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1 EXECUTIVE SUMMARY 
 

The aim of D3.1 of the ICEBERG project “First measurement/prediction models-based 

process” is to describe the methodological models-based process under development.  

The document describes the first version of this process, which will be enriched/refined 

in the course of the project once the subsequent phases provide data and additional 

checks on the feasibility, precision and effectiveness of it for practice in real scenarios 

in project decision making. The goal of our work is to define measurement/prediction 

models able to determine the cost of quality (and not-quality) and allow finding the best 

trade-off between cost and quality, and the process formalization based on such models. 

The document describes the workflow followed for defining the process, and provides 

detailed description of the adopted models so far. 
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2 INTRODUCTION 
 

In order to support project management decisions on quality assurance actions, the 

ICEBERG project foresees an approach based on models. The objective is to define a 

set of models capable of exploiting historical data in order to create a systematic 

knowledge base and perform quantitative evaluations of the effect of decisions from 

the quality, cost, and time/schedule point of view. As discussed in previous ICEBERG 

documents [1] [2], there are several categories of decisions that might impact the 

quality/cost/time factors of a project. For each (class of) decision(s), one or more 

models can be used to support project managers.  

The choice of which decisions to support depends on what type of historical data a 

company is expected to gather in its process, what is the cost of collecting such data, 

and what is the expected benefit (thus the impact) on the process in terms of 

quality/time/cost trade-off. There may exist a perfect model allowing one to obtain the 

best trade-off as output, but that requires a great bunch of data as input parameters. 

Therefore, in the ICEBERG project we adopt an approach that proposes a set of models 

starting from the actual need of the industry, basing the choice on the availability of the 

information they can rely on.   

This document describes the model-based process under development in the ICEBERG 

project. It is the first version of this process, which will be enriched/refined in the course 

of the project once the subsequent phases provide data and additional checks on the 

feasibility, precision and effectiveness of it for practice in real scenarios in project 

decision making. The document first describes the workflow followed for defining the 

process (Section 3); then, an overview of the process is provided (Section 4), followed 

by a description of the use of quality frameworks in practice (Section 5), and a detailed 

description of the adopted models so far (Section 6, 7, and 8). Section 9 concludes the 

document.  
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3 WORKFLOW FOR THE MODELS-BASED PROCESS 
DEFINITION 
 
 
In order to get to a sound process definition, the ICEBERG project followed the 

workflow depicted in Figure 1. As first step, we analysed the existing works that have 

been proposed in the literature and the current practices in the industry settings 

regarding the approaches to support the quality decision making process. An analysis 

of the State Of The Art (SOTA) and of the State Of The Practice (SOPA) concerning 

quality decision-making, costs and schedule/time factors (Step 1 and Step2) was carried 

out. This is the basis for defining the prototypal framework for quality decision-making 

based on cost, quality and schedule/time trade-off (Step 3). This latter step will be 

performed by exploiting: (i) the identified costs, schedule/time and quality parameters, 

and (ii) the existing techniques and methods for model building and model solving. 

 

 

Figure 1: Work Steps 

 

   Specifically, these are high-level work’s goals (i.e., long term objectives) that we 

intend to achieve. We will refine these high level goals into more concrete sub goals 

(i.e., short term objectives) until it is possible to objectively measure their satisfaction. 

Below, a more detailed description of the main steps follows. 
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Step 1: Review of SOTA. The ICEBERG project aims at defining how project 

management decisions on quality assurance actions influence project's results in terms 

of intrinsic product quality while evaluating their effects in costs and schedule, 

following the idea of the Iron Triangle for project management.  

   The ability to predict (or estimate) the software quality supports a large set of 

decisions across multiple lifecycle phases that span from design through 

implementation-integration to adaptation phase.  However, due to the different amount 

and type of information available, different prediction/estimation approaches can be 

introduced in each phase. A major issue in this direction is that the software quality 

cannot be analyzed separately, because the project managers must assure the respect to 

constraints on schedule and costs. A quality decision, for example, can be the one of 

implementing static code analysis (e.g. tools, new processes, training, etc.) but its 

impact on project schedule, for example, can cause delays in completion of projects 

tasks while number of defects might be reduced up to certain extent leading to cost 

savings: in the end, the project manager needs to know if this is helpful and convenient 

for the project goals. 

   Therefore, we analysed the existing solutions that concern quality decision-making, 

cost and schedule/time issues all along the software lifecycle in order to understand: 

- What approaches have been reported regarding quality decision-making in the single 

lifecycle phases? 

- Which the quality decisions are (e.g., adaptation mechanisms typically used in 

adaptive systems) treated in the scientific literature? What is the relationship 

between these identified decisions and software defects (incidents and other 

concepts)? 

- What are the common causes of decision-making (such not satisfying of constraints 

on reliability)? 

- What approaches have been reported dealing with human and organizational 

factors? For example, how do the approaches deal with the problem of automating 

and optimizing shift allocations to people in order to meet certain service levels? 

- Which are the schedule/time/cost-related properties considered by the existing 

approaches for quality decision-making?  What is the importance of these identified 

properties? What is the relationship between these identified properties and the 

software quality? 

 

Results of this analysis are reported in the previous deliverables (deliverable D2.1 and 

D2.2).  

Step 2: Review of SOPA In order to determine measures for assessing the three factors 

(i.e., cost, schedule/time and quality), we planned and distributed an interview-survey 

in which several customer of project’s partners have been involved. Our study is based 

on a method specified in [3]. As explained in the deliverable D2.2, the survey will be 

conducted in multiple stages that span from questionnaire preparation through data 

collection and analysis to validity addressing. This information is essential to validate 

which options from SOTA could be feasible for practitioners according to SOPA. 

Decisions and the corresponding models selected for the first version of the model-

based process, reported hereafter, are based on data and/or information collected from 

the ICEBERG project partners; the results of the survey will be used to enrich the set 
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of models and refine the existing ones by considering the metrics/data as collected by 

the involved company, and the way they collect such information.  

Step 3: Defining frameworks for quality decision-making. The aim of this step is to 

define the prototypal framework for quality decision-making based on cost, quality and 

schedule/time tradeoff. The framework will be based on the usage of a set of models, 

orchestrated in a flow taking the product/process information as input and providing 

solutions to crucial decisions along the development process (e.g., for architectural 

design, for testing, for debugging, etc.) in terms of quality/cost/schedule 

prediction/estimation.  
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4 MODELS-BASED PROCESS OVERVIEW 
 

Figure 2 shows an example of a prototypal framework within its working environment. 

In this case, the framework comprises two modules: a Model Builder and a Model 

solver.  

 

 

Figure 2: An example of framework and its environment 

    

A primary input to this framework is represented, for example, by (i) the system models 

(e.g., an UML-based architectural model composed of a Component Diagram, 

Sequence Diagrams, and a Deployment Diagram), (ii) the causes of quality decision-

making, and (iii) dependencies among quality decisions, defects issues, cost factor and 

schedule factor. In particular, we intend to categorize the identified: (i) quality decisions 

(and causes), and (ii) schedule/time/cost-related properties. This should be based on 

results of tasks WP 2.4 and WP 2.5. 

   The Model Builder generates the optimization model in the format accepted from the 

solver. The Model solver processes the optimization model received from the builder 

and produces the results, which consist of a set of quality decisions. It suggests, for 

example, how to design (or re- design) the software architecture in order to minimize 

the costs while keeping the software quality within a given threshold.  In addition, the 

model, for example, could also suggest the best shift allocations to people in order to 

achieve the required level of software quality. The inferences and relationships detected 

for this model should be created by defining and applying the most appropriate methods 

for data analysis. Any combination of quality decisions may have a considerable impact 
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on the cost, time and software quality. Therefore, the optimization model aims to 

quantify such impact in order to suggest the best quality decision, which minimizes the 

costs while satisfying the schedule/time, cost and quality constraints. 

   In order to achieve the right tradeoff among schedule/time constraints, software 

qualities and costs requirements, the quality decisions should involve the evaluation of 

new alternatives to the current (i) software application level (e.g., by the configuration 

of software components, the introducing new components into the system, etc.) and (ii)  

project management level (e.g., the shift allocations to people). A decision, for example, 

taken for modifying a system functionality may be good for the satisfaction of a certain 

level of software quality, but at the same time it may require a high cost for 

implementing static code analysis (e.g. tools, new processes, training, etc.). A major 

challenge is then finding the best balance among many different competing and 

conflicting constraints.  

   For these multi-attribute problems, there is usually no single global solution, and the 

generation and evaluation of quality decisions alternatives can be error-prone and lead 

to suboptimal decisions, especially if carried out manually by system architects or 

maintainers.  

   In order to address such problems, we will investigate the application of: (1) SBSE 

search methodologies (e.g., genetic algorithms, evolutionary algorithms and other 

metaheuristics) and, (2) the multi-objective optimization, where objectives represent 

different properties (e.g., cost, time and other software quality-related). Specifically, 

we will devise a set of solutions, called Pareto optimal solutions or Pareto front, each 

of which assures a tradeoff between the conflicting constraints. In other words, while 

moving from one Pareto solution to another, there is a certain amount of sacrifice in 

one objective(s) to achieve a certain amount of gain in the other(s). Each point of a 

Pareto curve will be a chain of quality decisions (leading changes either to the 

application level or the project management level). 

   In the past five years SBSE has proved to be a widely applicable and success-full 

approach. In fact, it has been applied to several problems throughout the software 

engineering lifecycle, from requirement and project planning/management to 

maintenance and reengineering. In particular, SBSE potential has been already 

proposed and used for supporting both the software application level and project 

management level. The SBSE approach results attractive because it provide a suite of 

adaptive automated and semi automated solutions in situations typified by large 

complex problem spaces with multiple competing and conflicting objectives [4]. 
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5 USE OF FRAMEWORKS FOR QUALITY DECISIONS IN 

PRACTICE 

 

A Decision Support System (DSS) is a computer-based information system that supports 

business or organizational decision-making activities. DSSs serve the management, 

operations, and planning levels of an organization (usually mid and higher 

management) and help to make decisions, which may be rapidly changing and not 

easily specified in advance (Unstructured and Semi-Structured decision problems). 

Decision support systems can be either fully computerized, human or a combination of 

both. 1 

A taxonomy for DSS has been created by Dah and Stain in [5]. They differentiate in 

model-driven DSS and data-driven DSS.  Power in [6] extended this classification by 

considering document-driven DSS, communication-driven DSS, and knowledge-
driven DSS.      

Model-driven DSSs usually provide a mathematical model, based on statistical 

(optimization or simulation). This model helps make decisions. A user interface is 

typically used. Such interface facilitates the use of the model.  

Data-driven DSSs, also called data-oriented, emphasize access and manipulation of 

internal and external organizational data (usually numerical). It is not provided a 

mathematical model. However, the consultation of the data or their temporal is 

supported. These types of DSSs involve aspects of databases managements systems 

(e.g., data warehouses or data warehouse, the online analytical processing (OLAP) and 

data mining or ETL, etc.). 

Data mining techniques can be grouped into predictive and descriptive depending on 

the problem at hand. From the predictive point of view, patterns are found to predict 

future behaviour. In fault prediction, it would correspond to the generation of   

classification models to predict whether a software module will be defective based on 

metrics from historical project data. From the descriptive point of view, the idea is to 

find patterns capable of characterising the data represented in such a way that domain 

experts can understand them (e.g., rules or decision trees).  

Considering the objective, data mining task are typically categorised as: 

 Classification, prediction task which tries to assign a new instance 

to a predefined category, e.g., defect classification. 

 Regression, typically considered when the output model is a number, 

e.g., effort or cost estimates. 

 Clustering, the objective is to group similar data (e.g., similar open 

source packages to find alternatives, etc.). 

                                                        
1 Decision Support Systems - http://en.wikipedia.org/wiki/Decision_support_system 
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 Time series analysis, evolution of some variables with respect to the 

time variable (e.g, complexity of a module, accumulated number of 

modifications, etc.). 

