
Reliability Assessment of Service-based Software
under Operational Profile Uncertainty

Roberto Pietrantuonoa,∗, Peter Popovb, Stefano Russoa

aDIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
bCSR, City, University of London, Northampton Square, EC1V 0HB, London, UK.

Abstract

We address the problem of operational reliability assessment through testing of
software services delivered on-demand such as Web Services. Software reliabil-
ity assessment is typically done for a specific operational profile: the profile is
needed in testing to select or generate test cases (operational testing) in a way
statistically similar to the anticipated use of software in operation; the observa-
tions of success/failure of test executions are used to predict software reliability
in actual operation. It is well known that unless the profile is accurate, software
reliability predictions obtained via operational testing cannot be trusted.

We present a new way of dealing with the uncertainty in the operational
profile adopting a two-stage Bayesian inference for reliability assessment. The
technique relies on the availability of information about partitions of the input
space. The approach is demonstrated on contrived examples and on a case study
of real Web Services. We discuss the usefulness of the approach in dealing with
two important practical problems: i) the true profile in operation differs from
the one used in testing, ii) the profile in operation is changing continuously.

Keywords: Software reliability, Software testing, Bayes methods,
Service-based software, Web service

1. Introduction

The increasing usage of software services (like Web Services) for mission-
critical infrastructures – e.g., in the banking [1] and financial domains [2] - as
well as for safety-critical systems – e.g., (real-time) embedded systems for do-
mains like industrial automation [3, 4], transportation [5], unmanned vehicles
[6, 7], health care [8] - raises the need for accurately assessing their operational
reliability. Availability/reliability analysis of service-based software through up-
front modeling at design-time is a widely addressed research area [9, 10, 11, 12].

∗Corresponding author.
Email addresses: roberto.pietrantuono@unina.it (Roberto Pietrantuono),

p.t.popov@city.ac.uk (Peter Popov), stefano.russo@unina.it (Stefano Russo)

Preprint submitted to Reliability Engineering & System Safety August 9, 2020



OP operational profile
pdf probability density function
r.v. random variable
D input domain of the service
d a specific input from D
dr an input to the software selected at random from D
prob(d) probability of occurrence of input d
S≡{S1, ..., Sn} a decomposition of D into n partitions
Pi probability that an input is selected from D ∈ Si

(probability of partition Si)
OPP≡{P1, ...,Pn} the set of partitions’ probabilities (OP on partitions)
prob(d | d ∈ Si) conditional probabilities of input d within partition Si

(i = 1, ..., n) (operational profile within partitions)
F r.v. representing the service probability of failure

on a randomly chosen input
R ≡ 1−F r.v. representing the service reliability
fF (x) pdf of the r.v. F
Fi r.v. conditional probability of failure on partition Si

fFi
(x) pdf of Fi

E[F ], E[R], E[Fi] expected value of r.v. F , R, Fi

V ar(Fi) variance of r.v. Fi

Covar(Fi,Fj) covariance of r.v. Fi, Fj

D(α1, ..., αn) Dirichlet distribution with parameters α1, ..., αn

Beta(a, b) Beta distribution of shape parameters a, b
Γ() Gamma function
B Bayes factor

Table 1: Acronyms and notations

However, service providers like Amazon [13] are expected to give assurances
(service-level agreements) for failure-free operation that are robust to the un-
certainty in the operational profile.

We consider the problem of assessing software services reliability in opera-
tion. A key practice in software reliability engineering is the operational profile
based testing (or simply operational testing) [14], a category of testing tech-
niques shown to suit well reliability assessment [15, 16, 17]. They work by
establishing the intended operational profile (OP) of the software under assess-
ment by characterizing how it will be used in operation [18, 19]. The OP is used
to generate a suite of test cases; based on observation of successes and failures
of test executions, one draws conclusions about its reliability.

It has been argued over the years that unless the profile is captured accu-
rately, the estimates obtained via testing cannot be trusted to give an accurate
prediction of reliability in operation [14]. Though acknowledged as important,
this issue has been given insufficient attention: operational testing commonly
assumes that the OP is accurate. Attempts to construct worst-case bounds on

2



the impact the OP variation may have on reliability evaluation, e.g. [20] follow
the tradition in the critical systems domain of conservative assessment when
dealing with the uncertainty of the various affecting factors. Drawbacks of con-
servative assessment are well known, too. It is clear that accurate reliability
assessment typically requires shorter and less expensive verification, to demon-
strate that a reliability target is met, than would be required by conservative
techniques. For some classes of on-demand software, such as Web applications,
the operational profile may even be unknown in advance. One can deal with
this difficulty defining a space of candidate profiles and assessing the reliability
for all of them, establishing the worst that can result. This approach depends
crucially on how accurately the space of candidate profiles is captured.

The operational profile may also vary significantly over time. Successful
applications are subject to continuous improvement, e.g. by adding new func-
tionalities, which may well affect the way software is used. For instance, the
way complex Web applications are used changes over time: a profile considered
unlikely before software deployment, may turn out to be the norm.

In all cases of unknown, uncertain or variable profile, the service reliability
predicted via operational testing may not be accurate. In this paper, we pro-
pose a new way of dealing with the epistemic and aleatory profile uncertainty in
operational testing. Our contributions are: i) we propose a Bayesian modeling
framework for OP uncertainty and variability; ii) based on this, we propose
a black-box engineering method exploiting observational data to improve the
accuracy of software reliability prediction when its usage profile differs from
the estimated one and/or it changes over time; iii) we describe through con-
trived examples how the method can be actioned, and we show its effectiveness
experimentally with publicly available Web Services.

2. Related research

The literature on the impact of profile uncertainty on software reliability
estimate lacks recent studies. Several early studies in operational testing in-
vestigate empirically the sensitivity of reliability to profile uncertainty. They
are quite contradictory. The authors in [21, 22] attest a negligible impact of
profile error on reliability estimate. Musa [21] experience that in 99.4% of the
studied configurations, the estimate error is smaller than the occurrence proba-
bility error by a factor greater than 5. Pasquini et al. [22] conclude that “1) the
predictive accuracy of the models is not heavily affected by errors in the estimate
of the OP; and 2) this relation depends on the accuracy with which the software
system has been tested”. More recently, Silva et al. [23] claim that the predictive
ability of the studied reliability models is not affected by OP variations.

Oppositely, Cai et al. [24] experimentally evaluate testing techniques perfor-
mance for reliability assessment under inaccurate profiles, revealing an influence
on the estimate accuracy. Chen et al. [25] conduct a case study, using four
Software Reliability Growth Models, finding the error of the estimate to grow
linearly with the error in the profile estimate.

3



Such contrasting results depend on the assessment model and on the case
study. They are limited to “observing” the effect of the error on the estimate,
with true reliability assumed to be known; the OP uncertainty is not encom-
passed in the modeling technique. In a real situation, the impact of a wrong
profile would be revealed only after a long operational time, when the true
reliability can be estimated accurately from the failure data.

Besides sensitivity studies, several authors model OP uncertainty explicitly.
Originally, Brown et al. [26] and Thayer et al. [27] propose adjustments to the
frequentist estimator of reliability when the OP differs from the testing pro-
file, based on the chi-square measure of their difference. The problem is then
addressed by Miller et al. [28], who use the Bayesian estimator to estimate
reliability when no failure is observed. They also consider the case of the opera-
tional and testing profiles being different, and propose three strategies to adjust
the estimate: i) discarding test cases, ii) conducting further test cases, or iii)
changing the weights in the estimate based on the new profile. Bishop et al. [29]
focus on deriving conservative bounds for probability of failure on demand, when
testing and operational profile differ. Leung [30] presents optimisation models
for reliability allocation under an uncertain OP, assuming that the number of
functions executed by the customer is geometrically distributed. Recently, Hart-
man [31] proposes a model capturing the relation between faults and failures
and use it to assess the effect of using OPs for reliability growth testing, show-
ing that operational profile is beneficial, but not when a very high reliability
is obtained. Building on the work by Whittaker et al. [32], Kamavaram and
Goseva-Popstojanova [33] use the notion of entropy for OP uncertainty: they
use discrete time Markov chains to model software architecture and OP, and
source entropy to quantify the uncertainty present in such models. In [34] they
generalize [33] based on the method of moments. Unlike our approach, these
are white-box techniques: they model reliability as a function of software com-
ponents’ reliabilities and of frequencies of control transfer between components.
This is done also by Özekici and Soyer [35], who use a continuous-time reliability
model and assume a perfect debugging to remove defects revealed by failures.

Cotroneo et al. [36] analyse the relation between the profile error and the
number of tests required to deliver better reliability than the ideally error-free
operational testing. In [17] they propose a Monte Carlo approach to predict the
error on reliability estimate caused by a tester-specified maximum profile error.
Testing under uncertainty is also addressed by Menghi et al., who deals with
problem of creating a credible oracle for cyber-physical systems in the presence
of uncertainty that may affect the coverage of an oracle [37]. Zhang et al. focus
on uncertainty-wise test case generation [38]. Clearly, although both the oracle
problem and test case generation are very important in reliability assessment,
both are outside the scope of this paper. These can complement to our work,
as we take the result of testing to perform the assessment.

