
FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 1

Deliverable D3.1: “First measurement/prediction models-based process”

ICEBERG

How to estimate costs of poor quality in a Software QA project:

a novel approach to support management decisions

Industry-Academia Partnerships and Pathways (IAPP)

Call: FP7-PEOPLE-2012-IAPP

The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement n°324356

Deliverable No.: 3.1

Deliverable Title: First measurement/prediction models-based process

Organisation

name of lead

Contractor for this

Deliverable:

CINI, UAH

Author(s): R. Pietrantuono, P.Potena, L.Fernandez,D. Rodriguez

Participant(s) All

Work package

contributing to

the deliverable:

3

Task contributing

to the deliverable:

T 3.1

Total Number of

Pages

XX

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 2

Deliverable D3.1: “First measurement/prediction models-based process”

Table of Versions

Version Date Version Description Contributors

0.1 28-02-2014 Draft. First document skeleton. Roberto Pietrantuono

0.2 13-03-2014 Added Workflow. Pasqualina Potena,

Luis Fernandez

0.3 28-03-2014 Added models description: release planning model,

resource allocation model, defect analysis model

Roberto Pietrantuono

0.4 07-05-2014 Refined description of models for: release planning,

resource allocation, defect analysis
Roberto Pietrantuono

0.5 31-05-2014 Final description of models and process, refining

selection of models, definition of parameters and

feasibility analysis according to existing information

on real industry practices

Pasqualina Potena,

Roberto

Pietrantuono, Daniel

Rodríguez, Luis

Fernández, Makalay

Yatsevich

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 3

Deliverable D3.1: “First measurement/prediction models-based process”

Contents
1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION .. 5

3 WORKFLOW FOR THE MODELS-BASED PROCESS DEFINITION 6

4 MODELS-BASED PROCESS OVERVIEW .. 9

5 USE OF FRAMEWORKS FOR QUALITY DECISIONS IN PRACTICE 11

6 QUALITY DECISION MAKING APPROACHES .. 16

6.1 Defect Analysis Model-based approach ... 17

6.1.1 Defect prediction .. 25

6.2 Build-or-buy decisions models ... 26

6.2.1 Quantifying the Influence of Failure Repair/Mitigation Costs 30

6.3 Optimization of adaptation plans with cost and quality tradeoff 33

7 SCHEDULE/TIME DECISION-MAKING MODELS .. 38

7.1 Release planning ... 38

7.2 Debugging Analysis for Improved Release Planning 41

8 SCHEDULE/TIME AND QUALITY DECISION-MAKING MODELS 48

8.1 Resources allocation .. 48

8.2 problems in software project management .. 53

9 CONCLUSION ... 54

10 REFERENCE .. 55

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 4

Deliverable D3.1: “First measurement/prediction models-based process”

1 EXECUTIVE SUMMARY

The aim of D3.1 of the ICEBERG project “First measurement/prediction models-based

process” is to describe the methodological models-based process under development.

The document describes the first version of this process, which will be enriched/refined

in the course of the project once the subsequent phases provide data and additional

checks on the feasibility, precision and effectiveness of it for practice in real scenarios

in project decision making. The goal of our work is to define measurement/prediction

models able to determine the cost of quality (and not-quality) and allow finding the best

trade-off between cost and quality, and the process formalization based on such models.

The document describes the workflow followed for defining the process, and provides

detailed description of the adopted models so far.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 5

Deliverable D3.1: “First measurement/prediction models-based process”

2 INTRODUCTION

In order to support project management decisions on quality assurance actions, the

ICEBERG project foresees an approach based on models. The objective is to define a

set of models capable of exploiting historical data in order to create a systematic

knowledge base and perform quantitative evaluations of the effect of decisions from

the quality, cost, and time/schedule point of view. As discussed in previous ICEBERG

documents [1] [2], there are several categories of decisions that might impact the

quality/cost/time factors of a project. For each (class of) decision(s), one or more

models can be used to support project managers.

The choice of which decisions to support depends on what type of historical data a

company is expected to gather in its process, what is the cost of collecting such data,

and what is the expected benefit (thus the impact) on the process in terms of

quality/time/cost trade-off. There may exist a perfect model allowing one to obtain the

best trade-off as output, but that requires a great bunch of data as input parameters.

Therefore, in the ICEBERG project we adopt an approach that proposes a set of models

starting from the actual need of the industry, basing the choice on the availability of the

information they can rely on.

This document describes the model-based process under development in the ICEBERG

project. It is the first version of this process, which will be enriched/refined in the course

of the project once the subsequent phases provide data and additional checks on the

feasibility, precision and effectiveness of it for practice in real scenarios in project

decision making. The document first describes the workflow followed for defining the

process (Section 3); then, an overview of the process is provided (Section 4), followed

by a description of the use of quality frameworks in practice (Section 5), and a detailed

description of the adopted models so far (Section 6, 7, and 8). Section 9 concludes the

document.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 6

Deliverable D3.1: “First measurement/prediction models-based process”

3 WORKFLOW FOR THE MODELS-BASED PROCESS
DEFINITION

In order to get to a sound process definition, the ICEBERG project followed the

workflow depicted in Figure 1. As first step, we analysed the existing works that have

been proposed in the literature and the current practices in the industry settings

regarding the approaches to support the quality decision making process. An analysis

of the State Of The Art (SOTA) and of the State Of The Practice (SOPA) concerning

quality decision-making, costs and schedule/time factors (Step 1 and Step2) was carried

out. This is the basis for defining the prototypal framework for quality decision-making

based on cost, quality and schedule/time trade-off (Step 3). This latter step will be

performed by exploiting: (i) the identified costs, schedule/time and quality parameters,

and (ii) the existing techniques and methods for model building and model solving.

Figure 1: Work Steps

 Specifically, these are high-level work’s goals (i.e., long term objectives) that we

intend to achieve. We will refine these high level goals into more concrete sub goals

(i.e., short term objectives) until it is possible to objectively measure their satisfaction.

Below, a more detailed description of the main steps follows.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 7

Deliverable D3.1: “First measurement/prediction models-based process”

Step 1: Review of SOTA. The ICEBERG project aims at defining how project

management decisions on quality assurance actions influence project's results in terms

of intrinsic product quality while evaluating their effects in costs and schedule,

following the idea of the Iron Triangle for project management.

 The ability to predict (or estimate) the software quality supports a large set of

decisions across multiple lifecycle phases that span from design through

implementation-integration to adaptation phase. However, due to the different amount

and type of information available, different prediction/estimation approaches can be

introduced in each phase. A major issue in this direction is that the software quality

cannot be analyzed separately, because the project managers must assure the respect to

constraints on schedule and costs. A quality decision, for example, can be the one of

implementing static code analysis (e.g. tools, new processes, training, etc.) but its

impact on project schedule, for example, can cause delays in completion of projects

tasks while number of defects might be reduced up to certain extent leading to cost

savings: in the end, the project manager needs to know if this is helpful and convenient

for the project goals.

 Therefore, we analysed the existing solutions that concern quality decision-making,

cost and schedule/time issues all along the software lifecycle in order to understand:

- What approaches have been reported regarding quality decision-making in the single

lifecycle phases?

- Which the quality decisions are (e.g., adaptation mechanisms typically used in

adaptive systems) treated in the scientific literature? What is the relationship

between these identified decisions and software defects (incidents and other

concepts)?

- What are the common causes of decision-making (such not satisfying of constraints

on reliability)?

- What approaches have been reported dealing with human and organizational

factors? For example, how do the approaches deal with the problem of automating

and optimizing shift allocations to people in order to meet certain service levels?

- Which are the schedule/time/cost-related properties considered by the existing

approaches for quality decision-making? What is the importance of these identified

properties? What is the relationship between these identified properties and the

software quality?

Results of this analysis are reported in the previous deliverables (deliverable D2.1 and

D2.2).

Step 2: Review of SOPA In order to determine measures for assessing the three factors

(i.e., cost, schedule/time and quality), we planned and distributed an interview-survey

in which several customer of project’s partners have been involved. Our study is based

on a method specified in [3]. As explained in the deliverable D2.2, the survey will be

conducted in multiple stages that span from questionnaire preparation through data

collection and analysis to validity addressing. This information is essential to validate

which options from SOTA could be feasible for practitioners according to SOPA.

Decisions and the corresponding models selected for the first version of the model-

based process, reported hereafter, are based on data and/or information collected from

the ICEBERG project partners; the results of the survey will be used to enrich the set

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 8

Deliverable D3.1: “First measurement/prediction models-based process”

of models and refine the existing ones by considering the metrics/data as collected by

the involved company, and the way they collect such information.

Step 3: Defining frameworks for quality decision-making. The aim of this step is to

define the prototypal framework for quality decision-making based on cost, quality and

schedule/time tradeoff. The framework will be based on the usage of a set of models,

orchestrated in a flow taking the product/process information as input and providing

solutions to crucial decisions along the development process (e.g., for architectural

design, for testing, for debugging, etc.) in terms of quality/cost/schedule

prediction/estimation.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 9

Deliverable D3.1: “First measurement/prediction models-based process”

4 MODELS-BASED PROCESS OVERVIEW

Figure 2 shows an example of a prototypal framework within its working environment.

In this case, the framework comprises two modules: a Model Builder and a Model

solver.

Figure 2: An example of framework and its environment

A primary input to this framework is represented, for example, by (i) the system models

(e.g., an UML-based architectural model composed of a Component Diagram,

Sequence Diagrams, and a Deployment Diagram), (ii) the causes of quality decision-

making, and (iii) dependencies among quality decisions, defects issues, cost factor and

schedule factor. In particular, we intend to categorize the identified: (i) quality decisions

(and causes), and (ii) schedule/time/cost-related properties. This should be based on

results of tasks WP 2.4 and WP 2.5.

 The Model Builder generates the optimization model in the format accepted from the

solver. The Model solver processes the optimization model received from the builder

and produces the results, which consist of a set of quality decisions. It suggests, for

example, how to design (or re- design) the software architecture in order to minimize

the costs while keeping the software quality within a given threshold. In addition, the

model, for example, could also suggest the best shift allocations to people in order to

achieve the required level of software quality. The inferences and relationships detected

for this model should be created by defining and applying the most appropriate methods

for data analysis. Any combination of quality decisions may have a considerable impact

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 10

Deliverable D3.1: “First measurement/prediction models-based process”

on the cost, time and software quality. Therefore, the optimization model aims to

quantify such impact in order to suggest the best quality decision, which minimizes the

costs while satisfying the schedule/time, cost and quality constraints.

 In order to achieve the right tradeoff among schedule/time constraints, software

qualities and costs requirements, the quality decisions should involve the evaluation of

new alternatives to the current (i) software application level (e.g., by the configuration

of software components, the introducing new components into the system, etc.) and (ii)

project management level (e.g., the shift allocations to people). A decision, for example,

taken for modifying a system functionality may be good for the satisfaction of a certain

level of software quality, but at the same time it may require a high cost for

implementing static code analysis (e.g. tools, new processes, training, etc.). A major

challenge is then finding the best balance among many different competing and

conflicting constraints.

 For these multi-attribute problems, there is usually no single global solution, and the

generation and evaluation of quality decisions alternatives can be error-prone and lead

to suboptimal decisions, especially if carried out manually by system architects or

maintainers.

 In order to address such problems, we will investigate the application of: (1) SBSE

search methodologies (e.g., genetic algorithms, evolutionary algorithms and other

metaheuristics) and, (2) the multi-objective optimization, where objectives represent

different properties (e.g., cost, time and other software quality-related). Specifically,

we will devise a set of solutions, called Pareto optimal solutions or Pareto front, each

of which assures a tradeoff between the conflicting constraints. In other words, while

moving from one Pareto solution to another, there is a certain amount of sacrifice in

one objective(s) to achieve a certain amount of gain in the other(s). Each point of a

Pareto curve will be a chain of quality decisions (leading changes either to the

application level or the project management level).

 In the past five years SBSE has proved to be a widely applicable and success-full

approach. In fact, it has been applied to several problems throughout the software

engineering lifecycle, from requirement and project planning/management to

maintenance and reengineering. In particular, SBSE potential has been already

proposed and used for supporting both the software application level and project

management level. The SBSE approach results attractive because it provide a suite of

adaptive automated and semi automated solutions in situations typified by large

complex problem spaces with multiple competing and conflicting objectives [4].

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 11

Deliverable D3.1: “First measurement/prediction models-based process”

5 USE OF FRAMEWORKS FOR QUALITY DECISIONS IN

PRACTICE

A Decision Support System (DSS) is a computer-based information system that supports

business or organizational decision-making activities. DSSs serve the management,

operations, and planning levels of an organization (usually mid and higher

management) and help to make decisions, which may be rapidly changing and not

easily specified in advance (Unstructured and Semi-Structured decision problems).

Decision support systems can be either fully computerized, human or a combination of

both. 1

A taxonomy for DSS has been created by Dah and Stain in [5]. They differentiate in

model-driven DSS and data-driven DSS. Power in [6] extended this classification by

considering document-driven DSS, communication-driven DSS, and knowledge-
driven DSS.

Model-driven DSSs usually provide a mathematical model, based on statistical

(optimization or simulation). This model helps make decisions. A user interface is

typically used. Such interface facilitates the use of the model.