 Text mining, the objective is to extract knowledge from free form 

text, for example, requirements or bug reports could be automatically 

classified after some text mining preprocessed. 

These are object can be achieved using different representation models (techniques) 

such as trees, rules, artificial neural networks, etc. These models can be categorised as 

blackbox or whitebox models. Blackbox models include neural networks or support 

vector machines. Whitebox techniques include rules (for both association rules or 

classification) or decision trees which are simple to use and provide an explication 

about the decision. 

Data mining in Software Engineering 

Currently, software organisations produce a large amounts of data from configuration 

management systems (software), bug tracking systems, mailing lists, etc. These data 

need to be preprocessed and analysed  

Data mining in software engineering has its own challenges [7], [8], [9], [10] as 

techniques from Web Mining, Text Mining, etc. need to applied and adapted. A subarea 

of this field is known as SBSE2, which deals with the application of search and 

metaheuristic techniques in SE and has become an important area of research (as 

explained in Section 4). Many SBSE problems are composed of one or more fitness 

functions that evaluate a search space, which can be generated while searching for the 

solution or from repositories forming a combinatorial problem from dataset attributes.  

Its importance is also reflected in several conferences and workshops such as Mining 

Software Repositories (MSR)3, PRedictOr Models In Software Engineering 

(PROMISE)4, Workshop on Realizing Artificial Intelligence Synergies in Software 

Engineering (RAISE)5.  

 
 

Data Source in Software Engeneering 

Data to apply data mining can come from the following sources 

 Documentation of a project, both internal and external. The format can vary a lot 

and these will need extensive preprocessing and probably text mining in many 

cases. 

 Design, testing, quality assurance information 

                                                        
2 http://crestweb.cs.ucl.ac.uk/resources/sbse repository/ 

3 http://msrconf.org/ 

4 http://promisedata.googlecode.com/ 

5 http://promisedata.org/raise/ 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 13 

 

Deliverable D3.1: “First measurement/prediction models-based process” 

 Source code 

 Compiled source, execution traces, logs, etc. 

 Bug tracking systems 

Software Engineering Repository Software projects leave a trail in different kinds of 

repositories, and this trail can be used to reconstruct the history of the project, and to 

study the software development and maintenance processes. We classify this trail in the 

following categories: 

 

 Source code 

This is the most obvious product of a software project. Source code can be studied 

to measure its properties, such as size or complexity. 

 

 Source Code Management Systems (SCM) 

SCM repositories make it possible to store all the changes that the different source 

code files undergo during the project. Also, SCM systems allow for work to be done 

in parallel by different developers over the same source code tree. Every change 

recorded in the system is accompanied with meta-information (author, date, reason 

for the change, etc) that can be used for research purposes. 

 

 Issue tracking systems 

Bugs, defects and user requests are managed in issue tracking systems, where users 

and developers can fill tickets with a description of a defect found, or a desired new 

functionality. All the changes to the ticket are recorded in the system, and most of 

the systems also record the comments and communications among all the users and 

developers implied in the task. 

 

 Messages between developers and users 

In the case of free / open source software, the projects are open to the world, and 

the messages are archived in the form of mailing lists, which can also be mined for 

research purposes. There are also some other open message systems, such as IRC 

or forums. Other projects which are developed in public can also store messages, 

but it is unusual to have that information for research purposes. 

 
 

 Meta-data about the projects 

As well as the low level information of the software processes, we can also find 

meta-data about the software projects which can be useful for research. This meta-

data may include intended-audience, programming language, domain of 

application, license (in the case of open source), etc. 

 

 Usage data 

In the case of the user side, the trail that projects leave is virtually invisible. There 

are statistics about software downloads on the Internet, but that is not the only way 

users get their software. Some of the research datasets we describe in this paper 

include information about usage data, which is recorded thanks to the collaboration 

of users. 
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Testing and Debugging is most prolific research field in which machine learning is 

being applied. Tools related to testing tools are also the ones have included optimisation 

or machine learning capabilities, for example, PEX56 with the automation of unit tests. 

 

We next briefly describe works according to their research field 

 

Project Management One area of project management is related to the estimation of 

effort, cost which is mainly a regression problem. Recently data mining techniques have 

been applied such as Neural Networks and Genetic Programming [11], Case-based 

Reasoning [12], etc. Another problem related to project management is the allocation 

of resources and order of activities within a project or across multiple projects. In this 

case, optimisation and meta-heuristic techniques have also been implemented (e.g. [13] 

[14]). 

 

Software Requirements This field of research it has been mainly tacked as an 

optimisation problem, e.g., ranking requirements. Other [15] 

 

Design and Implementation A survey [16] 

 

Testing and Software quality This field is the one that has attracted more attention. 

Most of the literature regarding data mining and software engineering is related to 

software quality in the sense of defect prediction (comprehensive surveys include the 

work of Hall et al. [17] and Catal and Diri [18]), test case generation [19], etc. 

 

Maintenance There are some works related to maintenance effort (e.g. [20]) or 

automatic repairing of code (e.g. [21]), refactoring (e.g. [22]). 
 

An example of use of a quality decision framework  

The goal of quality decision framework is to provide support for the decisions that 

project managers (developers or testers) take. 

Figure 3 schematically delineates the use of the quality decision-making framework. 

The framework, for example, will suggest the best actions to taken according to a set 

of new requirements to be satisfied. The framework will take into account cost, 

schedule and quality factors. It will aim, for example, to minimize the costs while 

keeping the reliability and the performance of the software architecture within certain 

thresholds.  

 

                                                        
6 http://research.microsoft.com/en-us/projects/pex/ 
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Figure 3: An example of framework application 

 

A primary input to the framework is represented by data collected from company 

composed of, for example: (i) bugs; and (ii) software metrics. The framework will 

suggest the best “actions” (e.g., the additional amount of testing to be performed) under 

quality, cost, and schedule tradeoff. 
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6 QUALITY DECISION MAKING APPROACHES 
 

    As remarked in the deliverable D2.2, several research efforts have been devoted to 

the definition of quality decision-making approaches in each phase of the software 

lifecycle. The analysis of system qualities supports a large set of decisions across 

multiple lifecycle phases that span from design through implementation-integration to 

adaptation phase. However, due to the different amount and type of information 

available, different quality decision frameworks can be exploited in each phase.  

 

      The goal of our work is to provide support for the decisions that practitioners take. 

We aim at enabling practitioners to maximize the effectiveness of their specific 

software by exploiting guidelines of existing literature studies. As explained in the 

deliverable D2.2, we are collecting information on which types of decisions are 

normally made by managers or project leaders during the projects. We aim to 

understand practitioners perceived strengths, limitations, and needs associated with 

using SOTA practices in the industry.   

 

    On one hand, we believe that well-assessed optimization methods (like SBSE 

methodologies combined with multi-objective optimization), and software quality 

validation techniques, will helpful to assist software designers/maintainers and 

software project managers during the whole software system lifecycle. 

 

  On the other hand, we plan to analyze effort and time necessary to incorporate the 

SOTA solutions into real-world systems: as intended in the plan of Iceberg project, this 

is going to be addressed with some industrial scenarios provided by industrial partners, 

namely Assioma.net and DEISER.  

 

  As explained in the deliverable D2.2, we can see from the first questionnaire’s results 

that practitioners usually deal with a few software metrics, or defect (cost, schedule, 

and time) data. We will investigate the effort required for collecting additional data 

(e.g., additional software metrics or particular cost factors, such as that of test cases 

generation). Because we have pointed out that practitioners already use some tools for 

source code metrics evaluation (e.g., Sonar), and bug tracking (e.g., JIRA), or they are 

willing to adopt them in their company, we believe that these kinds of software metrics 

could be easy collected and evaluated. We will analyze which is the effort required for 

using in industry the tools for software metrics evaluation.  

 

We have also realized that the testing is a typical activity in the industry, and 

practitioners are willing to invest to improve it.  We think that testing is also a good 

“provider” of data for the cost, schedule and time indicators. Therefore, we will 

investigate, for example, (i) which are the main features of these tools adopted for the 

testing, and (ii) how these tools could be integrated with other tools (e.g., the ones for 

cost or time evaluations) in order to obtain both cost and time data (such as, for 

example,  that of test cases generation or execution). 
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  In this section, we describe existing SOTA studies, which might be helpful to enable 

practitioners to maximize the effectiveness of their specific software. These quality-

decision making approaches can be categorized by the kind of techniques used: (a) 

defect analysis model-based, and (b) optimization model-driven.  

 

Defect analysis model-based approaches basically give guidelines to evaluate the 

development process by considering software metrics and defect data. The purpose of 

defect analysis is to have quantitative support for evaluating the development process. 

Depending on the grain of the analysis, the supported quality decisions may regard: the 

improvement of the most critical phases of the development process, improvement 

actions on the most critical components, actions against the most critical suppliers, 

and/or the most critical actors (e.g., testing teams) involved in the process. We are 

developing a lightweight defect analysis approach, merging various types of analyses 

and models to both product and process evaluation, which requires a minimal set of 

defect information as input in order to keep the impact on current practices low. 

 

The optimization model-driven category mainly encompasses studies that, besides 

providing a means to evaluate system quality, support the making of best quality 

decisions.  

 

This section reports the models that are currently under development for supporting 

decision making process, with a specific impact on the quality of the product. We 

discuss the adopted models for defect prediction, focusing on identifying the most 

critical modules and thus supporting testing. Additionally, we devise the formulation 

of cost minimization problems under quality constraints. These optimization models 

stem from our previous works, where we have instantiated them for the phases of design 

and adaptation.  However their elements (e.g., cost function and reliability/performance 

constraints) could be re-used in another phase of the software life cycle phase.  We are 

investigating how to reuse the guidelines of these existing models in order to allowing 

study of the tradeoffs among quality, cost, and time attributes. 

 

In Section 6.1, we describe defect analysis model-based approaches, and, in Section 6.2 

and Section 6.3, we provide the guidelines of our optimization models.  

  

6.1 DEFECT ANALYSIS MODEL-BASED APPROACH 
 

Supported QA decisions 

The purpose of defect analysis is to have quantitative support for evaluating the 

development process. Depending on the grain of the analysis, there are several QA 

decisions that can be supported: the common underlying basis is to get information 

from process measurements. Depending on what we are able to measure, the supported 

QA decisions may regard: the improvement of the most critical phases of the 

development process, improvement actions on the most critical components, actions 

against the most critical suppliers, and/or the most critical actors (e.g., testing teams) 

involved in the process. Which specific action to take depends on data analysed, on 

gained insights (i.e., critical paths), and on the company policies. In the following, we 

report examples of (statistical) analyses that we plan to conduct on the case studies 

identified during the ICEBERG project.  
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Description 

The practice of software defect analysis is recognized as an essential task for software 

process measurement. However, its effective application in industry raises several 

challenges. Data about defects experienced during the software lifecycle are a valuable 

source of information for product and process quality assessment and improvement. 

Defect tracking and analysis is therefore a practice recommended by the most important 

software process standards. There exist several methods using defect data attributes 

(such as the type, the trigger, the injection/detection phase, the impact) for tracking the 

quality of development artefacts and of process activities, so as to reveal inefficiencies 

and support process improvement. Two successful methods are the Orthogonal Defect 

Classification (ODC) [23], and the HP classification [24], both conceived to categorize 

the defects observed and then relate their occurrence pattern to process 

phases/activities. 

Despite the success of such methods, implementing defect analysis into the industrial 

practice is heavily conditioned by the context, which finally dictates the objectives of 

the analysis and the constraints as well, significantly restricting the choice. There is, in 

fact, a trade-off between the target of the analysis, its potential outcomes, its 

extensiveness to several process aspects, and the cost required to implement it. For 

instance, analysing the process through software reliability growth models (SRGMs) 
are easy to implement, because they only require tracking the defect detection time as 

input, with not much personnel involved, and few changes to the process; however, 

they provide limited insights into the process, referred to the trend of the testing stage 

treated as a black box. Oppositely, implementing schemes as ODC or HP classification 

yields much information on single phases efficiency, but at relatively higher expense. 

