
Online Reliability Monitoring: a Hybrid Approach

R. Pietrantuono∗, S. Russo∗†, K. S. Trivedi‡
∗Dipartimento di Informatica e Sistemistica, Università degli studi di Napoli Federico II, Via Claudio 21, 80125, Naples, Italy.

†Laboratorio CINI-ITEM “Carlo Savy”, Complesso Universitario Monte Sant’Angelo, Ed. 1, Via Cinthia, 80126, Naples, Italy.
‡Department of Electrical and Computer Engineering, Duke University,Durham, NC 27708.

Email: {roberto.pietrantuono,stefano.russo}@unina.it, kst@ee.duke.edu

Abstract—Assuring high reliability levels in complex software
systems is difficult. The spread of component-based paradigm
brought, along with many advantages, new thorny problems
and challenges. Various approaches have been proposed to
guarantee high reliability and cope with such problems–
among these, proactive policies are particularly effective and
inexpensive. The ability to monitor the system at runtime and
to give online estimations about the trend of dependability
attribute of interest, is the key to implement strategies aiming at
forecasting, and thus proactively preventing, the system failure
occurrence. In this paper, an online reliability monitoring
approach is proposed. It combines benefits of architecture-
based reliability model and dynamic analysis, so as to integrate
static modeling power with representative operational data. Its
usage is illustrated by a prototype implementation, a case-study
and preliminary results.

I. INTRODUCTION

Software reliability assessment and assurance have be-

come crucial concerns to enable systems and infrastructures

to be employed in critical contexts. Although significant

improvements have been achieved over time, the increasing

software complexity, the heterogeneity of components, and

the usage of OTS (off-the-shelf) items, including Operating

Systems (OSs), third-party libraries and virtual machines,

pose tricky issues that traditional methods need to cope with.

Reactive policies, in which actions are taken in reponse to

errors or component failures to prevent them from causing

the system failure, have been widely adopted in many con-

texts. However, the described complexity and the need for

balancing dependability requirements with costs are making

their application difficult.

In recent years, another point of view is gaining importance:

proactively acting before the system fails by attempting

to forecast failure occurrence. The goal is to avoid the

system failure (rather than tolerate it) or, at least, to make

the system fail safely, by observing the current system

behaviour and taking proper preventive actions when the

system is suspected to soon becoming unsafe. Some of

these actions include: checkpointing, process migration, and

software rejuvenation.

A crucial role in proactive failure prevention is that of the

system monitor and the subsequent dynamic evaluation of

dependability attributes of interest during operation. Runtime

dependability evaluation is essential to enable proper proac-

tive actions to be designed, implemented and promptly trig-

gered. Dependability attributes are often estimated, statically,

in the development phase by using modeling techniques

that are assumed to be representative also in the runtime

phase. The usual approach is to develop a stochastic model

of the system and solve it analytically or via discrete-

event simulation to predict the attributes of interest. In the

case of software reliability, the assessment is often done

during the testing phase, e.g., by collecting interfailure times

and by fitting a model. However, this estimation may not

be accurate, due to the necessary simplifying assumptions

(about components and their interactions) that undermine the

model representativeness in the real operational environment

and that need to be made when real operational data are not

available.

While this inaccuracy can be accepted when the estimation

is performed to implement optimal release (and testing)

policies, it cannot be accepted when it is used to design

proactive actions that have to prevent runtime system fail-

ures (e.g., unneeded actions are applied or, even worse,

needed actions are not applied). On the other hand, just

using operational data, without a model that is able to give

preliminary estimates, is not possible if we want to rely on

proactive policies (in fact, we should wait for collecting

enough failures data to get a satisfactory confidence, and

proactive actions would be not possible before these data

are available).

In this paper, we propose a method to carry out runtime

reliability estimation, based on a preliminary modeling phase

followed by a refinement phase, where real operational data

are used to counterbalance potential errors due to model

simplifications. The basic idea is to utilize an architecture-

based software reliability model together with a dynamic

analysis tool in order to (i) give a preliminary estimation

when software is released (i.e., after testing) and then (ii)

to continuously refine model at runtime on the basis of

information that becomes available as the system execution

proceeds. A prototype version of the monitoring system

is implemented, that is initially trained with the reference

model and the preliminary reliability estimation, and then

uses operational data to compute the online reliability level.

