
Probabilistic sampling-based testing for
accelerated reliability assessment
Roberto Pietrantuono

Università degli Studi di Napoli Federico II
Via Claudio 21, 80125 Naples, Italy
Email: roberto.pietrantuono@unina.it

Stefano Russo
Università degli Studi di Napoli Federico II

Via Claudio 21, 80125 Naples, Italy
Email: stefano.russo@unina.it

Abstract—A relevant objective of software reliability assess-
ment is to get unbiased estimates with an acceptable trade-
off between the number of tests required and the variance
of the estimate. A low variance is desirable to increase the
confidence in the estimate, but too many tests may be required
by conventional reliability assessment testing techniques based
solely on the operational profile.

This article presents probabilistic sampling-based testing, a
new technique using unequal probability sampling to exploit
auxiliary information about the software under test so as to assess
reliability unbiasedly and efficiently. The technique expedites
the assessment process assuming the availability of some prior
belief about input regions failure proneness. The evaluation by
simulation and experimentally shows promising results in terms
of estimate accuracy and efficiency.

Index Terms—Reliability assessment, SRGM, random testing,
operational testing, reliability testing, debug testing.

I. INTRODUCTION

In several contexts where software is of primary concern,
being able to confidently know its reliability is a key to
decision making. Reliability provides a measure of the user-
perceived quality in operation, thus its faithful assessment is
strategic in business-critical systems and even vital in mission-
or safety-critical ones.

Testing for reliability assessment exercises the software with
the goal of getting an estimate of expected reliability before
delivery. A common usage is during acceptance testing, where
the reliability estimate is adopted as criterion to accept/reject
a product for release. A conventional technique is operational
testing, where tests try to mimic the real usage in operation
and failure data are used to estimate reliability unbiasedly [1].
The hard challenge of this approach is that too many tests are
usually required to get an estimate with an acceptable confi-
dence [2], [3]. In other words, the efficiency of the estimator
(i.e., a low estimator’s variance under a given number of tests)
is a big hurdle to the conventional operational testing adoption.
This is especially true for high-reliability systems, where, at
acceptance testing stage, there are few and low-occurrence
residual failing inputs, which operational testing, naturally
targeting higher-occurrence inputs, will hardly expose [3].

Attempts have been done to overcome this limitation, e.g.,
by means of adaptivity [4], [5], with improvements over
conventional operational testing. In our previous works [5],
[6], we argued that the selection of test cases is not strictly

required to adhere to the operational profile, since when a high
reliability is achieved by operational testing it is convenient
to look for low-occurrence failing inputs, as high-occurrence
ones are already exposed (namely, operational testing achieves
its saturation). In this sense, operational and debug testing
(i.e., testing oriented to detect bugs regardless their expected
occurrence probability) should be combined. Ideally, to be
efficient, the testing profile should favour those inputs with
the highest expected unreliability contribution, that are those
inputs with a high product between the operational occurrence
probability and the probability that the selected input is failing
[7]. This should be done while preserving the estimation
unbiasedness.

In this work, we propose Probabilistic Sampling-based
Testing (PST), a technique to enable an unbiased and efficient
assessment of reliability. We advocate the use of probabilistic
sampling with unequal selection probabilities to define testing
profiles deliberately different from the operational profile, and
conceived to provide a more efficient (and unbiased) estimate
of reliability. The idea is to combine the benefit of testing
profiles aimed at maximising the exposure of failures (hence,
finding many faults) with the benefit of the operational testing
profile, aimed at selecting “representative” test cases to have
an unbiased reliability estimate. This approach expedites the
assessment process (namely, it requires fewer tests to get a
desired variance, hence confidence).

Probabilistic testing with unequal selection probabilities is
grounded on the concept that, at acceptance testing time,
a tester usually has some auxiliary information about the
relative unreliability of portions of the input space (e.g.,
components, modules, partitions), which can be very useful
to minimise the variance of the estimation. For instance, in
partition-based testing, the simple belief about equivalence
classes (e.g., boundary values are expected to fail more often
than in-range value classes) is used to select test cases. This
is a kind of information that is worth to be exploited for
reliability assessment too. Quantitative evidence can be also
built from failure data at component-level collected during
development testing or from previous releases. Additional
evidence collected during module-level or integration testing
(e.g., achieved coverage, defect detection/correction trend)
are further examples of information contributing to form
the tester’s belief, like discussed in many papers proposing



Bayesian inference to formalise it [2], [8], [9]. In operational
testing, this information is ignored, and the selection is done
solely based on the expected operational profile. The idea of
PST is to use the auxiliary information in the test selection
procedure, combined with the operational profile expectation,
to sample tests contributing more to assess unreliability at
minimal variance. We formulate PST as a sampling problem,
wherein several sampling strategies can be implemented de-
pending on the input space model and the auxiliary informa-
tion being available. The output is an estimate of reliability
and of its variance much more efficient than testing schemes
based only on the operational profile.

Evaluation is performed by comparing the assessment ac-
curacy and efficiency against two competing techniques. Eval-
uation is conducted both by means of a simulation study, and
by means of experimentation on a widely-used large software
application, namely the MySQL DBMS. As auxiliary infor-
mation gained before acceptance testing, we have tested the
integration of PST with the usage of software reliability growth
models (SRGMs), applied on MySQL components’ historical
failure data. For the selected case study, we instantiated
the technique by a without-replacement sampling algorithm,
which is known to be more efficient than the with-replacement
counterpart, exploiting the auxiliary information by SRGMs
via probability-proportional-to-size (PPS) sampling. Results
show that PST outperforms competing techniques, both under
the assumption of uniform belief about components reliability
(i.e., ignorance of any auxiliary information) and with the
SRGM-based beliefs. The latter is, expectedly, shown to be
more performant.

The rest of the paper is organised as follows: Section
II surveys the research related to reliability assessment via
testing; Section III defines the PST strategy; Section IV
presents the evaluation design and setup; Sections V and VI
report the results of the simulation and experimentation study,
respectively; Section VII discusses some threats to validity,
and Section VIII closes the paper.

II. RELATED WORK

Software reliability assessment via testing is a wide research
area. The problem of how to provide faithful reliability esti-
mates with an acceptable testing effort before release is known
to be a big challenge for both business- and safety-critical
systems. Operational testing, where a testing profile is derived
in accordance with the expected operational profile, has always
been a reference technique for software reliability engineering
practitioners. Since the eighties, operational testing is seen as
a means to certify the software against a given mean time to
failure (MTTF), e.g., in the context of Cleanroom software
engineering [10], finding a noticeable popularity [11], [12],
[13], [14]. Few years later, Musa proposed the well-known
Software Reliability Engineering Test process [1], in which
operational testing was a core element. He also found very
relevant results in favor of operational testing at AT&T, e.g.,
claiming a reduction of a factor-of-10 in customer-reported

problems [15]. Further evidence in favor of operational testing
was reported in [3], [16].

Nonetheless, operational testing was also hardly criticised.
For instance, Beizer strongly argued that the Cleanroom pro-
cess, wherein operational testing is a key technique, was never
compared fairly with other approaches, and that abandoning
debug testing in favour of operational testing would be a
wrong choice [17]. A raised criticism was that operational
testing cannot deal with low-occurrence failures, and thus it
cannot replace at all debug testing. Indeed, once operational
testing exposes the higher-occurrence failures (for which it is
particularly suitable), then it would expose few further failures
(i.e., it achieves a saturation), making it hard to get a tighter-
variance reliability estimate because of few failing samples.