Their application into real industrial settings can be difficult [25], [26], because of start-

up costs (e.g., training, process changes), of required customizations (e.g., [27]), of non-

immediate visible gain, and of reluctance of people to change their routine job. 

In the ICEBERG project, we are therefore developing a lightweight defect analysis 

approach, merging various types of analyses and models to both product and process 

evaluation, which requires a minimal set of defect information as input in order to keep 

the impact on current practices low. The objective is to evaluate the quality vs. effort 

balance of the development process so as to identify potential critical phases, 

components, or actors. We are going to implement a black-box approach, in which the 

evaluation is inferred from the available data, not requiring any process change or any 

additional effort to developers (e.g., to re-classify defects according to a predefined 

scheme as could be the case with ODC, HP schemes). This avoids expensive training, 

terminology alignment, imposition to suppliers, and other adaptation activities. The 

minimal requirement must be the usage of a defects tracking tool.  

 

 

 

Specifically, the objectives of the defect analysis approach in relation to the iron’s 

triangle factors of cost, quality, and time, are:  
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- Measuring the efficacy and the efficiency of the requirements/design/implementation 

processes (i.e., the processes of “building” the product). With efficacy we mean the 

quality – i.e., (un-)defectiveness - of what is  produced, while with efficiency we 

mean the quality with respect to the effort (i.e., cost) to produce it. 

- Measuring the efficacy and efficiency of the testing process. The task of tester is to 

expose failures, i.e., the defects manifestation. Hence, testing efficacy is the level of 

defectiveness exposed by testers, and efficiency relates this to the effort required. 

- Measuring the efficacy, the efficiency, and the internal quality of the fixing process. 

These are intended, respectively, as the number of defects, the average fixing time, 

and the properties of the fixing process as a whole, taken as indirect guarantee of a 

correct fixing. 

 

To this aim, the approach is developed in the three main steps depicted in Figure 4.  

 

Figure 4: The key steps of the defect analysis approach 

 

Measurement is the starting point of the approach. From gathered data, several analyses 

are enabled with either analytical or empirical models, or hybrid approaches (i.e., 

analytical/measurements-based). Examples of evaluations supported by data on which 

we are working are:  

 Process phases evaluation (implementation, testing, debugging/fixing);  

 Component quality assessment (e.g., in terms of reliability level) for quality 

bottlenecks identification; 

 Fine-grain defects analysis with respect to Severity/Priority/Reproducibility 

attributes, providing feedback on tester/debuggers behaviour; 

 Suppliers Evaluation in outsourcing-based developments.  

 

This type of information corresponds to estimates of cost due to poor quality as caused 

by critical development issues: e.g., the time in which debuggers fix defects is a cost; 

the inefficiency of testing is a cost; the wrong management of priority is a cost; the high 

defectiveness of a component implemented by suppliers is a cost. All this information 

is therefore going to be measured by a set of metrics defined in the step 1 of Figure 4 

as measurements are taken. In the following we report the list of analyses that we 

include in our approach. The flexibility of the method allows us to select the best set of 

analyses depending on data provided as input. The list also reports the output provided 

by the analysis and how these outputs are given to managers in terms of “metrics”.  

Input 
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The inputs required to implement the defect analysis approach for quality decision 

support are the ones typically collected in a bug-tracking tool. Depending on the details 

tracked about the defects, several analyses can be carried out.  

The minimum requirement is the Date and time of the defect (or, more generically, 

issue) detection and effort measures (e.g., man-months for implementation, and man-

month for testing).  

Optionally, the method can take: the defect Priority, Severity (impact), Detection Phase 

(i.e., Design Review, Code Review, Unit Testing, Integration testing ,…), the defect 

type (according to some classification, such as IBM ODC, HP), the age of the code 

module (e.g., new, base, rewritten, re-fixed),  the defect Trigger, the Source (in-house, 

outsourced, library, …), the reproducibility (e.g., always or not always reproducible).  

These input parameters can be used for: derive quality vs. effort indicators, and identify 

problems and criticalities in the lifecycle (e.g., phase/activity/team causing low index 

value). 

Table 1 summarizes the potential model’s input. This is a superset, meaning that 

different analyses can be done depending on the input information.  

 

 

Source Data Type  Data  

Bug Repository Defect Data Severity/Reproducibility/Priority, Defect 

Triggering (and/or activity that made the 

defect surface, e.g., code review, inspection, 

unit testing, workload/stress testing, 

concurrency testing, operational usage), 

Defect Detection Phase, Supposed Defect 

Injection Phase, Fixing time, Defect fixing 

Phase, Defect Type, Defect Impact, Defect 

mode (wrong, missing), defect source, 

source age, work/Rework 

Source Code 

Repository 

Code/Process Metrics Size Measures (LoC, #Req, Function 

Points), Complexity metrics (McCabe, 

Halstead’s), Source File metrics, code 

churn/change metrics, version 

Development/Test 

Engineer 

Effort Estimate 

 

Testing effort (e.g., man-months dedicated to 

testing) 

 

T  Maximum threshold given to the delivery 

time of the system. 

 

Table 1:   Model’s Input 

Output:  

Table 2 summarizes the main decisions supported by this class of models synthetically, 

which is again a superset with respect to the usage that can be done of the input 

information. Note that some of the specified analyses are also detailed in the subsequent 

sections, being this defect analysis model at higher level.  

With a greater detail, Table 3 summarizes the analyses that can be done by joining more 

input information pieces, and their output depending on the information recorded by 

the tester and/or the person in charge of fixing a defect (with minimum requirement 
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being only the detection time and date with effort measures). The analysis that we will 

carry out will depend on the availability of such information in the case studies. The 

analysis are intended as “statistical” analysis, with output always accompanied by a 

“confidence level” indication (e.g., a given metric value is greater than another, with 

95% of confidence).  

 

Decisions  Description 

Release Policy Quality (reliability) analysis/assessment and time to 

get a given quality 

Testing decisions: how much effort to 

invest 

From the analysis of the testing process (test 

efficacy, efficiency) and of the product quality 

(detected/expected defects) with respect to the 

effort devoted so far, decide on investing more or 

less resources 

Testing decisions: if and how to change 

the current process based on defect 

data 

Analysis of defects per 

severity/reproducibility/priority, of 

detection/injection phase, of defect triggering phase 

and activity, defect type, in order to identify 

mismatch (expected vs actual patterns) 

Testing effort allocation Prediction of defective modules from code/process 

metrics 

Decision on Debugging Process 

improvement and Development 

improvement 

Analysis of the bug fixing time, defect type, defect 

impact, defect source, defect source age, prediction 

of defective modules from code/process metrics to 

focus design efforts, analysis of defect features to 

get feedback  on implementation 

Table 2:   Model’s Output 

 

Input Info  Joined with: Type of Analysis Output Info 

On detection, 

tester will 

record: 

   

Opening Time  Reliability Analysis Estimate of Expected Defects, Estimate of 

(expected) Reliability (i.e., non-failure 

probability), Estimate of Residual Defects. 

Both during testing and during operational 

phase 

  Release Policy 

Analysis 

Decisions on "When to stop testing, when 

to release", "What is the quality, under the 

current testing process, expected at the end 

of testing" 

 Size measures: 

LoC, #Req, 

Function Points 

"Normalized" 

reliability analysis 

Estimated Expected Defects Density, 

Estimated Expected Residual Defects 

Density 

 Effort measures: 

testing effort 

(e.g., man-

months) 

Test Efficacy and 

Efficiency Analysis 

Test maturity (%): detected defects so far 

over the total expected defects, Test 

Efficiency: defect detection rate, Test 

Efficiency: percentage detection 

efficiency (progress in terms of "test 

maturity increase" per effort unit), Test 

Efficiency: relative efficiency in terms of 
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"effort units (e.g., man-weeks) required to 

achieve a maturity of x%" 

 severity/ 

reproducibility 

severity/ 

reproducibility 

analysis;  

Cross-analysis with 

the previous ones 

Defects per category: "which 

implementation has higher severe defects 

in the average? what is the trend of high-

severe defects per implementation item? 

Do testers of different implementation use 

the same criteria to assign severity? Which 

testing activity exposes the most severe 

defects? Which percentage of "not-always 

reproducible" defects is found during 

testing and which percentage during 

operation (high-cost defects)? What 

testing activity exposes the "not-always" 

reproducible defects?  

Defect 

Triggering 

(and/or 

activity) 

 V&V Analysis Identification of critical phases of testing 

(e.g., function review, code review, 

testing) and operational conditions in 

which defects are found (during testing or 

at runtime); Identification of critical 

environmental conditions (e.g., high 

workload-stress greatly contributing to 

expose defects); "Signature" of testing 

techniques with respect to defects they are 

able to find (how many, of what type, of 

what impact in terms of severity) 

Defect 

Detection 

Phase 

 V&V (Phase) 

Analysis 

Identification of critical phases of testing - 

analysis of expected detection phase vs. 

actual detection phase; "Delay" and cost 

analysis of testing - thus cost analysis 

referred to defects that should have been 

detected earlier  

Supposed 

Defect 

Injection 

Phase 

 Development and 

V&V Analysis; 

Defect Flow 

Analysis 

Development Phase Analysis - which 

phase introduces more defects (and of 

what type, impact); Defect flow analysis: 

analysis of the latency (and cost) required 

to detect defects (for how many phases the 

defect flows and survives); analysis of 

V&V activities vs. latency 

On fixing, 

debugger will 

record:  

   

Fixing time  Fixing process 

(debug) analysis 

Efficacy: percentage of closed (or 

pending) defects; Efficiency; mean time to 

fix 

  Fixing process 

evolution over time  

Efficacy and Efficiency over time; 

Continuity of the process over time; 

homogeneity of the process (e.g., 

peakedness and skew of the fixing time 

distribution) 

 severity/ 

priority/ 

reproducibility 

Fine-grained Fixing 

process analysis 

(analyse potential 

causes for 

Previous metrics normalized per average 

severity (have more severe defects 

required more time to be fixed)?; priority 

analysis (have defects at higher priority 

been fixed earlier?) ; reproducibility: have 

"not-always reproducible" been actually 
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experienced time to 

fix)  

more difficult to fix (thus justifying higher 

Time to fix)? 

Actual 

working Time 

 Detailed Fixing 

process (debug) 

analysis; Latency 

Analysis 

Analysis of the bug tracking tool usage (it 

is expected a small difference between 

actual and recorded time to fix); Latency 

analysis: when the actual fixing work 

starts with respect to the claimed time; 

percentage of actual time over recorded 

time 

Defect fixing 

Phase 

 Detailed Fixing 

process (debug) 

analysis 

When the defect has been fixed w.r.t. 

when it was to expected to be fixed (cost 

analysis like "detection vs. injection" 

analysis: in this case it is "correction vs. 

detection") 

Defect Type  Development 

Analysis 

"Signature" of defect types over the 

development phases: expected vs. 

experienced defect. Analysis of patterns of 

defect types vs. development phases in 

which they have been injected. Cross-

analysis with many previous and 

following attributes: defect type vs. 

trigger, vs. V&V activities, vs. impact, vs. 

source , vs. age, vs. target; type-based 

defect prediction (see below) 

Defect Impact  Development and 

V&V Impact 

Analysis 

Crossed analysis with: development 

phases, V&V phases and activities, defect 

type and triggers, and others… 

Defect Mode 

(missing, 

wrong) 

 Detailed 

Development and 

V&V Analysis 

As above, differentiated per "missing" 

defects and "wrong" defects; feedback to 

developers 

Source  (in-

house, 

outsourced, 

library)  

 "Source Defect" 

Analysis  

How many defects per source item type 

(in-house, outsources); crossed analysis 

with previous attributes 

Source Age 

(new, base, 

rewritten, 

refixed) 

 "Source Age" 

Analysis 

Age is intended the age of the code 

affected by the defect as development 

history: base code from the previous 

release, new code from the current release, 

rewritten code or refixed code. This allows 

analysing the impact of reusing code, of 

regression bugs, of writing completely 

new code, of using a baseline. Crossed 

analysis with previous attributes makes 

sense also.  

