On the Testing Resource Allocation Problem: research
trends and perspectives

Roberto Pietrantuono®

@ Universita degli Studi di Napoli Federico 1I, Via Claudio 21, 80125 Naples, Italy. E-mail:
roberto.pietrantuono Qunina.it.

Abstract

In testing a software application, a primary concern is how to effectively plan the
assignment of resources available for testing to the software components so as to
achieve a target goal under given constraints. In the literature, this is known as
testing resources allocation problem (TRAP). Researchers spent a lot of effort
to propose models for supporting test engineers in this task, and a variety of
solutions exist to assess the best trade-off between testing time, cost and quality
of delivered products. This article presents a systematic mapping study aimed
at systematically exploring the TRAP research area in order to provide an
overview on the type of research performed and on results currently available.
A sample of 68 selected studies has been classified and analyzed according to
defined dimensions. Results give an overview of the state of the art, provide
guidance to improve practicability and allow outlining a set of directions for
future research and applications of TRAP solutions.

Keywords: Testing; resource allocation; reliability allocation; literature
review; test planning; survey

1. Introduction

Testing is a crucial activity of software development, which greatly impacts
the quality products as well as the production cost and time-to-market. More
often than not, engineers committed on testing are required to complete the
testing process on time (often working with underestimated resources), while
assuring a high quality of the product to ship.

Although the experience of engineers is paramount for an efficient test plan-
ning, the problem of how to optimally use the available resources for testing
cannot rely solely on that, but demands for a systematic approach. This is es-
pecially true in large/complex systems and development processes, with many
contrasting objectives and constraints on quality, time and cost. A wrong plan-
ning can end up in serious time/budget overrun or in a bad quality of delivered
products.

Preprint submitted to Elsevier November 8, 2019

20

25

30

35

40

45

50

A rough-grained approach is to allocate a greater effort to software mod-
ules expected to contain more faultsﬂ namely, by exploiting the so-called fault-
proneness models. These models are conceived to assess the defectiveness of
software modules by exploiting process or product metrics as features of a clas-
sifier /regressor (such as code-level metrics, e.g., cyclomatic complexity, lines
of code, object-oriented metrics, fan-in, fan-out; file-level metrics from the
CVS/SVN/Git repositories; design metrics; requirements metrics): they ap-
ply common machine learning algorithms on instances with a known number
of faults to train the classifier/regressor, and use the trained model to predict
fault-proneness in modules with unknown number of faults. The output is either
the list of modules believed to be fault-prone (namely, containing at least one
fault) and fault-free — in a binary formulation — or the rank of modules from
the most to the least fault-prone one — when formulated as a ranking problem
[2]. There is a huge literature on fault-proneness modules — see these surveys
for reference [3], [4], [5].

The problem with this formulation is that the output does not directly tell
how to allocate testing resources to modules, i.e., there is no allocation scheme
following the classification/ranking task. Clearly, fault-prone modules deserve
more testing resources, but the amount of resources is not quantified (apart
from few exceptions, e.g. [6]). For a finer-granied and more general approach,
researchers formulated the testing resource allocation as an optimization prob-
lem. In a testing resource allocation problem (TRAP), the solution suggests the
exact amount of effort to spent for testing each module in order to attain one
or more objectives (e.g., in terms of number of detected defects, user-perceived
reliabilityE[, testing cost, testing time) under given constraints.

Several alternative formulations for the TRAP have been explored by re-
searchers. Over the years, the increasing awareness of the many factors that
potentially affect the effectiveness of an allocation plan, as well as the availabil-
ity of powerful solution methods such as metaheuristics, have paved the way
to more and more accurate (and complex) models. Today, researchers actively
work on proposing formulations able to accomodate the needs emerging with
new testing scenarios.

This article provides an overview on the studies dealing with the testing
resource allocation problem. Few researchers have reviewed, by secondary stud-
ies, the state-of-the-art of some testing problems related, though loosely, to the
TRAP. Elberzhager et al. reviewed approaches for testing effort estimation and
reduction [§]; Calp et al. recently surveyed the area of test planning activities
[9]; Lee et al. looked at existing testing practices in industry [10]. However,
none of them target the TRAP literature. As confirmed by a recent tertiary

INote that the software engineering literature typically uses the term defect, while in
reliability research the term fault is used, according to the fault-error-failure chain definition
[I]: in this work we use them synonymously to denote the adjudged cause of an observed
failure.

2Reliability is defined as the probability of failure-free operation of a computer program
for a specified time in a specified environment [7]

55

60

65

70

75

80

85

90

study on software testing [11], the area of test management, which is the closest
area to TRAP, still lacks secondary studies.

In this article, the systematic mapping (SM) study method is applied in order
to identify, classify and evaluate the current state of the art from the following
perspectives: publication trends, to figure out how researchers are committed
on this topic; formulation, to explore the several alternatives for setting up a
TRAP model; solution, to understand how a TRAP model is typically solved;
validation, to highlight how models and solutions are validated in TRAP re-
search. The study focuses on a set of 68 selected papers. A classification is
defined in order to categorize the studies and ease the analysis. The results
obtained from synthesized data produce a clear overview of the state of the art,
allow outlining guidelines for supporting the practice of TRAP strategies, and
give a solid basis to plan for future research of TRAP solutions.

The article is structured as follows. Section [2] provides background on the
TRAP. Section [3] describes the design of the study in line with the systematic
mapping criteria. Section [4] reports the results according to categories defined
in Section Section [5| elaborates on the gaps of existing research and on
potential directions for future research. Section [6] provides guidelines on how
the availalable results on existing TRAP approaches can be applied in practice.
Section [7] warns against threats to validity and Section [§] concludes the article.

2. The Testing Resource Allocation Problem

2.1. Overview

The problem of identifying which parts of a system should receive more
resourcesﬂ has been addressed by many researchers. The TRAP can be seen
as an instance of the more general Reliability-Redundancy Allocation Problem
(R-RAP) [12]. An R-RAP combines two common ways to improve reliability
of a system: i) providing redundant components in parallel and i) improving
the individual system’s component reliabilityﬂ [13]. Its solution suggests the
choice of components in an architecture with their redundancy level and/or
how much effort per component has to be spent, in order to either maximize
the system reliability under a budget constraint or, conversely, minimize the
cost that satisfies a minimum demand on system reliability. An R-RAP can
refer to any phase of the development cycle, from design to testing — hence
“resources” to allocate generically refers to any means to improve reliability
(e.g., increase redundancy, buy a component rather than another, spend more
design effort or testing effort). These problems have been well-developed for
many different system structures (e.g., in series-parallel structures), objective
functions, redundancy strategies, and time-to-failure distributions. A lot of

3Here we refer to a component or module as an independently testable functionality. The
terms are used as synonymous if not differently specified.

4When only redundancy is employed, the problem is referred to as Redundancy Allocation
Problem (RAP))

95

100

105

110

115

120

work considered the R-RAP especially related to the design phase of a system
(e.g., for the evaluation of architectural alternatives), both referring to hardware
systems (e.g., [14,[15]) and to software systems (e.g., [16], [I7]).

The TRAP is a particular R-RAP that refers to the testing phase rather than
to the design phase — thus, resources to distribute refer to the testing effort
needed to improve components’ reliability. In TRAPs, allocating testing effort
to a component is the main way to improve its reliability. Other means, such as
fault tolerance or redundancy, can still be considered in the formulation, usually
as variables in the constraints rather than as decision variables in the objective
functions. In its typical formulation, the TRAP is referred to the architectural
level, namely it is about how to allocate resources for testing to components of
a system. It should be noted that researchers often do not specify what they
meant by “component” (in some works they refer generically to “modules” or
modular systems; in other cases components are defined as logically independent
units performing a well-defined function, like in component-based models such
as CCM, EJB or DCOM,; in others they refer to physical components; or it is
simply not specified), but the underlying assumption is components are units
that can be tested independently (hence, testing resources can be partitioned
between them). The common objectives in a typical TRAP are about the system
reliability, the testing cost, the testing effort or time. These are either contrasted
to each other (in a multi-objective optimization) with the aim of finding suitable
trade-offs, or one of them is set as objective constrained on the others (in a
single-objective optimization). The general form of a single-objective TRAP
model looks like one of the following:

maz Rg(z|T1,T2,...,Tn) st. T=>9 T;<T*
and/or C =37 C; <C*

min T =301 ,T; s.t. Rg(z|Th,T2,....Tn) > R*
and/or C =37 C; <C*

min C=3",C; s.t. Rs(z|Th,To,.... Ty) > R*

and/or >0 T; <T*
where:

Rg is the overall reliability of the software (or related functions, e.g., expected
failure intensity, that is number of failure per time unit);

T is the total testing effort, and

T; is the effort for testing component i (out of n components);
C' is the total testing cost;

C; is the cost for testing component i;

T* is the maximum testing effort;

125

130

135

140

C* is the maximum testing cost;
R* is the minimum level of required reliability.

The multi-objective version considers two or more of these objectives together.
It should be noted that these functions are inter-dependent. For instance, the
achieved reliability of a module depends on the testing effort devoted to it; the
cost depends on testing effort (e.g., including the cost of tester) but can also
account for the cost of debugging during testing or during operation. Thus, for-
mulations vary based on the models adopted to capture such inter-dependencies.
When both the testing cost and time/effort are taken into account, a possible
issue to consider is multicollinearity, caused by the tight relation between these
two objectives. The extent of such a problem, hence the need for remedies, is
dependent on how the cost and time/effort functions are modelled. The issue
can affect the accuracy of the output predictions, but it is still mostly neglected
in multi-objective TRAP studies. Finally, there are different ways of expressing
inter-component architectural dependencies, which determine how an attribute
of interest at system level (e.g., reliability) is computed from the same attribute
at component level. In the next Section, a brief overview of common objective
functions is given.

2.2. Common objective functions

Most TRAP studies exploit Software Reliability Growth Models (SRGMs) as
a way to capture the relation between the reliability growth and the testing effort
(or time) devoted to each module, which are two objectives occurring almost
always together. Testing a system implies exercising the program with a set of
test cases, observing the output, and comparing it with the expected one such
that if they are discordant, a failure is said to have occurred. The adjudged
cause of a failure is a fault: in SRGMs, testing is modeled as a fault detection
and correction process, during which more faults are detected (namely, failures
are observed) as more testing effort is spent and reliability progressively grows
as such detected faults are corrected. SRGMs are a wide class of models fitting
inter-failure times observed during testing and debugging to predict the next
time to failure. They capture the reliability growth as software is improved by
faults detection and correction and differ from each other in the shape of the fault
detection/correction curve. There is a huge literature on SRGMs: since the end
of the 70s, researchers constantly look for analytical forms to faithfully model the
fault detection/correction process (FDP/FCP) of new types of applications and
testing processes. The most common class of SRGMs is the Non-Homogeneous
Poisson Process (NHPP) SRGMs. In NHPP SRGMs, the mean number of
faults detected in the time interval (¢,t + At] is assumed proportional to the
mean number of residual faults. This proportionality is expressed by the fault
detection rates per fault as functions of time, denoted with A(¢). From this, the
mean value function of the fault detection process is expressed as:

dmd(t)
dt

= At)(a —mq(t)), a>0 (2)

145

150

155

160

where « is the estimated initial number of faults. In case of constant fault
detection rate (A(t) = B), ma(t) is the Goel-Okumoto exponential SRGM
(mg(t) = a(l — e Ph)).