Data-driven DSSs, also called data-oriented, emphasize access and manipulation of

internal and external organizational data (usually numerical). It is not provided a

mathematical model. However, the consultation of the data or their temporal is

supported. These types of DSSs involve aspects of databases managements systems

(e.g., data warehouses or data warehouse, the online analytical processing (OLAP) and

data mining or ETL, etc.).

Data mining techniques can be grouped into predictive and descriptive depending on

the problem at hand. From the predictive point of view, patterns are found to predict

future behaviour. In fault prediction, it would correspond to the generation of

classification models to predict whether a software module will be defective based on

metrics from historical project data. From the descriptive point of view, the idea is to

find patterns capable of characterising the data represented in such a way that domain

experts can understand them (e.g., rules or decision trees).

Considering the objective, data mining task are typically categorised as:

 Classification, prediction task which tries to assign a new instance

to a predefined category, e.g., defect classification.

 Regression, typically considered when the output model is a number,

e.g., effort or cost estimates.

 Clustering, the objective is to group similar data (e.g., similar open

source packages to find alternatives, etc.).

1 Decision Support Systems - http://en.wikipedia.org/wiki/Decision_support_system

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 12

Deliverable D3.1: “First measurement/prediction models-based process”

 Time series analysis, evolution of some variables with respect to the

time variable (e.g, complexity of a module, accumulated number of

modifications, etc.).

 Text mining, the objective is to extract knowledge from free form

text, for example, requirements or bug reports could be automatically

classified after some text mining preprocessed.

These are object can be achieved using different representation models (techniques)

such as trees, rules, artificial neural networks, etc. These models can be categorised as

blackbox or whitebox models. Blackbox models include neural networks or support

vector machines. Whitebox techniques include rules (for both association rules or

classification) or decision trees which are simple to use and provide an explication

about the decision.

Data mining in Software Engineering

Currently, software organisations produce a large amounts of data from configuration

management systems (software), bug tracking systems, mailing lists, etc. These data

need to be preprocessed and analysed

Data mining in software engineering has its own challenges [7], [8], [9], [10] as

techniques from Web Mining, Text Mining, etc. need to applied and adapted. A subarea

of this field is known as SBSE2, which deals with the application of search and

metaheuristic techniques in SE and has become an important area of research (as

explained in Section 4). Many SBSE problems are composed of one or more fitness

functions that evaluate a search space, which can be generated while searching for the

solution or from repositories forming a combinatorial problem from dataset attributes.

Its importance is also reflected in several conferences and workshops such as Mining

Software Repositories (MSR)3, PRedictOr Models In Software Engineering

(PROMISE)4, Workshop on Realizing Artificial Intelligence Synergies in Software

Engineering (RAISE)5.

Data Source in Software Engeneering

Data to apply data mining can come from the following sources

 Documentation of a project, both internal and external. The format can vary a lot

and these will need extensive preprocessing and probably text mining in many

cases.

 Design, testing, quality assurance information

2 http://crestweb.cs.ucl.ac.uk/resources/sbse repository/

3 http://msrconf.org/

4 http://promisedata.googlecode.com/

5 http://promisedata.org/raise/

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 13

Deliverable D3.1: “First measurement/prediction models-based process”

 Source code

 Compiled source, execution traces, logs, etc.

 Bug tracking systems

Software Engineering Repository Software projects leave a trail in different kinds of

repositories, and this trail can be used to reconstruct the history of the project, and to

study the software development and maintenance processes. We classify this trail in the

following categories:

 Source code

This is the most obvious product of a software project. Source code can be studied

to measure its properties, such as size or complexity.

 Source Code Management Systems (SCM)

SCM repositories make it possible to store all the changes that the different source

code files undergo during the project. Also, SCM systems allow for work to be done

in parallel by different developers over the same source code tree. Every change

recorded in the system is accompanied with meta-information (author, date, reason

for the change, etc) that can be used for research purposes.

 Issue tracking systems

Bugs, defects and user requests are managed in issue tracking systems, where users

and developers can fill tickets with a description of a defect found, or a desired new

functionality. All the changes to the ticket are recorded in the system, and most of

the systems also record the comments and communications among all the users and

developers implied in the task.

 Messages between developers and users

In the case of free / open source software, the projects are open to the world, and

the messages are archived in the form of mailing lists, which can also be mined for

research purposes. There are also some other open message systems, such as IRC

or forums. Other projects which are developed in public can also store messages,

but it is unusual to have that information for research purposes.

 Meta-data about the projects

As well as the low level information of the software processes, we can also find

meta-data about the software projects which can be useful for research. This meta-

data may include intended-audience, programming language, domain of

application, license (in the case of open source), etc.

 Usage data

In the case of the user side, the trail that projects leave is virtually invisible. There

are statistics about software downloads on the Internet, but that is not the only way

users get their software. Some of the research datasets we describe in this paper

include information about usage data, which is recorded thanks to the collaboration

of users.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 14

Deliverable D3.1: “First measurement/prediction models-based process”

Testing and Debugging is most prolific research field in which machine learning is

being applied. Tools related to testing tools are also the ones have included optimisation

or machine learning capabilities, for example, PEX56 with the automation of unit tests.

We next briefly describe works according to their research field

Project Management One area of project management is related to the estimation of

effort, cost which is mainly a regression problem. Recently data mining techniques have

been applied such as Neural Networks and Genetic Programming [11], Case-based

Reasoning [12], etc. Another problem related to project management is the allocation

of resources and order of activities within a project or across multiple projects. In this

case, optimisation and meta-heuristic techniques have also been implemented (e.g. [13]

[14]).

Software Requirements This field of research it has been mainly tacked as an

optimisation problem, e.g., ranking requirements. Other [15]

Design and Implementation A survey [16]

Testing and Software quality This field is the one that has attracted more attention.

Most of the literature regarding data mining and software engineering is related to

software quality in the sense of defect prediction (comprehensive surveys include the

work of Hall et al. [17] and Catal and Diri [18]), test case generation [19], etc.

Maintenance There are some works related to maintenance effort (e.g. [20]) or

automatic repairing of code (e.g. [21]), refactoring (e.g. [22]).

An example of use of a quality decision framework

The goal of quality decision framework is to provide support for the decisions that

project managers (developers or testers) take.

Figure 3 schematically delineates the use of the quality decision-making framework.

The framework, for example, will suggest the best actions to taken according to a set

of new requirements to be satisfied. The framework will take into account cost,

schedule and quality factors. It will aim, for example, to minimize the costs while

keeping the reliability and the performance of the software architecture within certain

thresholds.

6 http://research.microsoft.com/en-us/projects/pex/

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 15

Deliverable D3.1: “First measurement/prediction models-based process”

Figure 3: An example of framework application

A primary input to the framework is represented by data collected from company

composed of, for example: (i) bugs; and (ii) software metrics. The framework will

suggest the best “actions” (e.g., the additional amount of testing to be performed) under

quality, cost, and schedule tradeoff.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 16

Deliverable D3.1: “First measurement/prediction models-based process”

6 QUALITY DECISION MAKING APPROACHES

 As remarked in the deliverable D2.2, several research efforts have been devoted to

the definition of quality decision-making approaches in each phase of the software

lifecycle. The analysis of system qualities supports a large set of decisions across

multiple lifecycle phases that span from design through implementation-integration to

adaptation phase. However, due to the different amount and type of information

available, different quality decision frameworks can be exploited in each phase.

 The goal of our work is to provide support for the decisions that practitioners take.

We aim at enabling practitioners to maximize the effectiveness of their specific

software by exploiting guidelines of existing literature studies. As explained in the

deliverable D2.2, we are collecting information on which types of decisions are

normally made by managers or project leaders during the projects. We aim to

understand practitioners perceived strengths, limitations, and needs associated with

using SOTA practices in the industry.

 On one hand, we believe that well-assessed optimization methods (like SBSE

methodologies combined with multi-objective optimization), and software quality

validation techniques, will helpful to assist software designers/maintainers and

software project managers during the whole software system lifecycle.

 On the other hand, we plan to analyze effort and time necessary to incorporate the

SOTA solutions into real-world systems: as intended in the plan of Iceberg project, this

is going to be addressed with some industrial scenarios provided by industrial partners,

namely Assioma.net and DEISER.

 As explained in the deliverable D2.2, we can see from the first questionnaire’s results

that practitioners usually deal with a few software metrics, or defect (cost, schedule,

and time) data. We will investigate the effort required for collecting additional data

(e.g., additional software metrics or particular cost factors, such as that of test cases

generation). Because we have pointed out that practitioners already use some tools for

source code metrics evaluation (e.g., Sonar), and bug tracking (e.g., JIRA), or they are

willing to adopt them in their company, we believe that these kinds of software metrics

could be easy collected and evaluated. We will analyze which is the effort required for

using in industry the tools for software metrics evaluation.

We have also realized that the testing is a typical activity in the industry, and

practitioners are willing to invest to improve it. We think that testing is also a good

“provider” of data for the cost, schedule and time indicators. Therefore, we will

investigate, for example, (i) which are the main features of these tools adopted for the

testing, and (ii) how these tools could be integrated with other tools (e.g., the ones for

cost or time evaluations) in order to obtain both cost and time data (such as, for

example, that of test cases generation or execution).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 17

Deliverable D3.1: “First measurement/prediction models-based process”

 In this section, we describe existing SOTA studies, which might be helpful to enable

practitioners to maximize the effectiveness of their specific software. These quality-

decision making approaches can be categorized by the kind of techniques used: (a)

defect analysis model-based, and (b) optimization model-driven.

Defect analysis model-based approaches basically give guidelines to evaluate the

development process by considering software metrics and defect data. The purpose of

defect analysis is to have quantitative support for evaluating the development process.

Depending on the grain of the analysis, the supported quality decisions may regard: the

improvement of the most critical phases of the development process, improvement

actions on the most critical components, actions against the most critical suppliers,

and/or the most critical actors (e.g., testing teams) involved in the process. We are

developing a lightweight defect analysis approach, merging various types of analyses

and models to both product and process evaluation, which requires a minimal set of

defect information as input in order to keep the impact on current practices low.

The optimization model-driven category mainly encompasses studies that, besides

providing a means to evaluate system quality, support the making of best quality

decisions.

This section reports the models that are currently under development for supporting

decision making process, with a specific impact on the quality of the product. We

discuss the adopted models for defect prediction, focusing on identifying the most

critical modules and thus supporting testing. Additionally, we devise the formulation

of cost minimization problems under quality constraints. These optimization models

stem from our previous works, where we have instantiated them for the phases of design

and adaptation. However their elements (e.g., cost function and reliability/performance

constraints) could be re-used in another phase of the software life cycle phase. We are

investigating how to reuse the guidelines of these existing models in order to allowing

study of the tradeoffs among quality, cost, and time attributes.

In Section 6.1, we describe defect analysis model-based approaches, and, in Section 6.2

and Section 6.3, we provide the guidelines of our optimization models.

6.1 DEFECT ANALYSIS MODEL-BASED APPROACH

Supported QA decisions

The purpose of defect analysis is to have quantitative support for evaluating the

development process. Depending on the grain of the analysis, there are several QA

decisions that can be supported: the common underlying basis is to get information

from process measurements. Depending on what we are able to measure, the supported

QA decisions may regard: the improvement of the most critical phases of the

development process, improvement actions on the most critical components, actions

against the most critical suppliers, and/or the most critical actors (e.g., testing teams)

involved in the process. Which specific action to take depends on data analysed, on

gained insights (i.e., critical paths), and on the company policies. In the following, we

report examples of (statistical) analyses that we plan to conduct on the case studies

identified during the ICEBERG project.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 18

Deliverable D3.1: “First measurement/prediction models-based process”

Description

The practice of software defect analysis is recognized as an essential task for software

process measurement. However, its effective application in industry raises several

challenges. Data about defects experienced during the software lifecycle are a valuable

source of information for product and process quality assessment and improvement.

Defect tracking and analysis is therefore a practice recommended by the most important

software process standards. There exist several methods using defect data attributes

(such as the type, the trigger, the injection/detection phase, the impact) for tracking the

quality of development artefacts and of process activities, so as to reveal inefficiencies

and support process improvement. Two successful methods are the Orthogonal Defect

Classification (ODC) [23], and the HP classification [24], both conceived to categorize

the defects observed and then relate their occurrence pattern to process

phases/activities.

Despite the success of such methods, implementing defect analysis into the industrial

practice is heavily conditioned by the context, which finally dictates the objectives of

the analysis and the constraints as well, significantly restricting the choice. There is, in

fact, a trade-off between the target of the analysis, its potential outcomes, its

extensiveness to several process aspects, and the cost required to implement it. For

instance, analysing the process through software reliability growth models (SRGMs)
are easy to implement, because they only require tracking the defect detection time as

input, with not much personnel involved, and few changes to the process; however,

they provide limited insights into the process, referred to the trend of the testing stage

treated as a black box. Oppositely, implementing schemes as ODC or HP classification

yields much information on single phases efficiency, but at relatively higher expense.

Their application into real industrial settings can be difficult [25], [26], because of start-

up costs (e.g., training, process changes), of required customizations (e.g., [27]), of non-

immediate visible gain, and of reluctance of people to change their routine job.