Target of the 

fix (e.g., 

source file) 

 Code-defect 

Relationship 

Analysis 

How many defect (density) per target; how 

target (metrics) are related to 

defectiveness 

Version  Defect Pattern 

Evolution across 

versions; release 

policy analysis  

How defects (type, trigger, impact, 

age,…) evolves across versions; how 

releases relate to defects found in 

operation; how releases are related to 

fixing (e.g., release train effect ) 

Work-rework  Regression 

Likelihood Analysis 

How many defects are opened during a re-

work; likelihood of introducing regression 
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bugs; crossed analysis with triggers 

(environmental conditions in which 

defects surface) 

More 

advanced 

analysis. For 

internal 

quality and 

prediction 

   

Size and 

complexity 

metrics; CVS 

metrics (code 

churns, etc.) 

 Code-defects 

Relationship; 

Defect Prediction 

Empirical models to build predictors of 

defectiveness in modules; can be 

customized per defect type 

Requirements-

, design-, 

organizational 

metrics 

 Process metrics-

defects 

Relationship; 

Defect Prediction; 

Detailed phase 

analysis (relation 

between phases 

metrics and defects)  

How metrics at each level are related to 

defects; this can be specialized per phase 

(e.g.,: how requirements metrics are 

related to, and can predict, defects of a 

given type, or defects injected in 

requirements phase, …) 

Description of 

the defect; 

notes; 

discussions; 

number of 

state changes 

in the report, 

… 

 Communication; 

Topic analysis, 

semantic analysis 

Relating communication patterns (length 

of discussion, topics inside, number of 

participants to the discussion) with time to 

fix 

Test Effort per 

component 

 Optimal test effort 

allocation 

Allocate effort to projects with higher 

expected defectiveness 

 

Table 3: Input-Output matrix describing the Possible Analyses and output in relation to 
provided information 
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6.1.1    DEFECT PREDICTION 

   As remarked in the deliverable D2.2, defect prediction approaches basically provide 

guidelines to predict defects in source code by exploiting the usefulness of elementary 

metrics or previous defects. They have the following common steps that can be iterative 

and overlapping. 

 

 Step 1. The metrics evaluation is accomplished. Depending on the adopted type 

of metrics (e.g., object-oriented metrics or “traditional” product metrics, like 

number of lines of code, McCabe complexity), different computing approaches 

are used.  

 

 Step 2. The relationships between the values of the metrics and the numbers of 

bugs found in the system (e.g., in the classes) are discovered. Well-known 

statistical methods (e.g., logistic and linear regression) have been largely 

adopted to validate the usefulness of the metrics to identify defective classes. 

Basili et al. in [28], for example, validate object-oriented design metrics as 

quality indicators by using logistic regression technique [29]. In the contrast, 

Gyimóthy at al. in [30], besides using regression methods (logistic and linear 

regression), also employed machine learning techniques to validate the 

usefulness of object-oriented metrics for fault-proneness prediction on open 

source software  

 

   In order to validate the metrics’ usefulness for fault-proneness, the output of the 

previous step is analyzed. Specifically, the values obtained are checked against the 

number of bugs found in the system (e.g., in [30] the values of the object-oriented 

metrics of the open source Web and e-mail suite called Mozilla are checked against 

the number of bugs found in its bug database called Bugzilla).7 

Input 

  Defect prediction approaches utilize software metrics and defect data collected during 

the software development process. Their efficacy is, therefore, influenced by the 

relevance between software metrics and fault data. The modules predicted to be fault-

prone will receive more inspection and testing, thereby improving their quality. The 

literature contains a wealth of software metrics proposed for software fault prediction. 

In fact, software metrics may be used in prediction models to improve software quality 

by predicting fault location [31]. In the deliverable D2.2 more details on the survey [31] 

can be found. However, we can remark that, in general, software metrics are 

categorized as follows: 

 Traditional: size (e.g. LOC) and complexity metrics (e.g. McCabe [32]).  

 

 Object-oriented: coupling, cohesion and inheritance source code metrics used 

at a class-level (e.g. Chidamber and Kemerer [33]).  

 

                                                        
7 http://www.bugzilla.org/   
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 Process: process, code delta, code churn, history and developer metrics. These 

metrics are usually extracted from the combination of source code and 

repository, and they require more than one version of a software item.  
  

   Different prediction approaches have been introduced by relying on diverse 

information (e.g., on source code metrics, process metrics or previous defects). The 

efficacy of defect prediction models is influenced by relevance between software 

metrics and fault data [34].   

Output 

   The accuracy and the granularity are two important qualities of software fault 

prediction algorithms [35]. The accuracy represents the degree to which the algorithm 

correctly identifies future faults. On the contrary, the granularity specifies the locality 

of the prediction. As remarked in [35], typical fault prediction granularities are: (i) the 

executable binary [36]; (ii) a module (often a directory of source code) [37]; (iii) or a 

source code file [38]. A directory level of granularity, for example, means that 

predictions indicate a fault will occur somewhere within a directory of source code. As 

stated in [35], the most difficult granularity for prediction is the entity level (or below), 

where an “entity” is a function or method.  

Supported QA decisions: These models provide support for decisions both at design 

time and testing time. The modules predicted to be fault-prone will receive more 

inspection and testing, thereby improving their quality. 

Example of Defect Prediction Approach One of the most known defect prediction 

approach is the Basili et. al approach [28]. Basili et al. have used eight projects 

developed by using a sequential life cycle model, a well-known OO analysis/design 

method. The projects were written by students in C/C++. Basili et al. have slightly 

adjusted some of CK metrics in order to reflect the specificities of C++. Based on 

empirical and quantitative analysis, they have argued that several of CK metrics appear 

to be useful to predict class fault-proneness during the early phases of the life-cycle. 

Moreover, they have also figured out that, on their data set, CK metrics are better 

predictors than “traditional” code metrics, which can only be collected at a later phase 

of the software development processes. GEN++ [39] was used to extract CK metrics 

directly from the source code of the projects delivered at the end of the implementation 

phase. 

 

6.2   BUILD-OR-BUY DECISIONS MODELS  

 

    In this section we devise the formulation of a cost minimization problem under 

reliability and delivery time constraints.  This model stems from our previous work in 

the context of component-based software [40], where we have introduced a model to 

support build-or-buy decisions about software components while minimizing costs 

under quality constraints. Components can be either bought as COTS (commercial-off-

the-shelf) products, and probably adapted to work in the new software system, or they 

can be developed in-house. We adopt a general definition of software component: it is 

a self-contained deployable software module containing data and operations, which 
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provides/requires services to/from other elementary elements. A component instance is 

a specific implementation of a component. 

 

   The model considers the following architectural decisions: (i) replacing existing 

software units with functionally equivalent instances available on the market, and (ii) 

replacing existing software components with functionally equivalent software 

components developed in-house. Therefore, we show how an optimization framework 

can support the decision whether to buy software components or to build them in-house 

upon designing a software architecture.   

 

Description 

   Let S be a software architecture made of n software components. Let Ci be the i-th 

software component (1 ≤ 𝑖 ≤ 𝑛).  Let Cij be the j-th instance of the i-th component, 

and with j =0 we represent the in-house developed instance.  

Let us assume to be committed to assemble the system by the time T while ensuring a 

minimum reliability level R and spending a minimum amount of money. 

 

 
 

Symbol Description 

R Minimum threshold given to the reliability on demand 

of the system. 

T Maximum threshold given to the delivery time of the 

system. 

n Number of existing software component 

m Maximum number of COTS instances available for 

each component 

cij Cost of the  instance Cij 

dij Delivery time of the instance Cij 

si Average number of invocations of Ci 

ij Probability of failure on demand of the instance Cij 

ci Unitary development cost of the instance Ci0 

ti Estimated development time of the instance Ci0 

i Average time required to perform a test case of the 

instance Ci0 

i Testability of the instance Ci0 

yi The instance in-house Ci0 is selected 

xij The instance Cij is selected 

Ntot
i Total number of tests performed on the in-house 

developed instance Ci0 

 

Table 4:   Model’s parameters and variables 

Table 4 summarizes the parameters and the variables of the model.  The formulation 

of the optimization model is given by: 
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Input 

   A primary input to the model is represented by an UML-based architectural model 

composed of: (i) a Component Diagram describing software components and their 

interconnections, (ii) a set of Sequence Diagrams describing the possible execution 

scenarios.  Model parameters include, for example: (1) quality attribute values (e.g., 

probability of failure on demand) of elementary software units; and (2) unitary cost to 

develop a software unit in-house. Details on the parameters estimation can be found in 

[40].  

 

Output 

   The results of the optimization model consist of a set of architectural decisions. The 

solution of the optimization model indicates the instance to choose for each component 

(either one of the available software unit instance or an in-house developed one) in 

order to minimize the software costs under quality constraints. The model solution also 

indicates the amount of testing to be performed on each in-house instance in order to 

achieve a reliability level that allows the whole system to satisfy the reliability 

constraint. 

 

   In fact, the formulation of the optimization model involves further variables 

representing the amount of unit testing to be performed on each in-house developed 

software component. Since these variables enter the software cost and the software 

reliability formulation, the model can be used to determine not only the best assembly 

of software units to be bought or built, but also the best amount of testing to be 

performed on each in-house developed unit to fulfill the constraints while minimizing 

development costs. Indeed, testing on in-house software components aims at increasing 

reliability estimation, whereas testing on instance of software unit available only aims 

at reliability estimation, because lack of source code does not allow to localize and 



FP7-PEOPLE-2012-IAPP –– ICEBERG - 324356 29 

 

Deliverable D3.1: “First measurement/prediction models-based process” 

remove faults unless additional wrapper code is designed. In our approach, we do not 

entail wrapper code because it would bring additional time and cost hard to quantify. 

Model solutions are obtained by means of a commercial non-linear solver and are 

compared to those provided by a previous approach. 

 

Model Summary.  Table 5 summarizes the primary input of the model.  A primary input 

to the model is represented by parameters related to: (i) the components Ci, which are 

estimated by using the architectural model (i.e,, the average number of  invocations) or 

entered by the user (e.g., its number of COTS available),  (ii)  the COTS instances (e.g., 

the cost and the delivery time), and (iii) the in-house components (e.g., the unitary 

development cost). A model solution provides the optimal “build-or-buy” strategy for 

component selection, as well as the number of tests to be performed on each in-house 

developed component instance (as summarized in Table 6). The solution guarantees a 

system reliability over the threshold R, a system delivery time under the threshold T 

while minimizing the whole system cost. 
 

 

 

Source Data Type  Data  

Architectural Models  Existing Components si     Average number of invocations of Ci 

User Model Constraints  R Minimum threshold given to the reliability 

on demand of the system. 

T  Maximum threshold given to the delivery 

time of the system. 

Existing Components n  Number of existing software components 

m Maximum number of COTS instances 

available for each component 

COTS instances cij    Cost of the  instance Cij 

dij    Delivery time of the instance Cij 

ij    Probability of failure on demand of the 

instance Cij 

In-house instance ci    Unitary development cost of the instance 

Ci0 

ti Estimated development time of the 

instance Ci0 

i  Average time required to perform a test 

case of the instance Ci0 

i   Testability of the instance Ci0 

 

Table 5:   Model’s Input 

 

 
Architectural 

Decisions  

Description 

Build-or-buy 

decisions for each  

component Ci  

(i) Replacing Ci with the COTS instance Cij 

or (ii) Develop-in-house the component Ci. 