Our proposal resumes the early work by Adams [39], who suggested that the
Dirichlet distributions can be used to compute confidence intervals of reliabil-
ity estimates. We extend it to encompass profile variability, and formalize an
actionable method exploiting observational data for dynamic model selection

4



so as to cope with an uncertain or changing OP. Other authors use Dirichlet
distributions to support reliability-oriented testing in software systems. Camilli
et al. concentrate on ways of reducing uncertainty of the parameters charac-
terising the actions of a Markov Decision process for model-based testing [40].
Our focus is on accounting for the impact of the operational profile, which may
vary (significantly) over time, and on the probability of failure of a randomly
selected input. About model selection, our work exploits the Bayes factor to
this aim. The recent work [41] by Vanslette et al. proposes a general metric
(Bayesian Validation Metric, BVM) to select among alternative models. While
our focus is not on model selection per se, the BVM is worth exploring in the
future for the problem we address in this work.

3. Background and problem statement

Acronyms and notations used throughout the paper are listed in Table 1.

3.1. Software operational profile

Consider a software service, whose inputs are requests made to the service
through its API.1 Generally, the likelihood of selecting an input from D will
vary: some inputs are more likely than others. These differences are captured
by the operational profile (OP) [18], a probabilistic measure, prob(d), that is
the probability that input d ∈ D is submitted to software for processing.

In operational testing, the input space is typically split into n non-overlapping
partitions [24], S={S1, . . . , Sn} and Si ∩ Sj = ∅ | i 6= j. In this case, the opera-
tional profile is often defined in two stages:
• A probability distribution is defined on the set of partitions S, which

defines the probability prob(dr ∈ Si) – denoted with Pi - of selecting at
random an input dr from partition Si:

Pi ≡ prob(dr ∈ Si) =
∑
d∈Si

prob(d) (i = 1, . . . , n). (1)

• The conditional probabilities p(d | d ∈ Si) of selecting input d from within
partition Si can be expressed as:

prob(d | d ∈ Si) =
prob(d)

Pi
(i = 1, . . . , n). (2)

Note that the probabilities (1) and (2) are defined over different domains: the
former over the set of partitions (we refer to it as operational profile on parti-
tions, OPP); the latter over the inputs of a partition (operational profile within
partitions). We explicitly point out that the n probabilities Pi, summing up
to 1 by their nature, have (n-1) degrees of freedom, i.e., (n-1) partition prob-

abilities can be defined so that
∑n−1

i=1 Pi ≤ 1, and the last one is given by

Pn = 1−
∑n−1

i=1 Pi.

1Selecting an input from the input space D and submitting it to the service corresponds
to issue a request to the service through its API; thus, “Input” and “request” are used syn-
onymously in the following.

5



3.2. Dealing with profile uncertainty

The probabilities (1) and (2) capture the aleatory uncertainty about the
likelihood of an input being selected at random from the input space. In prin-
ciple they are estimable with an arbitrary accuracy: it would suffice to observe
software in operation for unlimited period of time. If this were possible, then
these probabilities will be known with certainty.

Unlimited observations of software in operation cannot be afforded since D
is, in general, very large. While with limited observations one might be able
to estimate quite accurately the partition probabilities Pi, precisely estimating
the conditional probabilities prob(d | d ∈ Si) for every single input is infeasible.
The very idea of partitioning D and having a much smaller number of partitions
than that of inputs is motivated by the desire for a coarser model for the OP.

Infeasibility of estimating prob(d | d ∈ Si) can be dealt with by making
additional assumptions. Finding plausible assumptions is difficult and instead
convenient assumptions are often made in practice, which may be incorrect.
One such assumption is that all inputs of a partition are equally likely. Another
one is that conditional probabilities prob(d | d ∈ Si) are not affected by a change
of the likelihoods of partitions. In this paper we adopt the latter assumption, i.e.
that the operational profile changes only affect the probabilities of partitions.

Given a limited knowledge about the true OP (e.g., due to limited obser-
vations of software in operation), the estimates of probabilities (1) and (2) are
subject to epistemic uncertainty. We focus on epistemic uncertainty of the
probabilities of partitions (OPP), which are treated as random variables with
their corresponding distributions. We apply Bayesian inference to update the
epistemic uncertainty about OPP and discuss practical implications.

4. Modeling framework and application scenarios

4.1. Reliability modeling framework

We assume, in line with the literature [42, 43, 24], that reliability is expressed
as the probability of not failing on a randomly chosen input dr ∈ D. Let F be
a random variable (r.v.) that represents this probability. The service reliability
then can be expressed via the r.v. R = 1−F .

Let Fi be the r.v. representing the probability of service failure on an input
dr selected from partition Si. Assuming that the profile on partitions does not
affect the likelihood of the inputs within partitions, each conditional probability
Fi is suitably represented as a r.v. with pdf fFi

(x). We assume that Beta
distribution with shape parameters ai, bi – Beta(ai; bi) is appropriate for Fi,
since it offers flexibility and simplifies Bayesian inference, as is detailed below.
The expected value of each Fi with Beta distribution is [44]:

E[Fi] = ai/(ai + bi). (3)

Consider the case that OPP is known with certainty, i.e., the values P1=P1,
. . . ,Pn=Pn are known constants. In this case, the probability of failure on an

6



input dr selected from D according to that profile is a weighted sum of the n
conditional Fi, the weights being the known probabilities P1, . . . , Pn:

F =

n∑
i=1

Pi · Fi, E[F ] =

n∑
i=1

P i · E[Fi] (4)

Let us further assume that the n conditional Fi are independently distributed
random variables. This is a plausible assumption in those cases when an assessor
is not going to change the belief (i.e., epistemic uncertainty) associated with Fi

if (s)he sees evidence of poor/good conditional probability of failure in some of
the other partitions.2 We observe that the product Pi · Fi in Equation (??) is
itself a random variable. Denoting with fPi

Fi
(x) its marginal distribution,3 the

pdf of Fi can be expressed as a convolution:

fF (x | P1 = P1, ...,Pn = Pn) = fP1
F1

(x) ~ · · ·~ fPn
Fn

(x). (5)

We can now remove the assumption that the profile is known with certainty
(captured by P1=P1,..., Pn=Pn). Since partition probabilities are dependent,
following [39] we model the epistemic uncertainty about OPP using a multiva-
riate distribution, namely the Dirichlet distribution, D(α1, ..., αn), with param-
eters (α1, ..., αn) for n variates with (n-1) degrees of freedom, defined by [44]:

fP1,...,Pn(p1, ..., pn) =
Γ(A)∏n
i=1 Γ(αi)

(
n−1∏
i=1

pαi−1
i

)(
1−

n−1∑
i=1

pi

)αn−1

(6)

where A =
∑n

i=1 αi, and Γ() is the Gamma function.
The marginal distribution of each Pi variate is a Beta distribution with shape

parameters (αi, A-αi), Beta(αi, A-αi) [9]. The moments of the Pi variates are
given by [44]:

E[Pi] =
αi
A
, (7)

V ar(Pi) =
αi · (A− αi)
A2 · (1 +A)

, Covar(Pi,Pj) =
−αi · αj

A2 · (1 +A)
, j 6= i. (8)

Using the formula of the total probability, Equation (5) becomes:

fF (x) =
∫
f(x | P1, ...,Pn)fP1,...,Pn(p1, ..., pn)dp1 . . . dpn

=
∫ [

fP1
F1

(x) · ... · fPn
Fn

(x)
]
fP1,...,Pn(p1, ..., pn)dp1 . . . dpn.

(9)

Equation (9) provides the marginal distribution of the service probability of
failure, which accounts for the epistemic uncertainty related to the profile and
the n conditional probabilities of failure, Fi.

The marginal distribution of F given by Equation (9) can be used to compute
various metrics of interest for the service under study. One can compute the

2We acknowledge that treating the conditional probabilities of failure in partitions as in-
dependent random variables is a limitation of the current work and plan to extend it for the
more general case when one may want to capture dependencies between them. This is further
discussed in Section 8, among threats to validity.

3This distribution can be trivially derived from fFi
(x).

7



expected value (and other moments) of the service probability of failure, hence
the expected value of the service reliability R, which are given by:

E[F ] =

n∑
i=1

E[Pi] · E[Fi], E[R] = 1− E[F ]. (10)

Moreover, one can compute the risk that the true probability of failure can
turn out to be unacceptably high (i.e. exceed a given threshold). This risk is
represented by the tail of the distribution of the service probability of failure:

prob(F ≥ T ) =

∫ 1

T

fF (x)dx. (11)

Another question of interest is knowing the likelihood of surviving the next
M input requests without a failure. This can be obtained as:

prob(no failure in next M inputs) =
∫ 1

0
(1− x)M · fF (x) dx. (12)

The above expressions may be computed from F , which in turn depends
on the data observed in operation: i) the number of inputs processed correctly
and incorrectly in partitions – these will be used to update the uncertainty
about conditional probabilities of failure in partitions, fFi(x); ii) the number
of inputs selected from each partition, to update the uncertainty about the
partition probabilities, captured by D(α1, ..., αn).

4.2. Application scenarios

We envisage two important circumstances of interest:

• The operational profile is fixed. In this case the epistemic uncertainty
about the OP will diminish as more and more observations come from
monitoring the service in use. The distributions of the conditional proba-
bilities of failure in partitions (Fi), too, will become narrower and narrower
as more observations are collected, and asymptotically their whole mass
will be concentrated in a single point. This asymptotic case may require
observations much longer than one can afford prior to deployment. Thus,
we foresee the method to be useful in the initial period after deployment.

