
A Failure Analysis of Data Distribution Middleware in a
Mission-Critical System for Air Traffic Control

Domenico Cotroneo1, Antonio Pecchia1, Roberto Pietrantuono1, and Stefano Russo1,2

1 Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II
Via Claudio 21, 80125, Naples, Italy

2 Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Ed. 1
Via Cinthia, 80126, Naples, Italy

cotroneo@unina.it, antonio.pecchia@unina.it
roberto.pietrantuono@unina.it, stefano.russo@unina.it

ABSTRACT
Middleware plays a strategic role to reduce development
cost and time to market. However, it raises significant de-
pendability challenges when integrated in complex, mission-
critical systems. Testing activities, carried out during the
development of middleware platforms, may be not enough
to assure a proper dependability level after their integra-
tion. Middleware failures and their impact on the system as
a whole have to be carefully evaluated in critical scenarios.

This paper reports a practical experience with a real world,
middleware-based Air Traffic Control (ATC) system, being
developed in the context of an academic-industrial collabo-
ration. Two equivalent middleware subsystems for data dis-
tribution have been compared from the dependability point
of view. We identify internal dependencies and execution en-
vironment resources characterizing both the solutions. By
means of an extensive failure modes emulation campaign,
we show that these architectural features can significantly
affect the middleware and the overall system dependability
level.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—reliability, availability, and serviceability ; C.2.4
[Computer-Communication Networks]: Distributed
Systems—Distributed applications; D.2.11 [Software Engi-
neering]: Software Architectures—Domain-specific archi-
tectures

General Terms
Experimentation, Performance

Keywords
Software Dependability, Air Traffic Control, Data Distribu-
tion Service, Failure Mode Emulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’09, November 30, 2009, Urbana Champaign, Illinois, USA
Copyright 2009 ACM 978-1-60558-848-3/09/11 ...$10.00.

1. INTRODUCTION
Middleware solutions address relevant design challenges

for developing software systems. They enable complex ap-
plications to be designed by integrating services and compo-
nents rather then building them entirely from scratch. This
in turn reduces development cost and time to market [10].

The use of middleware in mission critical systems (e.g.,
avionic and railway systems, monitoring/control of critical
infrastructures) raises significant issues. Industry is required
to devote a special care to dependability assessment activi-
ties [8]. Domain-specific standards for critical systems (e.g.,
[1, 5, 3, 2]) exhaustively describe tasks and evidences to
be produced during all the phases of the system life-cycle,
which aim to assure a proper dependability level for each
system component.

Middleware designers are not always aware of this process,
thus ignoring the actual needs of critical software develop-
ment. Middleware platforms are usually delivered as Off-
The-Shelf (OTS) items, which have to be just linked to the
application code (e.g., binary objects for C/C++ programs)
without any knowledge of their internals. These items are
usually developed having no specific context in mind. Con-
sequently, testing activities carried out during their devel-
opment, may be not enough to guarantee a proper service
during operations [20, 13], because of unforeseeable inter-
actions with the system under development. Middleware
failures and their impact on the rest of the system have to
be carefully evaluated in critical scenarios.

This paper reports a practical experience with two mid-
dleware solutions for the Data Distribution Service (DDS),
which have been compared from the dependability point of
view. The experience has been conducted on a real-world
case study in the field of Air Traffic Control (ATC). A world
leading company, SELEX-SI, along with academic partners
involved in the COSMIC 1 research project, have developed
a novel ATC system allowing supporting personnel to mon-
itor and to control planes in a specific air space.

The need to select and to integrate a suitable DDS mid-
dleware in this system is the reason why we compared two
functionally equivalent solutions. To this aim, for each so-
lution (i) we identified execution environment resources and
their dependencies with the middleware; (ii) we performed

1COSMIC is a three-year Italian industrial research project
aiming to create a public-private research laboratory for de-
velopment of a open source middleware platform for mission
critical systems

25

an extensive failure modes emulation campaign. We eval-
uated the impact of resources failures on middleware com-
ponents and on the system as a whole. Results show how
it has been possible to identify architectural dependencies
and resources mainly affecting the overall dependability in
both cases, thus driving the final choice taken by the project
team.

