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Abstract—The development of dependable software systems
with acceptable costs and time often requires architectural
analyses and criticality assessment strategies to achieve a
detailed understanding of the system failing behavior. This
information is valuable to evaluate architectural alternatives,
to allocate resources, such as, testing efforts and fault toler-
ance means, efficiently, and to support the selection and the
integration of software components.

This paper proposes an architecture-based method, which
allows characterizing the criticality of individual components
and their impact on the overall system. The method includes
a preliminary system characterization through an extensive
software fault injection campaign and finally exploits a math-
ematical description of the system, in terms of components
and interactions among them, which enables the overall crit-
icality analysis. The method is applied to two real-world case
studies (i) the Apache Web Server, and (ii) TAO Open Data
Distribution Service (DDS).
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I. INTRODUCTION

With complex software systems being employed in diverse
and critical applications and with increasingly stringent
market requirements, the achievements of good trade-offs
between systems’ dependability and cost to obtain it is
becoming essential to engineers. Crucial choices during
the development of software systems, which impact these
trade-offs, are often determined by how much the available
knowledge about the system’s behavior is complete and
accurate.
Adequate analysis is of paramount importance to figure
out the behavior of single components and the architectural
interrelationships, in order to be able to evaluate alternatives
and take appropriate actions regarding, architectural choices,
resources allocation (e.g., for testing and/or fault tolerance
means), Off-The-Shelf (OTS) items integration, and so on.
Due to the relevance of component-based design solutions,
such an analysis cannot disregard the software architecture,
in that it determines how the different components interact
to each other and strongly contribute to the way the system
behaves and performs.
This paper proposes a method to characterize software
architecture in terms of its most critical failure modes,
most critical software components with respect to each

considered failure mode, and most critical fault type per
each component. This allows developers to obtain a set of
information about the system being developed, and enables
them to take actions tailored to their software architecture,
regarding:
• Architectural alternatives: engineers can evaluate if

different compositions of new components or the pos-
sible integration of off-the-shelf software items can
improve the failure behavior of the system.

• Architectural bottlenecks: by carrying out a sensitiv-
ity analysis on the failure behvior of single components,
it is possible to pinpoint which component mainly
impacts the system’s failure behavior.

• Resources allocation: by knowing the most failure-
prone components, the most relevant failure modes per
component, as well as the most critical fault types,
engineers can allocate resources for testing and/or for
fault tolerance mechanisms optimally, both regarding
the amount of resources and about their type (i.e., where
to allocate more, and what to allocate to each com-
ponent); e.g., different testing techniques for modules
sensitive to different fault types, or different FT means
for modules prone to different failure modes.

As first step of this method, the software architecture is mod-
eled by using a hierarchical architecture-based solution; this
represents the system’s components and how they interact
to each other to carry out the intended system’s function.
Then through an extensive software fault injection campaign
we identify the most critical software modules, as well as
related fault types, which heavily impact the correct behavior
of a system during the operational time. Indices provided
by the fault injection campaign, along with architectural
model, allows figuring out the impact of each component
on that specific architecture from failure proneness and fault
tolerance perspectives.
The method is applied to two distinct case studies: (i)
the popular Apache Web Server, which availability level
is crucial for many web-based applications, and (ii) TAO
Open Data Distribution Service (DDS), an open source
implementation of OMG’s DDS specification 1, also em-
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ployed in safety-critical contexts [rif.]. Results shows all
the information it is possible to obtain, highlighting the
criticalities of both applications about their components,
their failure modes and fault types most critical for them.
The paper is organized as follows: —–

II. BACKGROUND AND RELATED WORK

Current trends in software development exacerbate the
role of software faults as main responsible of system failures
[4], [3]. In fact, it may not be possible to validate a
complex system solely by means of testing both due to
the stringent time-to-market and technical limitations. As a
result, software is likely to be released with residual software
faults [5]. Additionally, the massive use of Off-The-Shelf
items, which allow complex applications to be designed
by integrating services and components rather then build-
ing them entirely from scratch, does not provide specific
dependability guarantees, because of complex interactions
with the system after their integration [1], [2].

Mentioned problems make dependability a significant
challenge, especially in case of complex and critical systems.
To this aim, several organizations, such as, [6], [7], [8]
formalized standards and methodologies to support the de-
velopment of dependable systems. More in details, they ex-
haustively define a set of tasks and evidences to be produced
during all the phases of the software development cycle.
However, these activities may be extremely time consuming,
thus neglecting the actual needs of current software industry.