More recent work tried to improve this negative aspect of
operational testing, through a partition-based approach and
especially through adaptation. Cai et al. published several pa-
pers on Adaptive Testing, based still on operational profile but
foreseeing adaptation in the assignment of test cases to input
partitions [4], [18], [19]. The authors formulate testing as an
adaptive control problem using controlled Markov chains, with
the goal of minimising the variance of reliability estimator.
In [20], it is used along with a gradient descent method to
the same aim, while in [21], it exploits confidence intervals
as driving criterion to select tests adaptively. In our previous
work [6], we claim that operational and debug testing are
not necessarily in contrast with each other, since they are
two different ways of getting to the same objective, and may
be suitably combined in their respective advantages: trying
to expose higher-occurrence failures (operational testing), and
trying to expose as many failures as possible (debug testing).
We pursued that direction, and proposed a testing strategy,
named RELAI (RELiability Assessment and Improvement)
[5], where adaptiveness is exploited to have the benefit of
operational testing at the beginning (when high-occurrence
failures can still be found) and progressively moving toward
low-occurrence failures. In those works, we have explored the
possibility to use a testing profile different from the operational
profile, while still providing an unbiased estimate but in a
faster way (i.e., with fewer test cases).

Besides improving the estimates by exposing more failures,
further problems regard the sampling and estimation technique
itself. In fact, test selection is typically done either according
to the operational profile to assure an unbiased estimate
(with the discussed limitations in terms of failures exposure
and thus large-variance estimate), or foresees a partition-level
profile coupled with the basic simple random sampling with
replacement (SRSWR) within partitions. Few approaches go
beyond this. In [22], authors adopt stratified sampling, by
stratifying executions by cluster analysis applied to execution
profiles, and then sampling within strata without replacement,
which is known to be more efficient than the with-replacement
counterpart. In [23], stratified sampling is still proposed com-
bined with symbolic execution to stratify profiles. In our last
recent work [24], we stressed this point, and presented a family
of sampling-based algorithms to be applied at subdomains



level depending on knowledge (or belief) that testers gain
about the subdomain characteristics during development. A
theoretical analysis was conducted to enable the usage of more
complex sampling strategies than SRSWR. Exploiting a prior
belief is a point also made by the theory of software reliability
corroboration [2], [8], where a Bayesian approach is used
that considers operational testing as a means to corroborate
(rather than to assess) reliability, by complementing evidences
already gained in previous phases – a problem particularly
felt in ultra-reliable systems, where no failures are observed
during testing, making operational testing not able, by itself,
to give confidence about reliability.

The work presented here aims at exploiting the same belief
that tester would use for defining a “debug testing” profile
and/or any quantitative evidence about failure proneness of
input subdomains in order to drive test selection toward expos-
ing failures most impacting reliability. As specific instance, an
algorithm is developed that considers the whole domain-level
input space, rather than combining subdomain-level estimates,
and quantitative evidence from past failure data. A promising
combination with software reliability growth models (SRGMs)
as source of auxiliary information is implemented and tested.
It is showed how a source of (un)reliability evidence gained
before the final testing stage, even though loosely correlated
with reliability, can expedite the assessment. As consequence,
approaches to quantify reliability before acceptance testing,
such as Bayesian inference, architecture-based, early stage
assessment techniques [25], [9], [26], [27], [28], [29], [30],
[31], [32], can be seamlessly integrated with what proposed
hereafter.

III. PROBABILISTIC SAMPLING-BASED TESTING

In the following, we formulate the problem and describe the
idea of exploiting unequal sampling techniques and estimators.
Then, we instantiate the technique with one specific sampling
design, deriving the reliability estimator, its real variance and
the estimate of the variance.

A. Overview

Let us denote with D the input space, namely the set of all
input points that can be given to the system under test. Assume
the system can be decomposed into M independently testable
units, each with its own input domain D1, . . . Dm. These units
can be thought in several ways: a subsystem, a component,
a module, or a partition in partition-based testing. In the
following, we refer to them as subdomains. The following
assumptions, typical of reliability assessment testing studies
(e.g., [5] [18]-[21]), are made:

1) A test case leads to failure or success; we are able to
determine when it is successful or not (perfect oracle).

2) The code is not modified during testing (i.e., it is
frozen). Code can be modified and detected faults can
be removed after the assessment.

3) Test case runs are independent; i.e., all the non-executed
test cases are admissible each time. The execution of a
test case is not constrained by the execution of some

other test case before. This affects the way in which a
“test case” is defined, since, if the assumption is not met,
a set of tasks can be grouped together in a single test
case, so that at the end of the test case the system goes
back to the initial state [20].

4) The output of a test case is independent of the history
of testing; in other words, a failing test case is always
such, independently from the previously run test cases.

5) The operational profile P can be described as a proba-
bility distribution over the input domain D. With respect
to the knowledge of P , PST can consider each inputs
either singularly or grouped by classes with similar char-
acteristics (e.g., all inputs of Di assumed with the same
occurrence probability because of lack of such a fine-
grain knowledge) – namely, it does not make assumption
on the level of granularity of the operational profile
description, although the accuracy of such knowledge
impacts the results. Profile, for the purpose of this study,
is assumed to be known, like in most related literature
[4], [18]-[21]: we dealt with partial knowledge of the
profile in our previous work [5], whose Montecarlo-
based approach can be integrated in what presented here.

Given a fixed number of test cases T provided as budget, the
PST aims at unbiasedly estimate reliability R. Reliability is
defined as in [7]:

R = 1− Φ = 1−
∑
t∈D

ptzt (1)

where Φ denotes the failure probability, zt is 1 if the input
t is a failure point, 0 otherwise, and pt is the probability of
selecting the input t at runtime. An unbiased estimate of R
is pursued by any reliability assessment testing strategy: the
main challenge is to provide an efficient estimate (i.e., with
low variance), while preserving unbiasedness.

PST is based on the idea that at reliability assessment stage
– usually the last stage before release, such as at acceptance
testing – information about the relative failure proneness of
subdomains is available either as quantitative evidence or at
least as tester’s belief. For instance:
• If the tested units corresponds to partitions in partition-

based testing, the partitioning criterion is itself an exam-
ple of belief of tester, who judges some ranges of values
more prone to failure while others are deemed correct. It
is constitutive of partitioning to assume that inputs within
a partition have a homogeneous failing behaviour, and
the partitioning criterion establishes this assignment. For
instance, in traditional equivalence partitioning boundary
values are usually expected to fail more often than in-
range values. A similar concept applies for defining the
“choices” within categories in category-partition testing
[33]. The idea of PST is to exploit such a belief not only
for fault detection during development-time testing, but
also for reliability assessment during acceptance testing.

• If the tested units corresponding to Di are components in
a component-based system, then the observed failure data
during development testing, or during the operational



phase of previous releases, are a source of knowledge
to exploit. In particular, inter-failure times can be used
to build software reliability growth models (SRGMs) for
the components under test. Using SRGMs in combina-
tion with reliability assessment testing is a practice also
foreseen in the well-known SRET process outlined by
Musa [1] in 19961. Such an approach allows quantifying
the failure-proneness belief by means of the estimation
of the failure intensity (consequently, of expected failure
probability) of each component.

• When the tested units are software modules, then results
of module-level testing (e.g., detected/corrected defects,
level of coverage, amount of testing or, generally, V&V
effort) are informative about their quality.

• Other examples of information contributing to form the
tester’s belief are discussed in several papers proposing
Bayesian inference to formalise and quantify the belief
[2], [8], [9], such as code characteristics (e.g. complexity
metrics are often used as predictor for defect proneness
by machine learning [34]), domain expert opinion, char-
acteristics of the testing and of development process.

