Integrating MDT in an Industrial Process in the Air Traffic Control Domain
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Abstract—Air Traffic Control (ATC) systems are typical
software-intensive mission-critical systems with stringent de-
pendability requirements. The major providers of ATC systems
are system integrators that address such requirements at the
cost of a very expensive testing effort. They envisage Model
Driven Testing (MDT) as a promising approach to reduce
this effort while achieving better product quality. Within the
context of a public-private partnership for software innovation
in the ATC domain, we address the problem of integrating
MDT into a software development process based on Model
Driven Architecture. Specifically, we propose a solution to the
integration of MDT into a V-model, focusing on a parallel
MDA-MDT flow in a real industrial software process.
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I. INTRODUCTION

A civil Air Traffic Control (ATC) system is a typical
software-intensive mission-critical system, that plays a key
role in Air Traffic Management (ATM) [1]. It provides
facilities and services to ground controllers and pilots for
managing safely ground and en-route flight operations, with
the aim of preventing collisions, organizing the flow of
traffic, and providing support information to operators and
pilots. In Europe, for instance, en-route ATC is segmented
in several Area Control Centers (ACCs), each responsible
for a defined portion of the air space, with ATC systems in
ACCs cooperating to guarantee the safety of flights.

The software dependability requirements for this type of
large-scale critical systems are very stringent, as failures
cannot be admitted because of the impact on consumer
dissatisfaction, economical losses and even people’s lives.
These requirements can be satisfied at the cost of a very
thorough development and testing process.

Model Driven Architecture (MDA) [2]-[4] is a software

design approach being increasingly envisioned by mission-
critical systems providers as a key technique to be incor-
porated into their software development life-cycle (SDLC),
as it promises to be highly beneficial in terms of software
quality and of cost reduction. However, the integration of
modern model-driven techniques into existing industrial soft-
ware processes for critical systems poses several problems,
which make MDA be still far from being fully mature and
commonly adopted in application domains such as ATC.

As testing represents the most expensive part of SDLC
for critical systems [5], model-driven techniques are seen
with much favor by industries for testing too. Similarly to
MDA for design and development, Model Driven Testing
(MDT) [6] is a promising approach to cost reduction. Its
greatest benefit is claimed to be the ability of reducing the
cost of testing by automatically generating and (possibly)
executing the test suite from models representing the desired
system behavior. Although MDA and MDT are based on
similar concepts, they are currently not fully integrated, and
they may indeed be applied independently. In the industrial
practice models for MDT are often realized manually or by
partial reuse of the (MDA) design models (e.g., adding to
UML models stereotypes or profiles such as the UML 2
Testing Profile [7]).

A relevant problem for providers in the ATC field is the
integration of MDT into existing MDA-based processes in
the critical systems domain. We are addressing this problem
within the context of a public-private laboratory'. In this
paper, we propose a solution to the integration of MDT with
MDA into a V-model process, which is a typical model in

IThe “Iniziativa Software” cooperation is a network of public-private
laboratories between Finmeccanica companies and Italian universities.



the given application domain?, focusing on the parallelism of
MDA and MDT workflows. The goal is to favor a parallel
evolution of development and testing so as to support the
automated generation of test artifacts along with system and
software artifacts, and early testing of development artifacts.

The integration of MDT and MDA has been addressed re-
cently in the scientific literature in other application domains
[8]. Born et al. adapted an existing model-driven method for
information systems, named KobrA, to telecommunication
systems, by combining MDA, UTP and TTCN-3 [9]. Tielin
et al. have integrated the MDT approach in an MDA design
in the domain of web applications [10]. Yang et al. proposed
a method for model transformation from the PIM (specified
in UML) to the PIT (in U2TP), and subsequent generation of
JUnit test cases from the PIT, showing, again, the application
to a web system [11].

The paper is organized as follows. In Section II we give
a brief background on MDA and MDT. In Section III we
describe what we believe is a relevant challenge for software
development companies and system integrators in the ATC
domain; we consider this representative of the larger domain
of large-scale mission-critical systems. Section IV describes
the proposed solution and some technical aspects related to
the needed support tools. Section V focuses on the case
study. Section VI contains the conclusions.