In the ICEBERG project, we are therefore developing a lightweight defect analysis

approach, merging various types of analyses and models to both product and process

evaluation, which requires a minimal set of defect information as input in order to keep

the impact on current practices low. The objective is to evaluate the quality vs. effort

balance of the development process so as to identify potential critical phases,

components, or actors. We are going to implement a black-box approach, in which the

evaluation is inferred from the available data, not requiring any process change or any

additional effort to developers (e.g., to re-classify defects according to a predefined

scheme as could be the case with ODC, HP schemes). This avoids expensive training,

terminology alignment, imposition to suppliers, and other adaptation activities. The

minimal requirement must be the usage of a defects tracking tool.

Specifically, the objectives of the defect analysis approach in relation to the iron’s

triangle factors of cost, quality, and time, are:

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 19

Deliverable D3.1: “First measurement/prediction models-based process”

- Measuring the efficacy and the efficiency of the requirements/design/implementation

processes (i.e., the processes of “building” the product). With efficacy we mean the

quality – i.e., (un-)defectiveness - of what is produced, while with efficiency we

mean the quality with respect to the effort (i.e., cost) to produce it.

- Measuring the efficacy and efficiency of the testing process. The task of tester is to

expose failures, i.e., the defects manifestation. Hence, testing efficacy is the level of

defectiveness exposed by testers, and efficiency relates this to the effort required.

- Measuring the efficacy, the efficiency, and the internal quality of the fixing process.

These are intended, respectively, as the number of defects, the average fixing time,

and the properties of the fixing process as a whole, taken as indirect guarantee of a

correct fixing.

To this aim, the approach is developed in the three main steps depicted in Figure 4.

Figure 4: The key steps of the defect analysis approach

Measurement is the starting point of the approach. From gathered data, several analyses

are enabled with either analytical or empirical models, or hybrid approaches (i.e.,

analytical/measurements-based). Examples of evaluations supported by data on which

we are working are:

 Process phases evaluation (implementation, testing, debugging/fixing);

 Component quality assessment (e.g., in terms of reliability level) for quality

bottlenecks identification;

 Fine-grain defects analysis with respect to Severity/Priority/Reproducibility

attributes, providing feedback on tester/debuggers behaviour;

 Suppliers Evaluation in outsourcing-based developments.

This type of information corresponds to estimates of cost due to poor quality as caused

by critical development issues: e.g., the time in which debuggers fix defects is a cost;

the inefficiency of testing is a cost; the wrong management of priority is a cost; the high

defectiveness of a component implemented by suppliers is a cost. All this information

is therefore going to be measured by a set of metrics defined in the step 1 of Figure 4

as measurements are taken. In the following we report the list of analyses that we

include in our approach. The flexibility of the method allows us to select the best set of

analyses depending on data provided as input. The list also reports the output provided

by the analysis and how these outputs are given to managers in terms of “metrics”.

Input

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 20

Deliverable D3.1: “First measurement/prediction models-based process”

The inputs required to implement the defect analysis approach for quality decision

support are the ones typically collected in a bug-tracking tool. Depending on the details

tracked about the defects, several analyses can be carried out.

The minimum requirement is the Date and time of the defect (or, more generically,

issue) detection and effort measures (e.g., man-months for implementation, and man-

month for testing).

Optionally, the method can take: the defect Priority, Severity (impact), Detection Phase

(i.e., Design Review, Code Review, Unit Testing, Integration testing ,…), the defect

type (according to some classification, such as IBM ODC, HP), the age of the code

module (e.g., new, base, rewritten, re-fixed), the defect Trigger, the Source (in-house,

outsourced, library, …), the reproducibility (e.g., always or not always reproducible).

These input parameters can be used for: derive quality vs. effort indicators, and identify

problems and criticalities in the lifecycle (e.g., phase/activity/team causing low index

value).

Table 1 summarizes the potential model’s input. This is a superset, meaning that

different analyses can be done depending on the input information.

Source Data Type Data

Bug Repository Defect Data Severity/Reproducibility/Priority, Defect

Triggering (and/or activity that made the

defect surface, e.g., code review, inspection,

unit testing, workload/stress testing,

concurrency testing, operational usage),

Defect Detection Phase, Supposed Defect

Injection Phase, Fixing time, Defect fixing

Phase, Defect Type, Defect Impact, Defect

mode (wrong, missing), defect source,

source age, work/Rework

Source Code

Repository

Code/Process Metrics Size Measures (LoC, #Req, Function

Points), Complexity metrics (McCabe,

Halstead’s), Source File metrics, code

churn/change metrics, version

Development/Test

Engineer

Effort Estimate

Testing effort (e.g., man-months dedicated to

testing)

T Maximum threshold given to the delivery

time of the system.

Table 1: Model’s Input

Output:

Table 2 summarizes the main decisions supported by this class of models synthetically,

which is again a superset with respect to the usage that can be done of the input

information. Note that some of the specified analyses are also detailed in the subsequent

sections, being this defect analysis model at higher level.

With a greater detail, Table 3 summarizes the analyses that can be done by joining more

input information pieces, and their output depending on the information recorded by

the tester and/or the person in charge of fixing a defect (with minimum requirement

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 21

Deliverable D3.1: “First measurement/prediction models-based process”

being only the detection time and date with effort measures). The analysis that we will

carry out will depend on the availability of such information in the case studies. The

analysis are intended as “statistical” analysis, with output always accompanied by a

“confidence level” indication (e.g., a given metric value is greater than another, with

95% of confidence).

Decisions Description

Release Policy Quality (reliability) analysis/assessment and time to

get a given quality

Testing decisions: how much effort to

invest

From the analysis of the testing process (test

efficacy, efficiency) and of the product quality

(detected/expected defects) with respect to the

effort devoted so far, decide on investing more or

less resources

Testing decisions: if and how to change

the current process based on defect

data

Analysis of defects per

severity/reproducibility/priority, of

detection/injection phase, of defect triggering phase

and activity, defect type, in order to identify

mismatch (expected vs actual patterns)

Testing effort allocation Prediction of defective modules from code/process

metrics

Decision on Debugging Process

improvement and Development

improvement

Analysis of the bug fixing time, defect type, defect

impact, defect source, defect source age, prediction

of defective modules from code/process metrics to

focus design efforts, analysis of defect features to

get feedback on implementation

Table 2: Model’s Output

Input Info Joined with: Type of Analysis Output Info

On detection,

tester will

record:

Opening Time Reliability Analysis Estimate of Expected Defects, Estimate of

(expected) Reliability (i.e., non-failure

probability), Estimate of Residual Defects.

Both during testing and during operational

phase

 Release Policy

Analysis

Decisions on "When to stop testing, when

to release", "What is the quality, under the

current testing process, expected at the end

of testing"

 Size measures:

LoC, #Req,

Function Points

"Normalized"

reliability analysis

Estimated Expected Defects Density,

Estimated Expected Residual Defects

Density

 Effort measures:

testing effort

(e.g., man-

months)

Test Efficacy and

Efficiency Analysis

Test maturity (%): detected defects so far

over the total expected defects, Test

Efficiency: defect detection rate, Test

Efficiency: percentage detection

efficiency (progress in terms of "test

maturity increase" per effort unit), Test

Efficiency: relative efficiency in terms of

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 22

Deliverable D3.1: “First measurement/prediction models-based process”

"effort units (e.g., man-weeks) required to

achieve a maturity of x%"

 severity/

reproducibility

severity/

reproducibility

analysis;

Cross-analysis with

the previous ones

Defects per category: "which

implementation has higher severe defects

in the average? what is the trend of high-

severe defects per implementation item?

Do testers of different implementation use

the same criteria to assign severity? Which

testing activity exposes the most severe

defects? Which percentage of "not-always

reproducible" defects is found during

testing and which percentage during

operation (high-cost defects)? What

testing activity exposes the "not-always"

reproducible defects?

Defect

Triggering

(and/or

activity)

 V&V Analysis Identification of critical phases of testing

(e.g., function review, code review,

testing) and operational conditions in

which defects are found (during testing or

at runtime); Identification of critical

environmental conditions (e.g., high

workload-stress greatly contributing to

expose defects); "Signature" of testing

techniques with respect to defects they are

able to find (how many, of what type, of

what impact in terms of severity)

Defect

Detection

Phase

 V&V (Phase)

Analysis

Identification of critical phases of testing -

analysis of expected detection phase vs.

actual detection phase; "Delay" and cost

analysis of testing - thus cost analysis

referred to defects that should have been

detected earlier

Supposed

Defect

Injection

Phase

 Development and

V&V Analysis;

Defect Flow

Analysis

Development Phase Analysis - which

phase introduces more defects (and of

what type, impact); Defect flow analysis:

analysis of the latency (and cost) required

to detect defects (for how many phases the

defect flows and survives); analysis of

V&V activities vs. latency

On fixing,

debugger will

record:

Fixing time Fixing process

(debug) analysis

Efficacy: percentage of closed (or

pending) defects; Efficiency; mean time to

fix

 Fixing process

evolution over time

Efficacy and Efficiency over time;

Continuity of the process over time;

homogeneity of the process (e.g.,

peakedness and skew of the fixing time

distribution)

 severity/

priority/

reproducibility

Fine-grained Fixing

process analysis

(analyse potential

causes for

Previous metrics normalized per average

severity (have more severe defects

required more time to be fixed)?; priority

analysis (have defects at higher priority

been fixed earlier?) ; reproducibility: have

"not-always reproducible" been actually

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 23

Deliverable D3.1: “First measurement/prediction models-based process”

experienced time to

fix)

more difficult to fix (thus justifying higher

Time to fix)?

Actual

working Time

 Detailed Fixing

process (debug)

analysis; Latency

Analysis

Analysis of the bug tracking tool usage (it

is expected a small difference between

actual and recorded time to fix); Latency

analysis: when the actual fixing work

starts with respect to the claimed time;

percentage of actual time over recorded

time

Defect fixing

Phase

 Detailed Fixing

process (debug)

analysis

When the defect has been fixed w.r.t.

when it was to expected to be fixed (cost

analysis like "detection vs. injection"

analysis: in this case it is "correction vs.

detection")

Defect Type Development

Analysis

"Signature" of defect types over the

development phases: expected vs.

experienced defect. Analysis of patterns of

defect types vs. development phases in

which they have been injected. Cross-

analysis with many previous and

following attributes: defect type vs.

trigger, vs. V&V activities, vs. impact, vs.

source , vs. age, vs. target; type-based

defect prediction (see below)

Defect Impact Development and

V&V Impact

Analysis

Crossed analysis with: development

phases, V&V phases and activities, defect

type and triggers, and others…

Defect Mode

(missing,

wrong)

 Detailed

Development and

V&V Analysis

As above, differentiated per "missing"

defects and "wrong" defects; feedback to

developers

Source (in-

house,

outsourced,

library)

 "Source Defect"

Analysis

How many defects per source item type

(in-house, outsources); crossed analysis

with previous attributes

Source Age

(new, base,

rewritten,

refixed)

 "Source Age"

Analysis

Age is intended the age of the code

affected by the defect as development

history: base code from the previous

release, new code from the current release,

rewritten code or refixed code. This allows

analysing the impact of reusing code, of

regression bugs, of writing completely

new code, of using a baseline. Crossed

analysis with previous attributes makes

sense also.

Target of the

fix (e.g.,

source file)

 Code-defect

Relationship

Analysis

How many defect (density) per target; how

target (metrics) are related to

defectiveness

Version Defect Pattern

Evolution across

versions; release

policy analysis

How defects (type, trigger, impact,

age,…) evolves across versions; how

releases relate to defects found in

operation; how releases are related to

fixing (e.g., release train effect)

Work-rework Regression

Likelihood Analysis

How many defects are opened during a re-

work; likelihood of introducing regression

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 24

Deliverable D3.1: “First measurement/prediction models-based process”

bugs; crossed analysis with triggers

(environmental conditions in which

defects surface)

More

advanced

analysis. For

internal

quality and

prediction

Size and

complexity

metrics; CVS

metrics (code

churns, etc.)

 Code-defects

Relationship;

Defect Prediction

Empirical models to build predictors of

defectiveness in modules; can be

customized per defect type

Requirements-

, design-,

organizational

metrics

 Process metrics-

defects

Relationship;

Defect Prediction;

Detailed phase

analysis (relation

between phases

metrics and defects)

How metrics at each level are related to

defects; this can be specialized per phase

(e.g.,: how requirements metrics are

related to, and can predict, defects of a

given type, or defects injected in

requirements phase, …)

Description of

the defect;

notes;

discussions;

number of

state changes

in the report,

…

 Communication;

Topic analysis,

semantic analysis

Relating communication patterns (length

of discussion, topics inside, number of

participants to the discussion) with time to

fix

Test Effort per

component

 Optimal test effort

allocation

Allocate effort to projects with higher

expected defectiveness

Table 3: Input-Output matrix describing the Possible Analyses and output in relation to
provided information

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 25

Deliverable D3.1: “First measurement/prediction models-based process”

6.1.1 DEFECT PREDICTION

 As remarked in the deliverable D2.2, defect prediction approaches basically provide

guidelines to predict defects in source code by exploiting the usefulness of elementary

metrics or previous defects. They have the following common steps that can be iterative

and overlapping.

 Step 1. The metrics evaluation is accomplished. Depending on the adopted type

of metrics (e.g., object-oriented metrics or “traditional” product metrics, like

number of lines of code, McCabe complexity), different computing approaches

are used.