PST uses this auxiliary information combined with the op-
erational profile expectation in an unequal probability sam-
pling design to select tests most impacting reliability. The
sampling design establishes which (combination of) sampling
techniques, within the family of probabilistic sampling, is
better to use for the particular input domain of interest. Thus,
the specific PST algorithm will depend on: i) the input space
(inputs are modelled as 0/1 values, denoting correct/failing
inputs, respectively), and on ii) the information available about
failure proneness and profile. For instance, as for the input
space: if the input domain can be easily split in homogeneous
subdomains (i.e., with low intra-group variance) and so that
the variance between subdomains (i.e., inter-group variance)
is high, then stratification with unequal sampling probability
of strata and with replacement (to allow multiple tests for
each subdomain) is a good sampling strategy. Instead, if
stratification is not advisable, unequal probability sampling
of single inputs is preferred [35]. In such a case, without-
replacement selection is better, even though its mathematical
treatment is more complex, because it is known to be more
efficient than with-replacement schemes. Generally, unequal
probability sampling is the required underlying framework
in all the cases, as it allows having selection probabilities
deviating from the operational profile (hence, integrating any
testing profile in the sampling strategy) while preserving
unbiasedness and improving efficiency.

Regarding the available information, its granularity is of in-
terest for defining the auxiliary variable that supports unequal
probability sampling. Indeed, rarely the failure proneness
belief and the operational profile estimate are available at
single-input level; realistically, they are at subdomain level

1In SRET, the SRGM are foreseen during the so-called development testing,
when bugs are detected and also removed and, consequently, reliability grows;
this is then complemented by reliability assessment testing to certify achieved
reliability before shipping, through conventional operational testing

(partition, module, component). Hence, the auxiliary variable
will be more often defined using subdomain-level information,
and ignorance within subdomains is modelled assuming all
inputs being equal in terms of both failure proneness belief and
operational usage probability. Different choices are possible if
information is at single-input level, or at (multiple) class-level
within subdomains (a case suitable for multi-stage sampling
strategies).

B. PST with SRGMs and PPS

In the following, we describe the PST algorithm used in
the rest of this work – which is a specific instance suitable
for component-based systems. As sampling design, the al-
gorithm implements a probability-proportional-to-size (PPS)
and without-replacement sampling of single inputs of an input
domain D. As auxiliary information, it assumes the availability
of failure data (e.g., stored by an issue tracking system)
collected during development-time testing or operational usage
of previous versions. This information is exploited to build an
SRGM for each component, whose output is informative about
the expected components’ failure probabilities. There are many
types of SRGMs available in the literature. The common goal
of SRGMs is to predict reliability and this is usually done
by means a failure intensity function λ(t) = dm(t)

dt , with m(t)
being the cumulative number of detected (or corrected) faults
estimated by the SRGM. Although no assumption is made
about which one to use, a debug-aware model is preferred,
since it captures the real growth of reliability as consequence
of a fault correction action, and does not assume an unrealistic
immediate debugging [36]. Given the m(t) or λ(t) function
at testing time t, both testing reliability (i.e., assuming to
keep on testing, with λ(t) still changing over time) and
operational reliability (i.e., assuming the software is released
at time t, hence λ(t) assumed to be constant) can be estimated
[37][38]. In a typical scenario, reliability assessment is needed
after debug testing, namely at acceptance testing stage just
before release. Therefore, we are interested in the latter case,
and take the λ(tend) = λ, with tend representing the last
detection (or correction) time of the debug testing stage. This
represents the ‘most recent” estimate of failure intensity be-
fore acceptance testing and release. Operational reliability is:
R(τ |tend) = exp(−λτ), with τ being the operational execution
time. Hence, failure probability estimated by the SRGM is:
ϑ(τ |tend) = 1 − R(τ |tend). What actually discriminates the
more or less reliable components is the failure intensity of
components. Therefore λi values (i = 1 to n represents one
out of n components) or a function thereof (e.g., Ri, ϑi,
MTTFi) can be seamlessly used as auxiliary information
to drive test selection as explained hereafter. Without loss
of generality, let us assume to use ϑi = ϑi(τ |tend), which
represents explicitly the failure probability, computed under
the same amount of τ time units for all components; e.g., for
simplicity: τ = 1 and ϑi = 1− exp(−λi)).

Now, consider the quantity to estimate: Φ =
∑
t∈D ptzt,

namely the total failure probability. The following two steps
are distinguished:



1) In the first step we are concerned with the construction
of a testing profile, namely with the assignment of
probabilities of input selection during testing (denoted
as πt). The goal of this step is to assign higher selection
probability to those inputs whose expected contribution
to the total unreliability in operation will be higher. This
unreliability contribution is given by the product of the
probability of selection in operation, pt, and the expected
probability of failing once selected, Pr(zt=1).

2) Once defined the testing profile, the second step is to
implement a test selection algorithm by a sampling
scheme that selects inputs according to the defined
testing profile (namely, according to πt values), and that
allows an unbiased and efficient estimate of Φ.

The first step is supported by ϑi. It is defined the auxiliary
variable x associated with each input t such that: xi,t = ptϑi,
where pt captures the probability of selecting the input t from
Di, and ϑi captures the probability of failing conditioned on
that selection. The auxiliary variable is used to define the
testing profile: the probability of selecting t as test case is
given by: πt =

xi,t∑
t
xi,t

.

Note that πt values can be selected in any different way:
if, for instance, the tester does not have failure proneness
information, but has reasons to believe that some subdomains
are more impacting on reliability than others, he can neglect
the construction of the auxiliary variable x and define directly
his own testing profile. The approach still works.

As for the second step, a sampling algorithm for unequal
sampling is implemented. We tailor the Rao, Hartley and
Cochran (RHC) sampling procedure [39], as it is a without-
replacement sampling scheme (more efficient than with-
replacement case) and is a popular sampling method adopted
in numerous contexts for its simplicity and practicability. The
algorithm steps are:

1) Given the T test cases to execute, divide randomly the
N = |D| units of the population into T groups, by
selecting G1 inputs with a Simple Random Sampling
Without Replacement (SRSWOR) for the first group,
then G2 inputs out of the remaining (N − G1) for the
second, and so on. This will lead to g groups of size
G1, G2, . . . , Gg with

∑g
r=1Gr = N . The group size is

arbitrary, but we select G1 = G2 = · · · = Gg = N/T ,
as this minimizes the variance.

2) One test case is then drawn by taking an input t in each
of these g groups independently and with a probability
proportional to size – in our case, according to πt values.

3) Denote with πt,r the probability associated with the t-
th unit in the r-th group, and with qr =

∑
t∈Gr

πt,r
the sum in the r-th group. An unbiased estimator of the
failure probability Φ is:

Φ̂ =

g∑
r=1

przr

πr/qr
(2)

where the suffixes 1, 2, . . . , r denote the g test cases
selected from the g groups separately.