The prototype is experimentally evaluated on a case-study

consisting of an application in the field of queueing systems

simluation.

II. BACKGROUN AND RELATED WORK

A. Reliability Evaluation

Reliability can be evaluated by using several approaches,

generally classified into two categories: model-based and

A3



measurements-based approaches. Model-based approaches

are widely used for reliability evaluation of complex soft-

ware/hardware systems. They are based on the construction

of a model that is a “convenient” abstraction of the system,

with enough level of detail to represent the aspects of interest

for the evaluation. A number of modelling approaches have

appeared in the literature:

1) compositional approaches (e.g., [1], [2], [3], [4], [5]),

where the system model is constructed in a bottom-

up fashion. The models representing parts of the

systems are built in isolation, and suitable composition

operators and composition rules are defined;

2) decomposition/aggregation approaches (e.g., [6], [7],

[8]), where the overall model is divided into simpler

and more tractable sub-models, and the measures

obtained from their solution are then aggregated to

compute those concerning the overall model;

3) derivation of dependability models from high-level

specification, e.g. from UML design (e.g., [9]).

When the model is required to capture and analyze the

attributes of interest from the architectural point of view

(i.e., considering the system as components and their inter-

actions), architecture-based models are sought. The advent

of object-oriented and component-based systems paved the

ground for this kind of models, and they have increasingly

been adopted for performance and reliability evaluation

[10], [11], [12]. The software architecture is usually ex-

tracted from design, source code or even object code, and

the level of decomposition (i.e., component granularity)

can be defined depending on the needs (“components” are

intended as logically independent unit performing a well-

defined function [11]). Interactions among components are

modelled by transition probabilities (i.e., the probabilities

that the control flows among components), also extracted

from design or operational profile estimations. Depending

on the way the architecture is combined with the failure

behaviour, they are categorized as [13]:

• State-based models, that use the control flow graph to

represent software architecture; they assume that the

transfer of control among components has a Markov

property, modelling the architecture as a Discrete Time

Markov Chain (DTMC), a Continuous Time Markov

Chain (CTMC) or semi Markov Process (SMP).

• Path-based models, that compute the system reliability

considering the possible execution paths of the program.

• Additive-models, where the component reliabilities

are modelled by non-homogeneous Poisson process

(NHPP) and the system failure intensity is estimated as

the sum of the individual components failure intensities.

Models, in general, are very useful for their ability to abstract

from unnecessary details, and allow to suitably analyze the

architecture, to evaluate different configurations, to pinpoint

performance/reliability bottlenecks, and to compare design

alternatives without physical implementation.

However, they may be not accurate enough, when the input

parameters values are not representative of the real system

behavior. Measurements-based approach may allow for more

accurate results: it is based on real operational data (from

the system or its prototype) and the usage of statistical

inference techniques. It is an attractive option for assessing

an existing system or prototype and constitutes an effective

way to obtain the detailed characterization of the system

behaviour in presence of faults. However, since real data

are needed, it is not always possible to apply this approach,

because data may be not available. Moreover, just relying

on measurement-based approach does not yield insight into

the complex dependencies among components and does not

allow system analysis from a more general point of view. It

is often more convenient to make measurements at the indi-

vidual component/subsystem level rather than on the system

as a whole [14]. An overview of experimental approaches

to dependability evaluation is in [15]. Although the most of

papers use either the model based or the measurement based

approach, some papers use a combined approach, even if not

producing results in an online manner [16], [17]. An online

monitoring system combining both the approaches towards

system availability evaluation is in [18], [19]. The approach

proposed in this paper combines both kinds of evaluation

methods in order to implement a monitoring system for

autonomic reliability management.

B. Dynamic analysis

In order to evaluate the system reliability at runtime, we

need a way to describe not only the system architecture (that

is a static description), but also its dynamic behavior. The

most attractive option is to monitor the execution, to analyze

the resultant execution traces and give a description of the

observed behavior (i.e., a behavioral model). The usage of

dynamic analysis tools seems to be the best solution for this.

Dynamic analysis aims to give information about the system

by analyzing its execution traces. There are several dynamic

analysis tools (e.g., [20], [21], [22]).