 Step 2. The relationships between the values of the metrics and the numbers of

bugs found in the system (e.g., in the classes) are discovered. Well-known

statistical methods (e.g., logistic and linear regression) have been largely

adopted to validate the usefulness of the metrics to identify defective classes.

Basili et al. in [28], for example, validate object-oriented design metrics as

quality indicators by using logistic regression technique [29]. In the contrast,

Gyimóthy at al. in [30], besides using regression methods (logistic and linear

regression), also employed machine learning techniques to validate the

usefulness of object-oriented metrics for fault-proneness prediction on open

source software

 In order to validate the metrics’ usefulness for fault-proneness, the output of the

previous step is analyzed. Specifically, the values obtained are checked against the

number of bugs found in the system (e.g., in [30] the values of the object-oriented

metrics of the open source Web and e-mail suite called Mozilla are checked against

the number of bugs found in its bug database called Bugzilla).7

Input

 Defect prediction approaches utilize software metrics and defect data collected during

the software development process. Their efficacy is, therefore, influenced by the

relevance between software metrics and fault data. The modules predicted to be fault-

prone will receive more inspection and testing, thereby improving their quality. The

literature contains a wealth of software metrics proposed for software fault prediction.

In fact, software metrics may be used in prediction models to improve software quality

by predicting fault location [31]. In the deliverable D2.2 more details on the survey [31]

can be found. However, we can remark that, in general, software metrics are

categorized as follows:

 Traditional: size (e.g. LOC) and complexity metrics (e.g. McCabe [32]).

 Object-oriented: coupling, cohesion and inheritance source code metrics used

at a class-level (e.g. Chidamber and Kemerer [33]).

7 http://www.bugzilla.org/

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 26

Deliverable D3.1: “First measurement/prediction models-based process”

 Process: process, code delta, code churn, history and developer metrics. These

metrics are usually extracted from the combination of source code and

repository, and they require more than one version of a software item.

 Different prediction approaches have been introduced by relying on diverse

information (e.g., on source code metrics, process metrics or previous defects). The

efficacy of defect prediction models is influenced by relevance between software

metrics and fault data [34].

Output

 The accuracy and the granularity are two important qualities of software fault

prediction algorithms [35]. The accuracy represents the degree to which the algorithm

correctly identifies future faults. On the contrary, the granularity specifies the locality

of the prediction. As remarked in [35], typical fault prediction granularities are: (i) the

executable binary [36]; (ii) a module (often a directory of source code) [37]; (iii) or a

source code file [38]. A directory level of granularity, for example, means that

predictions indicate a fault will occur somewhere within a directory of source code. As

stated in [35], the most difficult granularity for prediction is the entity level (or below),

where an “entity” is a function or method.

Supported QA decisions: These models provide support for decisions both at design

time and testing time. The modules predicted to be fault-prone will receive more

inspection and testing, thereby improving their quality.

Example of Defect Prediction Approach One of the most known defect prediction

approach is the Basili et. al approach [28]. Basili et al. have used eight projects

developed by using a sequential life cycle model, a well-known OO analysis/design

method. The projects were written by students in C/C++. Basili et al. have slightly

adjusted some of CK metrics in order to reflect the specificities of C++. Based on

empirical and quantitative analysis, they have argued that several of CK metrics appear

to be useful to predict class fault-proneness during the early phases of the life-cycle.

Moreover, they have also figured out that, on their data set, CK metrics are better

predictors than “traditional” code metrics, which can only be collected at a later phase

of the software development processes. GEN++ [39] was used to extract CK metrics

directly from the source code of the projects delivered at the end of the implementation

phase.

6.2 BUILD-OR-BUY DECISIONS MODELS

 In this section we devise the formulation of a cost minimization problem under

reliability and delivery time constraints. This model stems from our previous work in

the context of component-based software [40], where we have introduced a model to

support build-or-buy decisions about software components while minimizing costs

under quality constraints. Components can be either bought as COTS (commercial-off-

the-shelf) products, and probably adapted to work in the new software system, or they

can be developed in-house. We adopt a general definition of software component: it is

a self-contained deployable software module containing data and operations, which

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 27

Deliverable D3.1: “First measurement/prediction models-based process”

provides/requires services to/from other elementary elements. A component instance is

a specific implementation of a component.

 The model considers the following architectural decisions: (i) replacing existing

software units with functionally equivalent instances available on the market, and (ii)

replacing existing software components with functionally equivalent software

components developed in-house. Therefore, we show how an optimization framework

can support the decision whether to buy software components or to build them in-house

upon designing a software architecture.

Description

 Let S be a software architecture made of n software components. Let Ci be the i-th

software component (1 ≤ 𝑖 ≤ 𝑛). Let Cij be the j-th instance of the i-th component,

and with j =0 we represent the in-house developed instance.

Let us assume to be committed to assemble the system by the time T while ensuring a

minimum reliability level R and spending a minimum amount of money.

Symbol Description

R Minimum threshold given to the reliability on demand

of the system.

T Maximum threshold given to the delivery time of the

system.

n Number of existing software component

m Maximum number of COTS instances available for

each component

cij Cost of the instance Cij

dij Delivery time of the instance Cij

si Average number of invocations of Ci

ij Probability of failure on demand of the instance Cij

ci Unitary development cost of the instance Ci0

ti Estimated development time of the instance Ci0

i Average time required to perform a test case of the

instance Ci0

i Testability of the instance Ci0

yi The instance in-house Ci0 is selected

xij The instance Cij is selected

Ntot
i Total number of tests performed on the in-house

developed instance Ci0

Table 4: Model’s parameters and variables

Table 4 summarizes the parameters and the variables of the model. The formulation

of the optimization model is given by:

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 28

Deliverable D3.1: “First measurement/prediction models-based process”

Input

 A primary input to the model is represented by an UML-based architectural model

composed of: (i) a Component Diagram describing software components and their

interconnections, (ii) a set of Sequence Diagrams describing the possible execution

scenarios. Model parameters include, for example: (1) quality attribute values (e.g.,

probability of failure on demand) of elementary software units; and (2) unitary cost to

develop a software unit in-house. Details on the parameters estimation can be found in

[40].

Output

 The results of the optimization model consist of a set of architectural decisions. The

solution of the optimization model indicates the instance to choose for each component

(either one of the available software unit instance or an in-house developed one) in

order to minimize the software costs under quality constraints. The model solution also

indicates the amount of testing to be performed on each in-house instance in order to

achieve a reliability level that allows the whole system to satisfy the reliability

constraint.

 In fact, the formulation of the optimization model involves further variables

representing the amount of unit testing to be performed on each in-house developed

software component. Since these variables enter the software cost and the software

reliability formulation, the model can be used to determine not only the best assembly

of software units to be bought or built, but also the best amount of testing to be

performed on each in-house developed unit to fulfill the constraints while minimizing

development costs. Indeed, testing on in-house software components aims at increasing

reliability estimation, whereas testing on instance of software unit available only aims

at reliability estimation, because lack of source code does not allow to localize and

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 29

Deliverable D3.1: “First measurement/prediction models-based process”

remove faults unless additional wrapper code is designed. In our approach, we do not

entail wrapper code because it would bring additional time and cost hard to quantify.

Model solutions are obtained by means of a commercial non-linear solver and are

compared to those provided by a previous approach.

Model Summary. Table 5 summarizes the primary input of the model. A primary input

to the model is represented by parameters related to: (i) the components Ci, which are

estimated by using the architectural model (i.e,, the average number of invocations) or

entered by the user (e.g., its number of COTS available), (ii) the COTS instances (e.g.,

the cost and the delivery time), and (iii) the in-house components (e.g., the unitary

development cost). A model solution provides the optimal “build-or-buy” strategy for

component selection, as well as the number of tests to be performed on each in-house

developed component instance (as summarized in Table 6). The solution guarantees a

system reliability over the threshold R, a system delivery time under the threshold T

while minimizing the whole system cost.

Source Data Type Data

Architectural Models Existing Components si Average number of invocations of Ci

User Model Constraints R Minimum threshold given to the reliability

on demand of the system.

T Maximum threshold given to the delivery

time of the system.

Existing Components n Number of existing software components

m Maximum number of COTS instances

available for each component

COTS instances cij Cost of the instance Cij

dij Delivery time of the instance Cij

ij Probability of failure on demand of the

instance Cij

In-house instance ci Unitary development cost of the instance

Ci0

ti Estimated development time of the

instance Ci0

i Average time required to perform a test

case of the instance Ci0

i Testability of the instance Ci0

Table 5: Model’s Input

Architectural

Decisions

Description

Build-or-buy

decisions for each

component Ci

(i) Replacing Ci with the COTS instance Cij

or (ii) Develop-in-house the component Ci.

Testing decisions

for the in-house

developed instances

The model suggests the amount of unit

testing to be performed on each in-house

developed software component.

Table 6: Model’s Output

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 30

Deliverable D3.1: “First measurement/prediction models-based process”

6.2.1 QUANTIFYING THE INFLUENCE OF FAILURE REPAIR/MITIGATION COSTS

As discussed in the deliverable D2.2, reliability and costs together have been considered

in different contexts, for example to provide guidelines in (1) evaluating the effort spent

to test the software, deal with the resource allocation during the test process or quantify

the costs of service failure repair/mitigation actions, or (2) comparing the costs of

defect-detection techniques. In the deliverable D2.2, we provide a quite extensive list

of these approaches.

 In our previous work [41], we have presented an approach for service selection taking

into account costs and reliability requirements. In particular, we have defined a set of

optimization models that allow quantifying the costs of service failure repair/mitigation

actions aimed at keeping the whole system reliability over a given threshold.

 The aim of our approach is to define SBSs obtained by a combination of both

provided loosely-coupled services and in-house developed services, while satisfying

costs and reliability requirements. These systems should be able to satisfy both costs

and reliability constraints under the hypothesis that repair and mitigation actions can be

undertaken to maintain the service’s reliability over a certain threshold. To this end, we

have defined a service selection approach based on the definition of a set of

optimization models whose goal is to minimize the overall application cost while

guaranteeing the required level of reliability. The high level view of the proposed

approach is sketched in Figure 5.

The goal of our work has been to introduce a set of optimization models that allow

quantifying the costs of service failure repair/mitigation actions aimed at keeping the

whole SBS reliability over a certain threshold.

We assume that a service-based system made of n nominal services has to be

assembled, and for each nominal service Si, several alternative implementations are

available, which can be split into: (i) an in-house service implementation, (ii) service

implementations available for purchase by providers.

On the basis of our previous work [40] (discussed in Section 6.2), we have first

introduced an optimization model, called base model, aimed at selecting either in-house

built or provided services with the goal of minimizing the SBS cost while guaranteeing

a certain level of reliability. Thereafter we have strengthened the reliability constraints,

and we have built two different optimization models that aim to solve the same problem

under new constraints, where one model starts from the solution obtained in the original

model and tries to improve it (i.e., base model with repair model), while the other one

looks for an optimal solution in the whole search space (i.e., robust model). Finally, we

have introduced a fourth model, based on stochastic optimization (i.e., stochastic

model), with the goal of rather searching for solutions that explicitly take into account

the stochastic nature of the problem and search for new repair/mitigation actions

cheaper than the ones identified by the other models.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 31

Deliverable D3.1: “First measurement/prediction models-based process”

 Figure 5: High-level Approach Overview [41]

Input

The input of our approach is the set of functional and non-functional requirements

representing the goal/objective of the SBS to-be. A primary input of the models is

represented by an UML-based architectural model composed of: (i) a Component

Diagram describing software components and their interconnections, (ii) a set of

Sequence Diagrams describing the possible execution scenarios.

Models’ parameters include, for example: (1) quality attribute values (e.g., probability

of failure on demand) of elementary software units; and (2) unitary cost to develop a

software unit in-house.

As remarked above, the formulation of the base model stems from our previous work

in the context of component-based software [40] (see Table 4 for the model’s

parameters and variables of this model). Specifically, with respect to the original model,

here: (i) we have plugged the problem in a service-oriented paradigm, where the build-

or-buy decisions refer to services rather than components, (ii) we have refined the

software development cost function (that in the original work was a linear function of

the development time) with a COCOMO II cost function [42], and (iii) we have

removed the delivery time constraint, for sake of focusing on reliability concerns.

In particular, we have exploited the COCOMO II model [42] to define the development

cost ci of an in-house service. The COCOMO II model introduces a software cost

function that depends on the size (i.e., the lines of code) and the type (i.e., simple,

intermediate and complex) of software. Such attributes allow estimating the amount of

effort, in terms of personmonths, needed to deliver the software.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 32

Deliverable D3.1: “First measurement/prediction models-based process”

We have adapted the COCOMO model by considering the amount of testing to be

performed on an in-house software unit. In particular, we have introduced Ni, the

number of tests performed on a service before delivery. The variables Ni appear both in

the development cost function and in the reliability constraint.

We have introduced the following cost function for an in-house developed service:

     ib

ipmi Npmttestperc1sizeatcosc  (1)

where:

  bisizea  is the COCOMO II model for the development personmonths of a

service by isize , where constants a and b depend on the software size and

type.

  testperc1 is the percentage of development effort that is not spent in

testing.

 iNpmt  is the effort spent in testing.


pmtcos is the cost of a personmonth.