The estimator is unbiased since E[Φ̂] = E1E2[Φ̂] = E1[Φ] =
Φ, where E2 is the expectation for a given split and E1 the
expectation over all possible splits into T groups of the chosen
sizes. Hence:

R̂ = 1 − Φ̂ (3)

Following [39], the variance of Φ̂ is derived by observing
that, under unbiasedness, V (Φ̂) = E1V2(Φ̂), where V2 is the
variance within a split:

V (Φ̂) =

∑
r
G2
r −N

N(N − 1)

(
N∑
t=1

(ptzt)2

πt
− Φ2

)
(4)

with
∑
r denoting the sum over the g = T groups, and:

V (R̂) = V (Φ̂) (5)

Expectedly, the variance decreases as more test cases are
devoted to the subdomain. Finally, its unbiased estimator is
derived:

V̂ (Φ̂) =

∑
r
G2
r −N

N2 −
∑

r
G2
r

(
g∑
r=1

qr(
przr

πr
− Φ̂)2

)
. (6)

Choosing G1 = G2 = · · · = Gg = N/T simplifies the
above expressions:

V (Φ̂) =
1

T

(N − T )

(N − 1)

(
N∑
t=1

(ptzt)2

πt
− Φ2

)
(7)

and:

V̂ (Φ̂) = 1
N

(N−T )
(T−1)

(∑g

r=1
qr(

przr
πr
− Φ̂)2

)
. (8)

Unequal sampling procedure like the presented one is
known to be more efficient (hence lower variance, given
the same sample size) than Simple Random Sampling (SRS)
(which is adopted in conventional partition-based operational
testing), because it can exploit the auxiliary information to
direct sampling on those units that can contribute more to
variance reduction. Additionally, a further improvement is
given by the without-replacement case, which is known to be
more efficient than the corresponding with-replacement case
[35], [40], [39].

For PST to outperform conventional operational testing that
ignores any prior belief to select tests, it is sufficient a positive
correlation between the auxiliary variable and the variable to
estimate. This is shown analytically in our previous work [24]
and experimentally confirmed in this work. In other words,
PST could work worse if the correlation between the auxiliary
information and failure probability is negative: this is a worse
situation than a complete absence of knowledge about more or
less failure-prone subdomains, because it means that available
knowledge is even misleading. In practice, an even partial
knowledge (e.g.. inputs from boundary-value regions more
likely to fail than others) can be sufficient to distinguish
the more (relative) failure-prone subdomains. Without such
a knowledge, tester should renounce to any form of partition
or component-based testing, as the partitioning criterion can
work worse than a uniform testing. In the next Section, we



evaluate both the assessment accuracy and efficiency of this
scheme against other techniques, as well as with and without
some form of auxiliary knowledge.

IV. EVALUATION

A. Objective and Evaluation Method

The primary objective of the evaluation is to assess how
much the reliability estimate provided by PST is close to
the true reliability, and how efficient it is compared to other
testing techniques for reliability assessment. Compared tech-
niques are: i) PST; ii) the without-replacement version of
operational testing (OP), that is arguably the state-of-the-
practice technique in reliability testing; iii) the newer technique
named adaptive testing with gradient-descent method (AT-GD,
simply AT in the following) [20], demonstrated to provide
better results than operational testing in terms of variance
minimisation. We already analysed PST by the analytical
perspective in terms of variance it is expected to deliver;
here we use both simulation and experimentation as evaluation
methods to assess performance under different perspectives.

1) Simulation: Simulation assesses performance under sev-
eral configurations to see the impact of factors of interest on re-
sults without the burden of experimentation. Hypothesising 10
subdomains, performance is studied with respect to two sizes
of the input domain: |D| = 1.0E+4 and |D| = 1.0E+5 and an
increasing number of test cases ranging from T = |D|/1.0E+2
to T = |D|/1.0E+1, with a step equal to |D|/1.0E+2. Hence,
the evaluation is under different ratios of available test cases
over the input domain size. The failure points proportion in
each subdomain is regulated by a probability P of an input to
be a failure point (i.e.: an input t is marked as failing point
with probability P or as correct point with probability (1−P )).
To include the cases of both low, medium, and high reliability
systems, the value of P is allowed to vary in three ranges
[1.0E-2; 1.0E-3]; [1.0E-3; 1.0E-4]; [1.0E-4; 1.0E-5]. A simu-
lation scenario j consists of a 4-way combination: <technique,
domain size, #test cases,P range >. Since sampling-based
testing techniques are randomized algorithm, each scenario
is repeated 100 times to draw statistically valid conclusions.
For each repetition, a different operational profile is generated
randomly and kept fixed for all the 100 repetitions2. For
simulation, we assume the conservative case of “no exploitable
knowledge” by PST: namely, all subdomains are given the
same failure probability, approximating the case in which a
tester has a uniform belief about the failure proneness of
each subdomain (i.e., the assumption that better represents
ignorance). The number of runs is: (3 techniques x 3 domain
sizes x 10 test case points x 3 ranges of P ) x 100 repetitions
= 27,000 runs. Results are in Section V.

2Profile is generated by randomly assigning a [0; 1] number qi to each
subdomain i, according to a uniform distribution, then normalising the output
to sum up to 1: pi = qi∑

i
qi

. Inputs within subdomains are selected with a

uniform distribution with probability pt = pi/|Di|, where |Di| is the size
of subdomain i.

2) Experimentation: Simulation by itself is not sufficient
to make claims on real systems, as the latter introduce further
variability due to uncontrollable (and often unknown) factors.
We assess performance of PST also experimentally on a real-
scale case study. We test reliability of MySQL DBMS v5.6.35
deployed on an iMac machine (3.5 GHz Intel Core i7, 32 GB
DD3 RAM, 3.2 TB Hard Disk) with the same techniques listed
above. Reliability of version 5.6.35 is computed by running the
test suite of the subsequent version 5.7.7, so that real bugs are
expected to be found. For experimentation purpose, the input
space is assumed to be equivalent to the test space given by the
available test suite. The actual size of the test suite depends
on DBMS configuration and target machine: in our case it
amounted to 4,632 test cases, out of which 1,108 are marked as
skipped or disabled by MySQL Test Framework (e.g., because
they require a specific storage engine, or GTID based logging
active, or because are temporarily disabled by developers)
– thus the final test space is of 3,524 tests. Test cases are
organised in test suites, which group together logically close
tests, e.g.. innodb, optimizer, partitions. We treat the test
suites, or sets of similar test suites, as our subdomains, since
they basically correspond to the MySQL logical architectural
components. In some cases, some manual work to merge test
suites into one logical component and/or to map sparse test
cases was required to get a cleaner mapping – the final set of
components is in the first column of Table V.

Two versions of PST are tested, one under a uniform belief
about relative failure proneness of components (like in the sim-
ulation case), one with the SRGM-based auxiliary information
– see Section III-B. SRGMs are built at component level over
the previous versions’ failure data. Number of test cases is
allowed to vary between 100 and 1,000, with a step of 100 test
cases. Three operational profiles are generated randomly with
the same procedure as in the simulation case. An experimental
scenario j is made up of these configurations: <technique,
#test cases, profile > where the techniques are, in this case, 4:
OP, AT, PST with uniform auxiliary information (PSTU ) and
SRGM-based PST (PSTSRGM ) – getting to (4 techniques x
10 test case points x 3 profiles) x 100 repetitions = 12,000
runs. Results of experimentation are in Section VI.

B. Evaluation criteria

If we focus exclusively on the analytical derivation as
reported in Section III, we could consider only a variance
analysis: indeed, since the estimator is unbiased, its expected
value exactly estimates the true reliability – so, what makes
the difference in terms of expectation is the variance of the
estimates, namely its efficiency. However, for both simulation
and experimentation, the technique needs also to be assessed
in terms of estimation accuracy, besides efficiency, since the
number of tests is limited (hence, there is actually an offset
between the point estimate and true reliability, despite the
estimate expected value is equal to the true value). Therefore,
we focus on both estimation accuracy and efficiency. An
experimented scenario j is repeated 100 times; denote with
r one of such repetitions. At the end of each repetition,



the reliability estimate R̂r,j is computed by the technique
under assessment as well as the true reliability Rj . In the
simulation case, we know in advance which input t is a failure
point (hence, Rj =

∑
t∈D ptzt, where zt is 1 if the input

is a failure point and 0 otherwise). In the experimentation
case, we had to preliminary run all the test cases, and mark
failing and passing test cases, so as to get the zt labels
for each input – these are stored in a file and then used
by the experiment support code just like in the simulation
case to compute true reliability. Profile is generated randomly
by the simulation/experimentation code at each repetition as
explained in the previous Section.