Testing decisions 

for the in-house 

developed instances 

The model suggests the amount of unit 

testing to be performed on each in-house 

developed software component. 

 

Table 6:   Model’s Output 
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6.2.1 QUANTIFYING THE INFLUENCE OF FAILURE REPAIR/MITIGATION COSTS 

 

As discussed in the deliverable D2.2, reliability and costs together have been considered 

in different contexts, for example to provide guidelines in (1) evaluating the effort spent 

to test the software, deal with the resource allocation during the test process or quantify 

the costs of service failure repair/mitigation actions, or (2) comparing the costs of 

defect-detection techniques. In the deliverable D2.2, we provide a quite extensive list 

of these approaches. 

 

    In our previous work [41], we have presented an approach for service selection taking 

into account costs and reliability requirements. In particular, we have defined a set of 

optimization models that allow quantifying the costs of service failure repair/mitigation 

actions aimed at keeping the whole system reliability over a given threshold. 

   The aim of our approach is to define SBSs obtained by a combination of both 

provided loosely-coupled services and in-house developed services, while satisfying 

costs and reliability requirements. These systems should be able to satisfy both costs 

and reliability constraints under the hypothesis that repair and mitigation actions can be 

undertaken to maintain the service’s reliability over a certain threshold. To this end, we 

have defined a service selection approach based on the definition of a set of 

optimization models whose goal is to minimize the overall application cost while 

guaranteeing the required level of reliability. The high level view of the proposed 

approach is sketched in Figure 5. 

 

The goal of our work has been to introduce a set of optimization models that allow 

quantifying the costs of service failure repair/mitigation actions aimed at keeping the 

whole SBS reliability over a certain threshold.  

 

We assume that a service-based system made of n nominal services has to be 

assembled, and for each nominal service Si, several alternative implementations are 

available, which can be split into: (i) an in-house service implementation, (ii) service 

implementations available for purchase by providers. 

 

On the basis of our previous work [40] (discussed in Section 6.2), we have first 

introduced an optimization model, called base model, aimed at selecting either in-house 

built or provided services with the goal of minimizing the SBS cost while guaranteeing 

a certain level of reliability. Thereafter we have strengthened the reliability constraints, 

and we have built two different optimization models that aim to solve the same problem 

under new constraints, where one model starts from the solution obtained in the original 

model and tries to improve it (i.e., base model with repair model), while the other one 

looks for an optimal solution in the whole search space (i.e., robust model). Finally, we 

have introduced a fourth model, based on stochastic optimization (i.e., stochastic 

model), with the goal of rather searching for solutions that explicitly take into account 

the stochastic nature of the problem and search for new repair/mitigation actions 

cheaper than the ones identified by the other models.  
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                           Figure 5: High-level Approach Overview [41] 

 

Input 

The input of our approach is the set of functional and non-functional requirements 

representing the goal/objective of the SBS to-be.  A primary input of the models is 

represented by an UML-based architectural model composed of: (i) a Component 

Diagram describing software components and their interconnections, (ii) a set of 

Sequence Diagrams describing the possible execution scenarios.   

 

Models’ parameters include, for example: (1) quality attribute values (e.g., probability 

of failure on demand) of elementary software units; and (2) unitary cost to develop a 

software unit in-house.  

 

As remarked above, the formulation of the base model stems from our previous work 

in the context of component-based software [40] (see Table 4 for the model’s 

parameters and variables of this model). Specifically, with respect to the original model, 

here: (i) we have plugged the problem in a service-oriented paradigm, where  the build-

or-buy decisions refer to services rather than components, (ii) we have refined the 

software development cost function (that in the original work was a linear function of 

the development time) with a COCOMO II cost function [42], and (iii) we have 

removed the delivery time constraint, for sake of focusing on reliability concerns.     

  

In particular, we have exploited the COCOMO II model [42] to define the development 

cost ci of an in-house service. The COCOMO II model introduces a software cost 

function that depends on the size (i.e., the lines of code) and the type (i.e., simple, 

intermediate and complex) of software. Such attributes allow estimating the amount of 

effort, in terms of personmonths, needed to deliver the software. 
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We have adapted the COCOMO model by considering the amount of testing to be 

performed on an in-house software unit. In particular, we have introduced Ni, the 

number of tests performed on a service before delivery. The variables Ni appear both in 

the development cost function and in the reliability constraint.  

  

We have introduced the following cost function for an in-house developed service: 

 

     ib

ipmi Npmttestperc1sizeatcosc    (1) 

 

where: 

  bisizea   is the COCOMO II model for the development personmonths of a 

service by isize , where constants a and b depend on the software size and  

type. 

  testperc1  is the percentage of development effort that is not spent in 

testing. 

 iNpmt  is the effort spent in testing. 

 
pmtcos  is the cost of a personmonth. 

Similarly to Table 5, Table 7 summarizes the primary input of the basic model. 

 

Source Data Type  Data  

Architectural Models  Nominal Services invi     Average number of invocations of Si 

across all considered interaction scenarios. 

User Model Constraints  R Minimum threshold given to the reliability 

on demand of the system. 

Nominal Services n   Number of nominal services 

m Maximum number of service 

implementations available for purchase 

by providers for each nominal service. 

Service 

implementations 

available for purchase 

cij   Cost of the  instance j-th 

ij    Probability of failure on demand of the 

instance j-th. 

In-house instance ci    Unitary development cost of in-house 

service (estimated with Equation (1))  

i   Testability of the in-house instance 

 

Table 7:  Basic Model’s Input 

Similarly, to our previous model [40] (see Table 6), the basic model support “buil-or-

buy” decisions, namely it selects either in-house built or provided services with the goal 

of minimizing the SBS cost while guaranteeing a certain level of reliability. The model 

also suggests the number of tests to be performed on each in-house developed service 

instance. 

 

 

 

Output  
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The solution of the set of optimization models can give insights on the service 

composition that best fit the requirements considering an explicit cost model and the 

possibility to define repair actions to improve the system reliability. This approach can 

help software architects in the decision-making process of assembling architectures 

satisfying quality requirements. 

 

6.3  OPTIMIZATION OF ADAPTATION PLANS WITH COST AND QUALITY TRADEOFF 

  

   As explained in the deliverable D2.2, research in software adaptation has seen a 

flourish in the past years, in particular in the fields of new formalisms, tools, techniques, 

and development methodologies.   

 

Usually, the goal of existing approaches is to predict and/or analyze some quality 

attributes, like performance or reliability, starting from the architectural description of 

the system, or to select the architecture of the system among a finite set of candidates 

that better fulfill the required quality.   

 

In our previous work [43], we have addressed the problem of system quality from a 

different point of view: starting from the description of the system and from a set of 

new requirements, we devise the set of actions to be accomplished to obtain a new 

architecture. This is able to both fulfill the new requirements with the minimum cost 

and guarantee given levels of reliability, availability and performance. 

 

The goal of our optimization model is to provide a support to the decisions that software 

architects take for adapting a Service-Oriented Architecture (SOA).  

 

The optimization model minimizes the adaptation costs of the system in 

correspondence with a certain change scenario (i.e., a set of new requirements), while 

guaranteeing required levels of reliability, availability and performance.  

 

Since our model may support different service application domains, we have adopted a 

general definition of software service: it is a self-contained deployable software module 

containing data and operations, which provides/requires services to/from other 

elementary elements. A service instance is a specific implementation of a service. 

 

Different kinds of adaptation decisions could be made depending on several factors due 

mainly to the particular adaptation phase where the model is adopted (e.g., if run-time 

modifications are claimed, then it is only required the substitution of an unsuitable 

service without using more sophisticated actions).  

 

In this paper, we have considered the following adaptation actions: 

 

 Introducing new software services: An adaptation action may suggest to embed 

into the system one or more new elementary software services.  

 Replacing existing service instances with functionally equivalent ones: An 

adaptation action may suggest to replace a service with one of additional 

instances available for it. 

 Modifying the interactions among services in a certain external service: An 

adaptation action may suggest to modify the system dynamics by 
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introducing/removing interactions among services within a certain external 

service.  

Any combination of such adaptation actions may have a considerable impact on the 

cost, performance, reliability and availability of the SOA. Therefore, our optimization 

model aims to quantify such impact to suggest the best adaptation plan, which still 

minimizes the costs while satisfying the performance, reliability and availability 

constraints. 

 
Description 

 

Let S be a SOA composed by n elementary software services. Let si be the i-th existing 

elementary service (1 ≤ 𝑖 ≤ 𝑛). Through the composition of its elementary software 

services, the system offers services to users. 

 

Let Insti be the set of instances for si, while sij represents the j-th instance of Insti. Let 

NewS be the set of new available services that can provide different functionalities, 

whereas newsh represent the h-th service of NewS. 

 

Table 8 summarizes the main parameters and the variables of the model.  Figure 6 

reports the formulation of the optimization model.  

 
Symbol Description 

n Number of elementary software service 

𝐼𝑛𝑠𝑡𝑖 Set of alternative instances for si 

NewS Set of new available services 

cij Cost of the instance sij 

𝑐ℎ̅ Cost of the service newsh 

invki Average number of invocations of the existing 

service i 

invkh Average number of invocations of the new 

service h 

𝑞𝑖𝑗 , 𝑞 ∈ {𝑟, 𝑎} rij (aij) is the reliability (availability) on demand 

of the instance sij 

�̅�ℎ,�̅� ∈ {�̅�, �̅�} �̅�ℎ (�̅�ℎ) is the reliability (availability) on demand 

of the service newsh 

𝑄 ∈ {𝑅, 𝐴} R (A) Minimum threshold given to the reliability 

(availability) on demand of the system. 

Res Maximum threshold given to the system 

response time. 

K Number of services offered by the system 

Λ𝑘 Probability that the service k will be invoked 

rtij Response time of the instance sij  

𝑟�̅�ℎ Response time of the new service h 

xij The instance sij is selected  

zh The service newsh is selected 

yrp The adaptation plan p is selected for the new 

requirement r 

Table 8:  Main model’s parameters and variables 
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                        Figure 6:  Optimization Model Formulation [43] 

 

Input 

  

   The input of our approach is a change scenario, namely a set of new requirements 

that induce changes in the structural and behavioral architecture of the software system. 

Specifically, in our model, we consider as possible changes the introduction of new 

functionalities and the modification of the dynamics of existing functionalities. For 

each new requirement in a change scenario, we consider the different sets of adaptation 

actions (called adaptation plans) able to guarantee this new requirement. In this way, 

we obtain a set of decisions that lead to the definition of a new architecture, which 

minimizes the costs while keeping the reliability, availability and the response time 

within certain thresholds. 

 

Output 

 

   The model suggests a new system architecture. A new architecture is, thus, obtained 

by modifying both its structure and its behavior. Specifically, in order to modify the 

software structure, the model replaces existing software services with different 

available services and/or embeds new software services into the system. With respect 

to the changes in the system behavior, it modifies the system scenarios (represented, 

for example, as BPEL processes [44]) by removing or introducing interactions between 

existing services and/or between existing and new services. 
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Model Summary.  Table 9 summarizes the primary input of the model. In particular, 

the input consist of the following data. (i) A change scenario, namely a set of new 

requirements that induce changes in the structural and behavioral architecture of the 

software system. (ii)  For each new requirement, the model gets as input value  

adaptation plans.  An adaptation plan is a set of actions that address the requirement. 

Adaptation plan may be defined by a User (or “system designer” or “system 

maintainer”) and/or automatically by the system itself (in case of self-adaptation). (iii)  

For each elementary service si, the model predicts its average number of invocations 

(i.,e., invki,) in the k-th service offered by the system, after the application of the 

application plans. invki is estimated by analyzing the system architectural model, and 

using data associated with the adaptation plans (see [43] for details). Similarly, for each 

new service newsh, the model predicts its average number of invocations (i.,e., invh) in 

the k-th service offered by the system, after the application of the application plans. (iv) 

Finally, the models get as input values, for example, the cost of the alternative instance 

sij , or the response time of the new service newsh.  