As stated, we believe that both testing and validation ef-
forts may be effectively driven with a preliminary knowledge
of the system, in terms of its critical components. Men-
tioned standards usually suggest hazard analysis and risk
assessment techniques, such as, failure modes and effects
analysis (FMEA), hazard and operability (HAZOP), event
tree analysis (ETA), and fault tree analysis [15]. In [16]
and [9] authors describe the hazard analysis methodology
defined and used in railway dependable systems. In [10]
safety assessment processes of ATC software systems have
been proposed.

Several works propose approaches based on a dynamic
flow graph methodology (DFM) [11], [12] to generate timed
fault trees, for assessing risks associated with dynamic
behaviors. Additionally, methodologies and/or technologies
for safety assessment of real complex critical system in-
frastructures and operations have been proposed. Authors in
[14] present a case study to apply a goal-oriented method
for car security related hazard analysis. [13] has proposed a
model based on a conceptual network representation, where
objects represent concepts and links represent relations.

It should be noted that some issues may compromise
the effectiveness of existing approaches in real-world sce-
narios. As for example, the DFM analysis does not have
mechanisms to cope with computational complexity when
dealing with large-scale software systems. Furthermore, the

risk assessment phase is often performed by examining
only faults at the I/O interface level without considering
mitigation means present in the system architecture. To
overcome these limitations, the proposed approach relies on
a high-level system model, whose grain is completely up to
the analyst. Additionally we make extensive use of software
fault injection to emulate actual programming mistakes and
we assess the system behavior with respect to these faults
in order to achieve insights of its mitigation capabilities.

III. SYSTEM MODEL

Criticality assessment is driven by a system model, in
order to achieve insights of the critical entities. More in
details, we identify the main functional components of the
systems along with the interactions among them.

We achieve insight of the internal architecture of the
platform under-analysis through the available documenta-
tion. Accordingly, a set of entities is defined with respect
to the design (Figure 1 - A). An entity is a component
of the platform under analysis and it provides a well-
defined capability [36]. Each entity is finally mapped to the
source modules of the platform under analysis providing the
capability associated to the entity. For reason of consistency
with the notations, all the modules, which cannot mapped
to an entity, namely, they provide a capability which the
analyst is not intended to deal with, are mapped into a
special entity. Entity thus represent the granularity for the
subsequent proneness and criticality assessment.

It should be noted that the provided definition is general.
Analyst can clearly specialize it according to their needs as
well as the objectives of the analysis. Furthermore the anal-
ysis may encompass the system as a whole, thus including
all the possible scenarios. The finer grain we hypothesize
would be to map each entity with exactly one source file of
the system. In fact this is clearly a trade-off between a large
number of small units and a small number of large units.
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Figure 1: System modeling. Overview.

Once the high-level picture has been achieved via the
entities identification, we execute and profile the system
in order to define the interactions among them (Figure 1
- A). This is done by using well know profiling tools. In
the context of this work we used gprof [37]. The profiling
information is subsequently used to identify the interactions
among the entities in the system. An interaction exists
between two entities A and B, if, according to the profiling



information, a function provided by a module mapped into
B is invoked within the code mapped to A. The joint
information provided by the entities and interactions allows
to model the system architecture as a graph (Figure 1 - C).
This graph, along with the detailed information about the
number of interactions existing among the entities is finally
fed to the criticality assessment phase.

IV. PRONENESS ESTIMATION

We quantitatively evaluate the system behavior in pres-
ence of faults. In particular we quantify the ability of the
system to keep correctly working when software faults of
different natures are injected in the entities identified in the
modeling phase. This phase gives a preliminary overview of
the criticality of the identified entities.

To obtain such a characterization, the approach proposed
in this paper includes the following steps:

1) Failure Modes Definition. Expected failure modes are
identified by the analyst in this phase. According to the
its mission, the definition of potential modes by which
the system could fail, such as crash, passive/active
hang, value, and so on. Let us denote these failure
modes for the system S with (F1, F2, ..., Fk).