• The operational profile and/or the service itself is subject to change (e.g.,
due to new functionalities, which may affect the way the service is used).
In this case, one can monitor the service behavior for possible changes of
the OP on partitions and of the Fi, and re-compute the service reliabil-
ity and other metrics of interest, like those of Equations (11) and (12).
The asymptotic case for the stable profile outlined above may be sim-
ply unattainable due to frequent changes in the case of a variable profile.
Hence, one may wish to discard “old” observations, if the current pro-
file differs significantly from the past. For such circumstances we define
a procedure to capture the relevance of the observations in judging the
operational profile, where recent observations are given a higher weight
than those reflecting the profile in the more distant past.

The next two Sections show how to use the framework in both cases.

8



1.	Par''on	the	demand	space	and	
define	ini'al	belief	on	OPP	and	Fi	

Si,	Pi,	Betai	

Ni,	ri	

2.	Observe	processing	of		
N	service	requests		

3.	Update	OPP	(Dirichlet)		
and	Fi	(Betai)	

4.	Compute	service	metrics	

Service	PFD	distribu'on	
Expected	reliability	
Risk	of	failure	above	a	given	threshold	
Prob.	of	surviving	next	M	demands	
…	

Fu
rt
he

r	
ob

se
rv
a'

on
s	

(t
he

	p
os
te
ri
or
s	
be

co
m
e	
th
e	
ne

w
	p
ri
or
s)
	

D,	Betai	

1.	Par''on	the	demand	space	
and	define	ini'al	belief	on	OPP	and	Fi.		

Define	K	
K;				Si,	Pi,	Betai			i=1,…,N;	

N1,i,…,	Nn,i;	ri	

2.	Observe	processing	of		
Ni	service	requests		

3.	Compute	K	Dirichlet	models	

5.	Compute	service	metrics	
Service	PFD	distribu'on	
…	

Fu
rt
he

r	
ob

se
rv
a'

on
s	

Dh=D(α1,h+N1,i,…,	αn,h+Nn,i)			h=1,…,K	

4.	Pairwise	models	comparison	and	
selec'on.			Update	Fi	(Betai)	

Selected	Dsel,	Betai		i=1,…,N	

b)	a)	

Figure 1: Steps of the method for: a) stable, b) variable operational profile.

5. Stable operational profile

5.1. Method

The method proposed in the scenario of a stable but uncertain OP is shown
in Figure 1 a). First, the input space of the service under study is partitioned,
and a pre-deployment OP on partitions is defined. Then, the initial beliefs are
expressed by defining the initial parameters of thte n-variate Dirichlet distribu-
tion – capturing the uncertainty about the OPP - and the n univariate Beta
distributions, expressing the uncertainty about the conditional probabilities of
failure. In case of “ignorance” (i.e. in the absence of any subjective prefer-
ences4), the initial beliefs are modeled by a Dirichlet and Betai distributions
with all parameters equal to 1. When the service is put in operation and a num-
ber, N , of input requests are processed, the following information is collected:

• the number of inputs N1, ..., Nn submitted to partitions S1, ..., Sn, respec-
tively, with N1 + ...+Nn = N ;

• the number of failures observed in partitions, r1, ..., rn, respectively.

The collected information Ni, ri is used to update the uncertainty related
to OPP and the probabilities of failure in partitions, as follows:

• The Dirichlet distribution D(α1, ..., αn) modeling the OPP before the new
observation, with the new information N1, ..., Nn, will become [44]:

D(α1 +N1, ..., αn +Nn). (13)

4“Ignorance” and “ignorance prior distribution” are part of the jargon used in Bayesian
assessment, to indicate that an assessor has no preferences over the range of possible values
of a given parameter. Our use of these terms is consistent with the jargon.

9



• The updated distribution of the conditional probability of failure Fi in
partition Si, Beta(ai, bi), and its expected value, will become:

fFi = Betai(ai + ri, bi +Ni − ri), E [Fi] =
ai + ri

ai + bi +Ni
. (14)

With the new D, Betai, the F distribution is given by Equation (9). This
allows us to compute the desired service metrics, e.g.: expected reliability; the
risk that the probability of failure is above a given threshold (Equation 11); the
probability to survive without failures the next M input requests (Equation 12).

5.2. Examples

5.2.1. Example 1

Consider a software service with an input space divided in n=5 partitions,
S={S1, . . . , S5}, whose operational profile is expected not to change in opera-
tion, and that this profile is believed to be known with certainty.

Assuming no prior knowledge about the occurrence of failures within parti-
tions, the priors fFi

(x) are set to Betai(ai=1, bi=1).
Now suppose the service is deployed and that monitoring it in operation in

a time interval (step 2) produces the following observations about the number
of requests issued to partitions and the number of failures in partitions:

N1=300, N2=800, N3=1,500, N4=1,000, N5=400; N=4,000;
r1=2, r2=1, r3=1, r4=1, r5=0.

With the observations, the assessor can update (step 3) the conditional prob-
abilities of failure in partitions and their mean values using the Equations (14):

fF1
(x) = Beta

′

1(3, 299), fF2
(x) = Beta

′

2(2, 800), fF3
(x) = Beta

′

3(2, 1500)
fF4

(x) = Beta
′

4(2, 1000), fF5
(x) = Beta

′

5(1, 401).

E [F1] = 3
302 , E [F2] = 2

802 , E [F3] = 2
1502 ,

E [F4] = 2
1002 , E [F5] = 1

402 .

We illustrate effect of OPP on the service reliability for 3 different operational
profiles: OPP1, OPP2 and OPP3.

Case 1: OPP1 = {P1 = 0.10, P2 = 0.20, P3 = 0.40, P4 = 0.25, P5 = 0.05}.
The reliability assessor can then use Equation (4)5 to compute the expected

value of the service probability of failure F and the reliability R (step 4):

E [F ] =
∑5

i=1 Pi · E [Fi] = 0.002648, E [R]=1-E [F ]=0.997352.

Case 2: OPP2 = {P1 = 0.40, P2 = 0.20, P3 = 0.10, P4 = 0.25, P5 = 0.05}.
Under this OPP the least reliable partition, S1, is significantly more likely,

while partition S3 is significantly less likely than under OPP1. The expected
probability of failure and reliability become noticeably worse:

E [F ]=0.005229, E [R]=0.994771.

Case 3: OPP3 = {Pi=0.20, i=1, ..., 5}

5The Pi are still believed certain at this stage of the example, hence the use of Eq. (5).

10



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
conditional PFD

0

0.01

0.02

0.03

0.04

0.05

0.06
pr

ob
ab

ilit
y 

de
ns

ity
 fu

nc
tio

n

Conditional Probability of failure (in partitions)

Partition 2
Partition 3
Partition 5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
conditional PFD

0

0.01

0.02

0.03

0.04

pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Conditional Probability of failure (in partitions)

Partition 1
Partition 4

Fixed Operational Profile

1 2 3 4 5
partitions

0

0.1

0.2

0.3

0.4

pr
ob

ab
ilit

ie
s

Operational profile 1
Operational profile 2
Operational profile 3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Marginal PFD

0

0.01

0.02

0.03

0.04

0.05

0.06

pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Marginal Probability of failure

Operational profile 1
Operational profile 2
Operational profile 3

Figure 2: The two upper figures plot the epistemic uncertainty in the conditional probabilities
of failure for partitions 3, 4 with higher reliability (left) and for partitions 1, 2, 5 with lower
reliability (right). The third plot (bottom left) shows the 3 sample fixed profiles on partitions
(OPP1, OPP2, OPP3). The last plot (bottom right) shows the distributions of the marginal
probabilities of service failure under the three profiles.

Finally, in case of equally likely partitions, the expected values become:
E [F ]=0.003649, E [R]=0.996351.

So far, the initial OPP is believed certain, hence the above expected values
ignore the related epistemic uncertainty. The reader may have noticed that the
observations indicate significant deviation from the assumed OPP. For instance,
under OPP1 one would expect to see about 200 requests from partition 5, which
is significantly fewer than the observed 400 from S5. However, the uncertainty
about the conditional probabilities of failure in partitions, Fi, captured by the
Beta distributions, has been taken into account. Under the assumption that
these can be treated as independent random variables, the assessor can use
Equation (5) to derive the marginal probability of failure for the three profiles.
These are shown in Figure 2. Clearly, the operational profile affects not only the
expected value of the probability of failure but also the epistemic uncertainty in
the distribution of the marginal probability of failure. We note that the OPP in
the examples were chosen to be quite different: in OPP1 and OPP2 the prob-
ability of selecting an input from the partition with the worst reliability, S1, is
swapped with that of the more reliable partition S3; OPP3 defines equally likely
partitions. The bottom-right plot in Figure 2 shows that the failure distribu-
tion under OPP2 is shifted to the right (higher failure probability) compared to
OPP1 and OPP3, due to the higher probability of selecting an input from the
least reliable partition S1.

5.2.2. Example 2

Now, let us illustrate how we deal with the uncertainty in OPP, which is
captured by the Dirichlet distribution. Assume that the assessor was ignorant
before deployment and used the first N=4,000 requests and the counts Ni of
requests for partitions to define his/her initial belief about the OPP by modeling

11



profile uncertainty with the following Dirichlet distribution:
D(α1=300, α2=800, α3=1,500, α4=1,000, α5=400).

