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Abstract. Complex software systems are commonly developed by in-
tegrating multiple, occasionally Off-The-Shelf (OTS), components. This
process results into a more modular design and reduces development
costs; however, it raises new dependability challenges in case of safety
critical systems. Testing activities conducted during the development
of the individual components might be not enough to ensure a proper
safety level after the integration. The failures of the components and
their impact on the overall system safety have to be assessed in critical
scenarios. This paper proposes a method to support component integra-
tion in complex software systems. The method uses (i) the knowledge of
the architectural dependencies among the system components, and (ii)
the results of failure-modes emulation experiments, to assess both er-
ror propagation phenomena within the system and the criticality of the
components in the system architecture. This information is valuable to
design effective error-mitigation means and, when needed, to select the
most suitable OTS item if multiple equivalent options are available. The
method is applied to a real world Air Traffic Control system, developed
in the context of an academic-industrial collaboration.

Keywords: Integration, Criticality Assessment, Failure-modes Emula-
tion, Air Traffic Control.

1 Introduction

The development of complex software systems increasingly relies on the integra-
tion of existing services and components (built-in-house and, occasionally, Off-
The-Shelf (OTS)), rather than on items built entirely from scratch. This process
is commonly adopted also in critical domains, because it results, in principle,
into a more modular and reliable design and it allows reducing development
costs and time-to-market [1]. However, this process might raise dependability
issues that are related to the integration and interactions among components
[2],[3], especially in critical contexts, such as avionic and railway systems.

Software items that are reused in the design of a system are often devel-
oped either referring to a different context, i.e., developed for another system,
or without any specific context in mind, i.e., the items have been developed
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with the precise goal of being reused. As a result, testing activities conducted
during the development of these items might be not enough to ensure a proper
service during operation, because of unforeseeable interactions with the system
integrating them, and the execution environment. The failures of the individual
components and their impact on the overall system safety have to be carefully
assessed in critical scenarios. Furthermore, the cost of the integration activities
(e.g., components selection, adapters development, integration testing, design of
fault tolerance mechanisms), might be even higher than the cost for developing
components from scratch, especially in large and complex systems.

In this paper we present a method to support component integration in com-
plex software systems. The method uses a model of the system at a high level
of abstraction. The model encompasses the architectural components of the sys-
tem, and formalizes the dependencies among them. The model is then used to
drive failure-modes emulation experiments that aim at investigating error prop-
agation phenomena within the system. Based on the error propagation paths
and the error mitigation means observed in the system, the method determines
a criticality level for each component. A criticality level represents the impact
that the failures of the component have on the overall system, i.e., the impact of
its integration. Criticalities allow engineers (i) identifying the components whose
integration is potentially dangerous (these components require either more inte-
gration testing, or the design of proper fault tolerance mechanisms), (ii) compar-
ing different equivalent components, possibly OTSs, with respect to the impact
they have on the overall system safety. This information supports decisions re-
garding fault tolerance mechanisms, allocation of integration testing efforts, and
comparison/selection of (OTS) components.

The proposed method is applied to a real world Air Traffic Control (ATC) sys-
tem, developed in the context of an academic-industrial collaboration involving
a world leading company, SELEX-SI, and academic partners in the COSMIC1

project. We assess the criticality of the components integrated in the ATC sys-
tem. Furthermore, because of the need of the company’s system developers to
select and to integrate a suitable Data Distribution Service (DDS) in the system
we compare two functionally equivalent DDS platforms from the dependability
perspective. Obtained results show that the experiments conducted according to
the proposed method, allow identifying architectural dependencies and resources
of the execution environment that impact the overall system safety, thus driving
the choices taken by the project team.

The rest of the paper is organized as follows. Section 2 surveys related work in
the area of dependability assessment of critical systems. Section 3 describes the
proposed method and the algorithm implementing it. Section 4 and 5 describe
our experience with the ATC system, and provide the results of the experi-
mental campaign. Section 6 discusses the implications of the results on design
choices.

1 COSMIC is a three-year Italian research project aiming to create a research labora-
tory for the development of a open source middleware for mission critical systems.
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2 Related Work

Issues related to the development by integration, such as the difficulties in con-
trolling/testing complex interactions among components [2],[3], make depend-
ability a significant challenge in critical scenarios. Several organizations defined
standards and methodologies, such as [4], [5], [6], to support the development of
dependable systems. These standards define a set of tasks and evidence to pro-
duce during the phases of the software development cycle. However, these tasks
may be time consuming, thus neglecting the needs of current software industry.
Testing and validation efforts can be driven with a preliminary knowledge of the
system, in terms of criticality of its components. The standards suggest adopt-
ing hazard analysis and risk assessment techniques, such as failure modes and
effects analysis (FMEA), hazard and operability (HAZOP), event tree analysis
(ETA), and fault tree analysis (FTA) [8]. For example, in [9] and [10] the authors
describe the hazard analysis methodology used in railway dependable systems.
In [11] safety assessment processes for ATM systems have been proposed.