The rest of this paper is organized as follows. Section 2
presents standards and related work in the area of depend-
ability evaluation. Section 3 describes the system in hand
and how experiments have been conducted. Section 4 pro-
vides experimentation results while Section 5 concludes the
work.

2. RELATED WORK
Dependability assessment and evaluation of complex crit-

ical systems is a challenging issue. Different organizations
carried out standards and methodologies supporting the de-
velopment of dependable systems. They define tasks and
evidences to be produced during all the phases of the devel-
opment cycle. Examples are the CENELEC guidelines [1],
in the field of railway applications, IEC 61508 [5], for elec-
trical/electronic systems, and the DO-178B [3] for ATC sys-
tems, which has heavily influenced subsequent ones [12]. In
the European scenario, EUROCONTROL combined several
standards, such as DO-178B and IEC 61508, and defined a
methodology to provide guidelines for the safety assessment
of ATC systems, i.e., the Safety Assessment Methodology
(SAM) [2].

Hazard analysis and risk assessment, such as failure modes
and effects analysis (FMEA), hazard and operability (HA-
ZOP) and fault tree analysis [18], are the most adopted
techniques. In [11] and [15] authors described the hazard
analysis methodology defined and used in railway depend-
able systems. Robustness testing is also commonly adopted
to give insight about the system ability to tolerate excep-
tional environmental conditions [6, 4].

Several works proposed approaches based on the dynamic
flow graph methodology (DFM) [9] for assessing risks as-
sociated with dynamic behaviors. Other works proposed
methodologies and/or technologies for safety assessment of
real complex critical system infrastructures. In [19] a case
study for car security is presented.

Cited works neglect dependencies among system compo-
nents and execution environment resources. Moreover, risk
assessment is often performed by only examining faults at
interface level. The focus of our experience is to evaluate
how resource failures propagate within system components
(i.e., the middleware layer) and affect the overall depend-
ability level. Analyzing these phenomena is a must when
coping with mission-critical scenarios.

3. CASE STUDY

3.1 ATC Application
Our case study consists of a real world scenario in the field

of ATC. In particular, we consider a Flight Data Plans
(FPLs) Processor, developed on the top of a middleware
platform, named CARDAMOM 2. A FPL provides informa-

2CARDAMOM is a CORBA-based middleware platform de-
veloped by Thales and Selex-SI, tailored to support the de-
velopment of software architectures for safety and mission

tion such as the flight route, the current trajectory, airplane-
related information, and meteorological data.

CARDAMOM provides several services. These include,
among others, the Load Balancer (LB), Replication (R),
and System Management (SMG) services, used by the ap-
plication in hand. The application also exploits the OMG-
compliant3 DDS [14]. DDS allows application components
to share FPLs. This is done by means of read and write

facilities provided by the DDS API, which allow to retrieve
and to publish a FPL instance, respectively.

Backup

Primary

DDS MW

Facade

Load
Balance

Request

Processing
Server

Processing
Server

Processing
Server

Processing
Server

Updated FDP

Client

Request

Processing
Server

Client

Client

Request

Request

Figure 1: Experimental scenario

Figure 1 depicts the FPLs Processor. It is a CORBA-
based distributed object system. It is composed by the Fa-
cade object and a set of Processing Servers managed
by the LB service. Facade accepts FPL processing requests
(i.e., insert, delete, update) supplied by external Clients
and guarantees data consistency by means of mutual ex-
clusion among requests accessing the same FPL instance.
Facade subsequently redirects each allowed request to 1 out
of N Processing Server, according to the round robin service
policy. The selected server (i) retrieves the specified FPL in-
stance from the DDS middleware (i.e., DDS MW in Figure 1)
by means of the read facility (ii) executes request-related
computations, and (iii) returns the updated FPL instance
to the Facade object. Facade publishes the updated FPL
instance by means of the DDS write facility and finalizes
the request.