 

Any combination of adaptation actions may have a considerable impact on the cost, 

reliability/availability and performance of the software architecture. Our optimization 

model aims to quantify such impact in order to suggest the best adaptation plan, which 

minimizes the costs while satisfying the reliability, availability and performance 

constraints. The model suggests a new software architecture (as summarized in Table 

10).  Specifically, in order to modify the software structure, the model suggests how to 

replace existing software services with different available services and/or embeds new 

software services into the system. With respect to the changes in the system behavior, 

the model modifies the system scenarios (represented, for example, as BPEL processes) 

by removing or introducing interactions between existing services and/or between 

existing and new services. The model’s solution guarantees a system reliability 

(availability) over the threshold R (A), a system response time under the threshold Res 

while minimizing the whole system cost. 
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Source Data Type Description 

User Change Scenario A set of new requirements that 

induce changes in the structural 

and behavioral architecture of 

the software system. 

User or the System itself Adaptation plan Set of actions that address a 

certain requirement. 

Architectural Models 

and  

User  

Existing elementary 

software services 

invki Average number of 

invocations of the existing 

service i 

New elementary software 

services 

invkh Average number of 

invocations of the new service h 

User Existing elementary 

software services 

n Number of elementary 

software service 

𝐼𝑛𝑠𝑡𝑖 Set of alternative 

instances for  si 

cij  Cost of the instance sij 

rij (aij)   Reliability (availability) 

on demand of the instance sij 

rtij Response time of the 

instance sij 

New elementary software 

services 

NewS Set of new available 

services 

𝑐ℎ̅  Cost of the service newsh 

�̅�ℎ (�̅�ℎ) is the reliability 

(availability) on demand of the 

service newsh 

𝑟�̅�ℎ   Response time of the new 

service h 

K  Number of services offered 

by the system 

Λ𝑘   Probability that the service 

k will be invoked 

 Model Constraints R (A) Minimum threshold given 

to the reliability (availability) 

on demand of the system. 

  Res Maximum threshold given 

to the system response time. 

 

Table 9:  Model’s Input 

 

 
Architectural 

Decisions  

Description 

Software Structure  (i)Replacing existing software services with 

different available services, and/or (ii) 

Embedding new software services into the 

system. 

Software Behavior The system scenarios are modified by 

removing or introducing interactions 

between existing services and/or between 

existing and new services. 

 

Table 10:   Model’s Output 
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7 SCHEDULE/TIME DECISION-MAKING MODELS 

7.1     RELEASE PLANNING  

Description 

A common problem in software testing is to decide when it is the best time to release 

the product, or, conversely, what is the quality if one releases the product after a given 

amount of testing time.   

Software Reliability Growth Models (SRGMs) are useful means to these aims. A 

SRGM is a model describing how reliability grows as software is improved during 

testing by faults detection and removal. These models are usually calibrated using 

failure data collected during testing, namely fitting inter-failure times, and observing 

the variation of the failure intensity (number of failures per time unit) with testing time. 

They are used to answer questions such as “how long to test a software”, or “how many 

faults are likely to remain”.  

We consider the most common class of SRGMs, those that describe the failing process 

as a non-homogeneous Poisson process (NHPP). These are characterized by the 

parameter of the stochastic process, λ(t), indicating the failure intensity, and by the 

mean value function (mvf), m(t), that is the expectation of the cumulative number of 

defects detected at time t [45]: 

N(t): m(t) = E[N(t)]; dm(t)/dt = λ(t) 

The mean value function provides indication on how many defects are being detected 

over time, and how many defects are expected to be found at a certain testing time t. 

Different types of SRGMs can be described by their mean value function, that appears 

in this form: m(t) = aF (t), where a is the expected number of total defects.  

Many models have been proposed in the literature, and several tools have been 

developed to deal with parameterization and fitting of models (such as SMERFS, 

SoRel, PISRAT, and CASRE). For our purpose, we consider the list reported in Table 

11 because of their wide spread in the literature and of their ability to capture several 

different potential behaviours of the testing process. In particular, we use the model 

proposed by Goel and Okumoto [46], which describes the failing process by an 

exponential mvf distribution, as it is one of the most successful and popular models for 

reliability growth analysis. The Delayed S-Shaped curve [47], also very popular, has 

been proposed in order to capture the possible increasing/decreasing behaviour of the 

failure rate during the testing process. With similar purposes, the logistic-based 

distributions (namely, the log-logistic [48] and the truncated logistic [49]) describe the 

processes in which the initial phase of testing is characterized by a slow increase 

because of the gradual improvement of testers skills in the initial learning phase, and 

because of defects being mutually dependent (i.e., some defects are not detectable 

before some others are). We also consider the generalized version of the Goel-Okumoto 

model capturing the S-Shaped nature of software failure occurrence, wherein Goel 

simply proposed an additional parameter turning the exponential into a Weibull 

distribution [50]. Finally, the normal-based (log- and truncated- normal) SRGMs are 

considered as they demonstrated a noticeable ability to fit a wide variety of reliability 
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growth scenarios and to software failure data collected in real software projects [51], 

[52]. 

 

Model m(t) function 

Exponential  [46] a ·  (1 – exp(−bt)) 

S-shaped [47] a · [1 − (1 + gt)exp(−bt)] 

Weibull [50] a ·  (1 – exp(−btγ))  

Log Logistic [48] a · (λt)κ /(1+(λt)κ) 

Log Normal [51] a · Φ( (log(t)−μ)/ σ) 

Truncated Logistic [49]  a · (1−exp(−t/κ) )/ (1+exp(−(t−λ)/κ) ) 

Truncated Normal [52] a · (Φ((t−μ)/σ)) / (1−Φ(−μ/σ)) 

* Φ indicates the normal distribution 

 

Table 11:  Software Reliability Growth Models 

For the approach we are developing within the ICEBERG project, we consider the list 

reported in Table 11 in order to capture several different potential behaviors of the 

testing process. It also reports the corresponding expression of the mean value function 

(mvf); the estimated number of defects is always the mvf first parameter, a. In the 

formulation of the approach, we considered that, in practice, there is no model to fit all 

the situations. Thus, our approach to use this type of models is to fit the testing data of 

a system/component with all the considered SRGMs, by using the EM algorithm [53], 

and then choose the best one. In particular, we perform a goodness of fit (GoF) test by 

means of the Kolmogorov-Smirnov (KS) test (with 90% confidence level), and 

compute the (adjusted) R-square coefficient to determine the goodness of fit of each 

model. We discard models with KS test satisfied or with an R-square less than 0.8. 

Among the remaining models, the best one is chosen by adopting the Akaike 

Information Criterion (AIC) method, i.e., choosing the SRGM with the lowest AIC 

value.  Figure 7 shows an example of how these models are used for the best release 

schedule problem.  

 

Figure 7: SRGM approach for release schedule determination 
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The SRGM best fitting these data is able to estimate the cumulative fault number trends, 

catching the eventual situation in which testing will no longer produce benefits (i.e., 

the “saturation”). This information is used to decide on the best time to release 

considering the achieved testing cost/product quality trade-off. Besides using the model 

for this type of decision (others are described in the “output” section), we use SRGM 

also in the models presented below to support other types of decisions.  

 

Source Data Type  Data  

Bug Repository Defect Data “Opening Time” of the issue describing the 

defect 

 

Table 12:   Model’s Input 

 

Decisions  Description 

Release Planning Quality (reliability) analysis/assessment and 

time/effort still needed to attain a given quality, 

i.e., prediction of the optimal time to release, 

given a quality to achieve 

Testing decisions:  

how much effort to invest to 

achieve a desired quality 

From the analysis of the reliability growth decide 

on how much effort to devote yet., which actions 

to take to align predicted vs achieved quality 

 

Table 13:   Model’s Output 

Input:  

This model requires, as input, the opening time of defects discovered during testing 

(and/or during operation), as summarized in Table 12. It is conceived to get a minimal 

amount of data in order to not overwhelm companies with additional activities to do 

(e.g., classifying defects), but just getting information needed in a non-invasive way.   

 

Output and Supported SQ Decisions:  

As output, the model will provide: i) estimates of the achieved software reliability at a 

given time, as well as of the number of residual defects in the software after a given 

testing (or operational) time; ii) prediction of the expected reliability given a budget 

(e.g., in terms of testing time or testing effort) to spend on the system/component; iii) 

prediction of the optimal time to release required to achieve a given reliability level, iv) 

indications to identify delays and their causes in the process by comparing actual and 

predicted release as well as actual vs predicted quality. These indications support the 

decisions on how much testing is still necessary for a given system/component, what is 

the best time to release, which actions to take to align the achieved quality level with 

the predicted one (Table 13).  
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7.2 DEBUGGING ANALYSIS FOR IMPROVED RELEASE PLANNING 

 

Description 

As seen, SRGMs can be used to support decisions on testing effort investment and 

release planning, as well as for quality assessment. However, SGRMs make a set of 

assumptions to meet the mentioned objectives, the most usual ones being: immediate 

debugging, perfect debugging, dependent inter-failure times, equal probability to find 

a failure across time units. In literature, a greater attention is being paid to the immediate 

debugging assumption, since its impact is more relevant than other factors in real 

projects. While some work introduces modelling approaches to include repair times 

[54] [55], several empirical studies make it evident that debugging is a complex process 

to model in real-world projects [56], [57], [58]. Indeed, there are many factors 

impacting the computation of the actual repair time and the regularity of the debugging 

process, including the type of defect, its priority or severity, and human factors (e.g., 

skills of people involved in the fixing process). These make such an assumption easy 

to be violated (especially as complexity and size of a software project increase), with 

repair times far from being immediate. In many cases, the debugging process might 

even become a bottleneck for project releases, and its impact cannot be neglected at all. 

The impact of an irregular and variable debugging process hampers a correct modelling 

and influences the assessment of release quality estimates and of SRGM-based 

predictions. This can determine errors in taking decisions on when to stop testing, as 

well as in the estimate of the residual defectiveness. 

Besides the previous usage of SRGMs, we are adopting, in the ICEBERG project, the 

SRGMs also to analyse the debugging process, and consequently “adjust” the SQ 

decisions on release planning and testing effort investment depending on debugging. 

Specifically, we have analysed 3,392 real-world issues of an industrial case study of 

the medical scenario (described in the deliverable D2.2) collected over two years. On 

these data, we first i) use SRGMs to characterize the software reliability growth under 

the assumption of immediate debugging; then, ii) we evaluate the impact of the 

debugging time evolution on reliability estimation and prediction, and thus on release 

scheduling performed by SRGMs. We show that: 

1. Collected issues are amenable to be modelled by SRGMs; we applied a set of 7 

models to fit data and found the truncated logistic and truncated normal SRGM 

being the best fitting models. Despite the real data do not fulfil classical SRGM 

assumptions, such as dependent inter-failure times and equal failure detection 

probability, the models have shown to be robust. However, since they are built 

upon opened issues, nothing can be said about the non-immediate debugging 

assumption. Therefore, these models are useful for predictions only provided 

that the debugging time is negligible. 

2. The observed debugging process has a non-negligible time, on average equals 

to 12.8 days. The non-immediate debugging has an impact on both reliability 

estimation and prediction, and thus on optimal release time, in a different way. 

In both cases the impact is dependent on the debugging process quality in terms 

of debugging time and debugging time variation, but while the impact on 

reliability estimation is quite insensitive with respect to the testing time 

dimension, the release schedule prediction error can greatly vary: as testing 
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times proceeds, the optimal release schedule prediction can be affected 

considerably by the debugging time. 

Input 

Input data are the same as the release planning model, as this model is based again on 

SRGM (Table 14), augmented by data on closing time of the issues, being the model 

conceived to include the impact of debugging.  