II. BACKGROUND

MDA and MDT share the goals of portability, interoper-
ability and reusability [6], [12]. These are achieved by means
of i) models specification (at various level of abstraction),
and ii) models transformation. The following models are
specified or derived through an iterative approach:

o the Platform Independent Model (PIM) defines a high-
level system model to fulfill system requirements; it is
specified in a domain-specific modeling language;

o the Platform Independent Model for software (PIM-
Software) is the high-level model of the system’s soft-
ware architecture designed to fulfill software require-
ments. It is specified through a software modeling lan-
guage in a way independent from the target execution
platform and from implementation technologies;

o the Platform Specific Model (PSM) is the low-level
(technology-dependent) software design model for the
specific target platform. The PSM takes into account
design choices related to the target execution platform,
such as computing architecture, operating systems and
middleware technologies; in MDA it can be derived
from the PIM through model transformations;

o the Platform Independent Test model (PIT) is the high-
level model of the test architecture for the system
described by the PIM; it can be derived from the PIM;

2 A major system integrator in the ATC domain is Selex Sistemi Integrati,
a Finmeccanica company, partner of the cited public-private cooperation.

o the Platform Independent Test model - Software (PIT-
Software is the high-level software testing model, con-
sisting of the test architecture for the software System
Under Test (SUT). It is complemented by test cases
(TCs), to be automatically transformed into text scripts;

o the Platform Specific Test model (PST) is the low-
level model of the test architecture for the specific
target platform. It is automatically derived from the
PIT-Software and TCs through M2M transformations,
meta-models and PSM information.

Model transformation is done through specific translation
rules and tools. There are two types of transformations: i)
Model-To-Model (M2M), to convert a model into another
model, and ii) Model-To-Text (M2T), to convert a model
into a textual artifact (e.g. source code or script).

III. INDUSTRIAL CHALLENGE

The eATMS long-term program is being run by our
industrial partner in the public-private laboratory to design
a new generation of ATM/ATC systems. eATMS goals
include: i) optimizing system deployment and maintenance,
ii) achieving the performance required to manage the traffic
increase, and iii) converging towards interoperability with
other European ATM systems as required by the Single
European Sky ATM Research (SESAR) project®. The main
eATMS non-functional requirements concern:

« Dependability, to provide continuous availability and
integrity;

« Robustness, to prevent failures in case of anomalous
operating conditions;

« Changeability, to support long-term evolution and in-
tegration/interoperability with other systems, as well as
quick response to changes in operating environments;

o Performance, to support the air traffic increases in
European skies.

To fulfill functional as well as non-functional requirements,
the adoption of modern yet mature engineering methods,
modeling languages, standards, tools and technologies is
envisaged. They include: object- and component-oriented
analysis/design (OOA/D, CBSE) methods and programming
languages, Service-Oriented Architectures (SOA), Unified
Modeling Language (UML), Systems Modeling Language
(SysML), Model Driven Architecture, Model Driven Testing,
TTCN-3 (Testing and Test Control Notation) [13]. Addition-
ally, there may be constraints on the development tools to be
adopted, depending on industrial strategies and investments
and on customers requirements.

Most of development processes adopted in the domain of
interest are based on the V-Model; we refer to the model
shown in Figure 1. We classify the main artifacts produced
by the activities in two categories: i) design artifacts and ii)

3SESAR (www.sesarju.eu) is one of the most ambitious R&D projects
ever launched by the European Community.



testing artifacts. They typically comply to the MIL-STD-498
standard [14]. Design artifacts include:
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Figure 1: The reference V-Model process

o System/Subsystems Specification (SSS), specifying
the system requirements, grouped for a number of
coarse-grained functionally identified domain subsys-
tems; this is complemented by the Interface Require-
ments Specification (IRS) describing the system exter-
nal interfaces and related data model;

o System/Subsystems Design Description (SSDD), with
the high-level architecture of the envisaged solution,
and the allocation of requirements to its subsystems;

o Software Requirements Specification (SRS), speci-
fying the software requirements for each component
of the software system. Deployable components are
Computer Software Configuration Items (CSCI), as
defined in [14]; an SRS document is produced for each
CSCI. Each SRS is complemented by an Interface Con-
trol Document (ICD) that specifies the CSCI external
interfaces and related data model;

o Software Design Description (SDD), describing the
internal design of a CSCI, and the allocation of software
requirements to its internal subcomponents. An SDD
document is produced for each CSCI. Each SDD is
accompanied by an Interface Design Document (1IDD)
that specifies the CSCI internal (subcomponents’) in-
terfaces and the related data.

Testing artifacts include:

o Acceptance Test Plan (ATP), that specifies the plan
and test-cases of the acceptance testing;

« Software Integration Test Plan (SITP), describing the
plan for the integration tests;

« Software Integration Test Description (SITD), that
specifies the test cases for integration tests;

« Software Test Plan (STP), describing the plan for
testing a CSCI;

o Software Test Description (STD), that specifies the
test cases for a CSCIL.

The flow of MDA artifacts (PIM, PIM-Software and PSM)
has to be integrated into the above artifacts and the related
workflow. We believe the PIM should be integrated into the
SSDD, while the PIM-Software and the PSM into the SDDs.
Moreover, the Verification and Validation (V&V) team is
challenged to integrate the MDT approach in MDA in order
to reach the following goals: i) early testing, ii) automatic
generation of test-cases based on coverage criteria and iii)
integrating the MDT artifacts in the existent documentation.