Machines composing the application testbed (Intel Pen-
tium 4 3.2 GHz, 4 GB RAM, 1,000 Mb/s Network Interface
equipped) run a RedHat Linux Enterprise 4. An Ethernet
LAN interconnects these machines. Client objects continu-
ously invoke Facade services with an average frequency of
50 requests per second. About 4,000 FPLs instances, each
of them of 77,812 bytes, are shared with the DDS MW.

critical systems
3OMG specification for the Data Distribution Service,
http://www.omg.org

26

Table 1: Shared Memory
Failure-mode Emulation
access denied the vm_area_struct related to the

target shared memory is deleted from
the addressing space of the process

read denied bits storing the memory access
policies are modified by interacting
with the OS paging sub-system [17]

write denied bits storing the memory access
policies are modified by interacting
with the OS paging sub-system [17]

corruption bit-flip technique. We perform
distinct experiments by flipping a

single bit or a bit sequence of
different, increasing, sizes (i.e., 10, 100,

1,000, 10,000, 100,000)

3.2 Experiments
DDS MW plays a key role in the described system both

because of (i) the critical scenario (i.e., the ATC domain)
and (ii) the workload. Choosing a specific DDS implemen-
tation may result in a different overall system dependability
level. We demonstrate this with a practical experience with
two DDS implementations coming from different vendors.
For reasons of confidentiality we do not disclose the actual
middleware names used in the experiments. To this aim, let
DDS 1 and DDS 2 denote the two DDS MW implementa-
tions. We also use the * wild card, when needed, to avoid
any possible platform-related reference.

The aim of the experimentation is twofold (i) to evaluate
how threats coming form the actual execution environment
affect each considered DDS implementation (ii) to analyze
if/how possible DDS outages compromise the mission of the
ATC application.

DDS  
modeling 

Documentation

Linux OS utils
(e.g., ps,ipcs)

DDS internal
dependencies

Failure modes 
emula1on 

Results

Figure 2: Experimentation phases

Figure 2 depicts how experiments have been conducted.
We preliminary model each considered DDS implementa-
tion. Exploiting the available DDS documentation is the
way we do this. Further insight has been achieved by us-
ing Linux command-line utils (e.g., ps, ipcs). Result of this
modeling phase is a high-level picture of the DDS in terms of
(i) operating system processes encapsulating DDS code, (ii)
external environment resources (i.e., Inter-Process Commu-
nication (IPC), network) and (iii) functional dependencies
among them.

This information is fed to the failure modes emulation
phase. In this phase we investigate if/how external resources
outages affect processes encapsulating the DDS code during
operations. We also analyze if outages compromise the mis-

Table 2: Semaphore
Failure-mode Emulation
access denied target semaphore is deleted with

ipcrm command-line util
read denied access permissions are modified with

semctl. 200 is set as new value
write denied access permissions are modified with

semctl. 400 is set as new value
corruption target semaphore content is modified

with semctl and the SETVAL flag

Table 3: Network
Failure-mode Emulation
access denied Network is made unavailable in

two different ways (i) via the
/sbin/ifconfig eth0 down command
(ii) network interface disconnection.

read denied not meaningful for the case study.
write denied not meaningful for the case study.
corruption negligible for the case study. A

dedicated LAN environment
interconnects testbed machines.

sion of the applicative ATC layer. We inject errors rather
than faults to possibly reduce experimentation time [7].
In order to correctly evaluate the system dependability, we
make proper failure assumptions on how a system compo-
nent can fail [16]. Experiments take into account the fol-
lowing failure modes for resources:

• access denied: the resource becomes unavailable;

• read denied: the resource is accessed, but it can not
satisfy a reading request;

• write denied: the resource is accessed, but it can not
satisfy a writing request;

• corruption: the resource content is altered.

We tailor the described failure-modes to resources used
by the considered DDS implementations in the context of
the Linux OS. Tables 1 and 2 show how failure modes have
been emulated for shared memories and semaphores, respec-
tively. These failures have been injected during system oper-
ational time by ad hoc kernel modules. For network failures,
the only access denied has been emulated. Details can be
found in Table 3. We emulate a single failure mode for each
experiment.