For our purpose, we rely on one of the most successful

inferential engines, that is Daikon [22]. Daikon allows us

to infer the likely I/O invariants of a program execution

(i.e., invariants on exchanged paramters), by using more than

160 invariants templates. It provides useful information on

the relation between the values of the variables at different

execution points. It starts with a set of syntactic constraints

for the considered variables, and incrementally considers

the input values. At each step, it eliminates the constraints

violated by the value to obtain a set of constraints satisfied

by all inputs. Statistical considerations allow Daikon to

identify constraints that are verified incidentally (this is

an important feature for our purpose, as detailed in the

following sections). In particular, invariants are identified by:

(i) instrumentation, execution and monitoring of the appli-

cation; (ii) recording of the I/O (Input/Output) behaviors;

(iii) determination of the invariants, by the analysis of the

collected traces. The monitored variables are combined with

each other to form Boolean expressions to be compared with

the actual observed execution values and potential invariants

are generated by attempting to infer possible relations among

the variables. Daikon indentifies invariants in specific points

of the program; we are interested in using it for deriving

constraints on exchanged parameter values in the I/O flow

of each component.

A4



III. THE RUNTIME MONITORING SYSTEM

What we propose is a monitoring system that triggers

alarms when the online estimated reliability RONLINE is

lower than the expected reliability REXP , that is estimated

at the end of testing phase, for a given threshold quantity

Q. This means that the probability that the system fails at

time t is greater than expected. The basic idea is to utilize an

architecture-based model together with a dynamic analysis

tool at runtime to evaluate the online system reliability.

Runtime estimation aims at removing errors introduced by

the assumptions of the model built in the testing phase.

In particular, we used an absorbing DTMC that describes

the software components as states and the flow of control

among them as transition probabilities [10], [11]. Other

architecture-based models could be used, without loss of

generality. The usage of architecture-based models (rather

than other kinds of reliability estimation models) is required

to have a fine-grained description of the system, where

the contribution of individual component reliability and of

their interactions to the overall reliability can be clearly

distinguished. This allows us to adjust the estimation in the

runtime phase by independently adjusting the estimations

of components reliability and the values describing the

interactions among components.

A. Modelling phase

Suppose we have a system that has to undergo a testing

phase, and that we want to give reliability estimation by

using its DTMC model representation. During the testing,

data about components failures are collected in order to

estimate their reliability. Components reliability can be esti-

mated either by building a software reliability growth model

(SRGM) that use interfailure times to fit a failure intensity

model and by taking its values at the end of the testing phase,

or by using the following formula:

Ri ≈ 1− lim
ni→∞

fi

ni

(1)

where fi is the number of failures of component i and ni

is the number of executions of component i in N randomly

generated test cases [11]. By using the DTMC model, the

system reliability is computed as described in [10], i.e.:

E[R] ≈

n∏

i

E[R
X1,i

i ] = (

n−1∏

i

R
E[X1,i]
i )Rn (2)

where X1,i denotes he number of visits from the state 1 to

the state i before absorption and E[X1,i] is the expected

number of visits to component i (X1,n is always 1 for

the final component n), also known as Visit Counts (Vi).

Second-order architectural effects can be considered as in

[23]. By observing the control flow among components,

execution counts, and then the expected number of visits

to each component during an execution (i.e., visit counts),

are computed and used in the model. An example on how to

compute the visit counts is in [10]. Notice that this model

will be used also in the runtime phase: if we use SRGMs

to estimate components reliability, we will have to take the

failure intensity function values at the end of each period

of observation (since, in general, the failure intensity after

software release is not constant), whereas the second type

of estimation (eq.1) is more simple but less accurate. What

affects the accuracy of the theoretical estimation given in the

eq. 2, are the assumptions on which the adopted model is

based:

• First-order Markov chain (this assumption affects the

visit counts estimation, since the control flow transitions

from a particular component are assumed to not depend

on the path taken to reach this component);

• Components fail independently and component failure

leads to the system failure (it is a conservative as-

sumption, that leads to an underestimation; a correlated

failure adds to the failure probability of individual

components);

• When every kind of reliability model is applied in the

testing stage, the underlying assumption is that test

cases execution does not reflect the real operational

profile (even if Pasquini et al. [24] show that the impact

of the operational profile estimation error is not high).

