
Performance of Defect Prediction
in Rapidly Evolving Software

Davide G. Cavezza∗, Roberto Pietrantuono∗, Stefano Russo∗
∗DIETI, Università degli Studi di Napoli Federico II

Via Claudio 21, 80125, Napoli, Italy

Email: d.cavezza@studenti.unina.it, {roberto.pietrantuono, stefano.russo}@unina.it

Abstract—Defect prediction techniques allow spotting modules
(or commits) likely to contain (introduce) a defect by training
models with product or process metrics – thus supporting testing,
code integration, and release decisions. When applied to processes
where software changes rapidly, conventional techniques might
fail, as trained models are not thought to evolve along with the
software.

In this study, we analyze the performance of defect prediction
in rapidly evolving software. Framed in a high commit frequency
context, we set up an approach to continuously refine prediction
models by using new commit data, and predict whether or not an
attempted commit is going to introduce a bug. An experiment is
set up on the Eclipse JDT software to assess the prediction ability
trend. Results enable to leverage defect prediction potentials in
modern development paradigms with short release cycle and high
code variability.

I. INTRODUCTION

There is a long tradition regarding techniques, models,

metrics, and algorithms for software defect prediction. Much

literature has been produced around the “best” set of prod-

uct metrics (e.g., McCabe cyclomatic complexity, OO class

metrics, file metrics) and machine learning algorithms (e.g.,

decision trees, logistic regression) to predict the defectiveness

of a software module [1], [2], [3]. With the spread of evolutive

and agile development paradigms, several new metrics have

been considered regarding the code change/churn as predictors

of module defectiveness [4], [5]. Recently, defect prediction is

focusing on commit-level prediction, as this paper does, rather

than at module-level, with the goal of predicting whether a

commit is likely to introduce a defect or not [6], [7].

Defect prediction is a useful means to have a clearer

view about product defectiveness. It can support testing or

inspection activities, and more generally the V&V process

(e.g., by suggesting where to focus the greatest effort), code

integration (e.g., by warning developers whenever a commit

is likely to introduce a defect), and release decisions (a high

predicted defectiveness might indicate the need for further

testing or quality assurance activities).

Current approaches for defect prediction consider a frame of

data for training models, and then assess the prediction ability

on a set of “test data”. Resulting model is then supposed to be

used on real process data. However, the practical application

of such a model to a context where code changes rapidly,

might yield poor performance. Indeed, the rapid evolution of

code and high frequency of commits is likely to invalidate any

model built “statically”, as the model will be soon unaligned

with the product/process it is supposed to describe. To exploit

the potential of defect prediction in this context, a dynamic

approach is required.

In this paper, we investigate defect prediction applicability

in a rapidly evolving development context. An approach to

continuously refine prediction models with new commit data

is implemented, and its performance compared with a static

prediction. We set up an experiment on the Eclipse JDT

software, in order to determine the evolution of the prediction

performance as new data are used to train the model. The data

consist of a set of metrics calculated on each commit in the

history and a label indicating whether it introduced a defect in

the software. The model built on them is intended to predict

whether or not an attempted commit is going to introduce a

bug and to issue a warning in this case.

Results confirm the superiority of a dynamic over a static

approach on an experimental dataset of 26,000 samples span-

ning a period of 13 years. Besides the extent of the improve-

ment in terms of precision and recall, an important outcome

is the evidence that defect prediction potentials can be fully

exploited in highly dynamic development contexts (e.g., agile

building, continuous integration), provided that its models are

thought to be just as much dynamic as the code.

II. DYNAMIC PREDICTION MODEL

Defect prediction is aimed at assessing the defect-proneness

of software components individually, starting from a set of

metrics usually computed to assess the overall product and

process quality [8]. The output of the prediction may be either

a binary value indicating whether a component is defective or

non-defective, or a component ranking based on its relative

defect-proneness. This is the classical view of software defect

prediction and we refer to it as module-level prediction.