It can be shown that using Equation [2] to describe the fault detection pro-
cesses, and defining D(t) = fot A(s)ds, the cumulative number of detected faults
is given by [18]:

ma(t) = a (1 - e_D(t)) (3)
where:
mg(t) is the cumulative number of detected and corrected faults at time ¢;

D(t) models the Fault Detection Process (FDP) by means of the fault detection
rate per remaining fault A (also called failure intensity): D(t) = fot A(s)ds;

a is the expected number of total faults.

The shape of D(t) determines the specific SRGM (e.g., exponential, S-Shaped,
Logarithmic, Log-Logistic).

Examples are the exponential Goel and Okumoto (GO) model and its gen-
eralised version [19],[20]; the S-Shaped model by Yamada, conceived to cap-
ture the possible increase/decrease of the fault detection rate during testing
[21]; the Gokhale and Trivedi log-logistic model, that also follows an increas-
ing/decreasing pattern describing the initial phase of testing as characterised
by a slow learning phase [22]; the Gompertz SRGM, by Ohishi et al., derived
from the statistical theory of extreme-value [23].

Eq. |3| captures the FDP but neglects the fault correction process (FCP),
namely it assumes an immediate debugging time, which however can have a
severe impact on the estimation accuracy [24], [25]. Similarly to what described
above, the mean number of faults corrected in (t,t + At] is assumed to be
proportional to the mean number of detected but not yet corrected faults. This
proportionality is expressed by the fault correction rates per fault as function
of time, denoted with u(t). From this, the mean value function of the fault
correction process is expressed as:

d”ﬁft(t) = p(t)(ma(t) = me(t) (4)

It can be shown that using Equation [f] to describe the fault correction pro-
cess, and defining C(t) = [, u(s)ds (i.e., the cumulative correction rate per
fault), the cumulative number of corrected faults is given by [18]:

me(t) = e €W (fg ac(s)ec(s)md(s)ds> (5)

where m.(t) represents the cumulative number of detected and corrected faults,

and C(t) = fg 1(s)ds models the FCP by means of the fault correction rate
per detected but not corrected fault, p. Depending on the SRGM chosen, this

165

170

175

180

185

190

Equation can also model the imperfect debugging: there is a class of SRGMs
known as infinite-failure models, which, contrarily to the finite-failure models,
assume that an infinite number of faults would be detected in infinite testing
time [7]. These are meant to capture the case where faults may be reintro-
duced during debugging: an example is the Musa-Okumoto logarithmic Poisson
execution time model [26] and the more recent failure-size proportional model
proposed in [27]. While many studies refer to the fault detection process only,
there are TRAP studies considering the fault correction process too (hence,
using debug-aware SRGMs), as will be shown in the following Sections.

Finally, it should be noted that SRGMs can be used in various ways to
express the reliability of the software in a TRAP. The conventional way is to
consider the expected number of detected (or corrected) faults m(t) for each
module, in either the objective or constraint. However, using a function of m(t)
makes sense, such as the mentioned fault detection rate per remaining fault A
(i.e., failure intensity) or the expected reliability at operational timeﬂ

As for the third objective, the cost, several models are available [29]. In any
case, the goal in a TRAP is to minimize the sum of costs spent to test each
module — hence the total testing (and, possibly, debugging) cost. A common
model is the following one [30], [31]:

C(t) = CF - (5/24) - me(t)+
+C3 - (6/24) - (ma(o0) — me(t))+ (6)
+CE - (Y/24)

where:
C} is the cost per person-day to correct a fault during testing;

C5 is the cost per person-day to correct a fault at runtime (typically C3 > C7
132]);

C3 is the cost per testing-effort expenditure unit (e.g., person-day), i.e., hourly
or daily cost of a tester;

¢ is the average number of hours to fix a fault.

Other models encountered in a TRAP include variants of Eq. [0} for instance ne-
glecting the debugging cost, or the simpler exponential model: C; = kyexp[koR;—
ks3], with R denoting reliability of component ¢, and ki, k2, k3 are model’s pa-
rameters inferred by data [29].

2.8. Example

In the following, an example of a testing resource allocation problem is il-
lustrated in order to show how it can be formulated and what are the expected
benefit of applying a TRAP approach. To be concrete, let us consider the case

5Reliability at operational time t is: R(t) = exp(—A(T) - t), where X(T) is the failure
intensity at the end of testing (at time T') (assuming no change in the software during operation
281)

195

200

205

210

215

Table 1: Numerical Example of testing resources allocation.

Component GO SRGM Optimal Size Size-based
Parameters Allocation (KLoC) Allocation

a b Effort | Exp. # of Effort | Exp. # of

det. faults det. faults
C1 120 | 9.41E-2 | 18.95 | 99.83 39 18.39 | 98.74
Ca 98 5.11E-2 | 18.98 | 60.86 55 25.94 | 71.96
Cs 102 2.34E-2 | 9.79 20.89 22 10.37 21.99
Cy 194 | 2.89E-2 | 37.56 | 128.98 59 27.83 | 98.05
Cs 78 8.52E-2 | 14.72 | 55.72 37 17.45 | 60.36

[Sum [592 | - [100 [366.29 | - [100 [351.13 |

of a real homeland security system used in one of the surveyed studies [61]. The
system is a large software-intensive application made up of 5 components, C; to
Cs. Each of such components is an independent unit called Computer Software
Configuration Items (CSCI): a CSCI is actually a large deployable component —
their size in the mentioned case study ranges from 39 KLoC to 59 KLoC — that
is developed, tested and maintained independently. Assume to have a budget
of T* = 100 units of testing effort (e.g., man-days) to distribute between such
components, with testing effort being linearly related with testing timdﬂ Let us
further assume that failure data from previous releases of the components are
available (e.g., from previous testing sessions or from operation) and that the
objective of testing is to maximize the number of detected faults before release,
given the budget. Consider, for simplicity, the Goel-Okumoto (GO) exponential
SRGM to fit the failure data for all the five components. The GO model’s mean
value function (muf) is: mg(T) = a(1 — e~T), where a is the expected number
of total faults, b is the (constant) fault detection rate per remaining fault and
T is testing effort. Columns 2 and 3 of Table [1] report hypothetical values for
the parameters of the SRGMs.

Under these assumptions, the total expected number of detected faults is the
sum of the mufs of the five components (let us denote them as mg, (7})), each
evaluated at the effort value T; suggested by the allocation problem’s solution.
The optimization problem of this example looks like this:

5 5
maxr mq, = Zmdi (T;) st. T= ZT, <T* (7)
i=1 i=1

where mg, is the total expected number of faults detected. Solving this problem
gives the optimal allocation reported in Table yielding an expected total
number of detected faults equal to 366.29 (out of 592 expected faults detectable
with an ideally infinite testing effort). The solution tends to give more resources

SIf testing effort is assumed to grow linearly with testing time, then the SRGM can indis-
tinguishably use effort or time measure as independent variable, namely there is no need for
a so-called testing effort function (TEF) to account for the non-linear relation between time
and effort

220

225

230

235

240

245

250

255

to components for which the expected fault detection rate is bigger. If we
consider the size of each component to allocate testing resources, which is an
intuitive criterion to distribute testing resources, then results are in the last three
columns: a proportional-to-size allocation yields an expected number of faults
equal to 351.13. A further hypothetical case of a uniform allocation (namely, 20
man-days for testing each component) provides an expected number of detected
faults equal to 343.42.

The example shows the benefits expected from applying an optimal TRAP
solution compared to other, less accurate, criteria. The same applies whenever
the objective is to minimize the testing effort or testing cost, given a minimum
level or reliability to attain.

3. Study design

To explore the TRAP research area, well-established guidelines for system-
atic mapping (SM) studies are followed [33] [34]. The high-level objectives are
those typical of SMs, namely i) to examine the extent, range and nature of the
research activity,) to summarize and disseminate the main research findings,
and i) to identify research gaps in the existing literature [35].

8.1. Research Questions

The study targets the following research questions:
RQ1 — What are the publication trends of research studies about TRAP? The
goal of this RQ is to characterize the intensity of scientific interest for this re-
search area, the base of researchers working on it, the relevant venues where
they publish their results, the type of research they conduct.
RQ2 — How are TRAP models formulated? This RQ aims at characterizing
how researchers define objectives and constraints in the TRAP models, how the
relation between component-level and system-level attributes is considered, and
how the models should be applied.
RQ3 — How are TRAP models solved? This RQ characterizes the type of solu-
tions chosen by researchers and which are the solutions that generally perform
better.
RQ4 — How are TRAP models evaluated/validated? This RQ looks at how
TRAP models and solutions are evaluated or validated, so as to provide figures
on the extent to which TRAP models can be applied in practice. In order to an-
swer these RQs, a classification of TRAP studies is defined, which will be useful
to analyze the current trends and to systematically frame future research.

8.2. Study identification process

The following selection process was followed:

1. Initial search and filtering. The initial selection was performed by a
keywords-based search on three major digital libraries in computer en-
gineering and computer science — SciVerse Scopus, IEEE Xplore, ACM

260

265

270

275

280

285

290

295

300

Digital Library. IEEE Xplore and ACM Digital Library are publisher-
specific databases widely used in empirical software engineering studies.
I selected Scopus DB as generalist indexing DB, which is the largest in-
dexing DB for peer-reviewed literature, to complement the results with a
wide range of other publishers, such as Springer, Wiley, Taylor and Fran-
cis, Sage, Hindawii, McMillan and others. Key researchers in empirical
software engineering, like Petersen and Kitchenham, also use Scopus for
their studies, e.g., [33] [34].

The search string was kept generic so as to cover as much relevant studies
as possible: either the title, the abstract or the keywords of a paper were
required to include the following keywords: (Software AND Testing AND
Resource* AND Allocation). This provided 542, 981 and 157 studies
from the three libraries, respectively, including duplicates. Due to the
conservative search, the vast majority of the initial set were found to be
unrelated to the computer engineering/science — either belonging to other
engineering fields, such as materials, civil or electrical engineering, or even
to non-engineering research areas, such as business management, decision
sciences, manufacturing. Also, some results were not research articles,
but editorials, standards, conference proceedings material (e.g., welcome
messages, ToC). Such irrelevant results were removed based on the papers’
title and publication venue, getting to an initial set of 265 studies from
the three libraries, with duplicates being removed.

. Application of selection criteria. On the set of 265 studies, the fol-

lowing inclusion/exclusion criteria were applied:

e Inclusion Criterion 1. Studies targeting the software testing resource
allocation problem.

o Inclusion Criterion 2. Studies subject to peer review.
o Inclusion Criterion 3. Studies written in English.

o Fxclusion Criterion 1. Studies proposing solutions that could po-
tentially support the testing resource allocation, but in which the
allocation is not the primary focus, such as studies on: software
reliability growth models (SRGM), fault/defect prediction, software
change prediction, risk/quality assessment, reliability assessment.

o Fxclusion Criterion 2. Studies focusing on allocation strategies of
resources unrelated/not applied to testing (i.e., just potentially ap-
plicable to testing resources), such as allocation of cloud resources to
end users.

e Exclusion Criterion 3. Studies focusing on testing techniques (e.g.,
test prioritization, test selection) that could be viewed as strategies
to “allocate” tests to partitions, but whose focus is not on the testing
resource allocation problem.

e FExclusion Criterion 4. Secondary or tertiary studies (e.g., systematic
literature reviews, surveys, etc.).