2) Fault Injection. In this step the fault injection cam-
paign is carried out. We create and exercise a faulty
version of the system and evaluate its behavior against
the faults activation. Faults of various type have to be
injected in the software, since we are interested in fig-
uring out how a given fault type impacts on the system.
To this aim, we classified faults according to a well-
known classification scheme, namely the Orthogonal
Defect Classification (ODC) [34], extended according
to Madeira et al. [35]. During these experiments, all
failure data are collected, along with the faults that
caused them (type and location). Section IV-A detail
how we conduct the fault injection experiments in the
context of this work.

3) Failure Analysis. The following two steps allow to
obtain the system characterization to be used for
figuring out the entities which are critical. In this
step, designers evaluate how the system failed during
experiments, and what modules are more critical:

• Failure Modes Distribution: collected failure data
are classified according to their modes (F1, F2,
..., Fk) and to the responsible entity. Hence the
output is a set of indexes #Fj,ei

denoting the
number of failures of type j (among the identified
failure modes) occurred due to a fault injected in
the entity ei.

• Failure Proneness Computation: per each entity
ei, a failure proneness value indicating its criti-
cality with respect to other entities is computed

as follows:

FPei
=

∑K
j=1 #Fj,ei

#F
(1)

where K denotes the number of failure modes,
and #F is the total number of failures. This
index represents the number of failures due to
ei over the total number of failures. It represents
how much an entity caused the system failures,
i.e., its criticality with respect other entities. The
output of this step is therefore the list of entities
criticality.
Note that this criticality index can be obtained also
with respect to each considered failure mode, (i.e.,
FPei,j = #Fj,ei

#F , indicating how much the entity
ei is responsible for failures of mode j).

4) Tolerance Per each module, it is important to figure
out how much an entity caused a system’s failure with
respect to the number of faults injected in it, i.e., an
indication of its tolerance to the presence of faults.
The following index is computed:

Tolei
= 1−

∑K
j=1 #Fj,ei

#SeededFaultei

(2)

representing the number of failures due to the entity
ei, over the number of faults injected in ei, i.e.,
#SeededFaultei (namely, the number of tolerated
faults).
Note that also in this case we can consider a tolerance
of the entity ei with respect to each failure mode,
getting to the following: Tolei,j = 1 − #Fj,ei

#Faultei
,

indicating how much the entity ei is tolerant to failures
of mode j.

5) Fault Analysis Per each module, it is important to
figure out what types of fault caused, more likely,
the observed failures, in order to adopt appropriate
countermeasure. In this step, the most relevant fault
types are identified, i.e., the ones mainly responsible
for the failures: a further index is then computed, FC
(i.e., Fault Criticality, FC):

FCt,i =
#Faultt,i

#SeededFaulti
(3)

where FCt,i is the average criticality of faults of
type t in the entity i. It is computed by consider-
ing #Faultt,i, which denotes the number of faults
of type t in the entity ei that caused a failure,
#SeededFaulti, which denotes the number of total
faults injected in ei that caused a failure. The index
represents how much the fault type t impacted in the
average the observed number of failures due to ei.

At the end of these steps, designers will have a preliminary
picture of the system behavior. More in detail, they know



Table I: Fault operators [35]

Acronym Explanation
OMFC Missing function call

OMVIV Missing variable initialization using a value
OMVAV Missing variable assignment using a value

OMVAE Missing variable assignment
with an expression

OMIA Missing IF construct around statements
OMIFS Missing IF construct plus statements

OMIEB Missing IF construct plus statements
plus ELSE before statements

OMLC Missing clause in expression
used as branch condition

OMLPA Missing small and localized
part of the algorithm

OWVAV Wrong value assigned to variable

OWPFV Wrong variable used in parameter
of function call

OWAEP Wrong arithmetic expression
in parameter of a function call

the average criticality index FPei
per entity, the tolerance

index, which indicates how the entity behaves with respect
to the seeded faults, and the fault types criticality indicating
those faults more responsible for the observed failures.

A. Fault Injection Campaign

Software faults in the target platform by means of changes
in the source code of the program. Changes are introduced
according to specific fault-operators based upon actual faults
uncovered in several open-source projects [35]. We recog-
nize that this approach needs for the source code of the
program in order to be applied, nevertheless its accuracy is
greater than other fault injection techniques (e.g., G-SWIFT
[35]). Table I summarizes fault operators.

Exactly one software fault is introduced in the target
source code for each fault injection experiment. The target
platform is compiled and its resulting faulty version is stored
for the subsequent experimental campaign. We use a support
tool2 to automate the fault injection process.