B. Runtime Phase

To overcome these limitations, a runtime refinement phase

is carried out on the base of the following observations:

the error between the reliability estimated after testing by

the model and the actual reliability may be due (as a

consequence of the made assumptions) to (i) the estimation

error of expected visit counts, and (ii) the error made by

assigning a reliability value to components on the base of

collected data coming from testing; in this case the error is

due to the difference in the “behavior” caused by the non-

correspondence between the real operational profile and the

test cases execution order.

Runtime monitoring system will refine the estimation by

observing the real behavior. As for the first type of error,

we need to monitor the interactions among components in

order to record real “visits” among them; after some time, we

can give a reliable estimation (i.e., with a given confidence

level) of random variables Vi, and compute the reliability by

using these new values. Despite this estimation, reliability

values of the single components may be, as stated, affected

by the second type of error. In this case, it is not possible to

estimate the actual value during execution, since, in order to

get failure data, the system should fail (and the estimation

does not make sense anymore). What we propose is (i)

to monitor components with a dynamic analysis tool (we

used Daikon) that describes the behavior of components by

monitoring their interactions and by building invariants on

exchanged values, (ii) and then to detect deviations from the

defined expected behavior.

In particular, in the testing phase, the system is instrumented

with this tool that “observes” the interactions in order to

build the expected, and thus supposedly “correct”, behavioral

model. It is an “estimation” of the correct behavior, because

the testing, of course, does not cover all the possible correct

behaviors. In the operational phase, if the observed behavior

is different from the expected one, then, it is no longer

guaranteed that the system behaves as in the testing phase

and it might fail earlier than expected.

Thus, considering an estimation REXPi, carried out for

the component i during the testing, we need to identify

A5



a “penalty function” that properly lowers this value, each

time the component interacts with other components in

unexpected ways (see next section). The overall process

is depicted in figure 1. The same architectural model is

used in the testing and in the operational phase. In the

operational phase the monitoring tool uses real collected

data to statistically estimate the visit counts and component

reliabilities; the monitor is responsible for triggering alarms

when the actual estimated reliability is lower than the

expected reliability. The monitor is also able to provide some

insights about the cause of possible deviating behaviors, as

mentioned in the next section.

Fig. 1: Monitoring System.

IV. ESTIMATING THE RELIABILITY DEGRADATION

Component reliabilities need to be reduced to take into

account new online behaviors they exhibit. However they

have to be diminished in a proper way, since a deviation

from the expected behavior (we call it “violation”) can

represent either an incorrect behavior or can be a false-

positive (i.e., with respect to the behavior observed during

the testing, the deviation is a new, unexpected, but correct,

behavior).

The evaluation of the “penalty values” to be used to lower

the reliability of components is carried out periodically,

at each time interval T, when the overall reliability

estimation is computed. It aims to estimate the risk

associated with the set of all violations occurring in the

instrumented program points during the interval, for each

component i. This is the risk of the observed violations

to be representative of incorrect behaviors, we call it

“Risk Factor” (RF). Its value depends (i) on how many

violations occurred for each monitored parameter, (ii) on

how many distinct program points experienced violations in

the same period of observation, and (iii) on the robustness

of the built model (i.e., the confidence that can be given

to the built invariants). The first two points are easily

computable by observing the Daikon output. The risk

factor RF has to be proportional to them. We computed

the risk factor as: RFi = #Violation/#MaxViolation *

#DistinctPoints/#MonitoredPoints, where #MaxViolation is

the number of interactions occurred in the monitored

program points, #DistinctPoints is the number of

distinct parameters that experienced a violation and

#MonitoredPoints is the number of distinct monitored

parameters.

As for the third point, it is taken into account in the

invariants construction phase (i.e., in the testing phase). In

that phase Daikon allows setting a confidence level of the

built invariants, that determines the robustness of invariants

and can significantly impact the probability for a violation

of being a false-positive. It computes, for each invariant, the

probability that the considered property would appear by

chance in a random input. If that probability is smaller than

a user-specified confidence parameter, then the property is

considered non-coincidental and is reported as invariant.

