 (100.00%)

Table 9

Contingency tables for bug type and severity assigned by the reporter.

(a) MySQL (outcome = reject, adj.p-Value = < 0.0001) (b) Apache (outcome = reject, adj. p-Value = 0.01752)

WL ENV WL ENV

HIGH 175 (78.13%) 49 (21.87%) HIGH 14 (45.16%) 17 (54.83%)

LOW 114 (0.8%) 1 (0.2%) LOW 5 (100%) 0 (0%)
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Finding #22: for the considered projects, the relative proportions of

igh and low severity bugs are influenced by the bug type, with the per-

entage of environment-dependent bugs being more relevant for the high

everity class. This can be explained by considering that USR/ENV bugs

ften involve factors as memory, or OS scheduling, whose failure is

ikely to lead to severe consequences.

Implications: bugs manifesting as workload-dependent cause

ore often as incorrect responses; bugs manifesting as environment-

ependent cause relatively more crashes and performance issues

han other failure types. Focusing more on one type of failure mode

han another depends basically on the type of system, as their se-

iousness depends on how the system impacts the end user. For

nstance, in safety-critical systems, one cannot tolerate a so high

ercentage of crashes; consequently, countermeasures would be de-

oted to reduce the bugs with triggers more related to these types of

ailures (e.g., concurrency and memory-related problems). Instead, in

business-critical system, performance degradation issues might be

ore important: the typical phenomenon affecting performance of

ong-running systems is a gradual progressive degradation Grottke

t al., 2006; Cotroneo et al., 2013, which can cause a greater user

issatisfaction. In such a case, long-running workload test methods

Bovenzi et al., 2011), possibly aided by dynamic analysis (Nethercote

nd Seward, 2007), can better serve the purpose.

. Threats to validity

The validity of real world studies are naturally subject to limita-

ions. We identify the following threats:

Selection of bug reports: we based our analysis exclusively on fixed

ugs, since, for bugs that have not yet been fixed, the reports may

ontain inaccurate or incomplete information. On one hand, this al-

ows relying on more stable information; on the other hand, results

o not refer to non-closed bugs, and could be different if consider-

ng also reports still open. Closed bugs includes those bugs that got

e-opened and at the time of the analysis are marked as “closed”. Of

ourse, at the time of the analysis, we cannot know which bugs will

et re-opened in the future because of an incomplete fix. This means

hat some bugs might contain incorrect information that will be mod-

fied after a re-opening; hence, closed bugs not having a correct and

nal fix may impact the results.

Manual inspection:the manual inspection is conducted by exam-

ning several details of a bug report, including: reporter’s descrip-

ion, forum discussion, attached test case and/or test data, patches

pplied for correcting the bug. Results were cross-checked to reduce

ossible misclassification. Nonetheless, as any paper where manual

nspection is needed, we cannot exclude possible classification mis-

akes that can affect the results.
Triggers definition:the bug manifestation properties are defined

n terms of triggers with respect to a system model defined in

ection 3.1.1. Triggers are valid only with respect to that model; any

ystem that cannot be described by the model could refer to other

riggers. Although the model is very generic, the generality of trig-

ers cannot be claimed; thus, care must be taken in studying other

ystems not falling in the outlined model.

Triggers information correctness:information provided by the re-

orter to reproduce the bug might be incorrect. However, for almost

ll MySQL reports, the developer, as first action, tries to reproduce the

ug by running the steps or the test case described by the reporter.

he discussion and any fixing attempt do not start until the bug is

ot reproduced by developers. In these cases, we are reasonably sure

hat the bug is reproduced. Whenever there is no information about

he reproduction to determine the triggers, we filtered the bug out

s NOT SUFFICIENT INFO. Instead, for those reports where we have

nough information to decide about triggers but the reproduction

as not explicitly described by the developer (e.g., most of Apache

ug reports), we rely on the fact that the report was confirmed to be

bug, then fixed by a patch, and then verified (this gives us a cer-

ain confidence that it was reproduced): in these cases, the threats

re in the process followed to reproduce the bug (not explicit as in

ySQL), which might be different from the one described by the re-

orter (namely, using a different set of triggers). Similarly, it could

appen that a bug duplicate of the analyzed one could have been ac-

ivated by a different set of triggers (e.g., a simplified set of the consid-

red one). The analysis therefore refers to one specific set of triggers

or a given bug, and not to all potential sets of triggers. There could

e further manifestations that will never be exposed; thus, the anal-

sis will necessarily refer to “instances” of triggers manifestation that

ave been observed.

Fixing time: the time to fix a bug (used in the complexity analy-

is) is computed as the time in which the report is in the modifica-

ion phase, namely from when the discussion starts until the bug is

esolved but not yet tested. Although this better approximates the

ctual fixing time compared to the entire lifetime of the report (i.e.,

losed-opened difference), it does not reflect yet the actual time a de-

eloper works on bug fixing, especially if reporters misuses the track-

ng tool (e.g., opens the bug only when he has the fixing ready). In-

eed, the actual start time of modification by developers can be ear-

ier than the time when developers report bugs. Thus, results assume

n average low impact of potential misuses of the tracking tool.