Once completed the injection process, we execute the
experimental campaign, which consists of 4 distinct logic
phases (Figure 2), detailed in the following. In particular,
for each faulty version of the target platform, a campaign
manager program executes the following steps:

1) initializes the target platform;
2) starts a tester program, which exploits commonly-

used platform capabilities by running a specific work-
load;

3) identifies the experiment outcome. In particular, the
campaign manager figures out the specific failure

2http://www.mobilab.unina.it/SFI.htm
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Figure 2: Experimental campaign

(among the failure modes choosen by the analyst (step
1 of the method), if any, resulting from the injected
fault. To this aim it exploits both (i) operating system
level information (e.g., memory dumps generation)
and (ii) tester level information (e.g., a timeout ex-
piration, computation results provided by the platform
in hand to the tester program);

4) produces a report containing information intended to
be used during the analysis phase (e.g., injected fault
type, target source file, experienced failure mode) and
cleans up the system for the successive fault injection
experiment.

Machines composing the experimental testbed (Intel Pen-
tium 4 3.2 GHz, 4GB RAM, 1,000 Mb/s Network Interface
equipped) run a RedHat Linux Enterprise 4. An Ethernet
LAN interconnects the machines. Platform-specific details
(e.g., failure modes, and the used tester program), when
needed, will be clarified in the context of the reference case-
studies.

V. CRITICALITY ASSESSMENT

Entities and interactions discussed in Section III represent
the architecture as a graph. However, to obtain a mathe-
matical description, we map the graph onto an absorbing
Discrete Time Markov Chain (DTMC), as in [?], [?], [?],
[?]. Assuming that an application has n entities, with the
initial entity indexed by 1 and the final entity by n, DTMC
states represent the entities and the transition from state
i to state j represents the transfer of control from entity
i to entity j, with the associated transition probability. A
useful measure to develop suitable mathematical models
is the visit count, i.e., the expected number of times an
entity is visited during an execution. One way to compute
it is to consider transition probabilities, through the one-
step transition probability matrix of the absorbing DTMC.
Partitioning such a matrix (with n states and m absorbing
states) as:

P =
(
Q C
0 I

)
(4)



we have a submatrix Q, that is an (n-m) by (n-m) stochastic
matrix, an m by m identity matrix I, a m by (n -m) matrix
of zeros and a matrix C, that is an (n-m) by m matrix.
Denoting with P k the k-step transition probability matrix
(where the entry (i,j) of Qk represents the probability of
arriving in the state j from the state i after k steps), and
with Xi,j , the number of visits from the state i to j before
absorption, it can be shown [?], [?] that the mi,j entry of the
fundamental matrix M corresponds to the expected number
of visits from i to j, i.e., vi,j = E[Xi,j]. Thus, the expected
number of visits starting from the initial state to the state j
is:

v1,j = m1,j (5)

We denote visit count for entity j as Vj = v1,j . Such
values are particularly useful to describe the usage of each
application’s entity.

Failure Proneness
The DTMC representation, along with the concept of
visit counts, has been used to express the system’s failing
behavior as a function its entities’ failure behavior.
In particular, we consider the random variable
FPj,ei

= #Fj,ei

#F , (where #F denotes the total number
of failures), as the probability that the, given that the
application failed in one execution, it failed with failure
mode j and because of entity ei; then we consider the
probability that it failed due to ei with one of the considered
failure modes: FPei =

PK
j=1 #Fj,ei

#F .
The impact of a given failure mode on the entire system’s
failure could be simple obtained as: FPj =

Pn
i=1 #Fj,ei

#F ,
i.e., how many failure of mode j occurred over the total
number of failures. However, if we want to know what is
the actual impact of a given failure mode on the entire
system’s failure, we have to consider not only the single
entities, but also how they interact (i.e., their usage). A
suitable way to combine entities’ criticality with their usage
is through visit counts. Hence we define the modified index
FPVj,ei

= FPj,ei
/Vi, indicating the failure proneness per

visit, i.e., the probability that ei causes a failure of mode
j during one visit to it. Then, by an approach similar to
the one adopted in [] for security, we find the proneness
of a system to fail with a given failure mode (given that it
failed), we compute the following:

FPj = 1−
n∏
i

(1− FPVj,ei)
X1,i . (6)