Similarly to Table 5, Table 7 summarizes the primary input of the basic model.

Source Data Type Data

Architectural Models Nominal Services invi Average number of invocations of Si

across all considered interaction scenarios.

User Model Constraints R Minimum threshold given to the reliability

on demand of the system.

Nominal Services n Number of nominal services

m Maximum number of service

implementations available for purchase

by providers for each nominal service.

Service

implementations

available for purchase

cij Cost of the instance j-th

ij Probability of failure on demand of the

instance j-th.

In-house instance ci Unitary development cost of in-house

service (estimated with Equation (1))

i Testability of the in-house instance

Table 7: Basic Model’s Input

Similarly, to our previous model [40] (see Table 6), the basic model support “buil-or-

buy” decisions, namely it selects either in-house built or provided services with the goal

of minimizing the SBS cost while guaranteeing a certain level of reliability. The model

also suggests the number of tests to be performed on each in-house developed service

instance.

Output

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 33

Deliverable D3.1: “First measurement/prediction models-based process”

The solution of the set of optimization models can give insights on the service

composition that best fit the requirements considering an explicit cost model and the

possibility to define repair actions to improve the system reliability. This approach can

help software architects in the decision-making process of assembling architectures

satisfying quality requirements.

6.3 OPTIMIZATION OF ADAPTATION PLANS WITH COST AND QUALITY TRADEOFF

 As explained in the deliverable D2.2, research in software adaptation has seen a

flourish in the past years, in particular in the fields of new formalisms, tools, techniques,

and development methodologies.

Usually, the goal of existing approaches is to predict and/or analyze some quality

attributes, like performance or reliability, starting from the architectural description of

the system, or to select the architecture of the system among a finite set of candidates

that better fulfill the required quality.

In our previous work [43], we have addressed the problem of system quality from a

different point of view: starting from the description of the system and from a set of

new requirements, we devise the set of actions to be accomplished to obtain a new

architecture. This is able to both fulfill the new requirements with the minimum cost

and guarantee given levels of reliability, availability and performance.

The goal of our optimization model is to provide a support to the decisions that software

architects take for adapting a Service-Oriented Architecture (SOA).

The optimization model minimizes the adaptation costs of the system in

correspondence with a certain change scenario (i.e., a set of new requirements), while

guaranteeing required levels of reliability, availability and performance.

Since our model may support different service application domains, we have adopted a

general definition of software service: it is a self-contained deployable software module

containing data and operations, which provides/requires services to/from other

elementary elements. A service instance is a specific implementation of a service.

Different kinds of adaptation decisions could be made depending on several factors due

mainly to the particular adaptation phase where the model is adopted (e.g., if run-time

modifications are claimed, then it is only required the substitution of an unsuitable

service without using more sophisticated actions).

In this paper, we have considered the following adaptation actions:

 Introducing new software services: An adaptation action may suggest to embed

into the system one or more new elementary software services.

 Replacing existing service instances with functionally equivalent ones: An

adaptation action may suggest to replace a service with one of additional

instances available for it.

 Modifying the interactions among services in a certain external service: An

adaptation action may suggest to modify the system dynamics by

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 34

Deliverable D3.1: “First measurement/prediction models-based process”

introducing/removing interactions among services within a certain external

service.

Any combination of such adaptation actions may have a considerable impact on the

cost, performance, reliability and availability of the SOA. Therefore, our optimization

model aims to quantify such impact to suggest the best adaptation plan, which still

minimizes the costs while satisfying the performance, reliability and availability

constraints.

Description

Let S be a SOA composed by n elementary software services. Let si be the i-th existing

elementary service (1 ≤ 𝑖 ≤ 𝑛). Through the composition of its elementary software

services, the system offers services to users.

Let Insti be the set of instances for si, while sij represents the j-th instance of Insti. Let

NewS be the set of new available services that can provide different functionalities,

whereas newsh represent the h-th service of NewS.

Table 8 summarizes the main parameters and the variables of the model. Figure 6

reports the formulation of the optimization model.

Symbol Description

n Number of elementary software service

𝐼𝑛𝑠𝑡𝑖 Set of alternative instances for si

NewS Set of new available services

cij Cost of the instance sij

𝑐ℎ̅ Cost of the service newsh

invki Average number of invocations of the existing

service i

invkh Average number of invocations of the new

service h

𝑞𝑖𝑗 , 𝑞 ∈ {𝑟, 𝑎} rij (aij) is the reliability (availability) on demand

of the instance sij

�̅�ℎ,�̅� ∈ {�̅�, �̅�} �̅�ℎ (�̅�ℎ) is the reliability (availability) on demand

of the service newsh

𝑄 ∈ {𝑅, 𝐴} R (A) Minimum threshold given to the reliability

(availability) on demand of the system.

Res Maximum threshold given to the system

response time.

K Number of services offered by the system

Λ𝑘 Probability that the service k will be invoked

rtij Response time of the instance sij

𝑟�̅�ℎ Response time of the new service h

xij The instance sij is selected

zh The service newsh is selected

yrp The adaptation plan p is selected for the new

requirement r

Table 8: Main model’s parameters and variables

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 35

Deliverable D3.1: “First measurement/prediction models-based process”

 Figure 6: Optimization Model Formulation [43]

Input

 The input of our approach is a change scenario, namely a set of new requirements

that induce changes in the structural and behavioral architecture of the software system.

Specifically, in our model, we consider as possible changes the introduction of new

functionalities and the modification of the dynamics of existing functionalities. For

each new requirement in a change scenario, we consider the different sets of adaptation

actions (called adaptation plans) able to guarantee this new requirement. In this way,

we obtain a set of decisions that lead to the definition of a new architecture, which

minimizes the costs while keeping the reliability, availability and the response time

within certain thresholds.

Output

 The model suggests a new system architecture. A new architecture is, thus, obtained

by modifying both its structure and its behavior. Specifically, in order to modify the

software structure, the model replaces existing software services with different

available services and/or embeds new software services into the system. With respect

to the changes in the system behavior, it modifies the system scenarios (represented,

for example, as BPEL processes [44]) by removing or introducing interactions between

existing services and/or between existing and new services.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 36

Deliverable D3.1: “First measurement/prediction models-based process”

Model Summary. Table 9 summarizes the primary input of the model. In particular,

the input consist of the following data. (i) A change scenario, namely a set of new

requirements that induce changes in the structural and behavioral architecture of the

software system. (ii) For each new requirement, the model gets as input value

adaptation plans. An adaptation plan is a set of actions that address the requirement.

Adaptation plan may be defined by a User (or “system designer” or “system

maintainer”) and/or automatically by the system itself (in case of self-adaptation). (iii)

For each elementary service si, the model predicts its average number of invocations

(i.,e., invki,) in the k-th service offered by the system, after the application of the

application plans. invki is estimated by analyzing the system architectural model, and

using data associated with the adaptation plans (see [43] for details). Similarly, for each

new service newsh, the model predicts its average number of invocations (i.,e., invh) in

the k-th service offered by the system, after the application of the application plans. (iv)

Finally, the models get as input values, for example, the cost of the alternative instance

sij , or the response time of the new service newsh.

Any combination of adaptation actions may have a considerable impact on the cost,

reliability/availability and performance of the software architecture. Our optimization

model aims to quantify such impact in order to suggest the best adaptation plan, which

minimizes the costs while satisfying the reliability, availability and performance

constraints. The model suggests a new software architecture (as summarized in Table

10). Specifically, in order to modify the software structure, the model suggests how to

replace existing software services with different available services and/or embeds new

software services into the system. With respect to the changes in the system behavior,

the model modifies the system scenarios (represented, for example, as BPEL processes)

by removing or introducing interactions between existing services and/or between

existing and new services. The model’s solution guarantees a system reliability

(availability) over the threshold R (A), a system response time under the threshold Res

while minimizing the whole system cost.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 37

Deliverable D3.1: “First measurement/prediction models-based process”

Source Data Type Description

User Change Scenario A set of new requirements that

induce changes in the structural

and behavioral architecture of

the software system.

User or the System itself Adaptation plan Set of actions that address a

certain requirement.

Architectural Models

and

User

Existing elementary

software services

invki Average number of

invocations of the existing

service i

New elementary software

services

invkh Average number of

invocations of the new service h

User Existing elementary

software services

n Number of elementary

software service

𝐼𝑛𝑠𝑡𝑖 Set of alternative

instances for si

cij Cost of the instance sij

rij (aij) Reliability (availability)

on demand of the instance sij

rtij Response time of the

instance sij

New elementary software

services

NewS Set of new available

services

𝑐ℎ̅ Cost of the service newsh

�̅�ℎ (�̅�ℎ) is the reliability

(availability) on demand of the

service newsh

𝑟�̅�ℎ Response time of the new

service h

K Number of services offered

by the system

Λ𝑘 Probability that the service

k will be invoked

 Model Constraints R (A) Minimum threshold given

to the reliability (availability)

on demand of the system.

 Res Maximum threshold given

to the system response time.

Table 9: Model’s Input

Architectural

Decisions

Description

Software Structure (i)Replacing existing software services with

different available services, and/or (ii)

Embedding new software services into the

system.

Software Behavior The system scenarios are modified by

removing or introducing interactions

between existing services and/or between

existing and new services.

Table 10: Model’s Output

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 38

Deliverable D3.1: “First measurement/prediction models-based process”

7 SCHEDULE/TIME DECISION-MAKING MODELS

7.1 RELEASE PLANNING

Description

A common problem in software testing is to decide when it is the best time to release

the product, or, conversely, what is the quality if one releases the product after a given

amount of testing time.

Software Reliability Growth Models (SRGMs) are useful means to these aims. A

SRGM is a model describing how reliability grows as software is improved during

testing by faults detection and removal. These models are usually calibrated using

failure data collected during testing, namely fitting inter-failure times, and observing

the variation of the failure intensity (number of failures per time unit) with testing time.

They are used to answer questions such as “how long to test a software”, or “how many

faults are likely to remain”.

We consider the most common class of SRGMs, those that describe the failing process

as a non-homogeneous Poisson process (NHPP). These are characterized by the

parameter of the stochastic process, λ(t), indicating the failure intensity, and by the

mean value function (mvf), m(t), that is the expectation of the cumulative number of

defects detected at time t [45]:

N(t): m(t) = E[N(t)]; dm(t)/dt = λ(t)

The mean value function provides indication on how many defects are being detected

over time, and how many defects are expected to be found at a certain testing time t.

Different types of SRGMs can be described by their mean value function, that appears

in this form: m(t) = aF (t), where a is the expected number of total defects.

Many models have been proposed in the literature, and several tools have been

developed to deal with parameterization and fitting of models (such as SMERFS,

SoRel, PISRAT, and CASRE). For our purpose, we consider the list reported in Table

11 because of their wide spread in the literature and of their ability to capture several

different potential behaviours of the testing process. In particular, we use the model

proposed by Goel and Okumoto [46], which describes the failing process by an

exponential mvf distribution, as it is one of the most successful and popular models for

reliability growth analysis. The Delayed S-Shaped curve [47], also very popular, has

been proposed in order to capture the possible increasing/decreasing behaviour of the

failure rate during the testing process. With similar purposes, the logistic-based

distributions (namely, the log-logistic [48] and the truncated logistic [49]) describe the

processes in which the initial phase of testing is characterized by a slow increase

because of the gradual improvement of testers skills in the initial learning phase, and

because of defects being mutually dependent (i.e., some defects are not detectable

before some others are). We also consider the generalized version of the Goel-Okumoto

model capturing the S-Shaped nature of software failure occurrence, wherein Goel

simply proposed an additional parameter turning the exponential into a Weibull

distribution [50]. Finally, the normal-based (log- and truncated- normal) SRGMs are

considered as they demonstrated a noticeable ability to fit a wide variety of reliability

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 39

Deliverable D3.1: “First measurement/prediction models-based process”

growth scenarios and to software failure data collected in real software projects [51],

[52].

Model m(t) function

Exponential [46] a · (1 – exp(−bt))

S-shaped [47] a · [1 − (1 + gt)exp(−bt)]

Weibull [50] a · (1 – exp(−btγ))

Log Logistic [48] a · (λt)κ /(1+(λt)κ)

Log Normal [51] a · Φ((log(t)−μ)/ σ)

Truncated Logistic [49] a · (1−exp(−t/κ))/ (1+exp(−(t−λ)/κ))

Truncated Normal [52] a · (Φ((t−μ)/σ)) / (1−Φ(−μ/σ))

* Φ indicates the normal distribution

Table 11: Software Reliability Growth Models

For the approach we are developing within the ICEBERG project, we consider the list

reported in Table 11 in order to capture several different potential behaviors of the

testing process. It also reports the corresponding expression of the mean value function

(mvf); the estimated number of defects is always the mvf first parameter, a. In the

formulation of the approach, we considered that, in practice, there is no model to fit all

the situations. Thus, our approach to use this type of models is to fit the testing data of

a system/component with all the considered SRGMs, by using the EM algorithm [53],

and then choose the best one. In particular, we perform a goodness of fit (GoF) test by

means of the Kolmogorov-Smirnov (KS) test (with 90% confidence level), and

compute the (adjusted) R-square coefficient to determine the goodness of fit of each

model. We discard models with KS test satisfied or with an R-square less than 0.8.