As with Example 1 we assume that the assessor started with ignorance about
the probabilities of failure in partitions and then observed the same number of
failures in partitions as in Example 1: r1=2, r2=1, r3=1, r4=1, r5=0.

The expected values of the Pi variates are given by Equation (7):
E[P1] = 0.075, E[P2] = 0.20, E[P3] = 0.375, E[P4] = 0.25, E[P5] = 0.10.
The assessor would then compute (step 4) the marginal probability of failure

using Equation (9), accounting for the epistemic uncertainty on both the OPP
and the probabilities of failure within partitions, and the new expected service
probability of failure and service reliability using Equations (10):

E [F ]=0.002491, E [R]=0.997509.
The reliability predicted this way is slightly different from the one estimated

before deployment – reflecting the small difference between the profile OPP1

believed to be certain before deployment and the uncertain profile derived from
the actual post-deployment Ni observations - but is more faithful, as the Ni

observations in operation (even though limited) corroborate or correct the initial
“static” estimate. Figure 3 (bottom-left plot) reports the two distributions of
the marginal probability of failure.

Let us now see how the reliability prediction will change as a result of further
observations (the iteration in Figure 1). Assuming the assessor observes further
N
′
=100 requests to the service (hence, the previous posteriors become the new

priors), let us consider the following two sets of outcomes.

Observation 1:
N
′

1=8, N
′

2=22, N
′

3=39, N
′

4=23, N
′

5=8;
r
′

1=0, r
′

2=0, r
′

3=0, r
′

4=0, r
′

5=0.
The observed N

′

i affect the Dirichlet distribution characterising the uncer-
tainty on the OPP, whose posterior given by expression (13) is the Dirichlet:

D
′
(α1=308, α2=822, α3=1539, α4=1023, α5=408).

with expected values of the Pi variates given by Equation (7):
E[P1]=0.0751, E[P2]=0.2005, E[P3]=0.3754, E[P4]=0.2495, E[P5]=0.0995.

Using expressions (14) to obtain the conditional probabilities of failure in
partitions and then Equation (10), the new expected values of F and R are:

E [F ]=0.002430, E [R]=0.997570.
Clearly, as the relative occurrences N

′

i/N
′

are in line with the initial OPP and

no failures are observed in the N
′

requests, the expected reliability has slightly
improved.

Observation 2:
N
′

1=10, N
′

2=45, N
′

3=30, N
′

4=8, N
′

5=7;
r
′

1=0, r
′

2=1, r
′

3=2, r
′

4=1, r
′

5=0.
Using expression (13), the posterior Dirichlet distribution will become:

D
′
(α1=310, α2=845, α3=1530, α4=1008, α5=407),

with expected values of the Pi variates given by Equation (7):
E[P1]=0.0756, E[P2]=0.2061, E[P3]=0.3732, E[P4]=0.2459, E[P5]=0.0993.

12



Figure 3: The two upper figures plot the epistemic uncertainty in the conditional probabilities
of failure for partitions 2, 3 and 5 with higher reliability (left) and for partitions 1 and 4 with
lower reliability (right) before (prior) and after (posterior 1 and posterior 2) observations 1
and 2. The third plot (bottom left) shows the distributions of the marginal probabilities of
service failure under a fixed profile and under the uncertain profile modeled by the Dirichlet.
The last plot (bottom right) shows the distributions of the marginal probabilities of service
failure before (prior) and after (posterior 1 and posterior 2) observations 1 and 2.

The conditional posterior distributions of the probability of failure in parti-
tions will be different than Observation1, this affecting the new expected values
of F and R as follows:

E [F ]=0.003404, E [R]=0.996596.
For both observations, the failure probability, conditional on partitions, and

the marginal ones are plotted in Figure 3. It can be seen – from the above
computations and from the bottom-right plot of Figure 3 - that the predicted
service probabilities of failure (Posterior 1 and 2) are distinctly different from
the initial belief (Prior). Unlike Observation 1, in Observation 2 the relative
occurrences N

′

i/N
′

are not in line with the initial OPP, and some failures are
observed: accordingly, the expected reliability has become worse.

6. Variable operational profile

6.1. Method

In case the OP changes over time, estimates of the service reliability, which
are accurate yet promptly reactive to changes, can be made using a range of
schemes, depending on how the history of observations in operation is taken
into account when updating the Dirichlet distribution. In the case of “small”
changes, accounting in the prior for the entire history might be acceptable [39].
In the case of significant and rapid profile changes, discarding the possibly ir-
relevant history and re-starting with “ignorance” might be preferable. Cases
may also be envisaged, whereby accounting in the prior only for the very recent
history might be best. Within this range of schemes – from keeping all past ob-
servations in the prior to discarding them all - we propose the iterative method
shown in Figure 1 b), to chose the prior best suited for the pace of change.

13



Another option for describing the uncertain OPP might be to use a weighted
sum of distributions6, which account for different lengths of the observed re-
quests history. For example, let us assume that the past profile, D(α1, ..., αn),
is accounted for with some weighting coefficient, (0 ≤W≤ 1), while the new
profile (constructed by starting with “ignorance” and updated with the last
N observations), D(1 + N1, ..., 1 + Nn), is given weight (1-W). The posterior
distribution then will be:

fP1,...,Pn(p1, ..., pn) = W ·D(α1, ..., αn) + (1−W ) ·D(1 +N1, ..., 1 +Nn). (15)

If this approach is adopted, the attractiveness of the Dirichlet distribution as a
prior – leading to a posterior which is also a Dirichlet, the parameters of which
can be easily derived from the observations N1, ..., Nn - will be lost. The pdf
fP1,...,Pn(p1, ..., pn) is no longer guaranteed to be a Dirichlet distribution, and
its computation may pose some technical difficulties.

We propose to run several Bayesian models in parallel, and to select for re-
liability predictions the model which provides the most accurate prediction of
the operational profile at the time a prediction is made. The candidates are all
Dirichlet models, using various history lengths or models defined by Equation
(15). To this aim, we divide the history of observations into iterations. A can-
didate model, Mh, will account for the history up to h previous iterations, with
h = 1,...,K, K being the maximum number of past iterations to consider. With
this approach, each candidate prior remains a Dirichlet distribution, allowing
for analytic inference (based on the conjugate property of Dirichlet and the
multinomial likelihood of the observations). Specifically:

• At iteration i, N1,i,...,Nn,i requests – with N1,i+...+Nn,i=Ni - are ob-
served for partitions S1, ..., Sn, respectively, and the profile is updated.

• K Dirichlet distributions are computed, using the requests observed in
the last iteration, and considering the history up to the previous h = K
iterations. At iteration i (i ≥ K), we have K models:

Mh = fP1,...,Pn(p1, ..., pn) = D(α1,i−h +N1,i, . . . , αn,i−h +Nn,i) (16)

where h=1 toK. The parameters α1,i−h,...,αn,i−h account for the cumulati-
ve number of observations per partition between iterations (i-h) and i.
These models consider histories of various lengths, representing the ob-
servations more or less well depending on when and to what extent the
profile changed.

• These candidate models are then pair-wise compared by means of poste-
rior odds on the posterior Dirichlet distributions only. If we are indifferent
between the candidate prior beliefs in the OP, using the Bayes Factor B
is the same as using the posterior odds, which is equal to the likelihood
ratio. For instance, with two candidate models, M1 and M2, for the prior

6Or indeed other models, which may be judged as adequate for specific circumstances.

14



of the operational profiles, the posterior odds can be expressed as:

posterior odds = P (M1|data)
P (M2|data)

= P (data|M1)
P (data|M2)

· P (M1)
P (M2)

= B · [prior odds] (17)

where data represents the requests N1,i,...,Nn,i observed in the last itera-
tion. Given the same prior, prior(M1)=prior(M2), hence prior odds= 1,
model M1 is preferred if the Bayes factor is greater than 1, meaning that
it describes better the observed data (i.e., how the observed requests are
split among partitions).

Comparing models allows addressing a well-known problem in Bayesian in-
ference, often left to intuition, namely how long the history needs to be (i.e.,
how to choose K) for learning properly. Indeed, this can bring to scalability
problems, but the estimate’s accuracy vs computational cost trade-off is decided
by the user depending on the needs/resources. The most expensive choice is to
compare, at every iteration, all the models and take the best one. While the
least expensive choice is to compare only two models and only at “relevant”
iterations. A practical compromise strategy is to compare the model consid-
ering only the observations in the last iterations (i.e., without history) against
a model with either a) all the observations from the beginning (K = i), or b)
the observations up to a given number of past iterations (K < i) deemed to be
relevant for the problem under study, or c) up to known/hypothesised change
points of the process (for instance, if the tester has reasons to think that the
operational profile has changed – e.g., a new functionality is released - or a
change is detected through other techniques).