For each scenario j and for each technique, we compute the
sample mean (denoted as M), sample variance (S) and mean
squared error (MSE):

M(R̂j) = 1
100

∑100
r=1 R̂r.j

S(R̂j) = 1
100−1

∑100
r=1(R̂r.j −M(R̂j))

2

MSE(R̂j) = 1
100

∑100
r=1(R̂r.j −Rj))2

(9)

Comparison of estimation accuracy is done by looking at
the MSE. Comparison of efficiency is done by the sample
variance S.

V. SIMULATION RESULTS

Simulation results are in Figure 1. Each graph reports
the MSE over the 100 repetitions of the three compared
techniques with all the 10 values of #test cases, under a fixed
domain size and failure point probability ranges P . Figure 2
reports the sample variances S.

What can be seen graphically is that PST has in most
cases lower MSE and variance. The difference with the
other techniques is particularly evident in configurations 3
and 6, namely in those configurations characterized by very
few failure points, with a very high reliability (in those cases,
the true reliability was always higher than 0.999, the exact
value depending on the operational profile that change in
each of the ten scenarios). The difference is still relevant in
configuration 2 and 5, where there is a medium range of failure
points probability (true reliability higher than 0.99 lower than
0.999), but more pronounced in configuration 2 (characterized
by |D|=1.0E+4) than configuration 5 (|D|=1.0E+5). When
reliability is of the order 0.9 (lower than 0.99), the difference
between the techniques is not so relevant. Detailed results for
each configuration are in Tables I and II, where it is possible
to read the best values reached by PST (as well as by AT) that
cannot be read by the graph because too low. For instance, in
configuration 6, the MSE of PST is an order of magnitude
lower than the others.

It is interesting to note the performance of AT: if we look at
configuration 3 and 6 (the ultra-high reliability cases), we can
note that it has a very low sample variance, comparable with
PST or sometimes even better, but in the same configurations
it has a bad MSE, close to OP testing – in other words it
achieved a very precise estimate of reliability but not much

Configurations Techniques Median Mean Min Max

Configuration 1
PST 1.03E-04 1.64E-04 3.99E-05 5.19E-04
OP 1.04E-04 2.16E-04 6.17E-05 8.72E-04
AT 1.03E-04 1.87E-04 5.44E-05 7.24E-04

Configuration 2
PST 1.37E-05 2.74E-05 4.71E-06 9.66E-05
OP 9.97E-05 5.93E-04 1.43E-05 2.40E-03
AT 1.16E-04 5.28E-04 1.69E-05 3.16E-03

Configuration 3
PST 6.90E-07 2.98E-06 2.26E-07 2.41E-05
OP 2.59E-04 4.49E-04 8.67E-05 1.33E-03
AT 1.85E-04 4.13E-04 6.17E-05 1.26E-03

Configuration 4
PST 7.97E-06 1.41E-05 4.33E-06 4.35E-05
OP 9.25E-06 1.67E-05 6.27E-06 5.64E-05
AT 9.07E-06 1.53E-05 4.52E-06 5.17E-05

Configuration 5
PST 8.49E-07 1.40E-06 2.24E-07 5.35E-06
OP 1.15E-06 1.66E-06 4.96E-07 5.89E-06
AT 1.15E-06 1.66E-06 4.96E-07 5.89E-06

Configuration 6
PST 9.72E-08 2.37E-07 2.19E-08 1.36E-06
OP 1.16E-06 1.11E-05 4.04E-07 6.94E-05
AT 1.00E-06 7.94E-06 3.37E-07 5.65E-05

TABLE I: Statistics of testing Configurations. MSE.

Configurations Techniques Median Mean Min Max

Configuration 1
PST 9.56E-05 1.26E-04 3.97E-05 5.23E-04
OP 1.01E-04 1.65E-04 6.20E-05 5.76E-04
AT 1.03E-04 1.46E-04 4.67E-05 5.56E-04

Configuration 2
PST 3.70E-06 6.76E-06 1.09E-06 1.68E-05
OP 1.24E-05 1.60E-05 4.98E-06 4.77E-05
AT 5.79E-06 2.14E-05 1.10E-06 9.17E-05

Configuration 3
PST 5.68E-08 2.84E-07 1.33E-08 2.40E-06
OP 1.05E-06 1.07E-06 1.70E-07 2.36E-06
AT 1.04E-07 3.02E-07 1.62E-10 2.33E-06

Configuration 4
PST 7.94E-06 1.38E-05 4.38E-06 4.29E-05
OP 9.29E-06 1.44E-05 6.32E-06 3.66E-05
AT 8.25E-06 1.33E-05 4.10E-06 3.62E-05

Configuration 5
PST 7.63E-07 1.29E-06 4.10E-07 5.39E-06
OP 9.14E-07 1.58E-06 4.99E-07 5.94E-06
AT 7.92E-07 1.37E-06 3.37E-07 6.10E-06

Configuration 6
PST 8.49E-07 5.69E-08 1.12E-08 1.68E-07
OP 1.15E-06 1.67E-07 4.08E-08 6.90E-07
AT 1.01E-06 9.08E-08 1.83E-08 3.05E-07

TABLE II: Statistics of testing Configurations. Sample Vari-
ance.

accurate, with a relatively large bias. Moreover, while it works
well in low reliability configurations (1 and 4), it seems to
loose efficiency in configurations 2 and 5 especially in the
cases with a low number of tests (points 1-3 on the x-axis).

In Tables IVa and Va we report the overall median and
mean values of MSE and sample variance, confirming the
superiority of PST for both criteria. Tables IVb and Vb confirm
the rejection of the hypothesis that samples from compared
techniques (row vs column) come from the same distribution.
Since we are interested in comparing all the techniques with
each other, we have adopted the Nemenyi test for pairwise
comparison of a multi-level experimental factor. The test uses
the critical difference (CD): two levels of a compared factor
are significantly different if the corresponding average ranks
differ by at least CD = qα

√
k(k + 1)/6N . where qα values

are the Studentized range statistic divided by
√

2, and adjusted
according to the number of comparisons3, k is the number of
levels compared, N is the sample size [41]. Results confirm
that all the observed differences are statistically significant.

It is worth noting that these results use the assumption of
uniform belief of failure probability of partitions, thus not

3As the family-wise error rate is already controlled by considering qα, no
other multiple comparison protection procedure is needed.