More recent papers focus on commit-level prediction. The

metrics used as predictors are related to single commits issued

to a version control system such as Git or Subversion, and

likewise the prediction output says whether or not a commit

introduces a defect in the software. Examples of commit-level

metrics are lines added/deleted, or number of modified files.

The existing works usually employ machine learning algo-

rithms to build a prediction model starting from the existing

data. Studies conducted on different systems have shown that

there is no model absolutely superior to another, but every

2015 IEEE/ACM 3rd International Workshop on Release Engineering

978-1-4673-7070-7/15 $31.00 © 2015 IEEE

DOI 10.1109/RELENG.2015.12

8

2015 IEEE/ACM 3rd International Workshop on Release Engineering

978-1-4673-7070-7/15 $31.00 © 2015 IEEE

DOI 10.1109/RELENG.2015.12

8

model has different performance in each system. Starting

from this perspective, Song et al. [9] propose a module-level

prediction framework consisting in a preliminary selection of

the best model among a set of alternatives; the evaluation is

performed through cross-validation on historical data and the

winning model is used to predict the defectiveness of future

modules.

A question not fully explored yet is the impact of software

changes on the validity of a prediction model. As software

is modified over time, a prediction model built at an initial

stage of the project may no longer be suitable to represent the

correlation between metrics’ values and defectiveness. This is

particularly critical in agile methodologies, in which changes

can be in the order of more than one commit a day.

We propose a commit-level approach that takes into account

such dynamics. It is based on the periodic evaluation of

prediction performance and the retraining of the employed

model if it does not reach a minimum value; the new training is

performed using the most recent commit data at one’s disposal.

More formally, it consists of four steps, repeated cyclically

during a system’s lifetime:

• Model selection: select the best performing model on the

most recent training set;

• (Re)training: train the selected model;

• Prediction: use the trained model to predict defective

commits;

• Evaluation: evaluate periodically the prediction perfor-

mance; start a new iteration if the performance is under

a defined threshold.

III. EXPERIMENTAL SETTING

A. Eclipse JDT data collection

As a case study, we choose the popular open-source Java

IDE Eclipse JDT. It is one of the most frequently used systems

in defect prediction studies [1], [4], so we have a great amount

of baseline data to which we can compare the performance of

our approach.

Eclipse development data are kept in a public Git repository.

We use the CVSAnalY1 tool to extract all the commit infor-

mation from the repository and save it into an SQL database.

A total of 26,009 commits are extracted, spanning over more

than 13 years from 2001-06-05 to 2014-12-13.

We use the SZZ algorithm [10] to distinguish between

defective and non-defective commits. The algorithm consists

in the following steps:

1) Find all the bug fixing commits.

2) For each bug fixing commit, locate the files and the lines

affected by it.

3) For each modified line, search for the commit that last

touched it; this commit is marked as defective, since it

introduced a bug.

4) By elimination, all the commits not marked in the

previous step are labelled as non-defective.

1Available at https://github.com/MetricsGrimoire/CVSAnalY

TABLE I
ECLIPSE DATASET SUMMARY

Total Timespan Defective Non-defective
commits commits commits

26,009 2001-06-05 - 2014-12-13 13,984 12,025
(53.77%) (46.23%)

To perform step 1, we look in the commit messages for the

keywords bug, defect, fix, patch, or their variations.

To perform step 2, we use the diff utility, which lists the lines

modified by a commit. Finally, step 3 is performed via the git
blame utility, that marks each line with the commit that last

modified it.

In analyzing diff’s output, other studies, like [7], consider

only removed or modified lines as buggy lines. However, there

are some bugs that do not imply the elimination of code, but

only additions: for instance, if-else statements lacking the else

branch are corrected by adding new lines without deletions;

such bug would not be considered by the algorithm, since

there are no deleted lines associated with its fix. Therefore,

we choose to consider also the context lines reported by diff,

typically 2 or 3 lines before and after the change.

The results of the labelling, along with the other properties

of the dataset, are summarized in Table I. We can notice

that the commits are almost equally distributed between the

defective and the non-defective class.