6.2. Examples

We use contrived examples of variable profile to show how the method selects
the model, which best captures the current profile. The examples only deal
with the uncertainty on OPP, while the conditional probabilities of failure in
partitions are ignored. Let us consider only the models of the two extreme cases:
i) keeping the full history in the prior since the beginning of the observations
(namely, Mh with h=K), and ii) completely ignoring the history (Mh with h=1).
Consider n=5 partitions, with a uniform profile: p1=p2=p3=p4=p5=0.2. Let us
assume that the observations are split into iterations of 40 service requests and
that the OPP is updated at the end of each iteration. The initial uncertainty
in the OPP is captured by a Dirichlet distribution D(1, 1, 1, 1, 1). We further
assume that the profile changes after 800 requests (i.e., after iteration 20). We
consider two cases for the profile change:

• Case 1. The profile change is relatively minor: p1=0.10, p2=0.05, p3=0.30,
p4=0.25, p5=0.30. Consider the likelihood of the two models Mk, M1

given the data before and after the change (whose ratio gives the Bayes
Factor under the mentioned assumption of equal priors). Figure 4 plots
the likelihood values between iterations 0 and 300. We observe that the
likelihood values from the models are very small numbers (in the order of
1.0E-10). Yet, it is quite clear, what the ordering between them is: before
the profile change the difference is unclear (the ordering of the likelihoods

15



Figure 4: Variable profile, case 1.

oscillates), but afterwards the likelihood of the model without history is
clearly greater, which indicates that this model captures better the obser-
vations between iterations 20 (when the profile changes) and 150. After
iteration 150 the likelihoods computed with the two models become again
hardly distinguishable. This behaviour does indicate that after a profile
change the model without history provides more accurate predictions.

• Case 2. The changed profile is defined as follows: p1=0.01, p2=0.60,
p3=0.30, p4=0.04, p5=0.05. Clearly, the new profile differs significantly
from the uniform profile. Figure 5 plots the likelihood values of the iter-
ations computed with the two models for iterations 0 and 150. Although
the pattern after the change is similar to what we observed in the previ-
ous example – the model without history reacts to the change better - we
see that the difference now is much more clearly pronounced. It is worth
noting the gradual improvement of the performance of the history-aware
model, but the history-aware model will need much longer to “catch up”
with the model in which the history is ignored.

The above examples convey how our model selection method works in the
presence of a profile change. Tuning the method parameters (e.g., the maximum

Figure 5: Variable profile, case 2.

16



history length, or the frequency of models comparison) and how many interme-
diate models should be included besides the two extreme cases, may affect the
velocity the models adapt to a profile change, which in turn affects the choice
of model which gives the best predictions.

7. Empirical study

7.1. Subjects

The proposed method is experimentally evaluated on five subjects, namely
the third-party Web Services for Natural Language Processing (NLP) listed in
Table 2. They are stateless and scalable building blocks for larger systems,
offering a REST-like interface – a mainstream form of software services.

Renku is a language detector that processes natural language text and is
able of identifying over 100 languages. Sonnet is a tokenization engine, which
breaks input text into its individual tokens based on rules or trained models – a
feature commonly required by NLP applications. Idyl E3 is an entity extraction
engine that infers named-entities from text. Prose is an engine which extracts
sentences from input text. Verso is a text preprocessing engine for common
tasks in an NLP pipeline, like removing special characters and stemming.

To derive partitions, the specification-based partitioning criterion is adopted
[45]. The input arguments of each API method of the Web Service under as-
sessment are grouped in equivalence classes based on their type and on the API
documentation. We considered both valid (e.g., a string formatted as per doc-
umentation) and invalid equivalence classes (e.g., a string with non-printable
characters) to assess the service also under more rare circumstances [46]. A
partition is a combination of equivalence classes, one per input argument.

A partition is selected according to a user-provided testing or operational
profile, in the testing and operational phase respectively. Then, a request drawn
from the selected partition is a set of input values of an API method picked up
randomly from the equivalence classes of that partition.To run a request, the
generated inputs are packed in a HTTP request sent to the API method us-
ing the conventional GET, PUT, POST and DELETE, in line with the REST
paradigm. The HTTP status code of the response is parsed to determine
whether a failure has occurred or not. Based on the response, we distinguish:

• Correct reply : a 2xx status code (indicating success) for a request with
inputs belonging to valid equivalence classes; or a 4xx status code (client

Service name Description # Partitions
Renku Language Detection Engine 5
Sonnet Tokenization Engine 4
Idyl E3 Entity Extraction Engine 6
Prose Sentence Extraction Engine 4
Verso Text Pre-processing Engine 4

Table 2: NLP Web Services selected as experimental subjects.

17



error) for an incorrect request. These responses are correct replies to
incorrect requests, which the client is required to manage.

• Failure: the application raises an unexpected unmanaged exception, sent
to the client, which is reported as 5xx status code (server error); or the
application provides an Inconsistent reply : i) a 2xx reply is obtained when
an invalid input is submitted (these are silent failures); ii) an unexpected
4xx reply, namely a valid request is issued, but an error is notified.

7.2. Experiment design and procedure

The goal of the experiment is to assess the estimate’s accuracy of the prob-
ability of failure F when the true profile in operation differs from the testing
profile. Two different scenarios are implemented:

• a stable profile case, wherein the OP is kept fixed in the operational phase.
This case emulates the situation in which the assessor has reasons to expect
a quite stable profile.

• a variable profile case, wherein the profile is varied during the operational
phase. In this case (or a profile for which we can not make substantiated
hypotheses in terms of stability), we use the dynamic model selection.

In both cases the method is compared against a baseline technique, namely
the Kalman filters.The experiment targets these research questions:

• RQ1: In the stable profile scenario, does the proposed method improve
the accuracy of the estimate of F over the estimate obtained with the
testing profile and over the Kalman filter approach?

• RQ2: In the variable profile scenario, does the proposed method improve
the accuracy of the estimate of F over the estimate obtained with the
testing profile and over the Kalman filter approach?

The reference metric in both cases to check the accuracy is the offset (i.e., the
absolute difference) between estimated and true values of the failure probability.

7.2.1. Stable profile

In the case of stable profile, the experimental procedure, given an experi-
mental subject, is as follows:

1. Generate the testing profile PT . The profile is expressed as a vector
of values representing the probabilities of selecting a test case from the
partitions during testing. We assume that a uniform testing profile is
used over partitions (namely, the OPP is uniform).

2. Generate a “true” profile P . P is generated by changing the testing
profile by a random quantity. A variation factor is established, v, to get
a modified profile. A random number, n(i), is generated for partition i,
by uniformly sampling between [−v; +v]. The values of p are then set to:
p(i)=pr(i)+n(i). Two adjustments are made to bind values to the interval

18



[0; 1]: first, if p(i) < 0 then p(i) = 0; second, values are normalized:
p(i) = p(i)/

∑m
j=1 p(j). This generates a true profile that differs from the

testing profile by approximately (v · 100%).7

3. Testing session execution. A testing session is run according to the
conventional OP testing. The testing profile PT is used to select partitions.
The budget is assumed to be T=500 test cases. The number of invocations
and of failures observed per operation is recorded.

4. Post-testing F computation (FTest). After testing, using the number
of requests and of failing requests per partition, we get the parameters
of the Dirichlet distribution capturing the profile and of the Beta distri-
butions capturing the conditional partition’s probabilities of failure Fi.
These are put together to get the service probability of failure distribu-
tion, fF , according to Equation 9. The distribution allows one to compute
various measures of interest such as the expected value of F or a percentile
(e.g., a conservative estimate such as the 90th percentile).

5. Post-operation F computation (FOp). A number of K = 5 iterations,
each of N = 500 runs, is then executed in order to mimic the operational
phase, with input requests selected according to the “true” profile P (i.e.,
operations are invoked with probability p(i), i=1, ...,m). After all itera-
tions, the F distribution is computed by considering the invocations and
failures observed, again using Equation 9 parametrised by the new obser-
vations. This allows for updating the estimate w.r.t. the testing phase
by considering the executions under the true profile P . Using the same
data, the expected probability of failure according to the Kalman filter
technique, FKF , is also computed (details in Section 7.4).

6. “True” expected F computation (FTrue). After the operational
phase, 10,000 further test cases are run under the true profile P. The
frequentist F is computed: this is assumed to be the “true” expected
F , given the very high number of runs compared to T + N · K runs al-
ready executed. Post-testing and post-operation expected values of F are
compared against FTrue to assess the pace of change of the expected F
post-testing and post-operation.

7.2.2. Variable profile

In the case of variable profile, we mimic an operational phase where the true
profile P changes at some point. To this aim, steps 5-6 are replaced by:

5’ Post-operation F computation (FOp). We set again a number of
iterations K=5, with N=500 requests per iteration, in which requests
are selected according to the true profile P ; then, the test goes on for
further K=5 iterations (with N=500 requests), in which cases requests

7Approximation is given by the first adjustment, which sets to 0 a possible negative value.
In the stable profile experiment, v=0.3 (a variation of 30% of the operational with respect to
the testing profile). In the variable profile experiment, two values are used, v=0.3 and v=0.7.

19



are selected according to a new true profile. To assess the impact of
the profile change on the provided F estimate, we run two experiments in
which the true profile P changes by a small amount (v=0.3) and by a large
amount (v=0.7), respectively. Such modified new profiles are denoted as
P1 and P2 and are used in experiment 1 and experiment 2, respectively.
In both experiments, at the end of all iterations, the following measures

are computed: FOp and F ′Op, as well as the the Kalman filter FKF . FOp

is the F computation not considering the model selection described in
Section 6 – thus, obtained by the Dirichlet distribution considering all the

history like in the stable profile case. F ′Op is the F computation using the
model selection approach.