This expression corresponds to the probability that the
system fails with failure mode j, given that it failed, hence
indicates what is the most critical failure mode. The product
indicates that the complement of failure proneness of entities
is multiplied by itself (i.e., raised to the power) as many
times as the number of times they are visited. We are

interested in the expected value of this expression; hence,
we have:

E[FPj ] = 1−
n∏
i

E[(1− FPVj,ei)
X1,i ] (7)

Expanding the term in the product by the Taylor series, and
recalling that E[X1,i] = Vi we have:

E[(1− FPVj,ei
)X1,i ] = (1− FPVj,ei

)Vi+

+ 1
2 ((1− FPVj,ei

)Vi)

×(log(1− FPVj,ei))
2σ2

1,i

(8)

The expected number of visits to the last entity en (which
represents the absorbing state of the DTMC) is always 1,
hence E[X1,n] = Vn = 1 and V ar[Vn] = σ2

1,n = 0. The
expression 7 becomes:

E[(1− FPVj,ei)
X1,i ] = 1− [

∏n−1
i [(1− FPVj,ei)

Vi+

+ 1
2 ((1− FPVj,ei

)Vi)

×(log(1− FPVj,ei))
2σ2

1,i]](1− FPVj,en)
(9)

The expression also takes into account the second-order
architectural effects (through the variance); neglecting such
term as in[?] Equation 9 becomes:

E[FPj ] ≈ 1−
[∏n−1

i (1− FPVj,ei
)Vi

]
(1− FPVj,en

)
(10)

Now, if we want to consider from this expression the actual
probability (i.e.., taking into account the visits) that, if the
system failed, it failed due the entity ei, we can express it
as in the Equation 9, i.e.:

1− E[(1− FPVei
)X1,i ] = 1− (1− FPVei

)Vi+

+ 1
2 ((1− FPVei

)Vi)× (log(1− FPVei
))2σ2

1,i

(11)

Neglecting the variance of the number of visits, and expand-
ing the term (1 − FPVei

)Vi again according to the Taylor
series, we get to:

1− E[(1− FPVei)
X1,i ] ≈

1−
[
1−

∑∞
k

(
Vi

k

)
(−1)kFPV k

ei

] (12)

This represents the actual failure proneness of entity ei.
However, since the higher order terms are typically very
small, Equation 12 can be conveniently expressed as:

1− E[(1− FPVei
)X1,i ] ≈

1− [1− ViFPVei ] = FPVei ∗ Vi = FPei

(13)



which corresponds to the index FPei
, obtained as number

of failures due to ei over the number of total failures.
Tolerance
Similarly to the proneness estimate, to analyze the system
failing behavior with respect to the injected faults, we con-
sider the modified index TolVei

= 1−
Pk

j=1 #Fj,ei

#SeededFaultsei
∗ 1

Vi
,

indicating the tolerance per visit.
In particular, we are interested in estimating system’s failure
probabilities in presence of faults. Starting from single
intolerance value, we compute:

Intol = 1− E[Tol] ≈ 1−
∏n−1

i=1 (TolVei)
Vi(TolVen)

(14)
This represents the expected probability that the system fails
with any failure modes due to the presence of a fault per each
entity. The expression neglects the second-order architectural
effects (as in the Equation 10), that can be accounted for as
in the Equation 9.
By the tolerance value, it is also possible to compute the
expected probability that the system fails (with any failure
mode) due to the presence of one fault in the system (in one
of the n entities):

Intol′ ≈ [
∑n−1

i=1 PFaultei
(1− TolVei

)Vi ](1− TolVen
)

(15)
where PFaultei

is the probability that a fault is present in
the entity ei. Assuming the same probability for a fault to be
present in an entity, PFaultei

is 1
n [QUESTO POSSIAMO

DIRLO NELLA PARTE SPERIMENTALE— CIOE’ NEL
NOSTRO CASO E’ 1/n]. Similarly, we could distinguish
an intolerance value with respect to different failure modes,
by replacing TolVei with TolVei,j in the above two expres-
sions, obtaining the probability that the system fails with a
specific failure mode j due to the presence of a fault in each
entity or of one fault in the system, respectively.
Faults Criticality
The last source of information is represented by what we
called the Fault Criticality. We consider the index FCVt,i =
FCVt,i/Vi, being the probability that fault of type t causes
a failure in the entity i in one visit. Combining with usage
information (i.e., with visit counts), we obtain:

E[FCt] ≈ 1−
∏n

i=1(1− FCVt,i)Vi (16)

This means that faults of type t are critical for the system if
it causes a failure in at least one entity. This random variable
provides an indication of fault type criticality.
All these global indexes will be used in our case studies to
obtain a complete characterization of their failing features.