It assumes a distribution and performs a statistical test

where the null hypothesis states that the observed values

were generated by chance from the distribution. If the null

hypothesis is rejected at a certain level of confidence, the

observed values are non-coincidental and the corresponding

property is reported as invariant [22]. For instance, if the

probability limit is set to 0.01, Daikon reports invariants

that are no more than 1 percent likely to have occurred by

chance. The so-computed risk factors are used to penalize

the reliability of components, at the step n, as follows:

Rn
ONLINEi = Rn−1

ONLINEi −Rn−1
ONLINEi ∗RFi ∗W (3)

where W is a parameter set by the user in order to establish

“how much” the risk factor has to impact on the reliability

penalization. This parameter has to be set empirically in the

tuning phase of the monitoring system. To set this value, we

strongly recommend to consider the confidence parameter

that has been set for the invariant building phase. The higher

is the confidence parameter the higher the value of W should

be, because a violation to “robust” invariants are more seri-

ous. Based on the new computed visit counts and reliability

values, the overall system reliability RONLINE is computed

(by eq.2), at regular intervals of time T. When it goes

under the threshold (REXP - Q) an alarm is triggered. The

monitoring system then shows the differences between ideal

values and the estimated ones, from which an indication

about the cause can be deduced: if the difference is in the

reliability of a component, then the violations (and thus the

involved methods and parameters) causing it are identified;

if the difference is in the visit counts values, the cause is

inferred from the interaction among involved components.

V. EXPERIMENTATION

A. Application

We experimented the proposed approach by monitoring a

simple application for queuing systems simulation, based on

javaSim1. As known, queuing theory and queuing networks

simulation have a large number of applications, ranging

for performance and dependability analysis to resource

allocation in telecommunication systems. The developed

1JavaSim is a simulation package available at:
http://javasim.codehaus.org/

A6



application performs job queues simulations according to

several models, such as M/M/1 and M/M/n. The application

periodically reports graphical results to the user, which,

online, can evaluate the attributes of interest (e.g., the block-

ing probability trend) and takes proper actions according

to the results. The user can also make modifications to

some parameters for the successive simulation runs. Results

consist of graphical representations of several statistics, such

as the response times for processed jobs, the average re-

sponse time trend, the response time distribution, the steady

state probability and the blocking probability trend. The

application uses the well-known JFreeChart2 Java library

to plot charts on the user terminal. The block diagram is

depicted in figure 2. It is composed of two basic blocks:

Fig. 2: Experimental Application.

the Simulation block, which accepts user settings and per-

forms the simulation, and the Output Updater block, which

manages the results and plots them on the terminal. We

instrumented, for illustrative purpose, the Output Updater

block and evaluated its reliability at runtime. It is mainly

made by JFreeChart code. We considered as components the

Java packages, that became the states of a DTMC. Not all the

JFreeChart packages are used by the rest of the application,

thus the transition probabilities assignment makes sense only

for “visited” packages, i.e., those packages exercised by the

control flow execution. Specifically, exercised packages are

reported in table I.

B. Experimental procedure and results

Testing Phase. According to figure 1, the application was

instrumented during its testing. Data about execution counts

(i.e., the number of times the execution flows from a com-

ponent to another) for the visit counts computation and data

for the invariants computation were collected and extracted

from execution traces. Execution traces and invariants were

produced by the Daikon tool, that monitored the application

in some specific program points. Reliabilities of single

components (i.e., the JFreeChart packages) were computed

by the equation 1 and as described in [11]. However, during

the tests no failure were observed due to the monitored

2JFreeChart is a free Java chart library to develop professional quality
charts. It is available at: http://www.jfree.org/jfreechart/

TABLE I: Components reliabilities for the firsts three inter-

vals

Interval Ti 1 2 3

org.jfree.chart 0.99953 0.99975 0.99961

org.jfree.data 0.99978 0.99987 0.99970

org.jfree.chart.renderer.xy 0.99949 0.99944 0.99931

org.jfree.chart.axis 0.99948 0.99934 0.99925

org.jfree.chart.plot 0.99926 0.99981 0.99992

org.jfree.chart.ChartFrame 0.999915 0.99996 0.99991

subsystem, resulting in a component reliability estimates

equals to 1. This is clearly an overestimation, caused by the

assumption that the testing operational profile will be the

same as the runtime operational profile. It will be adjusted

at runtime. With the obtained values for both reliabilities

and visit counts, the overall reliability was computed by the

equation 2, giving REXP = 1.