On each commit, we calculate a set of metrics that we intend

to use as predictors of defectiveness. The metrics are a subset

of the ones used by Kamei et al. in [6]. Some of them are

related to commit complexity, e.g. measured as number of lines

added or deleted: the rationale is that more complex commits

are more likely to be defective. Other metrics measure the

experience of the developer that performed a commit: a more

experienced committer is expected to issue more non-defective

commits than a less experienced one.

The list of metrics calculated is shown in Table II; some

of them, like LA and LD, are automatically computed by

CVSAnalY, while we need to implement a Python script to

calculate the remaining ones.

At the end of the data collection process, we obtained

a set of 26,009 rows, each corresponding to a commit and

containing its date, the values of the 10 metrics computed on

it, and a label indicating whether it is defective or not.

B. Experiment execution

To test our approach, we first divide the dataset into several

training and test sets. Each training set covers a period of 9

months, while a test set spans over 3 months. The repartition is

made so that the i-th training set contains the data immediately

preceding the i-th test set. Figure 1 illustrates the repartition.

As in Song et al.’s work [9], the algorithms compared at

each model selection step are: OneR, J48, and NaiveBayes.

These algorithms are all provided by the machine learning

software tool Weka2, which we used to run the experiment. The

2Available at: http://www.cs.waikato.ac.nz/ml/weka/

99

Fig. 1. Repartition of training and test sets

TABLE II
LIST OF METRICS USED

Metric Description

Number of modified files (NF) Number of files modified in the commit
Entropy Scattering of modifications throughout the

modified files. A commit requiring the mod-
ification of many lines in a single file has a
lower entropy than one modifying few lines
in many files

Lines added (LA) Number of lines added in the commit
Lines deleted (LD) Number of lines deleted in the commit
FIX Binary value indicating whether or not the

commit is a bug fix
Number of developers (NDEV) Number of developers that changed the files

touched by the commit before the commit
was issued

AGE Average time interval between the current and
the last change across all the involved files

Number of unique changes (NUC) Number of unique commits that last changed
the involved files

Experience (EXP) Experience of the developer, measured as the
number of changes previously committed by
him

Recent experience (REXP) Number of past commits of the same de-
veloper, each weighted proportionally to the
number of years between that commit and the
measured one

selection is performed by means of a 10-fold cross-validation

of the three models, each one iterated 10 times, using one of

the training sets as validating data; the model with the best

performance is selected. As a performance measure, we use

the F-measure, a common metric in defect prediction studies

[11], defined as:

F -measure = 2 · precision · recall
precision + recall

.

We start the experiment by selecting the best model for

the training set 1, and evaluate the F-measure on each of the

following test sets. We keep using the same model while the

F-measure remains above 0.6. Whenever it goes below the

threshold for the test set i, we select a new model trained on

the training set i and use this model on the following test sets.
Finally, we compare the dynamic approach with a conven-

tional “static” one. The latter is obtained by training a model

on the training set 1, and using it to make predictions in all

the successive test sets.

C. Results
Figure 2 shows the prediction performance over the test

sets. The labels on the curve indicate the test sets in which

the predictor had to be retrained. It is immediately evident that

the dynamic approach significantly outperforms the static one.

We had to perform retraining 9 times. J48 was the winning

model in all the model selection phases. Therefore, the entire

experiment was performed with that model. In almost every

case, retraining helped to keep performance over the threshold.

There were only two exceptions: in test set 3, even after

the retraining, the performance stayed below the threshold,

although improving consistently; in test set 5, the performance

was slightly reduced after the retraining.

Some models performed well for a considerably long period

of time: the ones trained on training set 5, 15 and 26 could

be successfully used on 10 consecutive test sets each, corre-

sponding to 30 months in Eclipse’s history. In those cases, nine

months of data were sufficient to predict with good accuracy

the defectiveness of changes over a three times longer period.

IV. DISCUSSION AND CONCLUSION

The experiment produced very promising results about the

applicability of a dynamic approach to defect prediction model

learning. Our next work will be aimed at further investigating

and refining the following aspects.