10

305

310

315

320

325

330

335

340

o FEzxclusion Criterion 5. Studies not available as full-text.

Applying these criteria, the initial set of 265 papers is reduced to 60 papers.

. Snowballing. The process is completed by considering each paper in the

initial set and adding relevant papers either citing and cited by it. The
set after snowballing is of N=65 studies.

. Evaluation. I have used the test-set method for validating the study

identification process (namely, for search evaluation as well as for inclu-
sion/exclusion): I looked for a test-set of known papers that ought to be
found and checked if the search found them — this is the most common
strategy. In particular, I created two validation sets for double checking
the search. The first one is obtained by selecting key researchers in the
field of testing resource allocation. As suggested by Petersen [33], I looked
at their profile to find papers related to the TRAP, and created a list of
7 papers (10% of the sample) that should indeed be in my search (i.e.:
[36], [37], [38], [39], [40], [41], [29]). From this validation set, it turned out
that they are all included in the search. This set is also used to double-
check the inclusion/exclusion criteria objectivity [33], and resulted in the
addition of one inclusion criterion and one exclusion criterion:

o Inclusion Criterion 4. Studies dealing with the resource allocation
based on the operational profile or on requirements should be kept,
provided that the resources are distributed to components/modules
implementing those operations/requirements (namely: the method
does not allocate resources to requirements/operations, but it allo-
cates resources to components based on requirements/operations).

o Exclusion Criterion 6. Studies dealing with the resource allocation
to testing phases (i.e., how much testing for unit/integration/system
testing) or to testing techniques should be excluded.

This revision led to the exclusion of 2 papers.

To complement the first set, the second validation set is created by select-
ing three reference papers with the highest citation ratio (number of cita-
tions over number of years since their publication) [39], [40] and [41], and
then considering all the citing papers — namely by a forward snowballing
step. This turned out in a list, with duplicates removed, of 113 papers.
After applying inclusion/exclusion criteria, the set was reduced to 27 pa-
pers. From the second set it turned out that 5 papers had been missed,
and have been added to the list. Thus, the final set is N=65-2+5 = 68
papers. The list is available at: https://github.com /rpietrantuono/IS2018.

. Quality assessment. Quality assessment is not a mandatory step in

systematic mapping, unlike systematic literature reviews, but it is deemed
useful to enforce the procedure robustness, e.g., to assure that sufficient in-
formation is available to be extracted [33]. The quality assessment should

11

345

350

355

360

=
a N 0o O o

Quality score
PN

N W

M Results

Method/Process

B Motivation/Objective

Figure 1: Results of quality assessment

not pose high requirements on the primary studies, as the goal of a map-
ping study is to give a broad overview of the topic area [42]. Thus, I
have adapted the approach used by Petersen [33], and asked the following
questions, each with three sub-questions:

e Motivation/Objective: 1) Is the motivation for a TRAP solution
proposal clearly stated? 2) Is there a clear statement of the aim of the
paper? 3) Is there an adequate description of the primary outcome?

e Method/Process: 1) Is the TRAP formulation clear? 2) Is the
TRAP solution clearly described? 3) Is the TRAP validation process
reported?

e Results: 1) Is there a clear statement of the findings? 2) Are the
limitations of the study discussed explicitly? 3) Are the results con-
sistent with (and adequate to support) the claims?

A score [0,3] is assigned to each of the three aspects based on the satis-
faction of the corresponding sub-questions — hence for a maximum score
of 9. The scores are reported in Figure [I] No paper is excluded due to
low quality. The main flaw was in the “result” criterion, which is often
poor in terms of support to the claims and limitations discussion — a
point further highlighted later in the paper. Other aspects are discussed
in subsequent analyses.

12

365

370

375

380

385

Table 2: Template for data extraction

Data Item Value/Description RQ

General

Study ID Integer

Title Name of the article

Authors Name of the authors RQ1

Year Year of publication RQ1

Venue Venue of publication RQ1

Citations Number of citations

Research type ‘What type of research is conducted RQ1
(based on Wieringa scheme [43])

Research method What research method is used RQ4

(based on Wieringa scheme [43])
TRAP-related

TRAP objectives What objective functions are used RQ2
TRAP models What models are used for the formulation RQ2
TRAP constraints What are the constraints of the TRAP RQ2
Architecture How the architecture is considered RQ2
Fault tolerance How fault tolerance is considered RQ2
TRAP solution What solution strategy are used RQ3
TRAP algorithms ‘What solution algorithms are used RQ3
Eval/Val: Industry-related Industrial involvement RQ4

in TRAP evaluation/validation RQ4
Eval/Val: Problem size Size in terms of modules/components RQ4
Eval/Val: Dataset What dataset used is real or not RQ4
Eval/Val: Tools ‘What, if any, tool is used to solve the TRAP | RQ4
Eval/Val: Sensitivity analysis | If a sensitivity analysis is carried out or not RQ4

3.8. Data extraction and classification

To extract data from the identified primary studies, I used the template
shown in Table @I Each data extraction field has a data item and a value.
The extraction process is validated using the same strategy adopted for inclu-
sion/exclusion criteria, namely by the test-set approach on the list of the seven
reference papers mentioned in the previous Section, and by checking whether
extracted data is enough to cover all the relevant aspects targeted in these pilot
papers [33]. No revision of the extraction form has been needed after the check
on the pilot.

To analyze the studies, a classification scheme is defined based on four main
dimensions related to the four research questions, each with several attributes of
interest. Starting from the extraction template, the scheme has been iteratively
refined based on the revision of each paper and the extracted data. The identi-
fied papers have been then examined with respect to the classification scheme,
summarized in Figure

Publication trends. The first dimension refers to the publication trends and
includes these attributes: number of publications by year, publication type (i.e.:
journal, conference or workshop) and venue, publications’ authors, and type of
contribution (i.e., research type). The latter attribute is based on a common
scheme from Wieringa et al. [3], which distinguishes papers as in Table
under the Decision row. The Table also reports the conditions, in terms of

13

390

395

400

Publication . . Evaluation/
Formulation Solution .
Trends Validation
m Year m Wim=er = Exact Methods m Method
Optimization
=~ Venue gsjriifgf =] Metaheuristics = Dataset
a a . a o | | Sensitivity
Authors Constraints Heuristics Analysis
= Research Type =1 Architecture =1 Problem Size
Allocation || Industry
Strategy Involvement
- Tools

Figure 2: Classification of TRAP studies

rules, to be satisfied for a paper to be classified in a research type category [33].

Formulation. The second dimension refers to several attributes about how
the TRAP is formulated. It distinguishes the type of optimization (single-
vs multi-objective); the optimization goals and constraints (i.e. in terms of:
reliability, testing cost, testing time/effort) — for each goal several attributes
are considered about the type of model being adopted; the way in which the
system architecture is modeled; the allocation strategy (static or dynamic).

Solution. The third dimension refers to how the TRAP is solved, namely if
an exact method is adopted rather than a heuristic or metaheuristic approach.
Beside the method, we look at which specific algorithm is adopted, along with
the result of possible algorithm’s comparisons performed in each study (with
related metrics). Exact methods refer to the algorithms to solve non-linear
programming problems (NLPP), which are the typical way to represent the
resource allocation optimization problem. Examples are the algorithms based
on Lagrangian multipliers or dynamic programming approaches. Such algo-

14

405

410

415

420

425

Table 3: Research types facets [43]. The e sign means “irrelevant”

R1 | R2 | R3 | R4 | R5 | R6
Conditions
Used in practice T . T F F F
Novel solution . T F . F F
Empirical evaluation T F F T F F
Conceptual framework . . .) T F
Opinion about something | F F F F F T
Authors’ experience . . T ° F F
Decision
Evaluation research v . . ° ° .
Proposal of solution . v . ° . .
Validation research ° . . v ° .
Philosophical papers . . . ° v .
Opinion papers . . .) . v
Experience report . . v) . .

rithms allow finding optimal solutions, but are often extremely time-consuming
when solving real-world problems (e.g., with large dimensions). Heuristic and
metaheuristic techniques are powerful and flexible search methodologies that
have successfully tackled practical difficult problems. The algorithms do not
guarantee the optimal solution, but they attempt to produce good-enough so-
lutions for practical purpose in reasonable computation times, and can tackle
efficiently multi-objecitve and many-objective cases. While heuristic algorithms
are specific and problem-dependent, a metaheuristic is a high-level problem-
independent framework that provides a strategy to develop heuristic algorithms.
Common examples are genetic algorithms, simulated annealing or tabu search.
Evaluation/Validation. The fourth dimension is about how the TRAP solu-
tion is evaluated/validated. The first attribute is research method. Wieringa et
al. [43] distinguishes the following research methodologies frequently applied in
software engineering: survey, case study, controlled experiment, action research,
ethnography, simulation, prototyping, and mathematical analysis. These apply
to evaluation research and walidation research, namely wherein the empirical
evaluation condition applies (Table , and need to be consistent with these two
categories. I exclude survey and ethnographic, as they are incompatible with
the used exclusion criteria, ending up with the scheme exemplified in Figure
adapted from Petersen [33]. Other attributes of this dimension include: if
the dataset is real or not, if industry is involved, if a tool (already existing or
developed ad hoc) is used for solution, if sensitivity analysis is run and, finally,
what is the size of the problem being addressed.

4. Results

4.1. Publication trends

Publications by year. Figure [d plots the selected studies by year and pub-
lication type (Journal, Conference or Workshops proceedings). Papers range

15

430

435

440

445

Industrial case study

Evaluation Controlled experiment with
research practitioners

Action research

Simulation as an empirical method

Laboratory experiments (machine
or human)

Validation
research

Prototyping

Mathematical/numerical analysis

Academic case study

Figure 3: Classification of research methods (modified from [33])

Table 4: Average quality score by venue type

Venue type | Motivation/objective | Method/process | Results | Total
Journal 2.55 2.525 2.025 7.1
Conference 1.923 2.115 1.5 5.54
‘Workshop 2 1.5 2 5.5

from 1987 to 2017 (the last year considered in our search, including early access
papers available online). However, a substantial activity on TRAP started in
2002. Since then, 3.5 papers per year appeared in the literature, with more
papers in the last 5 years (22 studies in 2013-2017 compared to 17 studies in
2008-2012 and 18 studies in 2003-2007). Most of considered studies are in
journal papers (42/68), followed by conference proceedings (24/68) and very
few workshop papers (2/68). Table 4] reports the quality score by venue type
(journal, conference, workshop); journal articles have been generally assessed as
higher-quality studies.