4. RESULTS
We evaluate if/how resource failure modes (emulated ac-

cording to Tables 1, 2, 3) compromise the DDS MW and the
overall system dependability level. To this aim we focus on
a single pair Facade/Processing Server and we perform ex-
periments as described in Section 3.2. Results are described
in the following.

4.1 DDS_1
DDS 1 consists both of a shared library (i.e., .so exten-

sion in Linux OS) to be linked to the application and middle-

27

ware processes. Applicative processes (i.e., Facade and Pro-
cessing Server, respectively) communicate with DDS inter-
nal ones by means of a shared memory (Figure 3). Middle-
ware processes are responsible for the communication among
the computing nodes of a domain. Let DA and DB be these
processes. It is possible to identify three resources used
by the DDS, i.e., the shared memories on the Facade and
Processing Server nodes (named MA and MB , respectively)
and the network (named N). Figure 3 depicts interactions
needed to transmit data (i.e., FPLs) between the computing
nodes.

Host A Host B

MW DDS MA MB

N

DA DB

Facade Processing
 Server

DDS library

OS Process

Resource

Figure 3: DDS 1 model

Facade and DA processes communicate through MA. As
we expected, Facade crashes with a “segmentation fault”
message in case of an access, read, or write denied. This
is due to the nature of the Linux OS paging subsystem.
MA corruption has different consequences, depending on the
modified bits. In particular, Facade enters a hang state if
the corruption affect lower MA bits, a crash one, otherwise.
Similarly, we evaluate the robustness of DA with respect to
MA failure modes. DA crashes for each emulated failure. Its
crash does not directly affect Facade, which keeps on run-
ning, but updated FPL instances are not forwarded to Pro-
cessing Servers anymore. No error notification is returned to
the applicative layer. We conclude that MA failures always
compromise the mission of the ATC system. DDS 1 does
not tolerate any of the injected failures.

Processing Server and DB processes communicate through
MB . As we expected, Processing Server crashes with a
“segmentation fault” message in case of an access, read,
or write denied. MB corruption does not make Processing
Server to hang or to crash. Anyway it losses every subse-
quent FPL update. Similarly, we evaluate the robustness of
DB process with respect to MB failure modes. DB crashes
for each emulated failure. Its crash does not affect Pro-
cessing Server, which keeps on running, but updated FPL
instances are not forwarded to applicative layer anymore.
No error notification is returned to Processing Server. We
conclude that MB failures always compromise the mission
of the ATC system. DDS 1 does not tolerate any of the
injected failures.

DA and DB processes communicate through N . When
we emulate network unavailability with both the proposed
mechanisms, updated FPL instances are lost. Both DA and
DB do not exhibit any error notification. Communication
between nodes remains compromised even when network is
restored. N unavailability compromises the mission of the
system, and DDS 1 does not tolerate transient failures.

4.2 DDS_2
DDS 2 exhibits a different architecture (Figure 4). The

overall DDS internal code is mapped into applicative pro-
cesses (i.e., Facade and Processing Server, respectively) by
means of a shared library. Internal threads communicate
through shared memories and semaphores. Let MA, SA1,
SA2 and MB , SB1, SB2 be shared memories and semaphores
at Facade and Processing Server side, respectively. Let N be
the network. Figure 4 depicts interactions needed to trans-
mit data (i.e., FPLs) between the computing nodes.

Host A Host B

MW DDS MA

N

Facade Processing
 Server

OS Process

Resource

SA1

SA2

MB

SB1

SB2

DDS library

Figure 4: DDS 2 model

Facade process relies on MA, SA1 and SA2. As we ex-
pected, it crashes with a “segmentation fault” message in
case of an access, read, or write denied . MA corruption
does not compromise both the Facade behaviour and data
transmission (i.e., each subsequent DDS write invocation
correctly succeeds). The improper memory change is noti-
fied by the following message “*_Transport_Shmem_attach
_writer: incompatible shared memory segment found.

All applications using * must use compatible shared

memory protocols ”. This warning message is periodically
triggered by the DDS library every 10 seconds and it is sub-
sequently printed on the Facade console. We can conclude
that MA failures do not always compromise the mission of
the ATC system. DDS 2 tolerates resource corruption and
a notification of the faulty state is also experienced.