Several works describe approaches based on a dynamic flow graph methodol-
ogy (DFM) [12], [13] to generate timed fault trees, for assessing the risk associ-
ated with dynamic behaviors. Additionally, methodologies and/or technologies
for the safety assessment of real complex infrastructures and operations have
been proposed. Authors in [14] present a case study to apply a goal-oriented
method for car security-related hazard analysis. In [15], it has been proposed a
model based on a network representation, where objects represent concepts and
links represent relations. Nevertheless, this type of works do not consider the
impact of the system architecture on dependability attributes.

Some issues might compromise the effectiveness of existing approaches in in-
dustrial scenarios. For example, the DFM analysis does not provide mechanisms
to cope with the computational complexity of large-scale software systems. Fur-
thermore, risk assessment is often performed by examining only faults at the
interface level without considering the mitigation means included in the architec-
ture of the system. To overcome these limitations, the proposed method adopts
a system model, whose grain is decided by the analyst; this allows lowering the
complexity of the assessment task. Furthermore, the failure-modes emulation
experiments highlight error mitigation means implemented by the system.

3 Integration Strategy

In the following we describe the integration strategy. Section 3.1 provides back-
ground definitions. The assumptions for the failure-modes emulation experiments
are described in Section 3.2. Section 3.3 formalizes the integration algorithm.

3.1 Background: System Model and Criticality Levels

A software system is assumed to be made by a set of software elements, which
interact to implement the services provided by the system. Elements consist of
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entities and resources. An entity, is a stateful active element, which interacts
with resources and/or other entities. A resource, is stateful passive element,
i.e., it does not interact with any other system element. Interactions can induce
a state modification in the target element (stateful interactions), or they can
leave the state of the element unchanged (stateless interactions).

We focus on the dependencies among the system elements to take into ac-
count propagation phenomena. More specifically, we assume the existence of (i)
a control dependency between two entities A and B (or between an entity A
and a resource R), if there is a direct interaction between them, and (ii) a state
dependency between two entities A and B, if there is an interaction between
A and a resource on which B performs a stateful interaction.

A service provided by the system is implemented via a sequence of inter-
actions. Let s be such a service, with s = 1 . . .N (N is the total number of
services). We associate two matrix to each service s, as follows. To represent
control dependencies, we define a matrix Cs, (n + m)*(n + m), with n denoting
the number of entities and m the number of resources. The element Csij is 1 if
an interaction exists between the entity Ei and the entity (resource) Ej (Rj).
Fig.2 shows an example of this type of matrix with reference to the case study.
To obtain the state dependencies between the elements implementing a service
s, we calculate a matrix Ss, as follows: (i) for each Cs, we extract a matrix Crs,
with a value 1 only for each entity-resource stateful interaction, (ii) then, we
sum each obtained Crs matrix, and transpose the resulting matrix, obtaining
CT , (iii) finally, for each service s, Cs * CT (rows * columns) returns Ss.

The criticality of a system element is quantified via the notion of criticality
level (CL). The value of a CL is related to the severity of the effects of the
element failures. Several standards for mission and safety critical systems, such
as [4], [5], and [7], provide specific CL rankings. In the context of this work,
without loss of generality, we consider a generic ranking encompassing four CLs,
i.e., 1 . . . 4, with 1 denoting the highest CL. We adopt a reverse ranking (higher
the criticality, lower the CL) as in the avionic standards, because of the nature
of proposed case study; however, any other choice would have been equivalent.
Adopted CLs, which, again, represent the risk associated with a system function,
and, in turn, with the software system element(s) implementing the function, are:
HIGH (1), i.e., software whose failure causes or contributes to the occurrence of
a catastrophic condition, MEDIUM (2), for software whose failure results in major
failure conditions, LOW (3), for software whose failure results in minor failure
conditions, NO criticality (4), for software whose failure has no effect.

3.2 Assumptions

The proposed method adopts failure-modes emulation experiments to assess the
integration risk. We assume a set of failure-modes representing how a system el-
ement (either entity or resource) can fail [16]. In the case of entities we consider
(i) crash, i.e., the entity stops providing service due to unexpected failure; (ii)
passive hang, i.e., the entity waits indefinitely for a resource which will never be
released (e.g. deadlocks) or for signals which will never be generated; (iii) active
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hang, i.e., the entity indefinitely halts, but it keeps the system resources busy.
Failures related to return values are not considered in this study: we assume
that an interaction with correct parameters does not modify the state inconsis-
tently and returns a correct value, i.e. a value within the expected value domain
[16]. Also, we assume that the underlying network does not alter returned val-
ues (reliable channels assumption). As for resources, we consider the following
failure-modes (i) access denied: the resource becomes unavailable; (ii) read
denied: the resource is accessed, but it can not satisfy a reading request; (iii)
write denied: the resource is accessed, but it can not satisfy a writing request;
(iv) corruption: the content of the resource is altered.