6’ The same as step 6, but the true reliability is obtained under the most
recent true profile – namely P1 and P2 for the two experiments.

For reproducibility, the code and results are made available at:
http://github.com/dessertlab/BayesianReliabilityAssessment

7.3. Evaluation metrics

The following offset metrics are used in the evaluation:

• The absolute difference between FTest, the expected F after testing, and
FOp, the post-operation one, and the difference between the 90th per-
centiles of the two estimates. These show how the method updates the F
estimate when the true and testing OP differ.

• The absolute difference between FTest and the true F , FTrue, which we
call post-testing offset. It represents the error that tester would commit in
assessing F by ignoring the variation of the operational profile at runtime.

• The absolute difference between FOp and FTrue, which we call post-
operation offset. It represents the error that the tester would commit
in assessing F by using our approach integrating the variation of the OP
at runtime with respect to the estimated profile at testing time (in short,
runtime information).

• The absolute difference between F ′Op and FTrue, which we call post-
operation with model selection offset. It represents the error that tester
would commit in assessing F by using the dynamic model selection.

• The absolute difference between FKF and FTrue, which we call Kalman
filter offset. It represents the error that the tester would commit in as-
sessing F by using the Kalman filter technique.

These allow us to evaluate the effectiveness of the proposed method, the
benefit of integrating testing-time estimate with runtime data, and the benefit
of the dynamic model selection when a profile variation occurs.8

8The offsets are obtained under one execution of the two scenarios under the specified
profile, which gives the distributions of FTest, FOp and F ′Op (for the Kalman filter, it gives a

point estimate). The comparison is between the means of these distributions, as the focus is

20



7.4. Kalman filter formulation

The KF is a well-known estimation technique used in numerous fields of en-
gineering to estimate the state of a dynamic system (or, generally, an unknown
variable of interest), given the measurements collected and the uncertainty in-
herently associated with the system model and with the measurements process
(called, respectively, process and measurement “noise”, both assumed to be zero-
mean Gaussian white noise). This latter assumption simplifies the treatment
but can also compromise the accuracy whenever is not met in practice.

We have implemented a discrete non-stationary Kalman filter for estimat-
ing the expected value of F , denoted as FKF , representing the state to be
known. Measurements about the state in iteration k, denoted as yk, are the
observations of failed requests over the issued requests. The model used for
predicting FKF is represented by Eq. 10, thus using the expected values from
the Dirichlet and Beta distributions. At each iteration, the “process noise” Q
(i.e., the uncertainty associated with the process) is represented by the variance
of the updated model – i.e., the variance obtained from using the distributions
D(α1, . . . , αn), Betai(ai, bi) updated by the observations. The “measurements
noise” R (i.e., the uncertainty associated with the observations) is represented
by the sample variance of F derived from observations. Both are initialised by
the initial model’s variance at iteration 1 (with D(1, 1, . . . , 1), Betai(1, 1)).

The KF algorithm foresees two steps: prediction and update. During predic-
tion, the state of the system at time k, FKFk

, and the variance of the estimation
error, Ek, are predicted by means of the system model (a priori prediction, de-

noted as F−KFk
and E−k ); the update step aims at fixing the predictions by

exploiting collected measurements, giving the a posteriori estimates, which are
FKFk

and Ek. The usual KF Equations are as follows [47]:

Predict

F−KFk
= Ak · FKFk−1

+ Bk · uk Project the state ahead (18)

E−k = Ak · Ek−1A
T
k + Qk Project the error covariance ahead

Update

Lk = E−k · C
T
k (Ck · E−k · C

T
k + Rk)−1 Compute the Kalman gain

FKFk
= F−KFk

+ Lk(yk − Ck · F
−
KFk

) Update estimate with measurements

Ek = (I − Lk · Ck)E−k Update the error covariance

where: Ak is the state transition matrix used to predict the state at time k
from the state at time k − 1; Bk · uk can model a possible system’s input (not
applicable to our case); Ck models a possible linear relation between the state
and the measurement (not applicable to our case); Lk is the innovation gain –
a larger value gives more importance to recent measurements compared to past
observations (the optimal gain can be computed as E−k C

T
k (CkE

−
k C

T
k + Rk)−1

on evaluating how, on average, the methods accurately track the effect of the profile change on
the failure probability and converge to the true value. We do not focus here on distribution-
based comparison (e.g., by confidence intervals), nor, likewise, on multiple repetitions under
different profiles with consequent statistical hypothesis test. These are left to future work.

21



[48]). Since the estimated state is unidimensional in our design, scalars are used
instead of matrices, and variances instead of covariances. We have:

Ak = 1 +
∑

i(Pi,k−1∆Fi,k−1]+Fi,k−1∆Pi,k−1+∆Pi,k−1∆Fi,k−1)∑
i Pi,k−1Fi,k−1

;

Bk = 0;Ck = 1;Lk = E−k (E−k +Rk)−1

(19)

where: Pi is the expected probability that a request is selected from partition
Si; F i is the expected conditional probability of failure on partition Si; the
∆ values are the updates of these expected values obtained by updating the
Dirichlet and Beta parameters αi, ai, bi with the observations at iteration k-1.

Unlike our technique, this formulation cannot provide information on the
unknown distribution of FKF , yielding a point estimate of the expected value
of FKF . This prevents a practitioner from computing measures of interest in
terms of risk/confidence in the reliability estimate.

8. Results

8.1. RQ1: Performance under a stable operational profile

Table 3 reports the mean of the post-testing distribution (FTest), of the
post-operation F distributions as estimated by our approach (FOp) and by the
Kalman filter (FKF ), and the true expected value of F computed after 10,000
tests. Columns 2 and 3 show that the true profile makes the post-testing F
estimate change toward a new estimate after operation, with differences ranging
from 0.0483 (for the Prose service, from 0.0902 to 0.0419) to 0.053 (for the Idyl
E3 service, from 0.1882 to 0.1829). Depending on how the profile changes and on
how often the service fails, the estimate including runtime information changes
noticeably. Column 4 reports the F estimate provided by the Kalman Filter.

Figure 6 plots histograms with the offset values of the post-testing and post-
operation failure probability values w.r.t. the true failure probability as well as
the offset obtained by using the Kalman filter. Note that the offset post-testing
is always larger than that post-operation (where 5 operational cycles are consid-
ered): using the runtime information allows for lowering the offset by an order
of magnitude, going from an average of 0.0243 to 0.0051 (mean values across
subjects of post-testing and post-operation offsets, respectively). It should be
noted that the result is obtained under a profile change of approximately 30%
(v=0.3, see footnote 7): larger deviations can cause the estimated prior to be-
come even further from the operational reliability. We can see that in only

Service FTest FOp FKF FTrue
Prose 0.0902 0.0419 0.0482 0.0387
Renku 0.2889 0.2653 0.2370 0.2492
Sonnet 0.0941 0.0848 0.0716 0.0851
Idyl E3 0.1882 0.1829 0.0613 0.1820
Verso 0.2134 0.2033 0.2326 0.1984

Table 3: Stable profile: expected F for the experimental subjects.

22



0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

Prose	 Renku	 Sonnet	 Idyl	 Verso	

O
ffs

et
	

Post-testing	offset	

Post-operation	offset	

Kalman	Filter	

Figure 6: Stable profile: offset values.

one case (Renku) the Kalman filter gives an offset value slightly smaller than
our approach; in all the other cases, the proposed model outperforms the KFs’
estimates. In addition, as stated earlier, our solution provides predictions of
distributions rather than a point estimate.

In Table 4, columns 2 and 3 provide the 90th percentiles of the F distributions
at testing and operational time. These are useful in case of interest is a likely
conservative estimate of the failure probability rather than its expected value.
The differences range from 0.0057 to 0.0814. Columns 5 and 6 show the standard
deviation of post-testing and post-operation distributions. As in the latter cases
more executions are considered, the standard deviation is generally smaller. In
summary, our Bayesian assessment provides estimates closer to the true one
(Figure 6) and with a reduced uncertainty (Table 4).9

FTest FOp Abs. difference FTest FOp
90th 90th Post-oper. - standard standard

Service percentile percentile Post-testing deviation deviation
Prose 0.1070 0.0724 0.0346 0.0132 0.0113
Renku 0.3251 0.2848 0.0403 0.0286 0.0156
Sonnet 0.1104 0.0937 0.0167 0.0129 0.0075
Idyl E3 0.2821 0.2764 0.0057 0.0690 0.0683
Verso 0.2344 0.2158 0.0186 0.0169 0.0130

Table 4: Stable profile: 90th percentile and variance of the F .

8.2. RQ2: Performance under a variable operational profile

Tables 5a and 5b report the results of the two experiments with the variable
operational profiles (with variation factors v=0.3 and v=0.7, respectively). They
report (column FTest) the mean of the post-testing F distribution10, and of
two post-operation F distributions, corresponding to the situation where i) one

9As stated, KF produces a point estimate of F ; thus, percentiles are not available.
10Although, during testing, requests to partitions are taken from the same uniform distri-

bution, there is some difference between post-testing F values in the two experiments (col. 2
of Table 5a and 5b): because of randomisation (and of the limited number of observations,
T = 500), the exact number of requests and of failures per partition is different.