SA1 and SA2 access/read denied, and corruption do
not affect Facade operations. SA1 and SA2 write denied

are notified with the following messages “* Mutex_lock:

OS semop() failure error OXD. *_send: !take sema-

phore ”, and “* Mutex_ive: OS semctl() failure error

OXD. *_send:!give semaphore. ”, respectively. These warn-
ing messages are periodically triggered by the DDS library
every 10 seconds and are subsequently printed on the Facade
console. We conclude that SA1 and SA2 failures do not com-
promise the mission of the ATC system. DDS 2 tolerates,
and possibly notifies, emulated failures.

Processing Server relies on MB , SB1 and SB2. Emulated
failure modes result in a similar finding with respect to the
Facade side. DDS 2 tolerates, and possibly notifies, emu-
lated failures.

Facade and Processing Server communicate through N .
When we emulate network unavailability with any of the
proposed mechanisms, updated FPL instances get lost. Both
processes do not exhibit any explicit notification. Com-
munication between them is restored when network is re-
sumed. N unavailability compromises the mission of the
system, anyway DDS 2 tolerates transient failures.

28

4.3 Comparison
The following findings come out from the experiments,

with respect to the emulated failure modes. Both DDS MW
use shared memories. In DDS 1 they have a critical role.
Communications occur through the shared memory both at
the Facade and Processing Server side. It is a single point of
failure since each emulated failure compromises data trans-
mission. DDS 2 uses shared memories too. Anyway, in this
case they are only support facilities. Their corruption does
not compromise data transmission.

DDS 1 does not use semaphores, thus avoiding the in-
troduction of new potential failure sources. Anyway they
do not represent an actual dependability threat in DDS 2.
Even if they are used to access resources, their failures do
not compromise the service completion.

Network unavailability affects both DDS MW. Anyway,
we experienced that DDS 2 is robust to transient failures.
As a matter of fact, when the network is restored, data trans-
mission resumes functioning.

By concluding, the modularity of the daemon-based archi-
tecture of DDS 1 seems to not cope properly with critical
scenarios. Furthermore, delegating FPLs transmission to
external processes, may lead to an improper service with-
out experiencing any applicative outage. DDS 2, even if
less modular (i.e., the overall DDS code is mapped into the
applicative process), exihibits a higher dependability level,
thus making its choice suitable for our ATC scenario.

5. LESSONS LEARNED
Middleware solutions are often required for distributed

critical applications, since they allow to notably lower de-
velopment costs. However, as also shown by the reported
experience, their adoption needs to be carefully evaluated
from the dependability perspective. Even if a middleware
platform is well-tested during its development, its use in a
specific execution context may be not guaranteed to meet
the system dependability goals, due to possible unexpected
interactions with the execution environment. In particular,
we observed that:

• the overall system dependability level strongly depends
on dependencies among middleware internal compo-
nents. Internal middleware architecture and interac-
tions among middleware processes result in a different
ability to react to failures;

• inferring relationships (i) among middleware internal
components and (ii) between these components and ex-
ecution environment resources, is useful to provide a
view of the system dependability level and to drive the
middleware selection process. Experiments show that
distinct architectures result in different fault tolerance
features with respect to the execution environment
malfunctioning;

• our experience shows that the modular architecture of
DDS 1, may be not the best choice from the depend-
ability perspective. This highlights that dependabil-
ity may conflict, other than with performance require-
ments, also with features such as a higher degree of
modularity and flexibility.

In the future, we aim to extend experiments to other appli-
cation fields. As for example, we aim to compare in terms

of dependability, other than different architectures, different
execution environments. Moreover, we aim to consider dif-
ferent kinds of OS/middleware resources as well as to expand
the considered failure modes, in order to increase experimen-
tation accuracy.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Consorzio

Interuniversitario Nazionale per l’Informatica (CINI) and by
the Italian Ministry for Education, University, and Research
(MIUR) within the frameworks of the “Centro di ricerca sui
sistemi Open Source per le applicazioni ed i Servizi MIssion
Critical” (COSMIC) project (www.cosmiclab.it), the “In-
iziativa Software” Project (www.iniziativasoftware.it),
and the “Tecnologie Orientate alla Conoscenza per Aggrega-
zioni di Imprese in InterneT” (TOCAI.IT) FIRB Project .