(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

Fig. 1: MSE of reliability estimate. Legend: Configuration 1: P= [1.0E-2;1.0E-3]; |D| = 1.0E+4. Configuration 2: P = [1.0E-
3;1.0E-4]; |D| = 1.0E+4. Configuration 3: P= [1.0E-4;1.0E-5]; |D| = 1.0E+4. Configuration 4: P = [1.0E-2;1.0E-3]; |D| =
1.0E+5. Configuration 5: P = [1.0E-3;1.0E-4]; |D| = 1.0E+5. Configuration 6: P = [1.0E-4;1.0E-5]; |D| = 1.0E+5

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

Fig. 2: Sample variance of reliability estimate. Legend: Configuration 1: P= [1.0E-2;1.0E-3]; |D| = 1.0E+4. Configuration 2:
P = [1.0E-3;1.0E-4]; |D| = 1.0E+4. Configuration 3: P= [1.0E-4;1.0E-5]; |D| = 1.0E+4. Configuration 4: P = [1.0E-2;1.0E-3];
|D| = 1.0E+5. Configuration 5: P = [1.0E-3;1.0E-4]; |D| = 1.0E+5. Configuration 6: P = [1.0E-4;1.0E-5]; |D| = 1.0E+5

exploiting the full potential of PST; better results are expected
if we use auxiliary information.

VI. EXPERIMENTATION RESULTS

A. Setup of PSTSRGM
We consider the case when SRGMs can be built from his-

torical data and inform about components’ expected reliability.
The steps to build the SRGMs for MySQL components are:



Overall median and mean values
Median Mean

PST 4.55E-06 3.49E-05
OP 5.36E-05 2.15E-4
AT 3.19E-05 1.92E-4

(a)

Pairwise Comparison: p-values
AT PST

OP 2.42E-5 <1.0E-15
AT - 5.17E-4

(b)

TABLE III: Comparison for MSE

Overall median and mean values
Median Mean

PST 1.56E-06 2.46E-05
OP 5.45E-06 3.30E-05
AT 2.72E-06 3.04E-05

(a)

Pairwise Comparison: p-values
AT PST

OP 4.25E-6 <1.0E-15
AT - 2.91E-3

(b)

TABLE IV: Comparison for Sample Variance S.

• Failure data extraction. We extracted bug reports from
the MySQL bug repository4. All the closed bugs referring
to a component (derived by the category field), spanning
from 2003 to 2017, are taken. We consider closed bugs,
since only closed bugs actually indicate the growth of
reliability5, and non-closed bugs might turn out to be not
a bug, duplicate, feature requests, etc..

• Data fitting: we used the following set of SRGMs, applied
to each component: Exponential, Log Normal, Truncated
Normal, Log Logistic, Truncated Logistic, Truncated
Extreme-Value Min, Truncated Extreme-Value Max. The
SRGM with the best Akaike Information Criterion (AIC)
value is selected, like in [42], [43], [44].

• Auxiliary variable computation. For selected SRGMs,
we take the failure intensity at the last correction time
T : λi(T ) = λi from which the SRGM-based failure
probability estimate ϑi and then the auxiliary variable
xi,t are computed as described in Section III.

Figure 3 reports two examples of SRGM of relevant compo-
nents (replication and MyISAM). Table V reports the results of
applying the SRGM at component level. For each component,
it is reported: the number of defects closed; the total number
of operational hours since the first closed bug; the best fitting
SRGM; the failure intensity λi; the SRGM-based failure
probability estimate ϑi.

B. Results

Figure 4 reports the MSE values and sample variances
reached by the four compared techniques in the 10 points
(from 100 to 1000 test cases), for the three profiles.

In terms of MSE, PST clearly outperforms the others in the
three cases. AT, in line with what observed in the simulation
case, shows a higher MSE, often higher than OP testing. In
fact, this is a scenario characterized by a test space of 3,524
points and a number of failure points, derived by failed test
cases, equal to 26; the true reliability, is in the medium range

4http://bugs.mysql.com
5MySQL repository has not the resolution field, hence closed bugs are also

“solved” bugs

MySQL Defects operational Applied Failure Failure
Component closed time (h) SRGM intensity prob.
Replication 1259 123313 TEVM 4.89E-3 4.77E-2
InnoDB 1154 123161 TL 6.67E-6 6.66E-05
Optimizer 1010 105156 TEVm 6.77E-3 6.54E-2
Tests 63 80149 EXP 2.54E-4 2.53E-3
Partitions 374 99956 TEVM 4.63E-4 4.61E-3
Charsets 193 94782 TL 1.34E-6 1.33E-05
Perf. Schema 147 64560 EXP 1.01E-3 1.00E-2
Parser 101 91897 EXP 4.50E-4 4.48E-3
Federated 47 72611 EXP 1.84E-5 1.83E-4
GIS 74 79986 TEVM 1.51E-3 1.49E-2
Logging 117 93350 TEVm 2.57E-3 2.53E-2
SysSchema 14 10212 EXP 9.95E-4 9.9E-3
DDL 193 82550 TEVm 4.79E-3 4.67E-2
DML 262 81791 EXP 2.38E-3 2.35E-2
MyISAM 315 110226 TEVM 1.48E-4 1.47E-3
JSON 38 29229 EXP 5.16E-4 5.14E-3
Security 137 91981 TEVM 2.05E-3 2.02E-2
Query cache 29 76705 EXP 1.01E-4 1.00E-3
Memcached 22 22230 TRN 8.44E-5 8.43E-4
Connection 9 14319 EXP 1.48E-3 1.46E-2
Doc store 16 8115 EXP 1.74E-3 1.72E-2

TABLE V: MySQL components SRGMs characterization

[0.99; 0.999], the exact value depending on the profile. In
terms of sample variance, AT is indeed better than OP and with
values similar to PSTU . The usage of auxiliary information
given by the SRGM remarkably improves performance of
PST, both in terms of MSE and sample variance. Average
results per profile are given in Tables VI and VII, showing
that PSTSRGM has often values of an order of magnitude
lower than the others.

Profile Techniques Median Mean Min Max

Profile 1
PSTSRGM 2.55E-05 3.51E-05 1.17E-05 1.01E-04
PSTU 3.00E-05 8.56E-05 9.78E-06 5.12E-04
OP 9.09E-05 1.63E-04 1.59E-05 6.16E-04
AT 8.75E-05 2.48E-04 2.40E-05 1.09E-03

Profile 2
PSTSRGM 9.07E-06 2.13E-05 4.34E-06 1.02E-04
PSTU 2.59E-05 5.52E-05 1.07E-05 1.91E-04
OP 9.99E-05 1.68E-04 6.23E-05 5.98E-04
AT 8.65E-05 2.46E-04 2.37E-05 1.07E-03

Profile 3
PSTSRGM 1.08E-05 1.92E-05 5.30E-06 7.76E-05
PSTU 2.64E-05 5.08E-05 1.38E-05 2.42E-04
OP 1.05E-04 2.05E-04 4.94E-05 7.49E-04
AT 8.75E-05 2.21E-04 2.40E-05 8.19E-04

TABLE VI: MSE Statistics

Profile Techniques Median Mean Min Max

Profile 1
PSTSRGM 2.20E-05 2.21E-05 8.13E-06 3.29E-05
PSTU 2.57E-05 2.80E-05 9.61E-06 5.12E-05
OP 3.36E-05 3.64E-05 2.49E-05 6.22E-05
AT 2.69E-05 2.89E-05 1.68E-05 4.74E-05

Profile 2
PSTSRGM 2.04E-06 4.72E-06 1.52E-06 9.80E-06
PSTU 1.00E-05 1.67E-05 6.21E-06 5.94E-05
OP 2.61E-05 4.19E-05 1.06E-05 1.09E-04
AT 1.06E-05 1.24E-05 2.05E-06 4.18E-05

Profile 3
PSTSRGM 2.09E-06 6.32E-06 9.79E-07 1.96E-05
PSTU 1.04E-05 2.05E-05 4.99E-06 7.48E-05
OP 2.66E-05 5.11E-05 1.38E-05 2.44E-04
AT 1.67E-05 2.45E-05 1.47E-06 8.08E-05

TABLE VII: Sample Variance statistics

Statistical analysis corroborates the previous observations;
it is worth noting that the sample variance difference between
AT and PSTU is not significant (p-value = 0.29), as can be
seen by the similar values in the graphs as well as in Table



(a) Replication (b) MyISAM

Fig. 3: SRGMs built for Replication and MyISAM components

(a) Profile 1 MSE (b) Profile 1 Sample Variance (c) Profile 2 MSE

(d) Profile 2 Sample Variance (e) Profile 3 MSE (f) Profile 3 Sample Variance

Fig. 4: MSE values and Sample Variances of reliability estimate

8. The other non-significant difference is between OP and AT
in terms of MSE (AT performed better for larger number of
test cases but worse for small number of tests) – Table IXb.