• Extension of the training window. We used 9-month-

long training sets that allowed us to predict faulty

commits in much longer periods. Equal or even better

performance could have been reached by properly tuning

the training window.

• Frequency of evaluations. We chose to evaluate the

prediction model on test sets of 3 months. Some projects,

however, may require more frequent evaluations, in order

to pinpoint performance degradations earlier. This may

cause problems in periods of scarce work (e.g. holidays),

in which there may be too few commits to obtain a reli-

able evaluation. A possible solution may involve flexible

evaluation intervals, based on the number of commits

actually submitted to the system since the last evaluation.

The frequency should also be affected by the cost of the

evaluations and the eventual retrainings.

• Lack of knowledge on recent commit defectiveness.
The retraining and evaluation phases need the actual

information on whether or not each commit introduced a

defect. In real settings, this could be a problem for the

most recent commits, which may have introduced defects

1010

Fig. 2. Prediction performance over the test sets

still undiscovered at the time of evaluation. This is a

common issue for the practical applicability of commit-

level prediction [7], [6]. Some variations to our approach

may be devised, consisting in calculating the expected

time between the insertion of a defect and its deletion, and

in excluding the most recent commits from evaluation.

• Choice of the performance measure. We employed F-

measure as it summarizes information on precision and

recall in a single value. Some projects may have different

requirements in terms of precision and recall, if, for

instance, the cost associated to a missed defect is different

from the one of a defect-free commit marked as defective.

In those cases, a parameterized version of F-measure can

be used [11], that weighs precision and recall differently.

The final aim will be to provide a reliable instrument that

supports quality assessment and decisions about releases.

Commit-level prediction is useful to pinpoint the changes’

characteristics that are the most correlated to defect injection

in a project (for instance, changes that modify more than 5

files at once are likely to be defective). Once these features

are recognized, inspection rules can be enforced before each

commit to warn developers against risky violations and to fos-

ter the recheck of changes that are likely to be defective. This

would help to locate defects as soon as they are introduced.

At a later stage, statistics on the commit violations can be

combined with other quality measures to take decisions about

the opportunity to release the software.

ACKNOWLEDGMENTS

This work has been supported by the SVEVIA and DIS-

PLAY research projects of the COSMIC public-private labo-

ratory funded by MIUR under grant no. PON02 00485.

REFERENCES

[1] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects
for Eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, May
2007, pp. 9–9.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 2–13, Jan 2007.

[3] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict compo-
nent failures,” in Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06). New York, NY, USA: ACM, 2006,
pp. 452–461.

[4] S. Krishnan, C. Strasburg, R. R. Lutz, K. Goseva-Popstojanova, and
K. S. Dorman, “Predicting failure-proneness in an evolving software
product line,” Information and Software Technology, vol. 55, no. 8, pp.
1479 – 1495, 2013.

[5] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08). New York, NY, USA: ACM, 2008,
pp. 181–190.

[6] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” Software Engineering, IEEE Transactions on, vol. 39, no. 6,
pp. 757–773, 2013.

[7] J. Eyolfson, L. Tan, and P. Lam, “Correlations between bugginess and
time-based commit characteristics,” Empirical Software Engineering,
vol. 19, no. 4, pp. 1009–1039, Aug. 2014.

[8] G. Carrozza, R. Pietrantuono, and S. Russo, “Defect analysis in mission-
critical software systems: a detailed investigation,” Journal of Software:
Evolution and Process, vol. 27, no. 1, pp. 22–49, 2015.

[9] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” Software Engineering, IEEE
Transactions on, vol. 37, no. 3, pp. 356–370, 2011.

[10] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–5,
May 2005.

[11] Y. Ma and B. Cukic, “Adequate and precise evaluation of quality
models in software engineering studies,” in Predictor Models in Software
Engineering, 2007. PROMISE’07: ICSE Workshops 2007. International
Workshop on, May 2007, pp. 1–1.

1111