Among the remaining models, the best one is chosen by adopting the Akaike

Information Criterion (AIC) method, i.e., choosing the SRGM with the lowest AIC

value. Figure 7 shows an example of how these models are used for the best release

schedule problem.

Figure 7: SRGM approach for release schedule determination

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 40

Deliverable D3.1: “First measurement/prediction models-based process”

The SRGM best fitting these data is able to estimate the cumulative fault number trends,

catching the eventual situation in which testing will no longer produce benefits (i.e.,

the “saturation”). This information is used to decide on the best time to release

considering the achieved testing cost/product quality trade-off. Besides using the model

for this type of decision (others are described in the “output” section), we use SRGM

also in the models presented below to support other types of decisions.

Source Data Type Data

Bug Repository Defect Data “Opening Time” of the issue describing the

defect

Table 12: Model’s Input

Decisions Description

Release Planning Quality (reliability) analysis/assessment and

time/effort still needed to attain a given quality,

i.e., prediction of the optimal time to release,

given a quality to achieve

Testing decisions:

how much effort to invest to

achieve a desired quality

From the analysis of the reliability growth decide

on how much effort to devote yet., which actions

to take to align predicted vs achieved quality

Table 13: Model’s Output

Input:

This model requires, as input, the opening time of defects discovered during testing

(and/or during operation), as summarized in Table 12. It is conceived to get a minimal

amount of data in order to not overwhelm companies with additional activities to do

(e.g., classifying defects), but just getting information needed in a non-invasive way.

Output and Supported SQ Decisions:

As output, the model will provide: i) estimates of the achieved software reliability at a

given time, as well as of the number of residual defects in the software after a given

testing (or operational) time; ii) prediction of the expected reliability given a budget

(e.g., in terms of testing time or testing effort) to spend on the system/component; iii)

prediction of the optimal time to release required to achieve a given reliability level, iv)

indications to identify delays and their causes in the process by comparing actual and

predicted release as well as actual vs predicted quality. These indications support the

decisions on how much testing is still necessary for a given system/component, what is

the best time to release, which actions to take to align the achieved quality level with

the predicted one (Table 13).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 41

Deliverable D3.1: “First measurement/prediction models-based process”

7.2 DEBUGGING ANALYSIS FOR IMPROVED RELEASE PLANNING

Description

As seen, SRGMs can be used to support decisions on testing effort investment and

release planning, as well as for quality assessment. However, SGRMs make a set of

assumptions to meet the mentioned objectives, the most usual ones being: immediate

debugging, perfect debugging, dependent inter-failure times, equal probability to find

a failure across time units. In literature, a greater attention is being paid to the immediate

debugging assumption, since its impact is more relevant than other factors in real

projects. While some work introduces modelling approaches to include repair times

[54] [55], several empirical studies make it evident that debugging is a complex process

to model in real-world projects [56], [57], [58]. Indeed, there are many factors

impacting the computation of the actual repair time and the regularity of the debugging

process, including the type of defect, its priority or severity, and human factors (e.g.,

skills of people involved in the fixing process). These make such an assumption easy

to be violated (especially as complexity and size of a software project increase), with

repair times far from being immediate. In many cases, the debugging process might

even become a bottleneck for project releases, and its impact cannot be neglected at all.

The impact of an irregular and variable debugging process hampers a correct modelling

and influences the assessment of release quality estimates and of SRGM-based

predictions. This can determine errors in taking decisions on when to stop testing, as

well as in the estimate of the residual defectiveness.

Besides the previous usage of SRGMs, we are adopting, in the ICEBERG project, the

SRGMs also to analyse the debugging process, and consequently “adjust” the SQ

decisions on release planning and testing effort investment depending on debugging.

Specifically, we have analysed 3,392 real-world issues of an industrial case study of

the medical scenario (described in the deliverable D2.2) collected over two years. On

these data, we first i) use SRGMs to characterize the software reliability growth under

the assumption of immediate debugging; then, ii) we evaluate the impact of the

debugging time evolution on reliability estimation and prediction, and thus on release

scheduling performed by SRGMs. We show that:

1. Collected issues are amenable to be modelled by SRGMs; we applied a set of 7

models to fit data and found the truncated logistic and truncated normal SRGM

being the best fitting models. Despite the real data do not fulfil classical SRGM

assumptions, such as dependent inter-failure times and equal failure detection

probability, the models have shown to be robust. However, since they are built

upon opened issues, nothing can be said about the non-immediate debugging

assumption. Therefore, these models are useful for predictions only provided

that the debugging time is negligible.

2. The observed debugging process has a non-negligible time, on average equals

to 12.8 days. The non-immediate debugging has an impact on both reliability

estimation and prediction, and thus on optimal release time, in a different way.

In both cases the impact is dependent on the debugging process quality in terms

of debugging time and debugging time variation, but while the impact on

reliability estimation is quite insensitive with respect to the testing time

dimension, the release schedule prediction error can greatly vary: as testing

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 42

Deliverable D3.1: “First measurement/prediction models-based process”

times proceeds, the optimal release schedule prediction can be affected

considerably by the debugging time.

Input

Input data are the same as the release planning model, as this model is based again on

SRGM (Table 14), augmented by data on closing time of the issues, being the model

conceived to include the impact of debugging.

Source Data Type Data

Bug Repository Defect Data “Opening Time” of the issue describing the

defect

“Closing Time” of the issue describing the

defect

Table 14: Model’s Input

The defect data we are considering are available with the opening and closing time of

the corresponding issue by the tester and the debugger, respectively.

The model uses SRGMs to figure out what is the impact of the debugging process on

the release time prediction made by the tester. It means that if a tester plans a release

based on an “immediate debugging” assumption, the committed error can be assessed.

Figure 8 and 9 show the analysis via SRGM constructed with the opening time of the

issues of an example project. As explained before, we select a model among a set of

SRGMs by considering goodness of fit measures (specifically the GoF test of

Kolmogorov-Smirnov, and the Akaike Information Critetrion – AIC). The list of

models is the one considered in Table 11.

Figure 8: Empirical data and SRGM of the opening time of version 1

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 43

Deliverable D3.1: “First measurement/prediction models-based process”

Figure 9: Empirical data and SRGM of the opening time of version 2

Version Current

#Faults

Selected

SRGM

Current

Estimate

of #Faults

KS Test

True at

Exp.

#Faults at

t = ∞

Scale

Param.

Shape

Param.

AIC

1 665 Trunc.

Normal

663.93 90% 671.38 13.00 34.78 -1,491.7

2 2,647 Trunc.

Logistic

2,640 90% 2,808.22 20.95 85.54 -6,834.9

Table 15: Statistics of the selected models

Table 15 shows the statistics of the selected models for the two versions. The estimates

in this case are very close to actual data, both satisfying the KS test. Such models can

provide estimates and predictions in terms of: residual faults at a given time, percentage

of detected faults over the total expected ones; failure intensity; reliability. Note that

these measures are equivalent to each other, since the expected cumulative number of

faults at time t is the mvf(t) function, whose first derivative is the failure intensity

function λ(t); the latter can be used in the computation of reliability. Considering these

measures, testers can evaluate, for instance, what is the best time to release.

As for version 1, it is evident that the testing process saturates, detecting less and less

faults as the testing proceeds. The process detected more than 99% of the total expected

faults and will take much time to detect residual ones: thus this has been a good time to

release. For version 2, testers detected roughly 94% of the total expected faults. If, for

instance, they decide to release with the same quality as version 1, i.e., at 99%, the

model predicts a testing time of 448 days, thus still 448 - 308 = 140 days of residual

testing days. Based on these and similar analyses, decisions can be taken on when to

stop testing.

The analysis has been conducted on the opening time of the issues. This means that

99% of quality is assumed to be the 99% of the total estimated faults that have been

opened, i.e., detected: this is the actual released quality only under the assumption that

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 44

Deliverable D3.1: “First measurement/prediction models-based process”

the correction of those faults was immediate. The actual quality is given by the closed

issues, namely removed faults, whose fixing contributes to the actual reliability growth.

In the next paragraph, we remove the immediate debugging assumption in the SRGMs,

and discuss the changes in the reliability analysis.

Output

We consider, as output, the impact of debugging on the SRGM-based analysis. Figure

10 and 11 report the raw data about the cumulative number of opened (testing process)

and closed (debugging process) issues, along with SRGMs fit- ting them. The graphs

show what is the impact of the debugging times on the achieved quality.

Figure 10:. Version 1 data

Figure 11: Version 2 data

The closed issue curve is the one actually contributing to reliability increase (namely,

when the fault is actually removed); the opening curve would represent the reliability

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 45

Deliverable D3.1: “First measurement/prediction models-based process”

increase only under immediate repairs. Thus, in the following, we consider the

difference between the two curves and their corresponding models in order to infer

conclusions about the debugging impact.

Let us define ∆issues(t) and ∆time(F), respectively, as: i) the difference between the opened

and closed issues at time t (i.e., pending issues at t, which is the vertical distance

between the raw data curves), and ii) the time required to close a given number of

opened issues, F (namely, the delay of the debug process compared to testing, which is

the horizontal distance between the raw data curves). We also define the differences

between the corresponding models as ρmvf(t) and ρtime(F). These are the differences

between the opened and closed issues at time t and at mvf = F , respectively, as

estimated/predicted by the corresponding SRGMs. The ∆ values are used to: i) evaluate

the difference between the actually achieved quality (in terms of number of removed

faults) and the believed one8, which is the quality under immediate repair assumption

(i.e., the opened issues), as well as ii) the difference between the actual time required

to close F issues and the believed time (again, under immediate debugging, through the

opening curve). This is the impact of assuming immediate debugging on quality/time

estimates. On the other hand, the ρ values are used to assess the same differences on

predicted values, which are needed to take decisions like “when to stop testing”. This

is the impact of the immediate debugging assumption on predictions made through

SRGMs.

For version 1, 99% of the total estimated issues has already been detected and it has

been released, while the version 2 is still at 94% and it is still to be released: thus, we

compute on version 1 the ∆ differences on actual data to see the impact on estimated

quality/time, whereas, on version 2, we compute the ρ values on future predictions, at

percentages greater than the achieved 94%.

Let us first consider version 1. At the last day, 98.19, the total opened issues were 665,

namely about the 99% of total estimated ones. The actual quality at that time is given

by the closed issues, that are 578, thus the 86.14 % of the total estimated one, rather

than the believed 99%. The error is therefore:

𝜖Δ𝑖𝑠𝑠𝑢𝑒𝑠 =
Δ𝑖𝑠𝑠𝑢𝑒𝑠(98.19)

𝐶𝑙𝑜𝑠𝑒𝑑(98.19)
∙ 100 =

665 − 578

578
∙ 100 = 15.05%

where Closed(t) is the number of closed issues at time t. This means that if tester

released actually at 99% of total issues and use the opening curve assuming immediate

repair, the release quality is overestimated by 15.05 %.

Similarly, if tester used the opening curve assuming immediate repair, the removed 578

issues occurred, in his view, after 63.98 days, rather than at 98.19; thus there is a time

estimation error of:

8 Quality in the following is expressed through the (predicted) number of closed issues (i.e., removed

faults) or the (predicted) percentage of closed issues with respect to the total one; for what said previously

about the equivalence of this information to failure intensity and thus reliability, “quality estimation” and

“quality prediction” are equivalent to “reliability estimation” and “reliability prediction”.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 46

Deliverable D3.1: “First measurement/prediction models-based process”

𝜖Δ𝑡𝑖𝑚𝑒 =
Δ𝑡𝑖𝑚𝑒(578)

𝐶𝑙𝑜𝑠𝑒𝑑𝑇𝑖𝑚𝑒(578)
∙ 100 =

98.19 − 63.98

98.19
∙ 100 = 34.84%

where ClosedTime(F) is the time of closing of the F−th issue. This is interpreted as:

using the immediate debugging assumption, the required quality is reached 34.84%

later than the believed time. The first row of Table 16 reports results for release quality

values from 95% to 98%, besides the mentioned 99% case.