VI. APACHE WEB SERVER

We present the detailed analysis for a widely used soft-
ware platform, i.e., the Apache Web Server3 (version 1.3.41).

3http://httpd.apache.org/

Table III: Experiments breakup by fault operator (Apache
Web Server)

Operator # Operator #
OMFC 819 OMIA 791
OMIEB 282 OMIFS 812
OMLC 325 OMVAE 1,149

OMLPA 2,183 OMVIV 65
OMVAV 221 OWPFV 1,148
OWAEP 361 =====
OWVAV 277 Total 8,433

We briefly describe tested-specific details. Experiments and
analysis results are then presented.

A. Experiments

We deploy the Web Sever on a node and, according to
Section IV-A, we exercise it by means of a well-known
workload generator, namely, httperf4. This has been
configured to exploit most of the features offered by the
Web Server (e.g., virtual-hosts, multiple methods, cookies)
by means of a specific stress workload.

We identify three failure modes for the reference platform:
• crash: unexpected termination of the Web Server. A

memory dump is generated by the operating system;
• hang: the Web Server process is up but, (i) one or more

HTTP requests supplied by the httperf tool or (ii) the
Web Server start or stop phases, are not acknowledged
within a proper, i.e., tuned before the campaign by
means of several fault-free runs of the Web Server,
timeout.

• content: all error conditions that are not the result of a
hang or crash (e.g., wrong value delivered to the client).

We execute 8,433 fault injection experiments involving 17
source files under the /src/main folder, i.e., the core of
the Web Server. Table III reports the experiments breakup
by fault operator.

During the campaign, 1,395 experiments result in a fail-
ure outcome (i.e., 743, 101, and 551, crashes, hangs, and
contents, respectively). Figure 3 depicts the relative failures
distribution. Crash and content failures are the most likely
to occur. We only experience 7% of faulty runs to result in a
hang outcome, mainly due to the triggering of infinite loops
in the code.

B. Indexes Estimation

Reports produced by the campaign manager are used
to characterize single entities, by estimating the indices
introduced in Section IV, i.e., FPei

, Tolei
, and FCt,i per

each entity identified during the modeling phase. To this aim
we use Equations 1-3 described in the steps of the proposed
method.

4http://www.hpl.hp.com/research/linux/httperf/



Table II: Failure indices (Apache Web Server)

entity # source file(s) locs failures crash hang content FPei Tolei Vi

e0 1 http_config 783 207 155 1 51 0.1484 0.7356 89.771
e1 1 http_core 1004 132 73 2 57 0.0946 0.8685 42.078
e2 1 http_main 1451 183 105 17 61 0.1312 0.8739 246.5
e3 1 http_protocol 1217 102 70 21 11 0.0731 0.9162 37.017
e4 1 http_request 562 27 16 5 6 0.0194 0.9519 14.301
e5 1 http_vhost 271 11 11 0 0 0.0079 0.9594 0.8988
e6* 11 alloc, buff, ... 3145 733 313 55 365 0.5254 0.7669 407.16

total 8,433 1,395 743 101 551 1.0000 - -

53% 

7% 

40% crash 
hang 
content 

Figure 3: Failure modes distribution (Apache Web Server)

The two leftmost columns of Table II report a detailed
perspective concerning the modeling phase. In the context
of this work we focused the criticality analysis on most
of the code concerning the http requests handling and the
configuration section. Additionally a fine grain solution has
been adopted. In fact each entity e0, ..., e5, is mapped to
a specific source file of the platform. On the contrary, e6
contains code mainly providing support capabilities to the
platform, concerning 11 source files.

Column 3, 4, 5, 6 and 7 of Table II, report the experiment
breakup by entity, i.e., the number of fault injected in
the files mapped to a specific entity and the number of
experiments that result in a failure outcome, as well as
the number failures distinguished by failure modes. This
information allows us to estimate indexes reported in column
8 and 9. The last column reports the visit counts value, useful
in the next subsection for the overall criticality assessment.