Publications venues. Figure [5| details the main publication venues. In half
of the cases (32/68), a journal/conference hosted more than study. The most
targeted journal is IEEE Transactions on Reliability (TR), with 9/68 occur-
rences, followed by the Journal of Systems and Software (JSS) with quite fewer
studies (4/68). The main targets are reliability-related venues, such as TR
(9/68) the International Symposium on Software Reliability Engineering (IS-
SRE) (4/68); the International Journal of Reliability, Quality and Safety Engi-
neering (IJRQSE) (3/68), Annual Reliability and Maintainability Symposium
(RAMS) (2/68), and software-engineering-related venues, such as JSS (4/68),
Journal of Software (JS) (2/68), IEEE Transactions on Software Engineering
(TSE) (2/68), Procedia Computer Science (2/68), International Journal on Soft-

16

450

455

460

465

470

E Workshops
O Conferences

M Journal

e

/\

#Studies
N w H

[

o

9 o o o PSP LP I T EE S P > CIICIICIY
@@&@@@@@@@@@@@@@@ @@@@&& S S

Year

Figure 4: TRAP studies per year and venue type

ware Tools for Technology Transfer (STTT) (2/68), Lecture Notes in Computer
Science (LNCS) (2/68). In the remaining 36/68 cases, the journal/conference
hosted just 1 TRAP paper. Overall, the 68 studies were published in 46 different
venues, covering quite a large range of journals and conferences.

Research groups. The total number of different authors for the 68 studies
is 120. Authors who co-authored more than 1 paper accounts for exactly 1/3
of the total (40/120), while just a few of these (19/120) published more than
2 papers. The remaining 2/3 (80/120) published exactly 1 study on TRAP.
Some authors (with their research group) are extremely active on the topic,
with more than 4 (8/116), 5 (4/120) or even 7 (2/120) published studies. It is
worth to mention the name of researchers who published more: Huang C.-Y.,
Kapur P.K., Lo J.-H., Lyu M.R., Khan M.G.M., Ahmad N., Kuo S.-Y. are the
researchers who published, respectively, 8, 7, 6, 6 4, 4, and 4 studies on TRAP.
Research type. Among the six types of research outlined in Table 3] validation
and evaluation research are those adopted by TRAP researchers. In fact, all
the studies report a form, more or less detailed, of empirical evaluation for
their method. In the vast majority of the cases (61/68), there is an empirical
validation but the technique is not used in practice (validation research); in
seven cases, researchers conducted an evaluation research, in which, beside an
empirical evaluation, they implement and apply the method in practice, for
instance through industrial case studies or action research. The specific method
used for evaluation/validation is analyzed in the corresponding dimension (RQ4)
— results are in Section[£.4] No study reports just about the authors’ experience
in practice (namely, experience report), and no study proposes a novel solution
without an empirical evaluation (namely, proposal of solution category); there
are no philosophical and opinion studies.

17

475

10

Studies
w

9
8
7
6
4
3
2
TR STTT TSE

JSS ISSRE LRQSE JS LNCS PCS CIE RAMS
Publication venue

Figure 5: TRAP studies by venues

The following findings summarize the main results.

F1

The TRAP topic is studied constantly since 2002, with an increase in the last
5 years. Most of papers are in journals (and often in top journals, such TR or
JSS), which, generally, have been attributed a higher quality score than confer-
ences/workshops

Hence, the field is well-rooted in practice (with an increasing interest likely due
to new challenges posed by modern development and testing paradigms) and
mature enough to produce mostly journal-level contributions.

18

480

485

490

495

F2

Looking at where researchers tend to publish, the TRAP topic matches the in-
terest of a large variety of communities in software reliability and software en-
gineering areas[’]

Studies are targeted equally to reliability (21/68) and to software engineer-
ing/computer science (23/68) communities (others are published in broader
communities, e.g., computing technologies, math and operations research ar-
eas (24/68)).

Those published in reliability-related venues are less scattered, focused on fewer
journals/conferences.

%It should be noted that the distinction between reliability and software engineer-
ing/computer science communities does not refer to the authors, who can hardly be attributed
to one or another community, but solely to the venue of publication. The latter is based on
the venue’s source title (and, in ambiguous case, on the “aim and scope” of the venue), dis-
tinguishing the cases where the main (not the sole) focus is clearly on one of the two areas,
while judging as “other” the overlapping cases.

F3

The TRAP area involves quite a high number of researchers (120 for 68 stud-
ies). There is a high diversity in terms of people working on the topic (2/3
of researchers published only 1 paper). 8/120 are the researchers (with their
research groups) that worked and are working more actively on the topic.

Fy

All the studies report some form of assessment for their method, but just seven
studies evaluate their method in practice, e.g., through industrial case studies or
action research. The remaining 61/68 studies are validation research.

4.2. Formulation

Table 5| reports the results with respect to the formulation dimension and
its attributes.
Type of optimization. The first part of Table [5| reports the number of stud-
ies formulating the TRAP as single or multi-objective problem. Clearly, most
of research is on single-objective optimization, while multi-objective is a more
recent research topics — all of them appeared after 2008 and 6/8 appeared after
2013.
Objective functions and constraints. Most of the studies consider the
maximization of reliability as objective, followed by the minimization of time/
effort or cost of testing. Specifically, reliability is a primary concern (in 42/68
studies) in both single-objective (SO) formulations (34/60 SO studies) and in
multi-objective (MO) formulations (8/8 MO studies). It is also quite often set
as a constraint in the optimization model as minimum level of reliability to

19

500

505

510

Table 5: TRAP studies by Formulation

] Formulation \ Frequency ‘
Type of optimization | n out of 68
Single-objective 60 T/
Multi-objective § 0
Objective Functions®
Reliability (R) 42 O
Time/Effort (T/E) 25
Cost (C) 24 O3
Others (O) 4 1
Constraints*

Reliability (R) 34 [
Time (T/E) 58 [
Cost (C) 4 1

Others (O) -
Architecture Model®

Usage/Weight factor 19 O
Parallel-series model 7 1
Markovian model 5 0

Others 4 1

None 36
Allocation Strategy

Static 56 T
Dynamic 12 O

*The sum of occurrences is greater than 68,
as MO studies consider more of them together
t The sum of occurrences is 71, as 2 studies
considers more architectural models together

assure, with testing time/effort or cost as objective to minimize — especially in
SO formulations (31/60 SO and 1/8 MO studies).

To express reliability, an SRGM is used in 47 /68 studies and in total 55 times
(considering studies that explore more than one SRGMs). Most of the times
the exponential GO model (one of the earliest and simplest one) is adopted
(29/55), followed by the S-shaped model (8/55). Other models employed in
a TRAP formulation include Weibull, log-logistic, log-normal, hypergeometric
model, Schneidewind model (5/55). In few other cases, the expression of the
SRGM is not specified, namely the optimization model is supposed to work
under a generic SRGM (10/55). Researchers also integrate debug-aware SRGMs
(see Equation |5) into a TRAP formulation, but more rarely (9/68), adopting
a fault correction rate (u) of either exponential form (2/9), S-shaped (1/9), or
unspecified (3/9).

Testing time or effort is the second most used objective (25/68). A time/

20

515

520

525

530

535

540

545

effort objective is used in 19/60 SO studies and, together with other objec-
tives, in 6/8 MO studies. Testing effort is more common (17/25) than testing
time (8/25). Effort is in almost all the cases (50/68) set as constraint, since
it represents the available budget that should not be overcome during testing.
Testing time is set as constraint in 8/68 cases to represent the project schedule
deadlines.

In 26/68 studies, models account for the relation between the testing effort
(in terms of person-power) and testing time (in terms of calendar time, CPU
time or number of test cases). In fact, while the simpler case assumes the
testing effort F varying linearly with time 7', this is, in general, not true. In
the literature, the relation is modeled by the so-called Testing Effort Functions
(TEFs), which model such a non-linearity by a function F: E = F(T). The
most common TEF, shown to well represent the usual trend of testing effort, is
the logistic TEF [30], [44], [45], given by the following equation:

B

Y=< 1+ Aexp[—aht] ®
where B is the total testing effort to be consumed; « is the consumption rate of
testing-effort expenditures; h is a structuring index depending on the software
development process — a bigger value models well-structured processes and the
spent effort converges sooner to the budget B (the parameter can account for
improvements in the software development process, such as stepwise refinement
or top-down approach); A is a constant, whose value regulates the testing effort
spent at the beginning and the “distance” from the budget B (the bigger it is,
the less testing effort is spent at the beginning of the process); and y(t) = det(t) .
When considering a TEF, m(¢) in Eq. 3| and Eq. |5| changes, since the effort Y
is considered in lieu of time, making it more complex to solve. Logistic (5/26),
Weibull (5/26), log-logistic (2/26) and exponential (3/26) are some of the used
TEFs.

Finally, a cost function as minimization objective is found in 24 /68 studies,
in more recent works. All the MO models have cost as objective (8/8), while
it is less common in SO models (16/68), especially the oldest ones. Cost is a
measure related to the effort spent, but goes beyond it. The model in Eq. [f] is
the most used one (9/24), followed by simpler exponential cost models (6/24).
In only 4/68 cases (all SO cases), cost is used as constraint (i.e., a monetary
upper bound budget); most often, effort is used in lieu of cost as limiting budget.

The other category includes four cases in which a measure of risk is employed
to represent an objective to minimize under what is known as risk-based testing
[46].

Architecture modelling. Several formulations consider how the relation be-
tween modules impacts the resources allocation. For instance, a reliability max-
imization objective cannot deal only with how many faults are in the software,
but also with how often they could be activated at runtime. A software module
with more faults than another can be more reliable inasmuch as those faults
are less often activated and cause less frequent failures in operation [47]. Thus,
if the system’s reliability computation does not account for how often a mod-

21

550

555

560

565

570

575

580

585

590

ule is used, the solution could assign a lot of testing resources to a rarely used
module, which will not actually contribute to a reliability improvement, wasting
resources.

More than half of the studies (36/68) do not account for any form of inter-
module relation. In the other cases, the most adopted solution is to consider a
usage factor (19/68), namely a [0-1] weight expressing the frequency (or prob-
ability) with which a module will be involved. An alternative is to consider
structures of parallel-series (or more complex ones, like bridged, star) and the
associated structure function, as in Reliability-Redundancy Allocation Problems
[12], [48]. In TRAPs, this was adopted in 7/68 cases. A more complete solu-
tion is to consider Markovian architectural models, like Discrete-time Markov
Chains (DTMC), representing modules by states, with transition probabilities
describing the execution flow from one component to another [28], [29], [49].
The derived measure, the so-called visit count (i.e., the average number of visits
to a component), is used in the system-level reliability computation. This is
adopted 5/68 times. Other solutions (4/68) include: relying on expert judgment
to spot the most critical modules; exploiting design-time documentation (UML
use cases); assuming an equal importance of modules.