23



Service FTest FOp F ′Op FKF FTrue
Prose 0.0804 0.0324 0.0249 0.0390 0.0245
Renku 0.1794 0.1423 0.1024 0.0357 0.1196
Sonnet 0.0740 0.0821 0.0851 0.0634 0.0847
Idyl E3 0.1622 0.1801 0.1341 0.0182 0.1382
Verso 0.2040 0.2244 0.2941 0.1913 0.2920

(a) Experiment 1 (v = 0.3)

FTest FOp F ′Op FKF FTrue
0.0895 0.0486 0.0304 0.0593 0.0289
0.1804 0.1352 0.0936 0.2163 0.0292
0.0852 0.0853 0.0621 0.0400 0.0683
0.1940 0.1584 0.1102 0.0073 0.0904
0.1501 0.1802 0.2402 0.2678 0.2395

(b) Experiment 1 (v = 0.7)

Table 5: Variable profile: expected failure probability. FOp: Post-operation without model

selection; F ′Op: Post-operation with model selection; FKF : Post-operation with Kalman

filter; FTrue: True expected value of F .

always updates the same model without model selection (which is the same
as in the stable profile case; column FOp), and ii) one exploits the introduced

dynamic model selection strategy to cope with a changing profile (column F ′Op).
The Tables also include the expected F as estimated by the KF model.

Post-operation distributions are computed after two cycles of K=5 iterations
each, under profile P for the first cycle, followed by profile P1 for the second cycle
in experiment 1 (Table 5a, v=0.3), while under P followed by P2 in experiment 2
(Table 5b, v=0.7). The expectation is that the estimation by the model selection

approach (F
′

Op) gets closer to the true reliability compared to the post-testing

estimate (FTest) as well as to the post-operation case without model selection
(FOp) and the Kalman filter (FKF ). Looking at columns 2 to 5 of Tables 5a and
5b, we see that by accounting for runtime information the estimate is updated
like in the previous experiment. In all cases, the estimate of the dynamic model

selection (F
′

Op) is between the post-testing estimate and the true value (after 5
iterations from the true profile change point, the model is already able to provide
better estimates than the post-testing one in all the cases). This happens in all
but one case with the approach without model selection, while it happens in
just 4 out of 10 cases with the Kalman filter; in the remaining cases, KF would
need further iterations for the estimate to converge toward the true value. The
difference is more pronounced in the experiment with a more severe profile
change (Table 5b): the average absolute differences between the post-operation
estimate without (column 3) and with (column 4) model selection is bigger, i.e.:
(0.1323–0.1281)=0.00416 in Table 5a vs. (0.1215–0.1073)=0.0142 in Table 5b.

Figures 7a and 7b show the results about the offset with respect to the true
value of F . The offset of the post-testing estimate is always bigger than the
offset of both post-operation cases. As in the previous experiment, including
runtime information leads to considerably lower offset: from an average across
the subjects of 0.04768 (average of Post-testing offsets across subjects in Fig.
7a) to 0.0285 (average of Post-operation w/o model selection offsets in Fig. 7a)
and from 0.08434 (average of Post-testing offsets of Fig. 7b) to 0.054 (average
of Post-operation w/o model selection offsets of Fig. 7b). The dynamic model
selection makes the improvement bigger, with offsets achieving 0.0049 (average

24



0.00	

0.02	

0.04	

0.06	

0.08	

0.10	

0.12	

0.14	

Prose	 Renku	 Sonnet	 Idyl	 Verso	

O
ffs

et
	

Post-testing	
Post-operation	w/o	model	selection	
Post.operation	w/model	selection	
Kalman	filter	

(a) Experiment 1 (v = 0.3)

0.00	
0.02	
0.04	
0.06	
0.08	
0.10	
0.12	
0.14	
0.16	
0.18	
0.20	

Prose	 Renku	 Sonnet	 Idyl	 Verso	

O
ffs

et
	

Post-testing	
Post-operation	w/o	mdoel	selection	
Post-operation	w/	model	selection	
Kalman	filter	

(b) Experiment 2 (v = 0.7)

Figure 7: Variable profile: offset values.

of Post-operation w/ model selection offsets of Fig. 7a) and 0.01852 (average of
Post-operation w/o model selection offsets of Fig. 7b).

The offset values of the first experiment are smaller than the second one,
because the profile variation is smaller and the model selection approach con-
verges more quickly toward the true value. However, the relative gain is bigger
in the second case: the difference between the averages of post-operation w/
model selection offsets and post-testing offsets is bigger compared to experiment
1 (in the former case, there is an offset reduction of 0.04281 from testing-time
to post-operation estimate; in the latter case, the offset reduction is of 0.06582).
The dynamic model selection is more decisive to reduce the offset in the cases
of stronger profile variations. Comparing the offsets between the true failure
probability and the mean failure probability predicted with our approach and
with KF, it is clear that KF as a predictor is inferior to the with-model-selection
predictor: all offsets computed for F , predicted with the KF model, are greater
than the offsets computed for the with-model-selection predictor. Indeed, KF
does not score very well in comparison with the standard Bayesian inference, i.e.
against the without-model-selection predictor, either. KF produces a smaller
offset than the without-model-selection predictor only in one case (Verso, ex-
periment 2). In summary, these results are consistent with the stable profile
case: the with-model-selection predictor performs best, and the improvements
increase with the magnitude of the profile variation.

8.3. Threats to validity

Validity of the approach. We have highlighted earlier in the paper the impor-
tance of the assumption that the conditional probabilities of failure in partitions
are independently distributed random variables. The model predictions made
with limited observations, the focus of the paper, may be significantly affected
by this assumption. Relaxing it and treating the conditional probabilities of
failure as dependent r.v. is conceptually straightforward and merely requires
adding a suitably chosen Copula, to capture the specific knowledge that might
be available about software under consideration. Such additional knowledge
may come from analysing in detail how software executes requests from differ-
ent partitions. Such analysis, however, may be infeasible, e.g. if the source
code is not available. We are currently unaware of reliable proxies which we

25



could use to capture easily, from observing software in operation, the existence
and strength of dependences between conditional probabilities of failure. For
this practical reason, the model extension to deal with dependent conditional
probabilities of failure is left to future research.

The threats to validity of the results from the empirical study follow.
Internal validity. To generate the true operational profile, a random variation
has been applied to the uniform testing profile. Although this could not repre-
sent a real profile for the considered services, any generation procedure would
be subject to the same threat. The focus of the empirical study was on the
ability of our solution to converge to the true reliability by exploiting runtime
information and dynamic model selection, regardless what the actual true profile
is. The empirical study was conducted with specific parameters settings: v=0.3
and then v=0.7; T = N = 500 test cases and requests per iteration; K=5 and
then K=10 iterations. Further changing these parameters can impact the speed
of convergence of our solution towards the true reliability. Additional threats
to internal validity include the correctness of scripts for data collection and of
implementation of the experimental code performed by the authors. These have
been made available and can be scrutinised by the community.
Construct validity. To define a partition, from which test cases are drawn, we
have applied specification-based partition testing, where equivalence classes are
defined based on the input arguments of API methods, by inspecting the API
documentation. While this the most common practice to partition the input
space based on specifications, other criteria could be applied (e.g., structural
partitioning). This would lead to different results depending on the overlap
between equivalence classes (the more they are overlapped, the more the in-
dependence between partitions’ conditional probability of failure is violated,
the worse the impact on the estimated reliability). Exploring the sensitivity of
results to alternative partitioning criteria is left to future research. The true
reliability is obtained by running a number of 10,000 requests under the true
profile: we assumed this to be sufficient to provide an accurate estimate of true
reliability, being it 20 times bigger than the executed test cases T=500, and
being the estimator’s variance for all services between 1.0E-5 and 1.0E-7.
External validity. Results of the empirical study refer to five stateless REST
Web Services. They confirm on real subjects the outcome of contrived numerical
examples. Care must be taken in extending these results to other programs.

9. Conclusions

We have described a new way of dealing with uncertainty and variability of
the operational profile when assessing the reliability of software services deliv-
ered on-demand. The technique – based on Bayesian inference - allows a service
reliability assessor to deal with: i) the deviations of the actual profile from the
one used in operational testing before deployment, and ii) the changes of the
profile over time, due, for instance, to changes in the way the service is used.

We have illustrated the method with contrived examples, showing how soft-
ware engineers can use it while monitoring the runtime profile changes, to quan-

26



tify their impact on the reliability estimated through testing before service de-
ployment. We have then presented experiments with real Web Services. The
results show the effectiveness of the proposed technique for dealing with the un-
certainty in the two scenarios of a stable usage profile, yet different from the one
estimated before service delivery, and of a profile which varies over time in the
operational phase. For best predictions, the application of the proposed method
requires the service input space to be split into non-overlapping partitions.

The method is well suited for web services employed in critical applications in
which the operational profile may change over time. While in traditional safety
critical applications the profile is typically assumed fixed a new range of critical
application becomes increasingly important in which the profile is highly dy-
namic. A prominent example are applications and services in autonomous cars,
which have attracted significant interest by industry and researchers. Weather
and driving conditions may change rapidly, thus making the conditions for object
recognition and route planning vary dramatically over short periods of time.