 

Source Data Type  Data  

Bug Repository Defect Data “Opening Time” of the issue describing the 

defect 

“Closing Time” of the issue describing the 

defect 

 

Table 14:   Model’s Input 

The defect data we are considering are available with the opening and closing time of 

the corresponding issue by the tester and the debugger, respectively.  

The model uses SRGMs to figure out what is the impact of the debugging process on 

the release time prediction made by the tester. It means that if a tester plans a release 

based on an “immediate debugging” assumption, the committed error can be assessed.  

Figure 8 and 9 show the analysis via SRGM constructed with the opening time of the 

issues of an example project. As explained before, we select a model among a set of 

SRGMs by considering goodness of fit measures (specifically the GoF test of 

Kolmogorov-Smirnov, and the Akaike Information Critetrion – AIC). The list of 

models is the one considered in Table 11.  

 

Figure 8:  Empirical data and SRGM of the opening time of version 1 
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Figure 9:  Empirical data and SRGM of the opening time of version 2 

 

Version Current 

#Faults 

Selected 

SRGM 

Current 

Estimate 

of #Faults 

KS Test 

True at  

Exp. 

#Faults at 

t = ∞ 

Scale 

Param. 

Shape 

Param. 

AIC 

1 665 Trunc. 

Normal 

663.93 90% 671.38 13.00 34.78 -1,491.7 

2 2,647 Trunc. 

Logistic 

2,640 90% 2,808.22 20.95 85.54 -6,834.9 

 

Table 15: Statistics of the selected models 

Table 15 shows the statistics of the selected models for the two versions. The estimates 

in this case are very close to actual data, both satisfying the KS test. Such models can 

provide estimates and predictions in terms of: residual faults at a given time, percentage 

of detected faults over the total expected ones; failure intensity; reliability. Note that 

these measures are equivalent to each other, since the expected cumulative number of 

faults at time t is the mvf(t) function, whose first derivative is the failure intensity 

function λ(t); the latter can be used in the computation of reliability. Considering these 

measures, testers can evaluate, for instance, what is the best time to release. 

As for version 1, it is evident that the testing process saturates, detecting less and less 

faults as the testing proceeds. The process detected more than 99% of the total expected 

faults and will take much time to detect residual ones: thus this has been a good time to 

release. For version 2, testers detected roughly 94% of the total expected faults. If, for 

instance, they decide to release with the same quality as version 1, i.e., at 99%, the 

model predicts a testing time of 448 days, thus still 448 - 308 = 140 days of residual 

testing days. Based on these and similar analyses, decisions can be taken on when to 

stop testing. 

The analysis has been conducted on the opening time of the issues. This means that 

99% of quality is assumed to be the 99% of the total estimated faults that have been 

opened, i.e., detected: this is the actual released quality only under the assumption that 
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the correction of those faults was immediate. The actual quality is given by the closed 

issues, namely removed faults, whose fixing contributes to the actual reliability growth. 

In the next paragraph, we remove the immediate debugging assumption in the SRGMs, 

and discuss the changes in the reliability analysis. 

Output 

We consider, as output, the impact of debugging on the SRGM-based analysis. Figure 

10 and 11 report the raw data about the cumulative number of opened (testing process) 

and closed (debugging process) issues, along with SRGMs fit- ting them. The graphs 

show what is the impact of the debugging times on the achieved quality. 

 

Figure 10:. Version 1 data 

 

Figure 11: Version 2 data 

 

The closed issue curve is the one actually contributing to reliability increase (namely, 

when the fault is actually removed); the opening curve would represent the reliability 
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increase only under immediate repairs. Thus, in the following, we consider the 

difference between the two curves and their corresponding models in order to infer 

conclusions about the debugging impact. 

Let us define ∆issues(t) and ∆time(F), respectively, as: i) the difference between the opened 

and closed issues at time t (i.e., pending issues at t, which is the vertical distance 

between the raw data curves), and ii) the time required to close a given number of 

opened issues, F (namely, the delay of the debug process compared to testing, which is 

the horizontal distance between the raw data curves). We also define the differences 

between the corresponding models as ρmvf(t) and ρtime(F). These are the differences 

between the opened and closed issues at time t and at mvf = F , respectively, as 

estimated/predicted by the corresponding SRGMs. The ∆ values are used to: i) evaluate 

the difference between the actually achieved quality (in terms of number of removed 

faults) and the believed one8, which is the quality under immediate repair assumption 

(i.e., the opened issues), as well as ii) the difference between the actual time required 

to close F issues and the believed time (again, under immediate debugging, through the 

opening curve). This is the impact of assuming immediate debugging on quality/time 

estimates. On the other hand, the ρ values are used to assess the same differences on 

predicted values, which are needed to take decisions like “when to stop testing”. This 

is the impact of the immediate debugging assumption on predictions made through 

SRGMs. 

For version 1, 99% of the total estimated issues has already been detected and it has 

been released, while the version 2 is still at 94% and it is still to be released: thus, we 

compute on version 1 the ∆ differences on actual data to see the impact on estimated 

quality/time, whereas, on version 2, we compute the ρ values on future predictions, at 

percentages greater than the achieved 94%. 

Let us first consider version 1. At the last day, 98.19, the total opened issues were 665, 

namely about the 99% of total estimated ones. The actual quality at that time is given 

by the closed issues, that are 578, thus the 86.14 % of the total estimated one, rather 

than the believed 99%. The error is therefore: 

𝜖Δ𝑖𝑠𝑠𝑢𝑒𝑠 =
Δ𝑖𝑠𝑠𝑢𝑒𝑠(98.19)

𝐶𝑙𝑜𝑠𝑒𝑑(98.19)
∙ 100 =

665 − 578

578
∙ 100 = 15.05% 

where Closed(t) is the number of closed issues at time t. This means that if tester 

released actually at 99% of total issues and use the opening curve assuming immediate 

repair, the release quality is overestimated by 15.05 %. 

Similarly, if tester used the opening curve assuming immediate repair, the removed 578 

issues occurred, in his view, after 63.98 days, rather than at 98.19; thus there is a time 

estimation error of: 

                                                        
8  Quality in the following is expressed through the (predicted) number of closed issues (i.e., removed 

faults) or the (predicted) percentage of closed issues with respect to the total one; for what said previously 

about the equivalence of this information to failure intensity and thus reliability, “quality estimation” and 

“quality prediction” are equivalent to “reliability estimation” and “reliability prediction”. 
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𝜖Δ𝑡𝑖𝑚𝑒 =
Δ𝑡𝑖𝑚𝑒(578)

𝐶𝑙𝑜𝑠𝑒𝑑𝑇𝑖𝑚𝑒(578)
∙ 100 =

98.19 − 63.98

98.19
∙ 100 = 34.84% 

where ClosedTime(F) is the time of closing of the F−th issue. This is interpreted as: 

using the immediate debugging assumption, the required quality is reached 34.84% 

later than the believed time. The first row of Table 16 reports results for release quality 

values from 95% to 98%, besides the mentioned 99% case. 

Version 
Achieved or Predicted release quality 

95% 96% 97% 98% 99% 

Version 1: 𝜖 ∆issues 14.15% 14.59% 13.61% 14.06% 15.05% 

Version 1: 𝜖 ∆time 14.63% 16.07% 20.37% 31.28% 34.84% 

Version 2: 𝜖 ρmvf 0.04% 0.18% 0.33% 0.63% 1.05% 

Version 2: 𝜖 ρtime 0.31% 1.18% 3.58% 14.89% ∞ 

 

Table 16: Results for release quality values 

If the tester has not achieved a desired quality level yet, s/he may want to use SRGMs 

for a prediction and decide on when to stop testing. This is well represented by version 

2. In this case, detected issues have been 2,647, namely the 94.4 % of total estimated 

ones. We evaluate the impact of debugging time on prediction accuracy supposing that 

tester wants to release at 95%, 96%, 97%, 98%, and 99% of total faults (namely: 2,662, 

2,690, 2,718, 2,746, 2,774 faults). In these cases, if s/he uses the opening curve, the 

release should be at the days: 321, 339, 363, 396, and 447. However, using the closing 

curve, the number of removed faults corresponding to the above release days are: 2,661, 

2,685, 2,709, 2,729, 2,745. Quality overestimation errors would be caused. For 

instance, suppose that tester wants to release at 97%. In this case, the quality 

overestimation error would be: 

𝜖ρ𝑚𝑣𝑓 =
ρ𝑚𝑣𝑓(363)

𝑆𝑅𝐺𝑀(𝐶𝑙𝑜𝑠𝑒𝑑(363))
∙ 100 =

2718 − 2709

2709
∙ 100 = 0.33% 

Similarly to the version 1 case, there will also be an error about the time prediction. If 

tester uses the opening curve assuming immediate debugging to release at 97%, the 

opened 2718 issues in 363 days will be closed only at day 376, causing an error of9:  

                                                        
9 Note that, unlike the case of ∆time value, here the difference is taken between the predicted time to 

close the number of issues that tester wants to remove and the predicted time to open that number of 

issues. For ∆time values, we take the time to close the number of issues actually closed subtracted by the 

time at which that number of issues was opened (i.e., the “believed” time for achieving that quality). 
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𝜖ρ𝑡𝑖𝑚𝑒 =
ρ𝑡𝑖𝑚𝑒(2718)

𝑆𝑅𝐺𝑀(𝐶𝑙𝑜𝑠𝑒𝑑𝑇𝑖𝑚𝑒(2718))
∙ 100 =

376 − 363

363
∙ 100 = 3.58% 

where SRGM(ClosedTime(F)) is the predicted time required to close F issues. The 

second part of Table 16 reports results form 95% to 99% release criteria. 

As it may be noticed, the errors on quality overestimation are quite small in version 2, 

compared to version 1, and are slightly increasing with the desired quality level. The 

small error denotes a very good debugging process, whose curve is strictly following 

the opening one. Notwithstanding, it is interesting to note how the error on the time 

prediction is higher, and increases rapidly for increasing values of the desired release 

quality, due to the saturation of both curves. From 98% to 99%, it increases up to 

infinite. This is interpreted as follows: if tester wants to release at 98% of the total 

estimated faults, and uses the opening curve assuming immediate repair, it would 

predict a testing time of 14.89% days less than the actually required testing time. If this 

desired quality goes beyond the 98%, such an error increases abruptly, reaching infinite 

at 99%. Thus, depending on the desired quality and on debugging process 

characteristics, this testing time underestimation error may be very high and is much 

more sensitive than the quality overestimation error. 

In general, such time error always goes to infinite at some point (precisely, at the 

saturation point of the closing curve); in the practice, it can go to infinite considerably 

earlier if the debug process is not as close to the testing process as in the version 2 case. 

For instance, in version 1, for the same type of error (computed on raw data) the infinite 

occur soon after 578 issues, i.e., at only 86.14 % of the total estimated ones. 

To summarize, the worse the debugging process, the greater the error on quality 

estimation is, and the earlier the time prediction error goes to infinite: but while the 

quality estimation/prediction error is directly related to the number of pending issues 

quite independently from the release time (e.g., in the same way at 70%, 80%, or 90%), 

the time estimation/prediction error is much more sensitive: at high quality values, the 

underestimation of the required testing time can be very high, depending on the 

saturation of the opening and closing curves.  

Supported SQ Decision  

The non-immediate debugging has an impact on release and test planning decisions. 

With respect to the previous “release planning” model, this model adds the decision 

support with respect to the debugging process: the extent of the prediction error caused 

by a big average time to fix, or by a highly variable and irregular debugging time, can 

suggest engineers whether to invest on the improvement of the debugging process or 

not (and to what extent) with the aim of either reducing the mean fixing time and/or to 

reduce the variability (Table 17).  