A further factor impacting on the architecture is the inclusion of fault tol-
erance means. A failure in a module may be tolerated, thus keeping the system
up despite the failure. Therefore, fault tolerance improves the reliability of a
module, impacting on the overall reliability computation. Redundancy is one
of such means. However, in TRAP literature, only 3/68 studies considered
fault tolerance means in their formulation. Two of these include a [0,1] cover-
age factor in the module-system architectural relation aimed at decreasing the
failure probability of a fault-tolerant module compared to a non-fault-tolerant
one [39, [50]. The remaining one adopts a more complex solution in which the
reliability of a module is computed according to possible fault tolerance means
it implements in case of failure, such as restart, retry or failover [28].
Allocation strategy. A problem with the usage of models (especially the
SRGMs) are the assumptions they rely on, which, if strongly violated, can lead
to inaccurate modelling (e.g., inappropriate choice of SRGM and/or large un-
certainty in the parameters) and a wrong optimization. This is exacerbated in
large systems, where an accurate upfront planning is difficult because of the high
variability from the planning time to the testing completion. Testing a single
module may in fact require months; during this period, changes related to the
testing process, the environment, the personnel, and the technology can affect
the result in terms of defect detection, and are likely to invalidate any assump-
tion made at planning time. Moreover, the diversity of tested units, of their
development teams, and of testing teams as well, is a further factor of variabil-
ity. Under these circumstances, the “best” SRGM for each module cannot be
established a priori. Such contexts call for a dynamic support to test planning,
to be robust to unplanned variations. Though, dynamic allocation is used in a
minority of the surveyed studies (12/68). Moreover, the literature is still stuck
on parametric models, e.g., to represent the reliability growth process, which
are known to make more assumptions and to be more sensitive to them. The

22

595

600

605

610

main findings about the formulation of TRAP models are reported hereafter.

F5

Reliability is the most common objective function in a TRAP model, followed
by testing effort/time.

Although effort is an indirect measure of cost per se, an explicit cost function
(i.e., considering testing effort expenditure along with development-time and/or
operational-time debugging cost) is used quite often (24/68). In all MO models
(8/68), thus in most recent papers, a cost function is present in all the cases.
Considering the union of studies considering effort or cost (i.e., “resources”
expenditure) as objective, 17+24 = 41 studies have a cost-related objective, just
like reliability. Time is the least used objective function.

Fé6

Testing time/effort is almost always present as a constraint — hence the mod-
els represent the most common situation where a given budget is available and
should not be overcome. The use of TEF to model the time-effort relation is
well established, as a TEF is present in 26 cases despite the further complexity
required to handle it.

F7

Despite the practical importance to obtain results close to the reality, the ar-
chitecture is considered in only half of the studies (35/68). When considered,
a simple usage factor is included, while more complex relations are left unad-
dressed.

Similarly, fault tolerance, which is the core aspect in R-RAP models, is mostly
neglected in TRAP, wherein the only means to improve component’s reliability
is assumed to be testing.

F8

A dynamic allocation approach, aimed at having solutions more robust to the
possible wviolation of assumptions, is receiving attention by some researchers
(12/68). The formulation of models that are alternative to parametric ones,
with less assumptions, is not explored yet by the TRAP community.

4.83. Model Solution

Table [6] reports the results with respect to the solution dimension and its
attributes.
Exact Method. The optimization models formulated as above are non-linear
programming problem (NLPP). Many studies adopt an exact method to solve
it (32/68) — in all the cases, the problem is a single-objective NLPP. The
most popular methods are by far those based on Lagrange multipliers (20/32),

23

615

620

625

Table 6: TRAP studies by Solution
] Solution \ Frequency ‘

Ezact methods 32 out of 68
Lagrange multiplier 20
Dynamic programming
Generalized reduced gradient
Sequential quadratic programming
Gradient projection

Sequential linear programming

Metaheuristics 18 out of 68
Mulit-objective*
NSGA-IT

HaD

MODE
WNS-MODE

PAES

MoCELL

Others
Single-objective*
GA

GLSA

Hill Climbing
Simulated Annealing

] Custom/heuristic methods \ 16 out of 68 ‘
| N/A | 4 out of 68 |

*The sum of occurrences is greater than 68, as

= o= W W Ut

AN NN
|:||:||:||:||:||:||:|

— = =

O
I
I
I

some studies consider more than one algorithm

customized to accomodate specific problem formulations. Relevant examples
include the works by Lyu et al. [39] [50, 38], and by Huang et al. [41], 40} 51].

Dynamic programming is a valuable alternative (5/32). For instance, in [52],
the authors exploit dynamic programming to solve two allocation problems,
alming at i) maximization of the number of faults removed when the amount
of testing-effort is fixed, and #) maximization of the number of faults removed
satisfying a certain percentage of initial faults to be removed with a fixed amount
of testing-effort.

Other methods include conventional techniques to solve NLPP, such as the
generalized reduced gradient (GRG) and sequential quadratic programming
(SQ) (both 3/32); the gradient projection (GP) and sequntial linear program-
ming (SLP) (both 1/32). In most cases, the solution is analytically determined
without reference to a specific support tool for solution. In few cases (5/32), a
specific tool is mentioned: LINGO (2/32), Matlab (2/32), Excel (1/32). When
exact methods are used, researchers do not focus on comparing the chosen solu-

24

630

635

640

645

650

655

660

tion method with others (it happens just in 2/32 cases), e.g., in terms of solution
time and scalability. The evaluation focuses solely on showing how the TRAP
solution provides the expected results.

Metaheuristic. While traditional optimal TRAP advocates the usage of ex-
act methods, metaheuristic approaches are gaining popularity. For complex
system configurations and/or with multiple contrasting objectives to optimize,
exact methods would not scale well. Thus, an increasing number of studies is
relying on metaheuristics (18/68). Our previous study explore the usage of
metaheuristics for TRAP [53] — here the main results are reported.

Out of 18 studies, 10 deal with SO problems and 8 with MO problems (i.e.,
all the 8 MO studies use metaheuristcs). As shown in Table @ the most used
metaheuristics are (variants of) the NSGA-IT (Non-dominated Sorting Genetic
Algorithm) followed by the HaD (Harmonic Distance) algorithm for MO prob-
lems. For SO problems, the GA is by far the most used technique.

Other popular algorithms for the MO cases are those based on Differential
Evolution, namely Multi-Objective Differential Evolution (MODE), Weighted
Normalized Sum-Multi-Objective Differential Evolution (WNS-MODE) and the
hybrid Cellular Differential Evolution (Cell-DE), combining Multi-objective Cel-
lular (MOCell) and MODE, which account for 5 cases altogether. Well-known
older metaheuristics are also tried for TRAP, such as: Pareto Archived Evolu-
tion Strategy (PAES), Multi-objective Particle Swarm Optimization (SMPSO),
and Indicator-based Evolutionary Algorithm (IBEA). For the SO case, other
algorithms, beside the conventional GA, are: a variant of GA, the Genetic Lo-
cal Search Algorithm (GLSA), combining GA with local search; the well-known
Hill Climbing (HC) and Simulated Annealing (SA).

Custom/heuristic methods. In 16/68 studies, neither a general-purpose
exact method nor a conventional metahueristic is adopted, but researchers pro-
posed custom procedures for solving the TRAP tailored for the specific formu-
lation. For instance, Monden et al. proposed several allocation strategies based
on complexity metrics and predicted faults, and use an ad-hoc solution for them
[6]; the studies by Felderer et al. on risk-based testing adopt a risk matrix as
scheme for the allocation algorithm (e.g., [46, [54] 55)); the works by Amrita et
al. exploit fuzzy logic to allocate test cases based on operational profile [56] [57].

The main findings about the type solution of TRAP models are reported in

the following.

F9
Most of TRAP studies is solved by exact methods. All the studies using exact
methods focus on solving SO problems, while no MO study is solved by exact
methods.

25

665

670

675

680

685

690

695

F10

Although SO studies are the vast majority, if we restrict the scope to works
solved by metaheuristics, there is a balance, since MO problems are difficult to
handle without search techniques: 10 SO and 8 MO studies.

F11

When researchers opt for exact methods, those based on Lagrangian multipliers
are by far the most common way to solve the testing resource allocation NLPP.
When search-based technigeus are preferred, a wide variety of metaheuristics is
tried — 12 different MO and 7 SO metaheuristics in 18 papers.

Differently from exact methods, studies adopting metaheuristics tend to
compare different algorithms. We looked at how many times an algorithm per-
formed better than another, when this information is available.

Comparisons are run more often in MO studies (6/8), while just 4/10 SO
studies report a comparison. In the MO cases, metaheuristics are compared to
each other by conventional coverage, convergence and diversity metrics (e.g.,
hypervolume, (inverse) generational distance, spread) and, in few cases, by also
problem-specific metrics (i.e., which algorithm yields the best solution for a
given objective function or the best cost-optimality trade-off). In the SO cases,
a metaheuristic is compared either against another metaheuristic (e.g., GA vs
Simulated Annealing) or against problem-specific algorithms (e.g., the K-A,
Y-X, T-M algorithms — from initials of authors’ name — for series-parallel
archtiectures) by problem-specific metrics (e.g., related to the maximization of
faults or reliability, or minimization of failure rate, cost, time or effort).

In the MO case, NSGA-II performed better than competing metaheuristics
in 3 out of 7 cases. HaD loses a comparison in 4 out of 5 cases. Algorithms
based on DE (MODE, WNS-MODE) wins a comparison in 2 out of 3 cases, while
the hybrid CellDE looses 1 out of 1 times. PAES, IBEA, SPEA2, SMPSO, and
MOCell lose their comparisons (7 cases in total). MOEA /D, RWGA and MODE
are compared 1 time and win the comparison against the others.

As for the SO case, GA performed better than problem-specific algorithms,
such as the Y-X and T-M algorithms [58], in the considered cases, and GLSA
outperformed Simulated Annealing, while Hill Climbing outperformed a greedy-
based policy. Moreover, in the two cases in which it is used, the effect of local
search was found to be beneficial [58], [59]. The former reports the formulation
of the discussed GLSA variant of GA in a single-objective setting; while the
latter adopts a local search strategy to improve multi-objective metaheurstics:
MOEA/D, HaD, NSGA-II

4.4. Evaluation/Validation

Table [7] reports the results with respect to the validation dimension and its
attributes.
Type of validation. Most of the times, researchers use a numerical analysis to

26

700

705

710

715

Table 7: TRAP studies by Evaluation/Validation

’ Evaluation/Validation \ Frequency
Method n out of 68
Mathematical /numerical analysis 55
Action research 4 1
Industrial case study 3 1
Academic case study 3 1
Lab experiments 2 1
Simulation as empirical method 1 I
Controlled experiments with practitioners | 0
Prototyping 0
Real dataset
No 48 /O
Yes 20 O
Sensitivity analysis
No 45 3O
Yes 23 O
Problem size Figure ﬂ
Industry involvement
No 61 [
Yes 7 1
Tools
No 60 /T
Yes § 1O

validate the TRAP model (55/68). These are conducted either on illustrative
datasets and toy examples (in 48 cases) or, more rarely (in 7 cases), on real
data taken from the literature or past experiences. In few cases the proposed
method is used in practice, with only 7 studies reporting an experiment with the
involvement of industry (4 industrial case studies and 3 action research studies).
In 6 studies, a real system is used, but in lab contexts (3 academic case studies,
2 lab experiments and 1 simulation used for empirical evaluation). Controlled
experiments, as well as prototyping, are never used by researchers. From this
picture, a strong need for evaluation research emerges as means to favour the
applicability of TRAP models and solutions in practice.

Dataset. This attribute refers to how the dataset used for validation is derived.
A real dataset is considered by 20/68 studies: these are either derived from the
real system used as case study or taken from the literature from papers reporting
historical failure data tracked on a real system. In all the other cases (48/68),
and mostly in the numerical validation type, the dataset is generated artificially
for the purpose of illustration.