Acknowledgment

The work by Pietrantuono and Russo is funded by the EU Horizon 2020
programme under the Marie Sk lodowska-Curie grant agreement No 871342. The
work by P. Popov is funded in part by the UK GCHQ (grant agreement 4196242)
and the AQUAS project, EU ECSEL JU (grant agreement 737475).

References

[1] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen,
S. Dustdar, Microservices: Migration of a mission critical system, IEEE
Trans. on Services Computing (2018) 1–1.

[2] A. F. Services, Building mission-critical financial services applications on
aws, Tech. rep., Amazon (2019).

[3] H. Bohn, A. Bobek, F. Golatowski, Sirena - service infrastructure for real-
time embedded networked devices: A service oriented framework for differ-
ent domains, in: ICN/ICONS/MCL, 2006, pp. 43–43.

[4] G. Moritz, S. Pruter, D. Timmermann, F. Golatowski, Web services on
deeply embedded devices with real-time processing, in: Int. Conf. on
Emerging Technologies and Factory Automation, 2008, pp. 432–435.

[5] G. Gehlen, G. Mavromatis, A web service based middleware for mobile
vehicular applications, in: Proc. 2nd Int. Workshop on Intelligent Trans-
portation, 2005, pp. 35–39.

[6] D. Rodrigues et al., Application of SOA in Safety-Critical Embedded Sys-
tems, in: G. Lee, D. Howard, D. Slezak (Eds.), Convergence and Hybrid
Information Technology, Springer, Berlin, Heidelberg, 2011, pp. 345–354.

27



[7] D. Rodrigues et al., Using SOA in Critical-Embedded Systems, in: 2011
Int. Conf. on Internet of Things and 4th Int. Conf. on Cyber, Physical and
Social Computing, IEEE, 2011, pp. 733–738.

[8] A. Al-Humam, Service-oriented architectures for safety-critical systems,
Ph.D. thesis (2015).

[9] Y. Zhang, M. Lyu, QoS Prediction in Cloud and Service Computing,
SpringerBriefs in Computer Science, Springer, Singapore, 2017.

[10] E. L. Følstad, B. E. Helvik, The cost for meeting sla dependability require-
ments; implications for customers and providers, Reliability Engineering &
System Safety 145 (2016) 136–146.

[11] Z. Zheng, K. S. Trivedi, K. Qiu, R. Xia, Semi-markov models of composite
web services for their performance, reliability and bottlenecks, IEEE Trans.
on Services Computing 10 (3) (2017) 448–460.

[12] S. Bosse, M. Splieth, K. Turowski, Multi-objective optimization of it service
availability and costs, Reliability Engineering & System Safety 147 (2016)
142–155.

[13] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, M. Deardeuff,
How Amazon web services uses formal methods, Comm. ACM 58 (2015)
66–73.

[14] M. R. Lyu (Ed.), Handbook of software reliability engineering, McGraw-
Hill, Inc., Hightstown, NJ, USA, 1996.

[15] K.-Y. Cai, Y.-C. Li, K. Liu, Optimal and adaptive testing for software
reliability assessment, Information and Software Technology 46 (15) (2004)
989–1000.

[16] J. Lv, B.-B. Yin, K.-Y. Cai, Estimating confidence interval of software
reliability with adaptive testing strategy, Journal of Systems and Software
97 (2014) 192–206.

[17] D. Cotroneo, R. Pietrantuono, S. Russo, RELAI testing: A technique to as-
sess and improve software reliability, IEEE Trans. on Software Engineering
42 (5) (2016) 452–475.

[18] J. Musa, Operational profiles in software-reliability engineering, IEEE Soft-
ware 10 (2) (1993) 14–32.

[19] C. Smidts, C. Mutha, M. Rodŕıguez, M. J. Gerber, Software testing with an
operational profile: OP definition, ACM Computing Surveys 46 (3) (2014)
39:1–39:39.

[20] P. Bishop, R. Bloomfield, Worst case reliability prediction based on a prior
estimate of residual defects, in: 13th Int. Symp. on Software Reliability
Engineering, IEEE, 2002.

28



[21] J. Musa, Sensitivity of field failure intensity to operational profile errors,
in: 5th Int. Symp. on Software Reliability Engineering, 1994, pp. 334–337.

[22] A. Pasquini, A. Crespo, P. Matrella, Sensitivity of reliability-growth models
to operational profile errors vs. testing accuracy [software testing], IEEE
Trans. on Reliability 45 (4) (1996) 531–540.

[23] O. Silva, A. Crespo, M. Chaim, M. Jino, Sensitivity of two coverage-
based software reliability models to variations in the operational profile,
in: Fourth Int. Conf. on Secure Software Integration and Reliability Im-
provement, 2010, pp. 113–120.

[24] K.-Y. Cai, C.-H. Jiang, H. Hu, C.-G. Bai, An experimental study of adap-
tive testing for software reliability assessment, Journal of Systems and Soft-
ware 81 (8) (2008) 1406–1429.

[25] M.-H. Chen, A. Mathur, V. Rego, A case study to investigate sensitivity of
reliability estimates to errors in operational profile, in: 5th Int. Symp. on
Software Reliability Engineering, IEEE, 1994, pp. 276–281.

[26] J. R. Brown, M. Lipow, Testing for software reliability, SIGPLAN Not.
10 (6) (1975) 518–527.

[27] T. Thayer, M. Lipow, E. Nelson, Software Reliability: A study of large
project reality, Vol. 2 of TRW Series of Software Technology, North-
Holland, New York, 1978.

[28] K. W. Miller et al., Estimating the probability of failure when testing re-
veals no failures, IEEE Trans. on Software Engineering 18 (1) (1992) 33–43.

[29] P. Bishop, A. Povyakalo, Deriving a frequentist conservative confidence
bound for probability of failure per demand for systems with different op-
erational and test profiles, Reliability Engineering & System Safety 158
(2017) 246–253.

[30] Y.-W. Leung, Software reliability allocation under an uncertain operational
profile, Journal of the Operational Research Society 48 (4) (1997) 401–411.

[31] H. Hartmann, A statistical analysis of operational profile driven testing, in:
Int. Conf. on Software Quality, Reliability and Security Companion, IEEE,
2016, pp. 109–116.

[32] J. Whittaker, J. Poor, Markov analysis of software specifications, ACM
Trans. on Software Engineering and Methodology 2 (1) (1993) 93–106.

[33] S. Kamavaram, K. Goseva-Popstojanova, Entropy as a measure of uncer-
tainty in software reliability, in: 13th Int. Symp. on Software Reliability
Engineering, IEEE, 2002, pp. 209–218.

29



[34] K. Goseva-Popstojanova, S. Kamavaram, Software reliability estimation
under certainty: generalization of the method of moments, in: Int. Symp.
on High Assurance Systems Engineering, IEEE, 2004, pp. 209–218.

[35] S. Özekici, R. Soyer, Reliability of software with an operational profile,
European Journal of Operational Research 149 (2003) 459–474.

[36] D. Cotroneo, R. Pietrantuono, S. Russo, Combining operational and debug
testing for improving reliability, IEEE Trans. on Reliability 62 (2) (2013)
408–423.

[37] C. Menghi, S. Nejati, K. Gaaloul, L. C. Briand, Generating automated
and online test oracles for simulink models with continuous and uncertain
behaviors, in: Proc. 27th ACM ESEC/FSE 2019, ACM, 2019, pp. 27–38.

[38] M. Zhang, S. Ali, T. Yue, Uncertainty-wise test case generation and mini-
mization for cyber-physical systems, Journal of Systems and Software 153
(2019) 1 – 21.

[39] T. Adams, Total variance approach to software reliability estimation, IEEE
Trans. on Software Engineering 22 (9) (1996) 687–688.

[40] M. Camilli, C. Bellettini, A. Gargantini, P. Scandurra, Online model-based
testing under uncertainty, in: 29th Int. Symp. on Software Reliability En-
gineering, IEEE, 2018, pp. 36–46.

[41] K. Vanslette, T. Tohme, K. Youcef-Toumi, A general model validation and
testing tool, Reliability Engineering & System Safety 195 (2020) 106684.

[42] J. Lv, B.-B. Yin, K.-Y. Cai, On the asymptotic behavior of adaptive test-
ing strategy for software reliability assessment, IEEE Trans. on Software
Engineering 40 (4) (2014) 396–412.

[43] P. Frankl, D. Hamlet, B. Littlewood, L. Strigini, Evaluating testing meth-
ods by delivered reliability, IEEE Trans. on Software Engineering 24 (8)
(1998) 586–601.

[44] I. Albert, J.-B. Denis, Dirichlet and multinomial distributions: properties
and uses in Jags, Rapport technique 2012-5, INRA (2012).

[45] M. Young, M. Pezze, Software Testing and Analysis: Process, Principles
and Techniques, John Wiley & Sons, 2005.

[46] N. Laranjeiro, M. Vieira, H. Madeira, A robustness testing approach for
SOAP Web services, Journal of Internet Services and Applications 3 (2)
(2012) 215–232.

[47] R. E. Kalman, A New Approach to Linear Filtering and Prediction Prob-
lems, Journal of Basic Engineering 82 (1) (1960) 35–45.

[48] An Introduction to the Kalman Filter, SIC-CRAPH, 2001 Course Notes.

30