To validate a posteriori the goodness of choosing the SRGM
as information source for components’ failure probability esti-
mate, we have computed the Pearson and Spearman correlation
between the failure probability values ϑi assigned to each
component and the corresponding number of failing tests
actually observed on those components. Values are in Table X;
a value for each experimented scenario (3 profiles x 10 values
for “number of test cases”). The positive values indeed helped
in improving performance of PSTSRGM over the others.

Overall median and mean values
Median Mean

PSTSRGM 1.68E-05 2.51E-05
PSTU 2.68E-05 6.38E-05
OP 9.24E-05 1.78E-4
AT 8.73E-05 2.38E-4

(a)
Pairwise Comparison: p-values

AT PSTSRGM PSTU

OP 2.05E-1 <1.0E-15 1.75E-6
AT - <1.0E-15 4.98E-5
PSTSRGM - - 2.6E-2

(b)

TABLE VIII: Comparison for MSE



Overall median and mean values
Median Mean

PSTSRGM 8.48E-06 1.10E-05
PSTU 1.61E-05 2.17E-05
OP 2.79E-05 4.31E-05
AT 1.68E-05 2.19E-05

(a)
Pairwise Comparison: p-values

AT PSTSRGM PSTU

OP 8.54E-5 <1.0E-15 8.4E-5
AT - 4.03-5 2.94E-1
PSTSRGM - - 8.0E-5

(b)

TABLE IX: Comparison for Sample Variance S.

#Tests Profile 1 Profile 2 Profile 3
Pearson Spearman Pearson Spearman Pearson Spearman

100 0.44 0.23 0.41 0.28 0.39 0.22
200 0.48 0.26 0.49 0.37 0.44 0.26
300 0.56 0.38 0.55 0.42 0.49 0.29
400 0.58 0.42 0.56 0.45 0.54 0.36
500 0.62 0.47 0.64 0.47 0.55 0.38
600 0.64 0.48 0.65 0.48 0.65 0.49
700 0.70 0.52 0.67 0.51 0.68 0.51
800 .070 0.51 0.72 0.54 0.68 0.52
900 0.71 0.54 0.71 0.55 0.73 0.55
1000 0.72 0.55 0.75 0.56 0.72 0.56

TABLE X: Correlation between ϑ and number of failing test
cases in each component

VII. THREATS TO VALIDITY

Simulation results are useful to understand performances
of different algorithms. The accuracy of the results depends
on how closely the simulation represents a realistic scenario.
From the test results point of view, the size of the input
space, the number of failure points and their distribution
over the input space, the occurrence probability of each input
are all factors that have an impact on the final result. With
respect to them, we have varied those factors to cover more
scenarios, replicated 100 times each scenario, and generated
profiles randomly to reduce the effect of the variability due to
these factors. However, the difference with real system can be
impactful: in a real system, further variability is likely to be
introduced because of uncontrollable/unknown factors, such as
the impact of the execution environment, the interaction with
tester, the effect of an imperfect partitioning – all factors that
can undermine the assumptions made in Section III. For this
reason, we have complemented simulation by an experimental
analysis on real-scale system, where results account for the
impact of possible assumptions’ violation.

With respect to the experimentation, we warn the reader
against the following threats. With respect to the identifi-
cation of components, we have derived it from the already
grouped test suites, combining it with the logical architecture
of MySQL, and applied SRGMs to them. An SRGM describes
the detection/correction trend of faults, but the availability of
failure data from the bug repository is influenced by how
much each component is used by the community. Therefore,
few failure reports might indistinguishably indicate a good
reliability of the component or a scarse usage. Under the same

testing effort, the SRGMs could be different. Also, bug reports
quality may impact (e.g., bugs put in the wrong category).
On the other hand, we claimed that the belief acquired before
acceptance testing can be even loosely coupled with actual reli-
ability – paradoxically, if we had certainty about components’
reliability we would not need to carry out any assessment.
Considering also the absence of any belief (i.e., the uniform
case), the results demonstrate that the algorithm is robust even
to bad quality of preliminary reliability beliefs. We contrasted
two cases (uniform belief represents absence of knowledge
and SRGM represents a generally good quantitative belief) and
performance was satisfactory in both cases. Integrating further
evidences is left to future research. Finally, external validity is
mined by the single system used. Indeed, while the simulation
study can help improve statistical generalizability, we cannot
claim that experimental results are valid for other real systems
with different characteristics with respect to MySQL.

VIII. CONCLUSION

This article presented Probabilistic Sampling-based Testing
(PST), a new testing technique for reliability assessment.
The key idea is to enable testing profiles different from the
operational one to be used for assessment purpose. There
are many strategies that can stress the bug-finding ability
regardless the occurrence probability of selected inputs; while
they are usually considered as pursuing a separate objective,
they can still be used for reliability assessment, to expedite the
assessment, by counterbalancing the different-from-operation
probability of test cases selection with proper weights in the
estimation. This approach eases the integration with other
sources of reliability assessment gained before acceptance
testing, which can be used as auxiliary information to expedite
the assessment.

In this work, we have neglected the role of adaptivity. As
we experimented in our recent work, adaptivity can further
improve the test selection by changing the testing profile
online, as testing results are observed [5], [24], [45]. Therefore,
in the next future we aim at combining adaptivity with the
presented scheme. Moreover, in this work we have instantiated
one specific sampling procedure and estimators for unequal
sampling; a wider exploitation of complex survey design [35]
is envisioned to look for formulations that can exploit most of
the available, yet currently neglected, information.

ACKNOWLEDGEMENTS

This work has been supported by the GAUSS national
research project, which has been funded by MIUR under the
PRIN 2015 program (grant n. 2015KWREMX 002).

REFERENCES

[1] J. Musa, Software reliability-engineered testing, Computer 29 (11)
(1996) 61–68.

[2] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, V. Bharadwaj, A bayesian
approach to reliability prediction and assessment of component based
systems, in: Proceedings 12th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2001, pp. 12–21.

[3] L. Strigini, B. Littlewood, Guidelines for statistical testing, Tech. Rep.
PASCON/WO6-CCN2/TN12, ESA/ESTEC project PASCON (1997).



[4] K.-Y. Cai, Y.-C. Li, K. Liu, Optimal and adaptive testing for software
reliability assessment, Information and Software Technology 46 (15)
(2004) 989–1000.

[5] D. Cotroneo, R. Pietrantuono, S. Russo, RELAI Testing: A Technique
to Assess and Improve Software Reliability, IEEE Trans. on Software
Engineering 42 (5) (2016) 452–475.

[6] D. Cotroneo, R. Pietrantuono, S. Russo, Combining Operational and
Debug Testing for Improving Reliability, IEEE Trans. on Reliability
62 (2) (2013) 408–423.