IV. PROPOSED SOLUTION

The proposed process is outlined in Figure 2. It starts
with the system requirements analysis performed by domain
experts, followed by two parallel activities: i) the creation of
the PIM, and ii) the specification of software requirements.

The PIM is described with the following diagram types:

o Requirements diagram, specified in SysML;

o Components diagram, modeling the relationships
among components;

e Data model: describing the data managed by the
system; these can be categorized into external data
(exchanged with external actors), and internal data
(exchanged among subsystems);

o State diagram, describing the behavior of components
in terms of finite state machines.

The PIM is used to generate the PIT. The latter is described
in UML Testing Profile (UTP) [7], as it is a standard for the
definition and specification of test suites in the given domain.
The PIM is also transformed into the PIM-Software using
the Software Requirements. The PIM-Software, described in
UML, consists of two complementary views:

1) the static view describes entities and their structural
relationships;
2) the dynamic view describes the run-time behavior.

The next step is the generation of PIT-Software and test
cases. This task transforms the static view of the PIM-
Software into the PIT-Software through M2M transforma-
tion. The dynamic view is used to generate the test cases
using specific coverage algorithms on the basis of the
behavioral diagram. At this point, we are able to generate
the PSMs using a M2M transformation. Depending on the
selected platform, the right set of M2M translation rules
needs to be used. The PST is generated in TTCN-3 notation
through M2M transformations. We choose TTCN-3 because
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Figure 2: Overview of the proposed process

we can use one PST for different PSMs. The next part of
the process concerns with the following procedures:

1) the M2T transformations of PSMs into source code
and of PST into TTCN-3 scripts

2) the manual creation of SUT Adapters, one for each
specific implementation, which is a piece of software
used to translate TTCN-3 scripts into messages sent
to the SUT.

The last step is the execution of the Test Suite on the SUT.
This is done in a specific TTCN-3 run-time environment by
means of the SUT Adapter previously created.

The automatically generated blocks of Figure 2 are:

o the PSMs;

¢ the code;

o the PIT (using UTP);

o the PIT-Software and test cases (using UTP);

o the PST (using TTCN-3);

o the TTCN-3 scripts.
The blocks that have to be manually created are:

o Software Requirements;
o Software Model;
o SUT Adapter.

The generation of PIT, PIT-Software and TestCase can be
done using IBM Rational Rhapsody®. In particular, the
PIT is generated automatically in UTP starting from the
PIM. PIT-Software and TestCases (Test Model + Test Suite)
can be generated using two plugins provided by Rhapsody,
respectively Test Conductor and Automatic Test Generator.

V. CASE STUDY

The ATC system, subject of our case study, is designed
with a component-based approach. It has tens of thousands
of requirements and it consists of many interacting CSCls.

We describe here the application of the proposed approach to
a sub-CSCI of the Controller Working Position, a component
of eATMS, named Data Manager (DTM). The DTM, which
is our SUT, is responsible for:

« managing the transition of Flight Data Objects (FDOs)
from external source to the graphical user interface;
they are composed by flights and air traffic data (e.g.
weather information, altitude and coordinates of the
flight);

« converting data in different standard format and storing
them into a database;

« offering publishing/subscribing services for the FDOs.

DTM has about seventy requirements and it is meant to be
used by other components. We started from an available
PIM that is transformed in PIT through M2M translation
rules provided by Test Conductor , a commercial plugin of
IBM Rational Rhapsody® (the design tool required by the
customer).

A prototypal PIM-Software is designed with UML on the
basis of the SRS. The static view is (partially) shown in
Figure 3; it consists of 6 components:

1) FDOStorageManager: it manages the format conver-
sion and the persistent storage of FDOs in a database;

2) FDOWriterAdapter: it manages the services to mod-
ify the FDOs during a Writing Session and uses the
FlightDataStorageManager to do it;

3) FDOPublisherAdapter: it manages the services to
publish new FDOs during a Publishing Session and
uses the FlightDataStorageManager to do it;

4) FDOReaderAdapter: it provides services to read
FDOs during a Reading Session, using the Flight-
DataStorageManager to retrieve the requested data;

5) FDOSessionManager: it manages sessions for exter-



nal components to manipulate FDOs. There are three
kinds of sessions, for writing, publishing and reading;
6) FDOChangeNotificationCenter: the DTM follows
the publish/subscriber paradigm; the component has
the role of message broker: it requests the FDOStor-
ageManager to store the FDOs posted by publishers
and notifies the subscribers about FDOs changes.