 
Decisions  Description 

Release Planning Quality (reliability) analysis/assessment and time/effort still 

needed to attain a given quality, i.e., prediction of the optimal 

time to release, given a quality to achieve 

Testing decisions:  

how much effort to invest to 

achieve a desired quality 

From the analysis of the reliability growth decide on how 

much effort to devote yet., which actions to take to align 

predicted vs achieved quality 
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Decision on debugging process 

improvement 

Based on the prediction error that debugging causes, improve 

the mean time to fix a bug, and/or the reduce the variability 

 

Table 17:   Model’s Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 SCHEDULE/TIME AND QUALITY DECISION-MAKING 
MODELS 

 

8.1   RESOURCES ALLOCATION  
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Description 

Testing accounts for a relevant part of the production cost of complex or critical 

software systems. Nevertheless, time and resources budgeted to testing are often 

underestimated with respect to the target quality goals. Test managers need engineering 

methods to perform appropriate choices in spending testing resources, so as to 

maximize the outcome. 

The common industrial practice disregards such an important step. We believe that the 

main reasons are the lack of simple and tool supported methods, as well as the lack of 

evidence of success of the proposed approaches into real industrial contexts. Very 

generic criteria are typically applied in the practice, such as allocating resources driven 

by requirements (e.g., testing a component until all requirements have been tested at 

least once), or driven by the size (more testing to bigger modules). Sometimes, intuition 

drives testing choices: based on experience, a tester may deem one component more 

“critical” than another, therefore deserving more testing. As there may be relevant 

differences among components in terms of quality, their defectiveness can vary 

significantly. Moreover, a component can be newly developed, or it may be a reused 

unit that already underwent a functional testing phase, hence with a higher testing 

maturity. These differences intuitively call for a tailored engineering approach, in 

which more testing resources are spent where there is actually a greater need (i.e., 

poorer quality). Such an approach is expected to bring benefit in terms effort/quality 

trade-off. 

In the project, we developed a model to decide dynamically how to allocate testing 

resources to software components, so as to minimize the estimated number of residual 

defects, and/or the estimated residual defect density, given a fixed testing budget. The 

method grounds upon software reliability growth models (SRGMs), used at 

component-level rather than at system-level as in the previous case, in order to monitor 

the testing progress of each component. From these, an estimate is obtained of the 

quality achievable for a component in relation to the testing effort devoted to it. Then, 

by iteratively solving an optimization problem, the next testing effort is directed 

towards the component that contributes the most to reduce the residual number of 

defects (density) in the overall system, thus improving the final trade-off between effort 

spent and residual defectiveness. 

The test planning solution we have implemented is, unlike existing ones: i) dynamic, 

namely able of using testing data as they become available, exploiting them to adjust 

performance online, and robust with respect to variations during testing and volatility 

of planning time’s assumptions; ii) simple in its application, and with as few 

assumptions as possible on the testing process; iii) ready-to-use, supported by an 

automatic tool.  

 

Detailed Model description 

Let us denote the expected number of residual defects as E[Defects], and the expected 

residual defect density, measured in #defects/KLoC, as E[Density]. These are the two 

alternative objectives to minimize. For our purposes, components are autonomous, 

independently testable, and deployable units. The test manager has to distribute a 

budget B of testing resources (e.g., in number of man-weeks), among a set of 
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components; the i-th component will thus receive a testing effort equal to Wi man-

weeks. The key idea is to use SRGMs to predict the detection ability of each 

component’s testing process iteratively, and based on that, to allocate resources to 

components where testing will have the highest detection power. The method is based 

on the following main steps: 

1. Initialization. Testing starts at time t0, when there may be no (previous) data 

available on testing of components to build any initial SRGM. Without any additional 

information, which could help to prioritize testing efforts at this stage, the initial 

allocation is done uniformly to all components, and the testing starts. 

2. Start-up check. In this initial phase, at each time units (our time unit is the week), 

the method checks if the optimal allocation procedure can be applied with the available 

defect data. Specifically, we try to fit defect data of each component with every SRGM 

listed in Table 11 by the EM algorithm, and perform a goodness of fit (GoF) test by 

means of the Kolmogorov-Smirnov (KS) test (with 90% confidence level). If the test is 

satisfied for at least one SRGM, the component is ready for the subsequent step (it is 

said to be statistically valid) – in general we will have more SRGMs that fit one 

component, and will keep track of them for the next steps. This start-up check can be 

automatically repeated at each time unit from the beginning, or performed when the 

tester is confident that there are enough data for each component: in the practice, as rule 

of thumb, we observed that after no more than 20% of the total testing time there is at 

least one valid SRGM for every component. Thus, we advise to start checking from 

about 10-15% of the initially allotted testing time on. 

As a guard, we conceived the possibility to skip to the next step also with only a subset 

of statistically valid components; in such a case (e.g., when there are components with 

very few and/or highly irregular data), the optimal allocation will apply only to that 

subset. 

3. SRGM Selection. Given a number N of components with associated a set of 

statistically valid SRGMs, we select the best SRGM for each component by means of 

the Akaike Information Criterion (AIC) method, i.e., choosing the SRGM with the 

lowest AIC value. If, from the previous step, there is some component with no 

statistically valid SRGM, these are excluded from the optimal allocation strategy only 

for that iteration. These components will receive an amount of resources proportionally 

to their current detection rate. 

4. Optimization. Depending on the goal (defect or density minimization), one of the 

following optimization problems is solved, using the mvf expressions of the SRGM 

selected for each component: 

 

 

min!  E[Defects] = i (ESTi − m(Wi* + Wi))  

 s.t. i  Wi ≤B* 

 

min!  E[Defects] = i ((ESTi − m(Wi* + Wi))/ SIZEi ) 
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 s.t. i  Wi ≤B* 

 

where i=1…N , with N being the number of components; ESTi is the number of 

expected defects of the i-th component (the a parameter of its mvf); Wi is the testing 

effort to allocate to the i-th component; Wi* is the testing effort already allocated to the 

i-th component; m(Wi*+Wi) is the (estimated) number of defects that would be 

removed if component i receives an effort of (Wi* +Wi); SIZEi is the size of component 

i measured in KLoC, used to compute the defect density; B* is the residual budget at 

the current iteration [59].  

5. Dynamic Update. Wi are the decision variables of the optimization problem, and are 

subject to the constraint that the total amount of allocated testing effort must not exceed 

the budget B*. This allows allocating efforts according to the prediction of the number 

of defects that will be found or of the defect density that will be achieved. However, as 

more data become available, the situation changes: it may happen that more data allow 

a more accurate estimation of residual defects (density), or, more importantly, the 

estimation can significantly deviate, because of changes in the testing process and thus 

in the detection trend. This calls for a dynamic approach, able to re-allocate resources 

from time to time, in order to “follow” the optimal solution, and exploit feedback 

coming from the testing process. Thus, after a predefined time (or when decided by the 

user), the defect data of each component are fitted again with every SRGM (by the KS 

test); step 3 (SRGM selection) and 4 (optimization problem) are taken again with the 

new data, starting a new iteration and re-allocating testing efforts accordingly. 

The output are the testing efforts to allocate to each component at each time step as the 

testing proceeds.  

 

 

 

Source Data Type  Data  

Architecture  Existing Components Number and name of components 

Bug Repository Defect Data  “Opening time”, for each component, of the 

issues corresponding to the defects 

 

Table 18:   Model’s Input 

 

 

Input:  

For this model, the required inputs come from the bug tracking repository (Table 18), 

from which the opening times of defects that are detected during testing are used to 

build the SRGMs online. From these, given a testing budget (as further input) that 

mangers want to spend for testing, the allocation is performed dynamically, at any time 

the tester wants, by using the prediction of residual number of defects expected in each 

component.  
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Output and supported SQ Decision: 

The provided output is the amount of effort (e.g., in man-months) to allocate to each 

system’s components/modules in order to minimize the expected number of residual 

defects (Table 19). The model, if used in its dual form, can be used to estimate the 

number of residual defects after a given amount of testing time for each component.  

 
Decisions  Description 

Testing decisions:  

Optimal test effort allocation 

Applying the model, decide how to 

distribute the effort available for testing to 

components, in order to minimize the total 

expected defectiveness 

 

Table 19:   Model’s Output 
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8.2    PROBLEMS IN SOFTWARE PROJECT MANAGEMENT 

 

As explained in the deliverable D2.2, SBSE techniques have also been largely applied 

in problems in software project management. A quite extensive list of these approaches 

can be found in [60].  

 

As mentioned in [60], research efforts have been devoted for project scheduling and 

resource allocation. However, all these approaches basically provide guidelines to plan 

projects. Their primary input is represented by information about (i) work packages 

(e.g., cost, duration, dependencies), and (ii) staff skills. Shortly, as described in [60], 

they process these input information and produce the results, which consist of an 

optimal work package ordering and staff allocation. They are guided by a single or 

multi-objectives fitness function which it is typically minimized, for example: the 

completion time of the project, or the risks to associate to the development process (e.g., 

delays in the project completion time, or reduced budgets available).  

 

An example of project management approach  

 

The work in [61] defines a multiobjective optimisation technique based on genetic 

algorithms for simulation optimisation in order to help software project managers to 

find the best values for initial team size and time estimates for a given project so that 

cost, time and productivity are optimised. 

 

Input:  

Here below we list the input parameters that allow to model decision making regarding 

the initial team size and its composition, together with the initial estimations of project 

size and time to develop. 

 

 Initial Novice Workforce (NoviceWf): The initial number of novice personnel 

allocated to the project. 

 Initial Experienced Workforce (ExpWf): The initial number of experienced 

personnel allocated to the project. 

 Project Size (Size): The estimate of project size. 

 Scheduled Time (SchldTime): The estimate of project schedule. 

 

Output: 

The outputs of the model involve: 

 

 Project End (Time): The final time of the project. 

 Cumulative Cost (Cost): The final cost of the project. 

 Productivity (Prod): The average productivity reached by the team through the 

project lifecycle. This is calculated as the ratio between size (Function Points –

FP) and the Project End (time taken to finish the project). 
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This simple example would help choosing the best managerial balance between novice 

and expert personnel as well as schedule. Multiobjective approaches can provide a set 

of solutions that project managers can choose depending on the project. 

 

Software Product Lines According to the SEI10, Software Product Lines are a set of 

software-intensive systems that share a common, managed set of features satisfying the 

specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way. 

 

However, the products developed with this paradigm need to consider specific 

characteristics and combination of products. For this, SBSE techniques and models can 

also be applied to search for an optimal combination, testing, etc. this paradigm.  

 

9 CONCLUSION 
 

In this section, we present the overall conclusions of this document in the context of 

findings expected and novelty of our contribution.  

To the best of our knowledge, this is the first attempt to combine existing SOTA 

solutions and SOPA practices. We will use two types of source: a) existing literature; 

and c) experience from the practice provided by experts in the field. Therefore, we 

envision that our quality-decision making frameworks will be helpful to enable 

practitioners to maximize the effectiveness of their specific software.  
 

We believe that the adoption of well-assessed quality decision methods can be only be 

handled effectively by analysing effort and time necessary to incorporate them into 

real-world systems. Therefore, we plan to understand practitioners perceived strengths, 

limitations, and needs associated with using SOTA solutions in the industry. The 

outcomes will address, for example, the classical problem of: “How many tests are 

enough?” 

 

General remarks in relation to our current view of SOPA are as follows: (i) the 

collection (and analysis) of few quality/cost/time data is in general performed, and (ii) 

practitioners consider quality, cost and time tradeoff important. In particular, the 

outcomes confirm our hypothesis that quality, cost, and time are highly relevant 

properties in next generation computing applications. Moreover, tradeoff analysis 

among multiple conflicting objectives should be supported, which is in general missing 

in the state of art and practice today. 

 

We claim that addressing the highlighted challenges will require the contributions from 

researchers and industrial experts in different fields including not only optimization 

formulation (e.g., several metaheuristic techniques with different characteristics could 

be adopted depending on the nature of application domain), but also the integration of 

our frameworks in existing platforms. 

 

                                                        
10 http://www.sei.cmu.edu/productlines/ 
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