Runtime Phase. The value for the threshold was set to Q

= 0.0055 and the update interval was set to T = 30 seconds.

In the second phase, the application was run and re-

instrumented by Daikon. Faults were injected in the code to

evaluate the defined mechanism. In particular, we injected

trivial faults aiming at causing little variations in the mon-

itored parameters values (randomly) and at observing the

behavior of the monitoring system. At each time interval

T, the prototype monitoring system compared, by using

the tool Invariant Diff of Daikon, the built invariants with

the current trace file, in order to detect violations in the

monitored points. Violations were then used to compute

the risk factors. In fact, by analyzing the trace file and the

violations file, the number of violations, the MaxViolation,

DistinctPoints and MonitoredPoints values were derived, and

risk factors for each component were computed (for each

time interval). The weight W was set to 0.01, according

to the confidence level assigned to Daikon invariants. Table

I shows the computed reliability values (just for some time

intervals), according to eq. 3. Figure 3 shows the final results,

by reporting the values for the overall reliability of the

system, for several intervals of observations. As may be

Fig. 3: Online Estimated Reliability

noted, in two cases the online reliability value was estimated

to be under the threshold. In one of these case, a false-alarm

was triggered. The low value was caused by the high number

of violations detected for various components (especially for

A7



org.jfree.data.xy and org.jfree.chart.plot) that, however, did

not indicate any failure-causing fault, but only an anomalous

behavior. After this point, the reliability value increased; this

happened because of a change in the performed operations,

that caused a different operational profile to be executed (and

thus different components were exercised, with different visit

counts and violations). In the last case, before the application

failure, the significant number of detected violations caused

the overall reliability to be estimated under the threshold,

correctly raising an alarm activation, since the application

failed in the subsequent interval.

Notice that a key role for avoiding false-positives and false-

negatives is played by the threshold value. The higher is the

threshold, the lower is the number of false-negatives (but

the higher the number of false-positives). The threshold has

to be defined according to the user needs, the application

requirements and based on the experience. A dynamic adap-

tive threshold could be set, in order to take into account

the experience. Finally, the choice of T is also important,

since longer intervals cause minor overhead, but also cause

the reliability trend to be evaluated more rarely, with greater

risks. This also depends on application requirements and on

the desired trade-off between the accuracy and the overhead.

VI. CONCLUSION AND FUTURE WORK

We presented an online reliability monitoring approach

that takes advantages of static modelling and dynamic anal-

ysis to give continuous estimations of the system reliability.

A prototype implementation is been experimented with and

results have shown the benefits brought by the combination

of modelling and operational data usage. Experiments have

also highlighted the issues that need to be addressed in

the future. In particular, we aim to provide the system

with the ability to automatically learn the violations that

did not result in a failure, in order to differently evaluate

them when they re-appear. Moreover, the effectiveness of

the monitoring system would improve if the choice of the

threshold value were done adaptively. The monitoring system

should learn by itself and then adapt the threshold value

based on the acquired experience. We aim to obtain this in

the future, by combining the proposed approach with other

online diagnosis mechanisms (such as [25]).

REFERENCES

[1] C. B. Almeida and K. Kanoun, Construction and Stepwise Refinement
of Dependability Models, Performance Evaluation, vol. 56, 277-306,
2004.

[2] Y. Dai, Y. Pan, X. Zou, A Hierarchical Modeling and Analysis for
Grid Service Reliability, IEEE Trans. on Computers, vol. 56, 681-691,
2007.

[3] Trivedi, K. Wang, D. Hunt, D.J. Rindos, A. Smith, W.E. Vashaw,
B., Availability Modeling of SIP Protocol on IBM c©WebSphere c©,
Proc. of the 14th IEEE Pacific Rim Intl. Symposium on Dependable

Computing, 2008, 323-330.

[4] G. A. Hoffmann, K. S. Trivedi , M. Malek, A Best Practice Guide
to Resource Forecasting for the Apache Webserver, Proc. of the

12th IEEE Pacific Rim Intl. Symposium on Dependable Computing,
2006,183-193.