Among the identified entities e2, corresponding to the
http_main source file exhibits the highest failure prone-
ness and the lowest fault tolerance, according to the prelim-
inary fault injection campaign. It should be not noted that
these values are not necessarily due to the high number of
failure injected in this entity, i.e., 1,451. In fact, the injection
tool selects fault location in a fair and exhaustive way thus
the number of fault is somewhat related to the size of the
source code itself. Additionally, there exist some entities,
e.g., e0 whose proneness is greater than others, even if the
number of injected fault is lower. For the same reason, the
tolerance index does not depend on the number of injected
faults; e.g., entity e1 shows a greater tolerance than e0 even

with a greater number of faults injected.
Entity e2 is among the entities mainly responsible for

crash and hang failures.

ALTRI COMMENTI SIMILI AU FP E TOL—
AGGIUNGERE POI DEI COMMENTI PER L’INDICE
FAULT ANALYSIS, CHE NON RIPORTIAMO PER
RAGIONI DI SPAZIO(CI VORREBBE UNA COLONNA
PER OGNI TIPO DI FAULT—POSSIAMO DIRE
DIRETTAMENTE I FAULT PIU’ CRITICI COME IN
EM4SOC)

C. Criticality Assessment

Starting from single entities characterization, we now take
into account their interactions through the DTMC model
representation. As for failure proneness, we first computed
the FPj,ei values (as number of failures of mode j, columns
5, 6 and 7 of Table II over total number of failures); then
the FPVj,ei

(by considering the las column of Table II,
i.e., visit counts). Through Equation 10, we computed the
expected probability that the system failed of mode j, given
that it failed, i.e., E[FPj ], obtaining: E[FPcrash] = 0.4131,
E[FPhang] = 0.0698, E[FPcontent] = 0.3264.

LA FORMULA VA CONTROLLATA –
PROBABILMENTE LA SOMMA DI QUESTE TRE
DEVE DARE 1

, confirming that crash failures are the most critical
ones. By formulating the problem in this way, we can note
that if we vary the architecture (either by introducing new
components, or by changing the way they interact), the
expected visit counts also vary, and, as a consequence,
the final failure proneness indexes will vary. By doing
a sensitivity analysis, we pinpoint the entity whose
variation majorly determines a variation in the E[FPj ]
indexesarchitectural bottleneck. We found that for a
variation of single failure pronenesses of 20 %, the entity
ex causes the greatest percentage variation in the index



E[FPcrash], while entity ey causes the greatest percentage
variation in the index E[FPhang]; entity ez causes the
greatest percentage variation in the index E[FPcontent].
As for tolerance, we consider equations 14 and 15. Results
reveal that the probability that the system does not tolerate
faults (i.e., it fails) given that there is a fault per each entity
is: Intol = 1 − E[Tol] = 0.6052, (where single tolerance
indexes are obtained from column 4 divided by column 3
values of Table II). While the probability that the system
does not tolerate faults (i.e., it fails) given that there is one
fault in the system is: Intol′ = 0.1215. Also in this case, a
sensitivity analysis reveals that —–
ULTERIORI COMMENTI

Finally, fault analysis revealed that the most critical
fault type for Apache turned out to be the fault type, since
it has the greatest FCt global index.

VII. TAO OPEN DDS
AGGIUSTARE QUESTA SEZIONE COME NEL CASO

DI STUDIO 1, SEGUENDO LA NUOVA TABELLA.

Case study 2 consists of a failure analysis of TAO
Open Data Distribution Service (DDS)5, i.e., a middleware
platform an open source C++ implementation of the OMG’s
v1.0 DDS specification6.

A. Experiments

We developed a DDS-based application acting as tester
program, ccording to Section IV-A. It is composed by two
processes, i.e., i.e., a publisher, which sends data bounded
to a specific DDS topic, and a subscriber process, which
receives them. Both the processes are build atop the DDS
middleware which assures communication services between
the described processes. It should be noted that the applica-
tive code is simple and was accurately analyzed to make it
faults-free. Again, we target only the middleware platform
(linked to the processes in the form of shared library), in
the context of this work.

We identify three possible failure modes:
• crash: unexpected termination of at least one of the

DDS processes. A memory dump is generated by the
operating system;

• no messages (no msg, in the following): none of the
messages sent by the publisher is delivered by the DDS
middleware to the subscriber process within a proper
timeout (i.e., tuned before the campaign by means of
several fault-free runs of the DDS-based application);

• value: messages delivered to the subscriber process are
different from the ones sent by the publisher.