Version
Achieved or Predicted release quality

95% 96% 97% 98% 99%

Version 1: 𝜖 ∆issues 14.15% 14.59% 13.61% 14.06% 15.05%

Version 1: 𝜖 ∆time 14.63% 16.07% 20.37% 31.28% 34.84%

Version 2: 𝜖 ρmvf 0.04% 0.18% 0.33% 0.63% 1.05%

Version 2: 𝜖 ρtime 0.31% 1.18% 3.58% 14.89% ∞

Table 16: Results for release quality values

If the tester has not achieved a desired quality level yet, s/he may want to use SRGMs

for a prediction and decide on when to stop testing. This is well represented by version

2. In this case, detected issues have been 2,647, namely the 94.4 % of total estimated

ones. We evaluate the impact of debugging time on prediction accuracy supposing that

tester wants to release at 95%, 96%, 97%, 98%, and 99% of total faults (namely: 2,662,

2,690, 2,718, 2,746, 2,774 faults). In these cases, if s/he uses the opening curve, the

release should be at the days: 321, 339, 363, 396, and 447. However, using the closing

curve, the number of removed faults corresponding to the above release days are: 2,661,

2,685, 2,709, 2,729, 2,745. Quality overestimation errors would be caused. For

instance, suppose that tester wants to release at 97%. In this case, the quality

overestimation error would be:

𝜖ρ𝑚𝑣𝑓 =
ρ𝑚𝑣𝑓(363)

𝑆𝑅𝐺𝑀(𝐶𝑙𝑜𝑠𝑒𝑑(363))
∙ 100 =

2718 − 2709

2709
∙ 100 = 0.33%

Similarly to the version 1 case, there will also be an error about the time prediction. If

tester uses the opening curve assuming immediate debugging to release at 97%, the

opened 2718 issues in 363 days will be closed only at day 376, causing an error of9:

9 Note that, unlike the case of ∆time value, here the difference is taken between the predicted time to

close the number of issues that tester wants to remove and the predicted time to open that number of

issues. For ∆time values, we take the time to close the number of issues actually closed subtracted by the

time at which that number of issues was opened (i.e., the “believed” time for achieving that quality).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 47

Deliverable D3.1: “First measurement/prediction models-based process”

𝜖ρ𝑡𝑖𝑚𝑒 =
ρ𝑡𝑖𝑚𝑒(2718)

𝑆𝑅𝐺𝑀(𝐶𝑙𝑜𝑠𝑒𝑑𝑇𝑖𝑚𝑒(2718))
∙ 100 =

376 − 363

363
∙ 100 = 3.58%

where SRGM(ClosedTime(F)) is the predicted time required to close F issues. The

second part of Table 16 reports results form 95% to 99% release criteria.

As it may be noticed, the errors on quality overestimation are quite small in version 2,

compared to version 1, and are slightly increasing with the desired quality level. The

small error denotes a very good debugging process, whose curve is strictly following

the opening one. Notwithstanding, it is interesting to note how the error on the time

prediction is higher, and increases rapidly for increasing values of the desired release

quality, due to the saturation of both curves. From 98% to 99%, it increases up to

infinite. This is interpreted as follows: if tester wants to release at 98% of the total

estimated faults, and uses the opening curve assuming immediate repair, it would

predict a testing time of 14.89% days less than the actually required testing time. If this

desired quality goes beyond the 98%, such an error increases abruptly, reaching infinite

at 99%. Thus, depending on the desired quality and on debugging process

characteristics, this testing time underestimation error may be very high and is much

more sensitive than the quality overestimation error.

In general, such time error always goes to infinite at some point (precisely, at the

saturation point of the closing curve); in the practice, it can go to infinite considerably

earlier if the debug process is not as close to the testing process as in the version 2 case.

For instance, in version 1, for the same type of error (computed on raw data) the infinite

occur soon after 578 issues, i.e., at only 86.14 % of the total estimated ones.

To summarize, the worse the debugging process, the greater the error on quality

estimation is, and the earlier the time prediction error goes to infinite: but while the

quality estimation/prediction error is directly related to the number of pending issues

quite independently from the release time (e.g., in the same way at 70%, 80%, or 90%),

the time estimation/prediction error is much more sensitive: at high quality values, the

underestimation of the required testing time can be very high, depending on the

saturation of the opening and closing curves.

Supported SQ Decision

The non-immediate debugging has an impact on release and test planning decisions.

With respect to the previous “release planning” model, this model adds the decision

support with respect to the debugging process: the extent of the prediction error caused

by a big average time to fix, or by a highly variable and irregular debugging time, can

suggest engineers whether to invest on the improvement of the debugging process or

not (and to what extent) with the aim of either reducing the mean fixing time and/or to

reduce the variability (Table 17).

Decisions Description

Release Planning Quality (reliability) analysis/assessment and time/effort still

needed to attain a given quality, i.e., prediction of the optimal

time to release, given a quality to achieve

Testing decisions:

how much effort to invest to

achieve a desired quality

From the analysis of the reliability growth decide on how

much effort to devote yet., which actions to take to align

predicted vs achieved quality

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 48

Deliverable D3.1: “First measurement/prediction models-based process”

Decision on debugging process

improvement

Based on the prediction error that debugging causes, improve

the mean time to fix a bug, and/or the reduce the variability

Table 17: Model’s Output

8 SCHEDULE/TIME AND QUALITY DECISION-MAKING
MODELS

8.1 RESOURCES ALLOCATION

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 49

Deliverable D3.1: “First measurement/prediction models-based process”

Description

Testing accounts for a relevant part of the production cost of complex or critical

software systems. Nevertheless, time and resources budgeted to testing are often

underestimated with respect to the target quality goals. Test managers need engineering

methods to perform appropriate choices in spending testing resources, so as to

maximize the outcome.

The common industrial practice disregards such an important step. We believe that the

main reasons are the lack of simple and tool supported methods, as well as the lack of

evidence of success of the proposed approaches into real industrial contexts. Very

generic criteria are typically applied in the practice, such as allocating resources driven

by requirements (e.g., testing a component until all requirements have been tested at

least once), or driven by the size (more testing to bigger modules). Sometimes, intuition

drives testing choices: based on experience, a tester may deem one component more

“critical” than another, therefore deserving more testing. As there may be relevant

differences among components in terms of quality, their defectiveness can vary

significantly. Moreover, a component can be newly developed, or it may be a reused

unit that already underwent a functional testing phase, hence with a higher testing

maturity. These differences intuitively call for a tailored engineering approach, in

which more testing resources are spent where there is actually a greater need (i.e.,

poorer quality). Such an approach is expected to bring benefit in terms effort/quality

trade-off.

In the project, we developed a model to decide dynamically how to allocate testing

resources to software components, so as to minimize the estimated number of residual

defects, and/or the estimated residual defect density, given a fixed testing budget. The

method grounds upon software reliability growth models (SRGMs), used at

component-level rather than at system-level as in the previous case, in order to monitor

the testing progress of each component. From these, an estimate is obtained of the

quality achievable for a component in relation to the testing effort devoted to it. Then,

by iteratively solving an optimization problem, the next testing effort is directed

towards the component that contributes the most to reduce the residual number of

defects (density) in the overall system, thus improving the final trade-off between effort

spent and residual defectiveness.

The test planning solution we have implemented is, unlike existing ones: i) dynamic,

namely able of using testing data as they become available, exploiting them to adjust

performance online, and robust with respect to variations during testing and volatility

of planning time’s assumptions; ii) simple in its application, and with as few

assumptions as possible on the testing process; iii) ready-to-use, supported by an

automatic tool.

Detailed Model description

Let us denote the expected number of residual defects as E[Defects], and the expected

residual defect density, measured in #defects/KLoC, as E[Density]. These are the two

alternative objectives to minimize. For our purposes, components are autonomous,

independently testable, and deployable units. The test manager has to distribute a

budget B of testing resources (e.g., in number of man-weeks), among a set of

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 50

Deliverable D3.1: “First measurement/prediction models-based process”

components; the i-th component will thus receive a testing effort equal to Wi man-

weeks. The key idea is to use SRGMs to predict the detection ability of each

component’s testing process iteratively, and based on that, to allocate resources to

components where testing will have the highest detection power. The method is based

on the following main steps:

1. Initialization. Testing starts at time t0, when there may be no (previous) data

available on testing of components to build any initial SRGM. Without any additional

information, which could help to prioritize testing efforts at this stage, the initial

allocation is done uniformly to all components, and the testing starts.

2. Start-up check. In this initial phase, at each time units (our time unit is the week),

the method checks if the optimal allocation procedure can be applied with the available

defect data. Specifically, we try to fit defect data of each component with every SRGM

listed in Table 11 by the EM algorithm, and perform a goodness of fit (GoF) test by

means of the Kolmogorov-Smirnov (KS) test (with 90% confidence level). If the test is

satisfied for at least one SRGM, the component is ready for the subsequent step (it is

said to be statistically valid) – in general we will have more SRGMs that fit one

component, and will keep track of them for the next steps. This start-up check can be

automatically repeated at each time unit from the beginning, or performed when the

tester is confident that there are enough data for each component: in the practice, as rule

of thumb, we observed that after no more than 20% of the total testing time there is at

least one valid SRGM for every component. Thus, we advise to start checking from

about 10-15% of the initially allotted testing time on.

As a guard, we conceived the possibility to skip to the next step also with only a subset

of statistically valid components; in such a case (e.g., when there are components with

very few and/or highly irregular data), the optimal allocation will apply only to that

subset.

3. SRGM Selection. Given a number N of components with associated a set of

statistically valid SRGMs, we select the best SRGM for each component by means of

the Akaike Information Criterion (AIC) method, i.e., choosing the SRGM with the

lowest AIC value. If, from the previous step, there is some component with no

statistically valid SRGM, these are excluded from the optimal allocation strategy only

for that iteration. These components will receive an amount of resources proportionally

to their current detection rate.

4. Optimization. Depending on the goal (defect or density minimization), one of the

following optimization problems is solved, using the mvf expressions of the SRGM

selected for each component:

min! E[Defects] = i (ESTi − m(Wi* + Wi))

 s.t. i Wi ≤B*

min! E[Defects] = i ((ESTi − m(Wi* + Wi))/ SIZEi)

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 51

Deliverable D3.1: “First measurement/prediction models-based process”

 s.t. i Wi ≤B*

where i=1…N , with N being the number of components; ESTi is the number of

expected defects of the i-th component (the a parameter of its mvf); Wi is the testing

effort to allocate to the i-th component; Wi* is the testing effort already allocated to the

i-th component; m(Wi*+Wi) is the (estimated) number of defects that would be

removed if component i receives an effort of (Wi* +Wi); SIZEi is the size of component

i measured in KLoC, used to compute the defect density; B* is the residual budget at

the current iteration [59].

5. Dynamic Update. Wi are the decision variables of the optimization problem, and are

subject to the constraint that the total amount of allocated testing effort must not exceed

the budget B*. This allows allocating efforts according to the prediction of the number

of defects that will be found or of the defect density that will be achieved. However, as

more data become available, the situation changes: it may happen that more data allow

a more accurate estimation of residual defects (density), or, more importantly, the

estimation can significantly deviate, because of changes in the testing process and thus

in the detection trend. This calls for a dynamic approach, able to re-allocate resources

from time to time, in order to “follow” the optimal solution, and exploit feedback

coming from the testing process. Thus, after a predefined time (or when decided by the

user), the defect data of each component are fitted again with every SRGM (by the KS

test); step 3 (SRGM selection) and 4 (optimization problem) are taken again with the

new data, starting a new iteration and re-allocating testing efforts accordingly.

The output are the testing efforts to allocate to each component at each time step as the

testing proceeds.

Source Data Type Data

Architecture Existing Components Number and name of components

Bug Repository Defect Data “Opening time”, for each component, of the

issues corresponding to the defects

Table 18: Model’s Input

Input:

For this model, the required inputs come from the bug tracking repository (Table 18),

from which the opening times of defects that are detected during testing are used to

build the SRGMs online. From these, given a testing budget (as further input) that

mangers want to spend for testing, the allocation is performed dynamically, at any time

the tester wants, by using the prediction of residual number of defects expected in each

component.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 52

Deliverable D3.1: “First measurement/prediction models-based process”

Output and supported SQ Decision:

The provided output is the amount of effort (e.g., in man-months) to allocate to each

system’s components/modules in order to minimize the expected number of residual

defects (Table 19). The model, if used in its dual form, can be used to estimate the

number of residual defects after a given amount of testing time for each component.

Decisions Description

Testing decisions:

Optimal test effort allocation

Applying the model, decide how to

distribute the effort available for testing to

components, in order to minimize the total

expected defectiveness

Table 19: Model’s Output

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 53

Deliverable D3.1: “First measurement/prediction models-based process”

8.2 PROBLEMS IN SOFTWARE PROJECT MANAGEMENT

As explained in the deliverable D2.2, SBSE techniques have also been largely applied

in problems in software project management. A quite extensive list of these approaches

can be found in [60].

As mentioned in [60], research efforts have been devoted for project scheduling and

resource allocation. However, all these approaches basically provide guidelines to plan

projects. Their primary input is represented by information about (i) work packages

(e.g., cost, duration, dependencies), and (ii) staff skills. Shortly, as described in [60],

they process these input information and produce the results, which consist of an

optimal work package ordering and staff allocation. They are guided by a single or

multi-objectives fitness function which it is typically minimized, for example: the

completion time of the project, or the risks to associate to the development process (e.g.,

delays in the project completion time, or reduced budgets available).

An example of project management approach

The work in [61] defines a multiobjective optimisation technique based on genetic

algorithms for simulation optimisation in order to help software project managers to

find the best values for initial team size and time estimates for a given project so that

cost, time and productivity are optimised.

Input:

Here below we list the input parameters that allow to model decision making regarding

the initial team size and its composition, together with the initial estimations of project

size and time to develop.

 Initial Novice Workforce (NoviceWf): The initial number of novice personnel

allocated to the project.

 Initial Experienced Workforce (ExpWf): The initial number of experienced

personnel allocated to the project.

 Project Size (Size): The estimate of project size.

 Scheduled Time (SchldTime): The estimate of project schedule.

Output:

The outputs of the model involve:

 Project End (Time): The final time of the project.

 Cumulative Cost (Cost): The final cost of the project.

 Productivity (Prod): The average productivity reached by the team through the

project lifecycle. This is calculated as the ratio between size (Function Points –

FP) and the Project End (time taken to finish the project).