Sensitivity analysis. A careful evaluation should consider how the proposed
solution works in case the model’s parameters vary and the model’s assumptions
are violated, especially with numerical illustrations. Sensitivity analysis is a

27

720

725

730

735

740

70

Studies
w ey [)]
o o o o

N
o

=
o

1 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Modules

o

Figure 6: Distribution of the TRAPs’ size

useful tool for this purpose. However, a minority of studies exploit sensitivity
analysis (45/68); rather, validation assumes a fixed set of parameters, and results
refer to that specific setting only.

Problem size. Figure @ reports the (empirical) cumulative distribution of the
number of modules considered in the validation (either from a real system and
from a numerical example). The mean of the distribution is 9.5, the median
is 8. It can be seen that most of the studies (39/68) consider a problem size
between 5 and 15 modules. 16/68 studies consider less than 5 modules and the
remaining 13/68 consider more than 15 modules. The biggest problem size is
36 modules.

Industry involvement. In just 7/68 cases, the validation has been conducted
in an industrial context, by either an industrial case study or an action research.
Examples of industry include a case from Cisco Norway, where an allocation
strategy is tested on a videoconferencing system (VCS) [60], and one at Selex
ES Ttaly, a company developing mission-critical systems for Air Traffic Control
(ATC) and Vessel Traffic Systems (VTS) [61].

Tools. In some cases (9/68), a tool is explicitly mentioned to solve the TRAP
model. However, the mentioned tools are always based on well-known general-
purpose tools for solving optimization problems, such as Lingo or Matlab.

A summary of findings and related comments follow.

F12
The majority of studies use numerical illustrations and artificial dataset to val-
idate their models.

28

745

750

755

760

765

770

775

The relatively low number of real systems involved in the evaluation is par-
tially due to the difficulties in experimenting a TRAP. First, the TRAP model
should be built on historical testing data referring to each module (e.g., the inter-
failure times, debugging cost data, etc.); then, the allocation solution computed
by the TRAP model should be applied on the testing process of a successive
release, with real testers on the real system; finally, results should be compared
with the application of the same testing process under non-optimal allocation
or at least checked against model’s prediction. All this is expensive for industry
and new ways for testing TRAP proposals in real scenarios are needed.

F13

Although sensitivity analysis is a valuable tool to test the solution against pa-
rameters variation, it is not much used. Only 1/3 of the studies and less than
half of the studies using numerical illustration conduct a sensitivity analysis.

F14 I
The problem size does not go beyond 36 modules in the considered studies.

The latter finding represents a potential negative aspect regarding the evalu-
ation of scalability. On one hand, it is reasonable to keep the granularity of mod-
ules rough: in fact, the TRAP model usually applies to modules that should be
independently testable (if the test activities on a module were dependent on test
activities of another module, that would affect the allocation solution — more
complex models, capturing dependencies of test activities, would be needed).
Therefore, assuming a small number of (independent) modules is not much un-
realistic, as it can well represent real problems in many contexts. On the other
hand, this does not elude the problem of scalability, because as systems grow in
size and independence between modules is enforced (e.g., in service-oriented or
microservice architectures), the size of TRAPs will rapidly grow. Scalability is
likely to be an issue in the coming years.

Overall, the analysis shows that the TRAP research often opts for evalua-
tion or validation approaches loosely connected with industry, with unrealistic
scenarios and datasets, and no sensitivity analysis. From this point of view, a
significant step forward is required to make the TRAP models practicable and
useful.

5. Research directions

The above findings capture synthetically the current state of the art with
reference to the analyzed dimensions. In the following, some research directions
are outlined to suggest potential areas of investigation.

TRAP Formulation. Most of current TRAP proposals are based on relia-
bility, cost and effort/time models that do not accurately reflect the modern

29

780

785

790

795

800

805

810

815

820

825

development, testing and debugging practices. For instance, development prac-
tices like continuous integration (CI) or DevOps demand for a new view of
test planning and resource allocation, where conventional SRGMs need to be
revised to account for a highly dynamic context with a different testing and
release process, as the impact of assumption’s violation is much more severe in
this new scenarios. Indeed, in such contexts, the immediate feedback coming
from runtime data can be a valuable support to build new SRGMs, closer to
the system-in-operation, and enable a “continuous” tests allocation exploiting
near real-time data for accurate modelling. New SRGMs to model reliability
growth of a continuously evolving software are needed for these processes, or,
even better, alternative ways to describe the testing-reliability relation, such as
non-parametric models, which are known to make less (and to be less sensitive
to) assumptions. Testing cost/effort models are also very different in a CI orga-
nization, and further research is needed to appropriately model them for TRA
purposes.

In a similar way, architectural models in a TRAP should be aligned to current
trends. The architectural style of software systems is by now migrated toward
a dynamic approach, wherein the inter-relation among modules is no longer
established statically at design time. Applications are thought to evolve, with
loosely coupled modules that dynamically interact with each other at runtime
(e.g., web services, microservices). This opens to the possible exploitation of
dynamic inference techniques to extract architectural models at runtime and
periodically re-allocate resources for testing.

Looking at the organizations, a detailed modelling of objectives and con-
straints is needed to have context-tailored models rather than one-fits-all solu-
tions. Models are still over-simplistic with respect to real production processes,
especially those of large organizations. For instance, debugging processes have
more complex workflows than the ones assumed in a TRAP. In fact, the cost of
debugging can be hardly captured by a constant parameter, because it usually
depends on how each phase in the workflow is managed as well as on human
factors like debuggers’ skills, experience, attitude. Each activity of the workflow
should be properly modeled, e.g., the bug queuing process, the bug-debugger
assignment policy (e.g., select debugger based on bug severity and debugger
experience), the bug resolution and closure.

Finally, traditional objectives are reliability, cost, time; however, several

quality attributes are worth exploring, such as power consumption (of great
importance for cloud-native applications), security or performance, which are
key market drivers in today’s software industry.
TRAP Solution. The need for modelling dynamic contexts entails the need
for developing dynamic solutions. A TRAP solution method should be able to
control the uncertainty caused by the development and operational environment.
A possibility is to adopt a dynamic allocation strategy, namely to solve the
TRAP model more times as testing proceeds, like the works discussed in Section
More broadly, adaptive allocation strategy, for instance exploiting dynamic
search-based metaheursitics, is a direction worth to be explored.

Another option is to tolerate uncertainty. While it is undebatable that un-

30

830

835

840

845

850

855

860

865

870

certainty should be reduced (e.g., by more accurate models), a share of un-
certainty is inevitable: robust optimization is a way of dealing with that, as
it considers the uncertainty associated with models’ parameters (e.g., in terms
of confidence interval) and provides ranges of solutions (i.e., interval-solutions
instead of point-solutions). An example can be found in our recent work [62].

The potential of metaheuristics for managing problems at a large scale can

be exploited to accomodate some of the emerging needs described above (e.g.,
more complex models for testing/debugging process, many-objective optimiza-
tion, the possible increase of problems size). A challenge in the mentioned
contexts (e.g., CI or microservices) is about the efficiency of metaheuristics,
since a “continuous” optimal allocation would require a fast feedback. On the
other hand, exact methods for affordable MO problems should be explored, and
more studies are needed on exact methods, since in contexts where the error
on allocated resources can have a sever impact (e.g., where the cost of testing
and/or the cost of failures is high) an exact solution would be needed.
TRAP evaluation/validation. For TRAP models to increase their popular-
ity and usefulness, more real-world experiences are needed, as resulting from
Section [£:4] Applying models to concrete instances, especially in industry, al-
lows testing assumptions, to figure out which ones are realistic and which call
for new, more comprehensive, models. However, in many cases, it is not possible
to “drive” the real testing process, but just to observe it, making it difficult to
apply a solution suggested by a TRAP model in a next testing session. In such
a context, causality analysis may help to identify most impactful factors in a
process/organization and their relation with the testing objective to optimize.
An alternative to reduce the cost is to run a posterior validation: results of
the actual non-optimal allocation performed in the real testing process (e.g., in
terms of detected faults) is compared with the hypothetical allocation proposed
by the TRAP solution (what would have happened if the TRAP allocation were
used, e.g., in terms of faults found in each module) [61]. Results would be in-
deed more realistic than numerical validation, as the assumptions underlying
a TRAP (e.g., assumptions of SRGMs) are tested in a real context, and the
impact of their violation is assessed without necessarily doing a sensitivity anal-
ysis. A further direction is to develop tools or simulators able of representing,
by proper models, a high variety of contexts in terms of testing objectives and
constraints, software architecture, testing/debugging as well as development
processes, organizational features.

Currently, the aspect of realistic evaluation/validation represents the main
hurdle for the future development of TRAP research, as it causes a deep gap
between theory and practice. New models can be conceived and new exact or
approximate solutions can be devised: however, the TRAP is an engineering
problem with a huge economical impact in software industry, because of its
implications on the testing process, which is, and will likely be, a key driver for
high-quality software development. The TRAP research has big opportunities
to impact, but researchers will catch them inasmuch as they will connect with
industry and its real-scale problems.

31

6. Guidelines

The following main aspects need to be considered for applying an existing
(or developing a new) TRAP model and solution:

o Testing objectives/constraints. Indeed, the testing cost and time/effort

875

880

885

890

895

900

905

910

are the two aspects that always matter, as either objective or constraint.
Then, depending on the quality requirements, practitioners may want to
improve reliability (either in terms of number of defects or operational re-
liability, which are different form each other [63]), security, performance,
energy consumption or machine cost when performing testing in the cloud
(i.e., testing-as-a-service), or more than one together. The objective calls
for the second important choice: modelling the relationship between the
chosen objective(s) and the testing effort devoted to it. Some of the ex-
isting models (e.g, SRGM) can be considered, but testing-quality relation
models for security, performance or other attributes are not common —
in such cases, new models need to be constructed, by inferring how the
quality attribute of interest changes when more testing is devoted to it.
However, even opting for existing SRGMs, the model needs to be vali-
dated and possibly adapted for the specific context: for instance, in a
continuous deployment scenario, where the software and the environment
continuously evolves, existing models may not work well. One should pre-
fer models relying less on those assumptions related to “stability” (e.g., the
software, the environment or the usage of the software do not change over
time). In this sense, SRGMs with multiple change points, or even non-
parametric and/or Bayesian models, can better suite the current needs for
continuously evolving contexts.

Architectural description. The second choice is about how to describe the
inter-components relationship. The minimum level of granularity needs to
be chosen considering the smallest units that are testable independently,
namely those to which a tester can allocate resources and run testing
without interfering with testing of other units. The relation can be cap-
tured by architecture-based stochastic models [64], either path-based or
state-based. Such Markovian models work better if the inter-components
dependencies are minimized; when a tighter relation between components
is present, more complex solutions should be adopted, such as compos-
ite and hierarchical models [65]. Dynamically evolving architectures, like
web services and microservices, require either exploiting monitoring data
to continuously update the architectural data or to periodically re-allocate
resources for testing.

Debugging and fault tolerance. Additional aspects to consider in the mod-
elling framework, which by now have become impactful, are: the debug-
ging process (namely, the non-negligible debugging time and the bugs
re-introduction rates — models exist for both aspects, but just for relia-
bility) as well as the inclusion of fault tolerance (e.g., architectures like

32

915

920

925

930

935

940

945

950

955

microservices foresees patterns for fault tolerance that should be included
in the architectural modelling, as they can significantly impact the optimal
testing allocation).