[7] P. Frankl, D. Hamlet, B. Littlewood, L. Strigini, Evaluating Testing
Methods by Delivered Reliability, IEEE Trans. on Software Engineering
24 (8) (1998) 586–601.

[8] C. Smidts, B. Cukic, E. Gunel, M. Li, H. Singh, Software reliability cor-
roboration, in: Proceedings 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, IEEE, 2002, pp. 82–87.

[9] M. Neil, N. Fenton, L. Nielson, Building Large-scale Bayesian Net-
works, Knowl. Eng. Rev. 15 (3) (2000) 257–284.

[10] H. Mills, M. Dyer, R. Linger, Cleanroom software engineering, IEEE
Software 4 (55) (1987) 19–24.

[11] P. Currit, M. Dyer, H. Mills, Certifying the reliability of software, IEEE
Trans. on Software Engineering SE-12 (1) (1986) 3–11.

[12] R. Cobb, H. Mills, Engineering software under statistical quality control,
IEEE Software 7 (6) (1990) 45–54.

[13] R. Linger, H. Mills, A case study in cleanroom software engineering:
the ibm cobol structuring facility, in: Proceedings 12th Int. Computer
Software and Applications Conference (COMPSAC), IEEE, 1988, pp.
10–17.

[14] J. Poore, A case study using cleanroom with box structures ADL, Tech.
rep., CDRL 1880, Software Engineering Technology, Vero Beach, Fla.
(1990).

[15] M. R. Lyu (Ed.), Handbook of Software Reliability Engineering,
McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

[16] L. Madani, C. Oriat, I. Parissis, J. Bouchet, L. Nigay, Synchronous
testing of multimodal systems: an operational profile-based approach,
in: 16th IEEE Int. Symposium on Software Reliability Engineering
(ISSRE), 2005, pp. 10 pp.–334.

[17] B. Beizer, Cleanroom process model: a critical examination, IEEE
Software 14 (2) (1997) 14–16.

[18] K.-Y. Cai, C.-H. Jiang, H. Hu, C.-G. Bai, An experimental study of
adaptive testing for software reliability assessment, Journal of Systems
and Software 81 (8) (2008) 1406–1429.

[19] K.-Y. Cai, Optimal software testing and adaptive software testing in the
context of software cybernetics, Information and Software Technology
44 (14) (2002) 841–855.

[20] J. Lv, B.-B. Yin, K.-Y. Cai, On the Asymptotic Behavior of Adaptive
Testing Strategy for Software Reliability Assessment, IEEE Trans. on
Software Engineering 40 (4) (2014) 396–412.

[21] J. Lv, B.-B. Yin, K.-Y. Cai, Estimating confidence interval of software
reliability with adaptive testing strategy, Journal of Systems and Soft-
ware 97 (2014) 192–206.

[22] A. Podgurski, W. Masri, Y. McCleese, F. Wolff, C. Yang, Estimation
of software reliability by stratified sampling, ACM Transactions on
Software Engineering and Methodology 8 (3) (1999) 263–283.

[23] F. Omri, Weighted statistical white-box testing with proportional-optimal
stratification, in: Proc. 19th International Doctoral Symposium on Com-
ponents and Architecture, WCOP’14, ACM, 2014, pp. 19–24.

[24] R. Pietrantuono, S. Russo, On Adaptive Sampling-Based Testing for
Software Reliability Assessment, in: Proceedings 27th International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2016,
pp. 1–11.

[25] C. Smidts, M. Stutzke, R. W. Stoddard, Software reliability modeling: an
approach to early reliability prediction, IEEE Transactions on Reliability
47 (3) (1998) 268–278.

[26] D. S. Herrmann, Sample implementation of the littlewood holistic
model for assessing software quality, safety and reliability, in: Annual
Reliability and Maintainability Symposium. 1998 Proceedings. Interna-
tional Symposium on Product Quality and Integrity, 1998, pp. 138–148.
doi:10.1109/RAMS.1998.653698.

[27] K. Goševa-Popstojanova, K. S. Trivedi, Architecture-based Approach to
Reliability Assessment of Software Systems, Performance Evaluation
45 (2-3) (2001) 179–204.

[28] P. Popov, Proc. 21st int. conference on computer safety, reliability and
security, SAFECOMP, Springer, 2002, pp. 139–150. doi:10.1007/3-540-
45732-1 15.

[29] I. Gashi, P. Popov, V. Stankovic, Uncertainty explicit assessment of
off-the-shelf software: A bayesian approach, Information and Software
Technology 51 (2) (2009) 497–511.

[30] K. Kanoun, M. Kaaniche, J. P. Laprie, Qualitative and quantitative
reliability assessment, IEEE Software 14 (2) (1997) 77–87.

[31] L. Strigini, D. Wright, Bounds on survival probability given mean
probability of failure per demand; and the paradoxical advantages of
uncertainty, Reliability Engineering & System Safety 128 (2014) 66–
83.

[32] K.-Y. Cai, L. Cai, W.-D. Wang, Z.-Y. Yu, D. Zhang, On the neural
network approach in software reliability modeling, Journal of Systems
and Software 58 (1) (2001) 47 – 62.

[33] T. J. Ostrand, M. J. Balcer, The category-partition method for specifying
and generating fuctional tests, Commun. ACM 31 (6) (1988) 676–686.
doi:10.1145/62959.62964.

[34] C. Catal, B. Diri, A systematic review of software fault prediction
studies, Expert Systems with Applications 36 (4) (2009) 7346–7354.
doi:10.1016/j.eswa.2008.10.027.

[35] S. L. Lohr, Sampling Design and Analysis, Duxbury Press; 2 edition,
2009.

[36] M. Cinque, D. Cotroneo, A. Pecchia, R. Pietrantuono, S. Russo,
Debugging-workflow-aware software reliability growth analysis, Soft-
ware Testing, Verification and Reliability 27 (7).

[37] B. Yang, M. Xie, A study of operational and testing reliability in
software reliability analysis, Reliability Engineering & System Safety
70 (3) (2000) 323 – 329.

[38] R. Pietrantuono, S. Russo, K. Trivedi, Software Reliability and Testing
Time Allocation: An Architecture-Based Approach, IEEE Trans. on
Software Engineering 36 (3) (2010) 323–337.

[39] J. Rao, H. Hartley, W. Cochran, On a simple procedure of unequal prob-
ability sampling without replacement, Journal of the Royal Statistical
Society. Series B (Methodological) 24 (2) (1962) 482–491.

[40] A. Chaudhuri, Survey Sampling Theory and Methods, Chapman &
Hall/CRC, Second Edition, Taylor & Francis Group, 2005.

[41] J. Demšar, Statistical Comparisons of Classifiers over Multiple Data
Sets, Journal of Machine Learning Research 7 (2006) 1–30.

[42] G. Carrozza, R. Pietrantuono, S. Russo, Dynamic test planning: a study
in an industrial context, International Journal on Software Tools for
Technology Transfer 16 (5) (2014) 593–607.

[43] R. Pietrantuono, P. Potena, A. Pecchia, D. Rodriguez, S. Russo,
L. Fernández-Sanz, Multiobjective testing resource allocation under
uncertainty, IEEE Transactions on Evolutionary Computation 22 (3)
(2018) 347–362.

[44] K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model:
Estimation algorithm and empirical validation, Journal of Systems and
Software 82 (3) (2009) 535–543.

[45] D. Cotroneo, R. Pietrantuono, S. Russo, A Learning-based Method
for Combining Testing Techniques, in: Proc. 35th Int. Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 142–151.