Severity: the indication of severity by the reporter may be unreli-

ble. To mitigate this threat, we have simplified the analysis by con-

idering high vs. low macro-categories, so as to reduce misclassifica-

ion error, and excluded the default values that are likely to bias the

esults. Nonetheless, there might be still mistakes in the assignment
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of severity between macro-classes, i.e., a HIGH severity bug marked

as LOW, or vice-versa.

Temporal analysis: several factors may impact the temporal evolu-

tion of bugs. For instance: (i) a new major release can cause people

to migrate to the new version and no longer use the previous one

– thus reporting less bugs; (ii) the product usage patterns may vary

with time, as usage behavior of early adopters can be different from

late adopters (e.g., companies tend to adopt products later); (iii) bug

reporting might decrease because of fixes of the release taking longer.

While we do not have data about usage patterns and fixes of the re-

lease (which remain potential threats), we considered the occurrence

of major and minor releases to figure out how occurrence trends are

related to releases and have more accurate indications on time evo-

lution. Analysis accounting for usage patterns and fixes of the release

are left to future research.

External validity: we selected two well-known open source

projects, both server-side applications written in C/C++ and widely

used in their respective categories (e.g., DBMS and Web servers).

However, findings of this study may not hold for other types of soft-

ware applications with different features (e.g., different target, lan-

guage, scale). Examined applications have specific characteristics,

which impact the types of bugs reported on them. For instance,

the occurrence of triggers may well depend on the variety of possi-

ble configurations and environments in which an application can be

used; in a DBMS and a web server the variety of configurations and

environments is much more limited and stable with respect to, for in-

stance, mobile applications: this can indeed favor a predominance of

WL bugs with respect to USR/ENV bugs. Thus, generalizing the find-

ings to other system types requires further studies. Also, the exam-

ined dataset is limited to 666 reports. On one hand, the analysis re-

garded many aspects of the bug properties related to bug manifesta-

tion; on the other hand, the manual effort needed to study more bugs

in such a way is an inherent limitation of the study. While studying

more bugs could highlight different patterns of triggers, we expect

that the output of our analyzes provides a valuable characterization

of bugs in terms of manifestation process properties. In this sense,

findings should be viewed as a framework to formulate substantiated

hypotheses about bugs manifestation, to be confirmed or rejected by

further studies, rather than as general findings.

9. Conclusion

This paper described the comprehensive analysis of a set of soft-

ware bugs from the bug manifestation perspective. First, we defined

the characteristics of the process of bug manifestation, which we cap-

tured in terms of those essential conditions (called triggers) that are

necessary, in a bug-failure chain, to relate the cause (input, environ-

ment, and bug) to the effect (failure). The resulting set of triggers,

covering both simple and complex cases, is analyzed against 666

bugs from two large and well-known software applications: MySQL

and the Apache web server. Occurrence patterns of different types of

bugs surfacing are derived, and several findings are reported about

the most relevant trigger types, their occurrence times, their relation

with the bug activation “complexity” and fixing time as well as with

user-perceived failure impact.

There are several findings from our research, with many impli-

cations in terms of bug detection (e.g., testing, static and dynamic

analysis) and fault tolerance strategies. The feedback provided by

trigger analysis supports engineers to understand what to improve

and where to invest efforts for quality assurance of next releases. For

instance, consider finding #16 and #17; they reveal that too many

bugs (in terms of percentage) with only one or two workload trig-

gers (about 62%) escaped testing: these should have been removed

prior to release, and call for better basic functional testing in subse-

quent releases. Similarly, findings #8 and #9 highlight a prevalence of

concurrency and memory problems in environment-dependent bugs,
emanding a better implementation of certain type of V&V or run-

ime fault tolerance actions. Along this line, the paper outlined more

pecific actions that could be implemented by observing the (relative)

ccurrence patterns of each trigger type. Of course, the final choices

f V&V or fault tolerance solutions will depend on the context (e.g.,

n quality requirements, on available time for completing the V&V

hase, on cost of the actions to implement vs. available budget, on

evelopment and organizational process, on testers skill). In general,

rom findings of this study, it is clear that characterizing the way in

hich a bug surfaces and its relation with the environment are cru-

ial to the effectiveness of countermeasures to be used via V&V and

ault tolerance.

There is a lot of future research in this field. We outline some di-

ections we wish to pursue: (i) further empirical characterization to

onfirm and/or refine the features of the bug manifestation to a larger

xtent; (ii) analysis of the relation between bug manifestation and

evelopment process activities for process improvement purposes;

iii) definition of environment-aware strategies for V&V and fault tol-

rance driven by trigger patterns. More generally, our effort will be

ainly devoted to explore the increasing role of the environment in

ug manifestation, since we believe that software-based systems and

heir environment are, from the failure occurrence perspective, no

onger separable from each other.
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