[5] W. E. Smith, K. S. Trivedi, L. A. Tomek, J. Ackaret, Availability
analysis of blade server systems, Ibm Systems Journal, vol. 47, no. 4,
2008.

[6] G. Ciardo and K. S. Trivedi, Decomposition Approach to Stochastic
Reward Net Models, Performance Evaluation, vol. 18, 37-59, 1993.

[7] D. Daly, W. H. Sanders, A connection formalism for the solution
of large and stiff models, 34th Annual Simulation Symposium, 2001,
258-265.

[8] I. Mura and A. Bondavalli, Markov Regenerative Stochastic Petri Nets
to Model and Evaluate the Dependability of Phased Missions, IEEE

Transactions on Computers, vol. 50, 1337-1351, 2001.
[9] J. P. Ganesh, and J. B. Dugan: Automatic Synthesis of Dynamic Fault

Trees from UML System Models, Proc. of the IEEE Int. Symposium

on Software Reliability Engineering, (ISSRE), 243-256, 2002.
[10] S. Gokhale, W. E. Wong, J.R. Horganc, K. S. Trivedi, An analytical

approach to architecture-based software performance and reliability
prediction, Performance Evaluation, vol. 58, issue 4, 391-412, 2004.

[11] K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, Comparison
of architecture-based software reliability models, Proc. of the Intl.

Symposium on Software Reliability Engineering (ISSRE ’01), 22- 31,
2001.

[12] W.Wang, Y.Wu, M.H. Chen, An architecture-based software reliability
model, Proc. of the Pacific Rim Dependability Symposium, 1999

[13] K. Goseva-Popstojanova and K. S. Trivedi, Architecture-based ap-
proach to reliability assessment of software systems, Performance

Evaluation, vol. 45, issue 2-3, 179-204, 2001.
[14] Garzia, M.R., Assessing the Reliability of Windows Servers, Proc. of

Dependable Systems and Networks, (DSN-2002).
[15] Silva, G.J., Madeira, H., Experimental dependability evaluation. In

Diab, H.B., Zomaya, A.Y., eds.: Dependable Computing Systems:

Paradigms, Performance Issues, and Applications. Wiley (2005) 319-
347.

[16] D. Tang, R.K. Iyer, Dependability Measurement and Modeling of
a Multicomputer System, IEEE Trans. on Computers, 42(1), 62-75,
1993

[17] D.Long, A.Muir, R.Golding, A Longitudinal Survey of Internet Host
Reliability, Proc. of the 14th Symposium on Reliable Distributed

Systems.
[18] Kesari Mishra, K.S. Trivedi, Model Based Approach for Autonomic

Availability Management, Proc. of the Intl. Service Availability Sym-

posium, Helsinki , Finlande, 2006 , vol. 4328, 1-16
[19] Haberkorn, M. Trivedi, K., Availability Monitor for a Software Based

System, Proc. of the 10th IEEE High Assurance Systems Engineering

Symposium, 2007. HASE ’07, 21-328
[20] V. Dallmeier, C. Lindig, A. Wasylkowski, A. Zeller, Mining Object

Behavior with ADABU, Proc. of the 2006 Intl. workshop on Dynamic

systems analysis, Intl. Conference on Software Engineering, 17 - 24.
[21] Sudheendra Hangal, Monica S Lam, Tracking Down Software Bugs

Using Automatic Anomaly Detection, Proc. of the 24rd Intl. Confer-

ence on Software Engineering, 2002. ICSE 2002. pp. 291- 301
[22] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically

discovering likely program invariants to support program evolution,
IEEE Transactions on Software Engineering, vol. 27, 2001, 99-123.

[23] V.S.Sharma, K.S.Trivedi, Quantifying software performance, relia-
bility and security: An architecture-based approach, The Journal of

Systems and Software, vol. 80, Issue 4. 493-509, April 2007.
[24] A. Pasquini, A. N. Crespo, P. Matrella, Sensitivity of reliability growth

models to operational profile errors vs testing accuracy, IEEE Trans.

on Reliability, vol. 45, 531-540, 1996.
[25] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,

Threshold-based mechanisms to discriminate transient from intermit-
tent faults, IEEE Transactions on Computers, 49(3), pp. 230-245,
2000.

A8