DTM

1 FDOStorageManager

L 1 FDOWriterAdapter

1 FDOPublisherAdapter

FDOWritingPort
FDOWritingServices

FDOPublishingPort
FDOPublishingServices

1 FDOReaderAdapter FDOReadingPort

FDOReadingServices

1 FDOSessionManager FDOSessionPort

FDOSessionServices

1 FDOChangeNotificationCenter FDOChangeNotificationPort

FDOChangeNotificationServices

Figure 3: Static view of DTM

The dynamic view (Figure 4) is described with UML state-
chart diagrams. The DTM component starts in an Idle state,
waiting for a request of service that activates the transition
in the Busy state. When the requested service is carried
out without anomalies, it comes back into the Idle state,
otherwise it transits into the Error state. In the latter state,
recovery activities are performed and the DTM is restarted
resuming into the Idle state.

The PIT-Software is automatically generated from the
static view of DTM, through the translation rules offered
by Test Conductor . The dynamic view is used to generate
the test cases with the criterion of covering all states. An
example of generated test-case is shown in Figure 5. The
next step of the proposed process is to generate the PSM and
the PST models. We used the Rhapsody® M2M translation
rules to transform the PIM-Software into a PSM where the
“Platform Specific” is intended in relationship to the specific
implementation language C++. The PST is compliant with
TTCN-3 specification.

Finally the system model is transformed into C++ source
code and the TestModel is transformed into TTCN-3 scripts.
An example of the generated TTCN-3 script is shown in
Figure 6. This kind of scripts are executed through Elvior®©
TestCast that needs a SUT Adapter to use specific APIs
provided by the TTCN-3 Execution Environment (EE). The
SUT Adapter allows the communication between TTCN-3
scripts and the C++ implementation of the SUT.

VI. CONCLUSIONS AND FUTURE WORK

In the field of large-scale mission-critical systems - sys-
tems with tens of thousands of requirements and millions

/restart
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|

Figure 4: Dynamic view of DTM
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of lines of code - the adoption of emerging model-driven
software engineering techniques is a felt need, as we witness
in the ATC application domain we cope with in a public-
private cooperation. The road however is still long. Evidence
is required on how these techniques can be seamlessly
introduced in well-established industrial processes, on the
effectiveness of proper support tools and technologies, and
on the impact on quality, cost reduction and time-to-market.

Since testing accounts for a large part of development
costs, MDT techniques are of great importance for com-
panies in the domain. The benefit of MDT is typically
claimed to reside in the potential for automation, i.e. the
automatic generation (and - possibly - execution) of test
cases from a model of the SUT. We consider this only a
partial key to the successful introduction of MDT in the
domain of interest. As testing is a major quality assurance
techniques, and quality has to accompany the whole process,
we believe the benefit of MD approaches are best achieved
if MDT proceeds closely in parallel to MDA design and
development, so as to enable early testing of actual design
artifacts, to assess their effectiveness in fulfilling functional
as well as non functional requirements, and early discovery
of design flaws, not only of defects in the code.

To this aim, we have proposed a solution to the integration

ENY SUT:DTM SUTFDOSession

Manager

SUT FDOPublisher
Adapter

senviceRequest{"declareAsPublisher")
DeclareAsFublisher("ERNV", )
e

serviceRequest({"openPublishingSession')
apenPublishSession{"ENV")

Figure 5: Test case example



testcase State_DTM Idle_to_WritingSession() runs on Tester
system SUT_adapter
{
var float oldtimer := 0.0;
var default default_behaviour_ref;
var boolean responsel;
var boolean response2;
start_test_case();
default_behaviour_ref
)i
send_ServiceRequest_to_input (DeclareAsPublisherTemplatel
)i

:= activate (testerDefaultBehaviour

oldtimer := 0.0;
timeoutTimer.start (10.0 - oldtimer);
alt

{

[] timeoutTimer.timeout {}
}
timeoutTimer.stop;
send_ServiceRequest_to_input (

OpenPublishingSessionTemplatel) ;

setverdict (pass) ;
deactivate (default_behaviour_ref);
end_test_case();

Figure 6: Generated TTCN-3 script example

of MDT into a typical industrial V-model engineering pro-
cess, favoring parallel progress of design and test, automated
generation of tests from actual design models, reuse of
test artifacts for different PSMs, and reuse of test scripts
templates.

The actual level of automation of model transformations
and test cases generation in the domain of our interest needs
to be further investigated. We have also seen there is still a
poor interoperability among available support tools; yet the
precise definition of the workflow in all technical details and
the availability of a proper tool-chain is a key factor for the
success in industrial settings. Clearly, the proposed solution
needs to be fully experimented for a thorough assessment.
This is the objective of our future work.
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