7. REFERENCES
[1] CENELEC: EN 50126 Railways Applications. The

specification and demonstration of Reliability,
Availability, Maintainability and Safety (RAMS).

[2] SAF.ET1.ST03.1000-MAN-01. Air Navigation System
Safety Assessment Methodology (v2-0). .
EUROCONTROL EATMP Safety Management, Apr.
2004.

[3] DO-178B/ED12B. Software consideration in airborne
systems and equipment certification. RTCA and
EUROCAE, Dec. 1992.

[4] The Ballista Robustness Testing Service.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
edrcballista/www/index.html.

[5] Functional safety and IEC 61508. Functional safety of
electrical/electronic/programmable electronic
safety-related systems. Produced by
IEC/SC65A/WG14, The working group responsible
for guidance on IEC 61508, Sep. 2005.

[6] J. Campelo, J. Pardo, and J. Serrano. Robusteness
study of an embedded operating system for industrial
applications. In Proc. of the 28th International
Computer Software and Application Conference
(COMPSAC 2004), pages 27–30, Sept. 2004.

[7] J. Christmansson and R. Chillarege. Generation of an
error set that emulates software faults based on field
data. In Proc. of the 26th Annual International
Symposium on Fault-Tolerant Computing (FTCS ’96),
1996.

[8] K. Fowler. Mission-Critical and Safety-Critical
Development. IEEE Instrumentation and
Measurement Magazine, Dec. 2004.

[9] C. Garrett and G. Apostolakis. Automated hazard
analysis of digital control systems. In Reliability
Engineering and System Safety, pages Vol. 77, pp.
1–17, 2002.

[10] R. Hammett. Flight-Critical Distributed Systems:
Design Considerations. IEEE AESS Systems
Magazines, pages Vol. 18, Issue 6, 30–36, 2003.

[11] A. Hassami and A. Foord. Systems safety-a real
example (european rail traffic management system,
ertms). In the Second IEEE International Conference
on Human Interfaces in Control Rooms, Cockpits and
Command Centres, pages 327–334, 2001.

29

[12] E. Kesseler. Air Transport, from Privilege to
Commodity. Technical report (NLR-TP-2003-300).
INLR (the National Aerospace Laboratory of the
Netherlands), 2003.

[13] R. L. O. Moraes, J. Durães, R. Barbosa, E. Martins,
and H. Madeira. Experimental Risk Assessment and
Comparison Using Software Fault Injection. In Proc.
of the 37th Intl. Conf. on Dependable Systems and
Networks (DSN), pages 512–521. IEEE Computer
Society, 2007.

[14] G. Pardo-Castellote. OMG data-distribution service:
Architectural overview. In ICDCS Workshops, pages
200–206. IEEE Computer Society, 2003.

[15] T. Pasquale, E. Rosaria, M. Pietro, and O. Antonio.
Hazard analysis of complex distributed railway
systems. In the 22nd IEEE International Symposium
on Reliable Distributed Systems (SRDS’03), pages
283–292, Oct. 2003.

[16] D. Powell. Failure mode assumptions and assumption
coverage. In Proceedings of the 22nd Annual
International Symposium on Fault-Tolerant
Computing (FTCS ’92), 1992.

[17] A. Rubini and J. Corbet. Linux Device Drivers. 2nd
Edition, O’Reilly, 2001.

[18] N. Storey. Safety-Critical Computer Systems. Pearson
and Prentice Hall, 1996.

[19] S. Supakkul and C. Lawrence. Applying a
goal-oriented method for hazard analysis: A case
study. In the 4th International Conference on Software
Engineering Research, Management and Applications
(SERA’06), pages pp. 22– 30, Aug. 2006.

[20] E. Weyuker. Testing Component-Based Software: A
Cautionary Tale. IEEE Software, 15(5):54–59, 1998.

30