Information extraction to parametrize the models. In today’s software,
design-time models are likely to become obsolete soon; hence, models need
to be updated at runtime. Compared to the past, there are two sources of
information that should be exploited: field data and data from the orga-
nization (e.g., issue trackers), which are both widely available in today’s
systems. Field data gathered from monitoring are paramount to update
both the objective models and the architectural models. Issue trackers
contain defect data (programming bugs, vulnerabilities, performance is-
sues), useful to update the objective models (e.g., the SRGMs).

Solution. Depending on the objectives, the size of the problem and the
criticality of the testing allocation decision, one can opt for metaheuris-
tics (many of them are available) especially for multi/many-objective op-
timization or by exact methods. The latter should be preferred when the
error on allocated resources can have a sever impact (e.g., where the cost
of testing and/or the cost of failures is high).

FEvaluation/Validation . Models should be validated in the organization
where they are going to be used. The main reason is that testing involves
a significant amount of human intervention and depends a lot on organi-
zational factors. For instance, the testing-reliability relation may vary in
relation to the experience and skills of testers, as well as the debugging
time, the re-introduction bug rates, the testing effort function. The rela-
tive complexity of the system components may impact testing in different
ways, as well as the development team that implemented one or another
component (e.g., some may be outsourced). The organization can take
decisions that impact the testing process and the testing teams’ perfor-
mance. Therefore, while simulation and numerical analysis are important
for the initial tuning of the model, then an evaluation phase in-the-field is
needed in order for models to provide a satisfactory predictive accuracy.
If possible, the support of tools integrated with other facilities within in-
dustry (e.g., with the issue tracker, or with monitoring tools) could make
everything more transparent to testers, who would just query the tool
for the best allocation, given a budget to spent. Unfortunately, to date,
little support is offered by the current state-of-the-practice, but existing
modelling frameworks (e.g., for stochastic modelling) and tools for opti-
mization problems solution (e.g., for metaheuristics and exact methods)
can be borrowed for creating customized facilities.

Return of investment. Before setting up an organizational structure to
i) gather data, i) to formulate, refine and apply the TRAP models, and
finally 4ii) to plan the activities and organize a team according to the
TRAP solution suggestions, one needs to assess if the benefit is worth

33

960

965

970

975

980

985

990

995

the cost. The need for a quantitative testing resource allocation emerges
in a more pronounced way when an organization deals with large (mod-
ular) software systems, in which the testing cost represents a large part
of the production budget and in which multiple testing teams can work
in parallel on several independently testable units. Moreover, the above-
described models are by far more accurate and incisive if, like in large
companies, the development /testing processes and personnel organization
are well-structured and, more importantly, stable with time. Contrarily,
the models do not make much sense when the system to be tested is small
or managed by a single tester, and/or whenever the company organiza-
tion or development/testing process is subject to sudden changes, in which
case the history needed to create reliable models is limited or, at least, not
representative. This makes the lack of evaluation/validation on large sys-
tems and in real industrial contexts, where the TRAP makes more sense,
a crucial missing aspect, as just discussed above.

7. Threats to validity

In the following, the main threats to validity are reported. The process of
selecting the primary studies was performed by a single person implying that
some papers might have been included or excluded incorrectly. As pointed out
by Wohlin et al. [66], two mapping studies of the same topic are likely to end
up with different sets of articles. To mitigate this threat and have a represen-
tative sample, a well-defined search strategy has been followed, consisting of
both automatic search and snowballing on the selected studies, followed by a
search evaluation step in accordance with Petersen’s guidelines [33] and Kitchen-
ham’s suggestions (who also conducted a single-author SM) [67]. The test-set
approach for search validation suggested that there might be papers that have
been omitted, which led me to create two validation sets for double checking
the search. Also, the search was conducted by querying multiple data sources,
S0 as to cover a high number of publishers. Additionally, the terms used in the
search string were very general. This allowed to be very conservative in the first
search (which included 542, 981 and 157 from the three libraries) so as to not
miss relevant studies. The resulting set was then manually filtered to discard
irrelevant results up to 265 studies. Moreover, a set of documented inclusion
and exclusion criteria was used to refine the search unambiguously.

Another threat can regard the quality of selected studies. To mitigate this
threat: 4) only peer-reviewed studies have been considered (excluding the so-
called grey literature, e.g., white papers, editorials, etc.); ii) studies are searched
among those indexed by the most used digital libraries in computer engineering
and computer science, which filter out several low-quality conferences and jour-
nals; #44) inclusion/exclusion criteria applied on each of the 265 studies after full
text reading assured to keep only studies pertinent to TRAP; iv) a quality as-
sessment step has been carried out to give an overview of the quality of selected
studies.

34

1000

1005

1010

Table 8: Checklist of activities for SM self-assessment, from [33]
Phase Action Applied
Need for map Motivate the need and relevance v
Define the objectives and RQs v
Consult target audience with RQs .
Study identification Choosing search strategy

Snowballing

Database search

Manual search

Develop the search

PICO

Consult libraries or experts

Iteratively try finding more relevant papers

ENEN

Keywords from known papers
Use standards, encyclopaedias and thesaurus
Evaluate the search

[] <\ e o o

Test-set of known papers
Experts evaluate results

Search web-pages of key authors
Test-retest

Inclusion and exclusion

L] <\\ [) Q\\

Identify objective criteria for decision

Add additional reviewer, resolve disagreements
Decision rules

Data extraction and class. | FEztraction process

e o <\

Identify objective criteria for decision
Obscuring information that could bias
Add additional reviewer, resolve disagr.
Test-retest

Classification schemes

o o o <\

Research type
Research method
Venue type

NRNNEN

Validity discussion Validity discussion/limitations provided

Data extraction and classification could also be biased by a subjective in-
terpretation. To reduce such a risk, we used again the test-set approach, to
have a template and a classification scheme to categorize the studies unam-
biguously. The classification scheme has been derived by iteratively refining an
initial scheme as more and more studies were analyzed, so as to guarantee that
the data extraction process was aligned with the research questions. In general,
the best practices for mapping studies by Petersen et al. have been followed in
each phase of the study as documented above [33].

A further threat is represented by the sample size, N = 68. In an SM,
one is not supposed to read in detail all the papers compared to a systematic
literature review (SLR), hence having a greater risk for misclassification but
mitigated by a larger sample size. However, although the goal of this study
is exactly that of an SM (i.e., to examine the research activity, summarize the
main findings, and identify gaps, which would not require in-depth reading of

35

1015

1020

1025

1030

1035

1040

1045

1050

the papers), the relatively few studies published in this area allowed me to go
much deeper in each study, also carrying out quality assessment. This, along
with the support of the detailed procedure explained above, had the side effect of
reducing the risk of misclassification. Finally, to evaluate the whole SM process,
I conducted a self-assessment. Table [§] reports the actions deemed relevant to
conduct systematic mapping studies, proposed by Petersen in his guidelines [33].
Based on how many and what actions are conducted, a self-assessment is carried
out to evaluate the mapping process. Petersen proposes a set of rubrics, one
per phase/subphase (need for the map, search strategy, search evaluation, data
extraction and classification, validity discussion), by which a score is assigned (0
to 1, 2 or 3, depending on the phase), according to the number of actions taken
per (sub)phase, distinguishing the cases of: no evaluation, minimal evaluation,
partial evaluation or full evaluation for each of the 5 phases. Considering the
percentage of actions taken with respect to all the potential alternatives for
each step as a quality score, this study scored 50%, which is above the score
of many SMs in software engineering: the Petersen’s study scored 31% and the
median over the 52 mapping studies reviewed by Petersen is 33%. Following the
evaluation rubrics in [33], the scores per phases are: need for map: 1; search
strategy: 1; search evaluation: 2 ; extraction and classification: 2; validity: 1,
the total being 7 — the study by Petersen scored ‘1’ in all the phases, thus 5.

8. Conclusion

This article presented an analysis of the existing literature on the TRAP
research area. On a set of 68 studies, the work investigates the ways in which
the allocation problem is formulated analytically, what models are preferred,
what methods are developed for their solution, and what approaches researchers
adopt for validation. The analysis allowed to spot areas in which further research
is required, also considering the modern software along with its development
processes. The main research directions to address the gap have been outlined
with reference to the development of new and more suitable formulations as
well as to the need of real-world (industrial) experiences to advance the state-
of-the-art and state-of-the-practice together. Results are expected to benefit
researchers and practitioners working in the testing area and in the software
reliability area, especially those dealing with large component-based systems.

[1] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and
taxonomy of dependable and secure computing, IEEE Transactions on De-
pendable and Secure Computing 1 (1) (2004) 11-33.

[2] X. Yang, K. Tang, X. Yao, A learning-to-rank approach to software defect
prediction, IEEE Transactions on Reliability 64 (1) (2015) 234-246.

[3] R. Malhotra, A systematic review of machine learning techniques for soft-
ware fault prediction, Applied Soft Computing 27 (2015) 504 — 518.

36

1055

1060

1065

1070

1075

1080

1085

1090

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic litera-
ture review on fault prediction performance in software engineering, IEEE
Transactions on Software Engineering 38 (6) (2012) 1276-1304.

C. Catal, B. Diri, A systematic review of software fault prediction studies,
Expert Syst. Appl. 36 (4) (2009) 7346-7354.

A. Monden, T. Hayashi, S. Shinoda, K. Shirai, J. Yoshida, M. Barker,
K. Matsumoto, Assessing the cost effectiveness of fault prediction in accep-
tance testing, IEEE Transactions on Software Engineering 39 (10) (2013)
1345-1357.

M. Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill,
Inc., Hightstown, NJ, USA, 1996.

F. Elberzhager, A. Rosbach, J. Miinch, R. Eschbach, Reducing test ef-
fort: A systematic mapping study on existing approaches, Information and
Software Technology 54 (10) (2012) 1092 — 1106.

M. H. CALP, U. KOSE, Planning activities in software testing process: A
literature review and suggestions for future research (2018).

J. Lee, S. Kang, D. Lee, Survey on software testing practices, IET Software
6 (3) (2012) 275-282.

V. Garousi, M. V. Méntyld, A systematic literature review of literature
reviews in software testing, Information and Software Technology 80 (2016)
195 — 216.

W. Kuo, R. Wan, Recent advances in optimal reliability allocation, IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans 37 (2) (2007) 143-156.

W. Kuo, V. R. Prasad, F. A. Tillman, C.-L.. Hwang, Optimal Reliability
Design: Fundamentals and Applications, 1st Edition, Cambridge Univer-
sity Press, 2001.

Y. Nakagawa, S. Miyazaki, Surrogate constraints algorithm for reliability
optimization problems with two constraints, IEEE Transactions on Relia-
bility R-30 (2) (1981) 175-180.

F. A. Tillman, C. Hwang, W. Kuo, Determining component reliability and
redundancy for optimum system reliability, IEEE Transactions on Relia-
bility R-26 (3) (1977) 162-165.

A. O. C. Elegbede, C. Chu, K. H. Adjallah, F. Yalaoui, Reliability alloca-
tion through cost minimization, IEEE Trans. Reliability 52 (2003) 106-111.

W. F. Rice, C. R. Cassady, T. R. Wise, Simplifying the solution of re-
dundancy allocation problems, in: Annual Reliability and Maintainability.
Symposium. 1999 Proceedings (Cat. No.99CH36283), 1999, pp. 190-194.