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 54

Deliverable D3.1: “First measurement/prediction models-based process”

This simple example would help choosing the best managerial balance between novice

and expert personnel as well as schedule. Multiobjective approaches can provide a set

of solutions that project managers can choose depending on the project.

Software Product Lines According to the SEI10, Software Product Lines are a set of

software-intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way.

However, the products developed with this paradigm need to consider specific

characteristics and combination of products. For this, SBSE techniques and models can

also be applied to search for an optimal combination, testing, etc. this paradigm.

9 CONCLUSION

In this section, we present the overall conclusions of this document in the context of

findings expected and novelty of our contribution.

To the best of our knowledge, this is the first attempt to combine existing SOTA

solutions and SOPA practices. We will use two types of source: a) existing literature;

and c) experience from the practice provided by experts in the field. Therefore, we

envision that our quality-decision making frameworks will be helpful to enable

practitioners to maximize the effectiveness of their specific software.

We believe that the adoption of well-assessed quality decision methods can be only be

handled effectively by analysing effort and time necessary to incorporate them into

real-world systems. Therefore, we plan to understand practitioners perceived strengths,

limitations, and needs associated with using SOTA solutions in the industry. The

outcomes will address, for example, the classical problem of: “How many tests are

enough?”

General remarks in relation to our current view of SOPA are as follows: (i) the

collection (and analysis) of few quality/cost/time data is in general performed, and (ii)

practitioners consider quality, cost and time tradeoff important. In particular, the

outcomes confirm our hypothesis that quality, cost, and time are highly relevant

properties in next generation computing applications. Moreover, tradeoff analysis

among multiple conflicting objectives should be supported, which is in general missing

in the state of art and practice today.

We claim that addressing the highlighted challenges will require the contributions from

researchers and industrial experts in different fields including not only optimization

formulation (e.g., several metaheuristic techniques with different characteristics could

be adopted depending on the nature of application domain), but also the integration of

our frameworks in existing platforms.

10 http://www.sei.cmu.edu/productlines/

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 55

Deliverable D3.1: “First measurement/prediction models-based process”

10 REFERENCE

[1] Deliverable D2.1, “Industrial needs collection & state of the art surveys,” 7h Framework

Programme IAPP Marie Curie program for project ICEBERG no. 324356, October 2013.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 56

Deliverable D3.1: “First measurement/prediction models-based process”

[2] Deliverable D2.2, “Validation scenarios and quality parameters,” 7h Framework

Programme IAPP Marie Curie program for project ICEBERG no. 324356, April 2014.

[3] H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software engineering

research,” In Proceedings of the FSE/SDP workshop on Future of software engineering

research, FoSER ’10, pages 411–414. ACM, 2010.

[4] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based Software Engineering: Trends,

Techniques and Applications,” ACM Comput. Surv., 45(1):11:1–11:61, Dec. 2012.

[5] V. Dhar and R. Stein, “Intelligent Decision Support Systems,” Prentice Hall, 1997.

[6] D.J. Power “Decision support systems: concepts and resources for managers,” Westport,

Conn., Quorum Books, 2002.

[7] T. Xie et al., “Data mining for software engineering”, IEEE Computer, 42(8), 55–62, 2009.

[8] M. Halkidi et al., “Data mining in software engineering,” Intelligent Data Analysis 15,

pp.413–44.

[9] A. Hassan, T. Xie, “Software Intelligence: the future of mining software engineering

data” Future of Software Engineering Research, 161-165, 2010.

[10] Q. Taylor, C. Giraud-Carrier, “Application of data mining in software Engineering,” Int.

Journal Data Analysis Techniques and Strategies, 2(3), 243- 257, 2010 .

[11] J.J Dolado, “On the problem of the software cost function,” Information and Software

Technology, 43(1):61-72, 2001.

[12] M. Shepperd and C. Scho_eld. Estimating software project effort using analogies.

Software Engineering, IEEE Transactions on, 23(11):736-743, nov 1997.

[13] J.S. Aguilar-Ruiz, J.C. Riquelme, I.Ramos, “Natural evolutionary coding: An application

to estimating software development projects,” In Proceedings of the 2002 Conference on

Genetic and Evolutionary Computation (GECCO '02), pages 1-8, New York, USA, 9-13 July

2002. AAAI.

[14] E. Alba, F. Chicano, “Software project management with gas,” Information Sciences,

177(11):2380-2401, June 2007.

[15] A. Perini, A. Susi, and P. Avesani, “A machine learning approach to software requirements

prioritization,” IEEE Transactions on Software Engineering, Preprint (-):-, 2012.

[16] O. Räihä. “A survey on search-based software design,” Computer Science Review,

4(4):203-249, November 2010.

[17] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, “A systematic literature review on

fault prediction performance in software engineering,” Transactions on Software Engineering,

In Press-2011.

[18] C. Catal, and B. Diri. “A systematic review of software fault prediction studies. Expert

Systems with Applications,” 36(4):7346-7354, 2009.

http://www.prweb.com/releases/2013/1/prweb10298185.htm

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 57

Deliverable D3.1: “First measurement/prediction models-based process”

[19] A. Shaukat, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, “A systematic review of

the application and empirical investigation of search-based test-case generation,” IEEE

Transactions on Software Engineering, 36(6):742-762, November-December 2010.

[20] B. Kitchenham, S.L. Peeger, B. McColl, S. Eagan, “An empirical study of maintenance

and development estimation accuracy,” Journal of Systems and Software, 64(1):57-77, 2002.

[21] W. Weimer, T. Nguyen, C. Le Goues, S. Forrest, “Automatically finding patches using

genetic programming,” In Proceedings of the 31st International Conference on Software

Engineering (ICSE'09), ICSE'09, pages 364{374, Washington, DC, USA, 2009. IEEE

Computer Society.

[22] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, “Mining software evolution to predict

refactoring,” In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First

International Symposium on, pages 354-363, sept. 2007.

[23] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, M. Wong,

“Orthogonal defect classification – a concept for in-process measurements,” IEEE Transactions

on Software Engineering 1992; 18(11):943–956.

[24] R. Grady, “Practical Software Metrics For Project Management and Process

Improvement,” Hewlett-Packard Professional Books, 1992.

[25] N. Mellegard, M. Staron, F. Torner, “A light-weight defect classification scheme for

embedded automotive software and its initial evaluation,” Proc. 23rd IEEE International

Symposium on Software Reliability Engineering (ISSRE), 2012.

[26] S. Wagner, “Defect classification and defect types revisited,” Proc. 2008 workshop on

Defects in large software systems, 2008; 39–40.

[27] B. Freimut, C. Denger, M. Ketterer, “An industrial case study of implementing and

validating defect classification for process improvement and quality management,” Proc. 11th

IEEE Int. Symposium on Software Metrics, 2005.

[28] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object-Oriented Design

Metrics as Quality Indicators,” IEEE Trans. Software Eng., vol. 22, no. 10, pp. 751–761, 1996.

[29] D. Hosmer and S. Lemeshow, “Applied Logistic Regression,” Wiley-Interscience, 1989.

[30] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object oriented metrics on

open source software for fault prediction,” IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897–

910, 2005.

[31] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, “Software fault prediction

metrics: A systematic literature review,” Information & Software Technology, vol. 55, no. 8,

pp. 1397–1418, 2013.

[32] T. McCabe, “A Complexity Measure,” Software Engineering, IEEE Transactions on, vol.

SE-2, no. 4, pp. 308–320, Dec 1976.

[33] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” Software

Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 476–493, Jun 1994.

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 58

Deliverable D3.1: “First measurement/prediction models-based process”

[34] T. M. Khoshgoftaar, K.Gao, and A. Napolitano, “A Comparative Study of Different

Strategies for Predicting Software Quality,” in SEKE. Knowledge Systems Institute Graduate

School, 2011, pp. 65–70.

[35] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting Faults from

Cached History,” in Proceedings of the 29th International Conference on Software Engineering,

ser. ICSE ’07. IEEE Computer Society, 2007, pp. 489–498.

[36] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect

density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th International

Conference on, May 2005, pp. 284–292.

[37] A. Hassan and R. Holt, “The top ten list: dynamic fault prediction,” in Software

Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference on, Sept

2005, pp. 263–272.

[38] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the location and number of faults in large

software systems,” Software Engineering, IEEE Transactions on, vol. 31, no. 4, pp. 340–355,

April 2005.

[39] P. T. Devanbu, “GENOA: A Customizable Language- and Front-end Independent Code

Analyzer,” in Proceedings of the 14th International Conference on Software Engineering, ser.

ICSE ’92. ACM, 1992, pp. 307–317.

[40] V. Cortellessa, I. Crnkovic, F.Marinelli, and P. Potena, “Experimenting the Automated

Selection of COTS Components Based on Cost and System Requirements,” Journal of

Universal Computer Science, 14(8):1228–1255, 2008.

[41] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena, “Quantifying the influence of

failure repair/mitigation costs on service-based systems,” in 24th International Symposium on

Software Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7, IEEE,

2013.

[42] I. Sommerville, “Software engineering (9th ed.),” Addison Wesley, 2010.

[43] P. Potena, “Optimization of adaptation plans for a service-oriented architecture with cost,

reliability, availability and performance tradeoff,” Journal of Systems and Software, vol. 86,

no. 3, pp. 624 – 648, 2013.

[44] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,, K. Liu, D. Roller,

D. Smith, S. Thatte, I. Trickovic, S. Weerawarana, “Business Process Execution Language for

Web Services,” 2003 Version 1.1, May.

[45] S.S. Gokhale, K.S. Trivedi, “Log-logistic software reliability growth model,” In: Proc. 3rd

Int. High-Assurance Systems Engineering Symposium, pp. 34-41 (1998).

[46] A.L. Goel, K. Okumoto, “Time-dependent error-detection rate model for software

reliability and other performance measures,” IEEE Transactions on Reliability, R-28(3), 206-

211 (1979).

[47] S. Yamada, M. Ohba, S. Osaki, “S-Shaped Reliability Growth Modeling for Software

Error Detection,” IEEE Transactions on Reliability, R-32(5), 475-485 (1983).

[48] S.S. Gokhale, K.S. Trivedi,“Log-logistic software reliability growth model,” In: Proc. 3rd

FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 59

Deliverable D3.1: “First measurement/prediction models-based process”

Int. High-Assurance Systems Engineering Symposium, pp. 34-41 (1998).

[49] T. Okamura, T. Dohi, S. Osaki, “EM algorithms for logistic software reliability models,”

In: Proc. 22nd IASTED Int. Conference on Software Engineering, pp. 263-268 (2004).

[50] A. L. Goel, “Software Reliability Models: Assumptions, Limitations and Applicability,”

IEEE Transactions on Software Engineering, SE-11(12), 1411-1423 (1985).

[51] H. Mullen, “The lognormal distribution of software failure rates: application to software

reliability growth modeling,” In: Proc. 9th Int. Symposium on Software Reliability Engineering

(ISSRE), pp. 134-142 (1998).

[52] H. Okamura, T. Dohi, S. Osaki, “Software reliability growth model with normal

distribution and its parameter estimation,” In: Proc. Int. Conference on Quality, Reliability,

Risk, Maintenance, and Safety Engineering (ICQR2MSE), pp. 411-416 (2011) R.E.

[53] H. Okamura, Y. Watanabe, T. Dohi, “An iterative scheme for maximum likelihood

estimation in software reliability modeling,” In: Proc. 14th Int. Symposium on Software Reliab.

Eng. (ISSRE). IEEE CS Press, pp. 246256 (2003).

[54] J. D. Musa, A. Iannino, and K. Okumoto, “Software Reliability, Measurement, Prediction

and Application,” McGraw Hill (1987).

[55] C.-Y. Huang, W.-C. Huang, “Software Reliability Analysis and Measurement Using Finite

and Infinite Server Queueing Models,” IEEE Trans. on Reliability, 57 (1), pp. 192-203 (2008).

[56] T.T. Nguyen, T.N. Nguyen, E. Duesterwald, T. Klinger, P. Santhanam, “Inferring

developer expertise through defect analysis,” 34th International Conference on Software

Engineering (ICSE), pp. 1297-1300 (2012).

[57] F. Zhang, F. Khomh, Y. Zou, A.E. Hassan, “An empirical study on factors impacting bug

fixing time., 19th Working Conference on Reverse Engineering (WCRE), 2012.

[58] A. Ihara, M. Ohira, K. Matsumoto, “An analysis method for improving a bug modification

process in open source software development,” Proc. of the joint International Annual ERCIM

workshops on Principles of software evolution (IWPSE) and Software evolution (Evol), pp.

135-144 (2009).

[59] G. Carrozza, R. Pietrantuono, S. Russo, “Dynamic test planning: a study in an industrial

context,” International Journal on Software Tools for Technology Transfer, 2014. pp. 1-15,

Springer Berlin Heidelberg.

[60] F. Ferrucci, M. Harman, and F. Sarro, “Search-Based Software Project Management,”

Software Project Management in a Changing World (Springer), 2014, to appear.

[61] D. Rodriguez, M. Ruiz, J. C. Riquelme, and R. Harrison, “Multiobjective Simulation

Optimisation in Software Project Management,” in Proceedings of the 13th Annual Conference

on Genetic and Evolutionary Computation, ser. GECCO ’11. ACM, 2011, pp. 1883–1890.