We execute 5,892 fault injection experiments involv-
ing about 80 source files under the /dds/DCPS and

5http://download.ociweb.com/OpenDDS/
6http://www.omg.org

Table V: Experiments breakup by fault operator (TAO Open
DDS)

Operator # Source #
OMFC 1022 OMIA 440
OMIEB 306 OMIFS 324
OMLC 86 OMVAE 321

OMLPA 1921 OMVIV 254
OMVAV 614 OWPFV 396
OWAEP 24 =====
OWVAV 184 Total 5,892

/dds/DCPS/transport folders, i.e., the core of the
DDS library. Table V reports the experiments breakup by
fault operator.

During the campaign 1,685 experiments result in a failure
outcome (i.e., 880, 712, and 93, crashes, no msgs, and
values, respectively). Figure 4 depicts the relative failures
distribution. Crash and no msg failures are the most likely
to occur. Value failures are almost rare (only 6%). It should
be noted that this behavior is somewhat different compared
to the Apache Web Server (Figure 3). As a matter of fact,
hang failures (i.e., the complete lack of service with the
platform still up), resulted only in few experiments.

52% 
42% 

6% 

crash 
no_msg 
value 

Figure 4: Failure modes distribution (TAO Open DDS)

B. Indixes Estimation

Reports produced by the campaign manager are used to
estimate the failure proneness, i.e., FPei , of each of the
entities identified during the modeling phase. To this aim we
use equation 1 described in the third step of the proposed
method (Section ??).

The two rightmost columns of Table ?? report a detailed
perspective concerning the modeling result. In case of the
DDS middleware we mainly focus on the architectural com-
ponents providing the (i) publishing/sending, (ii) subscrib-
ing/receiving, (iii) data transmission capabilities. According
to this high-level picture we identified 7 entities e0, ..., e6.
In this case study we do not have a 1-to-1 mapping with a
specific source file, thus a corse graining has been adopted.
Again, the model is flexible and the graing maybe adjusted
according to the analyst’s needs. Finally e7 contains 60 files
which have not been included in a specific entity. This is
treated has an entity as well.



Table IV: Failure proneness (TAO Open DDS)

entity # source file(s) locs failures crash hang content FPei Tolei Vi

e0 3 Service_[Domain|Participant] 841 250 100 138 12 0.1484 0.7027 9.2538
e1 2 DataWriterImpl, PublisherImpl 739 220 133 74 13 0.1306 0.7023 24.3775
e2 2 DataReaderImpl, SubscriberImpl 575 177 91 75 11 0.1050 0.6922 21.3
e3 2 TransportReceive[Listener|Strategy] 207 45 17 26 2 0.0267 0.7826 1.7584
e4 6 TransportSend[Element|Listener], ... 417 118 70 38 10 0.0700 0.7170 31.5369
e5 3 DataLink, DataLinkSet, ... 349 104 51 47 6 0.0617 0.7020 31.6287
e6 2 SimpleTCP[DataLink|Transport] 308 85 45 34 6 0.0504 0.7240 3.1309
e7* 60 BuiltinTopicUtils, Qos_Helper, ... 2,456 686 373 280 33 0.4071 0.7207 67.8953

total 5,892 1,685 880 712 93 1.0000 - -

Column 3,4 Table ??, report the experiment breakup by
entity, i.e., the number of fault injected in the files which
have been mapped to a specific entity and the number
of experiments, which result in a failure outcome. This
information allows us to estimate the #Fj,ei indexes as well
as the overall FPei . This is shown in the rightmost column.

Entities e0 and e1 exhibit the higher failure proneness
at this stage of the analysis. More in details, e0 is the
main responsible in case of no msg failures, while e1 is
the main responsible for crash and value failures. Entity e2
is critical as well. Other considered entities, namely, e3,e4,
e5,e6 do not exhibit a significantly high failure proneness
when compared to the discussed entities. These modules
are invoked by a DDS-based application to send and receive
a message, respectively. We experience that faults injected
in these modules are very likely to result in an application
failure. We hypothesize that this behavior is the result of the
lack of an inter-lying, i.e., between the DDS application and
the DataWriter(Reader)Impl, module, which may
mitigate, if not tolerate, a fault once triggered.

C. Criticality Assessment

Starting from
per brevita forse non si puo riportare gli indici distinti

per failure mode – forse per uno piu rilevante dati su fault
criticality da calcolare

VIII. CONCLUSION
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