37

1095

1100

1105

1110

1115

1120

1125

[18]

J.-H. Lo, C.-Y. Huang, An integration of fault detection and correction
processes in software reliability analysis, Journal of Systems and Software
79 (9) (2006) 1312-1323.

A. L. Goel, K. Okumoto, Time-dependent error-detection rate model for
software reliability and other performance measures, IEEE Trans. on Reli-
ability R-28 (3) (1979) 206—211.

A. L. Goel, Software reliability models: Assumptions, limitations and ap-
plicability., IEEE Trans. on Software Engineering SE-11 (12) (1985) 1411-
1423.

S. Yamada, M. Ohba, S. Osaki, S-shaped reliability growth modeling for
software error detection, IEEE Trans. on Reliability R-32 (5) (1983) 475-
484.

S. Gokhale, K. Trivedi, Log-logistic software reliability growth model, in:
Proc. 3rd Int. High-Assurance Systems Engineering Symposium (HASE),
1998, pp. 34-41.

K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model:
Estimation algorithm and empirical validation, Journal of Systems and
Software 82 (3) (2009) 535-543.

M. Cinque, D. Cotroneo, A. Pecchia, R. Pietrantuono, S. Russo,
Debugging-workflow-aware software reliability growth analysis, Software
Testing, Verification and Reliability 27 (7).

M. Cinque, C. Gaiani, D. De Stradis, A. Pecchia, R. Pietrantuono, S. Russo,
On the Impact of Debugging on Software Reliability Growth Analysis: A
Case Study, in: Murgante, B. et alii (Ed.), Computational Science and
Its Applications — ICCSA 2014, Vol. 8583 of LNCS, Springer International
Publishing, 2014, pp. 461-475.

J. D. Musa, K. Okumoto, A logarithmic poisson execution time model for
software reliability measurement, in: Proceedings of the 7th International
Conference on Software Engineering, ICSE 84, IEEE Press, Piscataway,
NJ, USA, 1984, pp. 230-238.

B. Zachariah, R. N. Rattihalli, Failure size proportional models and an
analysis of failure detection abilities of software testing strategies, IEEE
Transactions on Reliability 56 (2) (2007) 246-253. |[doi:10.1109/TR.2007.
895310

R. Pietrantuono, S. Russo, K. Trivedi, Software reliability and testing time
allocation: An architecture-based approach, IEEE Transactions on Soft-
ware Engineering 36 (3) (2010) 323-337.

38

http://dx.doi.org/10.1109/TR.2007.895310
http://dx.doi.org/10.1109/TR.2007.895310
http://dx.doi.org/10.1109/TR.2007.895310

1130

1135

1140

1145

1150

1155

1160

1165

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[39]

[40]

[41]

B. Yang, Y. Hu, C.-Y. Huang, An architecture-based multi-objective op-
timization approach to testing resource allocation, IEEE Transactions on
Reliability 64 (1) (2015) 497-515.

C.-Y. Huang, J.-H. Lo, Optimal resource allocation for cost and reliability
of modular software systems in the testing phase, Journal of Systems and
Software 79 (5) (2006) 653—664.

S. Yamada, J. Hishitani, S. Osaki, Software-Reliability Growth with a
Weibull Test-Effort: A Model & Application, IEEE Transactions on Relia-
bility 42 (1) (1993) 100-106.

B. Boehm, Software Engineering Economics, 1st Edition, Prentice Hall
PTR, 1981.

K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Information
and Software Technology 64 (2015) 1 — 18.

B. Kitchenham, P. Brereton, A systematic review of systematic review pro-
cess research in software engineering, Information and Software Technology
55 (12) (2013) 2049 — 2075.

H. Arksey, L. O’Malley, Scoping studies: towards a methodological frame-
work, International Journal of Social Research Methodology 8 (1) (2005)
19-32.

H. Ohtera, S. Yamada, Optimal allocation and control problems for
software-testing resources, IEEE Transactions on Reliability 39 (2) (1990)
171-176. |[doi:10.1109/24.55878.

S. Yamada, T. Ichimori, M. Nishiwaki, Optimal allocation policies for
testing-resource based on a software reliability growth model, Mathemati-
cal and Computer Modelling 22 (10) (1995) 295 — 301.

J.-H. Lo, S.-Y. Kuo, M. R. Lyu, C.-Y. Huang, Optimal resource allocation
and reliability analysis for component-based software applications, in: Pro-
ceedings 26th Annual International Computer Software and Applications,
2002, pp. 7-12.

M. R. Lyu, S. Rangarajan, A. P. A. van Moorsel, Optimal allocation of test
resources for software reliability growth modeling in software development,
IEEE Transactions on Reliability 51 (2) (2002) 183-192.

C.-Y. Huang, M. R. Lyu, Optimal testing resource allocation, and sensi-
tivity analysis in software development, IEEE Transactions on Reliability
54 (4) (2005) 592—603.

C.-Y. Huang, J.-H. Lo, Optimal resource allocation for cost and reliability
of modular software systems in the testing phase, Journal of Systems and
Software 79 (5) (2006) 653 — 664, quality Software.

39

http://dx.doi.org/10.1109/24.55878

1170

1175

1180

1185

1190

1195

1200

[42]

[49]

[50]

B. A. Kitchenham, D. Budgen, O. P. Brereton, The value of mapping stud-
ies: A participantobserver case study, in: Proceedings of the 14th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
EASE’10, BCS Learning & Development Ltd., Swindon, UK, 2010, pp.
25-33.

R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion,
Requirements Engineering 11 (1) (2006) 102-107.

C.-Y. Huang, S.-Y. Kuo, M. Lyu, An Assessment of Testing-Effort Depen-
dent Software Reliability Growth Models, IEEE Transactions on Reliability
56 (2) (2007) 198-211.

C.-Y. Huang, M. Lyu, Optimal release time for software systems consider-
ing cost, testing-effort, and test efficiency, IEEE Transactions on Reliability
54 (4) (2005) 583-591.

M. Felderer, R. Ramler, Integrating risk-based testing in industrial test
processes, Software Quality Journal 22 (3) (2014) 543-575.

D. Cotroneo, R. Pietrantuono, S. Russo, Combining operational and debug
testing for improving reliability, IEEE Transactions on Reliability 62 (2)
(2013) 408-423.

G. Zhang, Z. Su, M. Li, F. Yue, J. Jiang, X. Yao, Constraint handling
in nsga-ii for solving optimal testing resource allocation problems, IEEE
Transactions on Reliability 66 (4) (2017) 1193-1212.

L. Fiondella, S. Gokhale, Optimal allocation of testing effort considering
software architecture, IEEE Transactions on Reliability 61 (2) (2012) 580
589.

M. R. Lyu, S. Rangarajan, A. P. A. van Moorsel, Optimization of reliability
allocation and testing schedule for software systems, in: Proceedings The
Fighth International Symposium on Software Reliability Engineering, 1997,
pp. 336-347.

C.-Y. Huang, J.-H. Lo, S.-Y. Kuo, M. R. Lyu, Optimal allocation of testing-
resource considering cost, reliability, and testing-effort, in: 10th IEEE Pa-
cific Rim International Symposium on Dependable Computing, 2004. Pro-
ceedings., 2004, pp. 103-112.

M. G. M. Khan, N. Ahmad, L. S. Rafi, Determining the optimal allocation
of testing resource for modular software system using dynamic program-
ming, Communications in Statistics - Theory and Methods 45 (3) (2016)
670-694.

40

1205

1210

1215

1220

1225

1230

1235

1240

[53]

[54]

R. Pietrantuono, S. Russo, Search-based optimization for the testing re-
source allocation problem: Research trends and opportunities, in: Proceed-
ings of the 11th International Workshop on Search-Based Software Testing,
SBST ’18, ACM, New York, NY, USA, 2018, pp. 6-12.

R. Ramler, M. Felderer, A process for risk-based test strategy development
and its industrial evaluation, in: P. Abrahamsson, L. Corral, M. Oivo,
B. Russo (Eds.), Product-Focused Software Process Improvement, Springer
International Publishing, Cham, 2015, pp. 355-371.

M. Felderer, R. Ramler, A multiple case study on risk-based testing in
industry, International Journal on Software Tools for Technology Transfer
16 (5) (2014) 609-625.

Amrita, D. K. Yadav, Operational profile based software test case allo-
cation, 2015 2nd International Conference on Computing for Sustainable
Global Development (INDIACom) (2015) 1775-1779.

Amrita, D. K. Yadav, A novel method for allocating software test cases,
Procedia Computer Science 57 (2015) 131 — 138, 3rd International Confer-
ence on Recent Trends in Computing 2015 (ICRTC-2015).

R. Gao, S. Xiong, A genetic local search algorithm for optimal testing
resource allocation in module software systems, in: D.-S. H. et al. (Ed.),
Intelligent Computing Theories and Methodologies, Vol. 9226 of LNCS,
Springer International Publishing, 2015, pp. 13-23.

Y. Shuaishuai, F. Dong, B. Li, Optimal testing resource allocation for
modular software systems based-on multi-objective evolutionary algorithms
with effective local search strategy, in: IEEE Workshop on Memetic Com-
puting (MC), IEEE, 2013, pp. 1-8.

S. Wang, S. Ali, T. Yue, . Bakkeli, M. Liaaen, Enhancing test case prioriti-
zation in an industrial setting with resource awareness and multi-objective
search, in: 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), 2016, pp. 182-191.

G. Carrozza, R. Pietrantuono, S. Russo, Dynamic test planning: a study
in an industrial context, International Journal on Software Tools for Tech-
nology Transfer 16 (5) (2014) 593-607.

R. Pietrantuono, P. Potena, A. Pecchia, D. Rodriguez, S. Russo, L. Fer-
nandez, Multi-objective testing resource allocation under uncertainty, IEEE
Transactions on Evolutionary Computation PP (99).

D. Cotroneo, R. Pietrantuono, S. Russo, RELAIT testing: A technique to
assess and improve software reliability, IEEE Transactions on Software En-
gineering 42 (5) (2016) 452-475. doi:10.1109/TSE.2015.2491931.

41

http://dx.doi.org/10.1109/TSE.2015.2491931

1245

1250

[64]

K. Goseva-Popstojanova, K. S. Trivedi, Architecture-based approach to
reliability assessment of software systems, Performance Evaluation 45 (2)
(2001) 179 — 204, performance Validation of Software Systems.

S. S. Gokhale, K. S. Trivedi, A time/structure based software reliability
model, Ann. Softw. Eng. 8 (1-4) (1999) 85-121.

C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto, E. Engstrom,
I. do Carmo Machado, E. S. de Almeida, On the reliability of mapping
studies in software engineering, Journal of Systems and Software 86 (10)
(2013) 2594 — 2610.

B. Kitchenham, What’s up with software metrics? — a preliminary mapping
study, Journal of Systems and Software 83 (1) (2010) 37 — 51, sI: Top
Scholars.

42

	Introduction
	The Testing Resource Allocation Problem
	Overview
	Common objective functions
	Example

	Study design
	Research Questions
	Study identification process
	Data extraction and classification

	Results
	Publication trends
	Formulation
	Model Solution
	Evaluation/Validation

	Research directions
	Guidelines
	Threats to validity
	Conclusion