The entity-resource model has to be tailored to the system under analysis and
to the chosen grain and level of abstraction. For example, application compo-
nents and OS processes may be regarded as entities and resources might be OS
resources or databases. Entities and resources have to be identified before apply-
ing the algorithm. Furthermore, we assume that the proposed method is applied
after a preliminary hazard assessment step: for each service the potential hazards
have been identified and assigned a criticality level.

3.3 Algorithm

The integration strategy is formalized as a novel algorithm that, expanding the
set of depending entities recursively, assigns a criticality level to the system
elements involved in the provisioning of a given service. Criticality levels are
represented by i) the CL ranking defined above, for entities, and ii) labels for
resources indicating if they are critical or not for the system. The algorithm
outputs the integration risk for each entity as a result of i) individual criticality,
and ii) failure propagation paths (and intrinsic mitigation means). We report a
C-like version of the algorithm, whose key steps are detailed in the following.

1. void RLAssignement( system Sys ){
2. EntitySet E = all the entities
3. EntitySet BorderE = border entities set;
4. ENTITY e, reader, writer, ToExpand;
5. MATRIX C,S; //dependency matrices
6. int N,M; //Number of entities and resources
7. for(e ∈ BorderE ){
8. InitialCL = getHaResult(e); //STEP 1: Initial definition of CLs
9. //STEP 2: Control-CL assignment
10. ToExpand = e;
11. Expand (ToExpand); //function defined below
12. //STEP 3: State-CL adjustment
13. //For each pair of entities(ei,ej) set CLs according to Table 1
14 for (Sij ! = 0 ∈ S){ //Sij value is the name of resource causing the dependency
15. readerEntity = getReaders(Sij);
16. writerEntity = getWriters(Sij);
17. if (writerEntity ! ∈ (R.isNotRobust)){//if it is not robust to R failures
18. AssignCL(writer)=min(reader,writer); //it pushes a CL value onto
19. //the writer CL stack
20. SetRobustEntities(Sij,writerEntity) //set the Sij isNotRobust vector
21. }} //value for ”writerEntity” entry
22. }
23. for (e ∈ E){ //STEP 4: Final adjustment of the CL value
24. FinalCL(e) = min(e.CLs);
25. }}
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1. voidExpand (Entity ToExpand) {
2. RESOURCE dcR; ENTITY dcE;
3. EntitySet DCE; ResourceSet DCR;
4. //building depending entities and resources sets
5. int i = getRow(ToExpand)//get the C row corresponding to “ToExpand”
6. for (int j = 0 to N+M){
7. if (Cij != 0) {
8. if (j <= N)
9. DCE = DCE + Ej ;
10. else
11. DCR = DCR + R(j−N);
12. }}
13. //evaluating robustness of ”ToExpand” entity with respect to dcR failures
14. for( dcR ∈ DCR) {
15. if (ToExpand ∈ dcR.isNotRobust)
16. //add ToExpand entity to isNotRobust vector resource dcR
17. SetRobustEntities(dcR,ToExpand);
18. }
19.//evaluating robustness of “ToExpand” entity with respect to dcE failures
20. for(dcE ∈ DCE){
21. if (ToExpand! ∈ dcE.isNotRobust)
22. AssignCL(dcE)= getCL(ToExpand)+1; //lower its risk level
23. else//the same risk level
24. AssignCL(dcE)=getCL(ToExpand);
25. ToExpand = dcE;
26. Expand(ToExpand); //recursive call
27. }}

The main types in the algorithm are: ENTITY, RESOURCE and EntitySet, i.e.
a set of “Entity”. Each ENTITY type has associated a stack of CL values, named
“CLs”, because of possible involvement in more than one service and therefore
in more than one CL assignment. Both RESOURCE and ENTITY types have
associated a vector of entity names, named “isNotRobust”. For each resource
R (entity E), this vector contains all the entities that are experienced as not
robust to the resource R (entity E) failures itself. A set of auxiliary functions is
explained by comments.

The goal is to verify (by diving into the system elements tree) if a specific
element implements mitigation means to tolerate, if not, to stop, the propagation
of a failure induced by other depending elements. In this case, the criticality level
of the failing element can be lowered, or the element can be labeled as non-critical
resource, because its failures are tolerated; otherwise, the criticality level remains
unchanged. The main subsequent steps follow:

STEP 1. A starting CL is assigned to the entities directly responsible for
providing a given service, i.e. the so-called border entities : for all identified haz-
ards related to the given service (again, it is assumed that a preliminary hazard
assessment has been performed (Section 3.2) ), the minimum observed CL is
assigned to the border entity.

STEP 2. Given an entity Ei, with an assigned CL value, this step aims to (i)
assign a CL to the entities which it depends on (by a control dependency) and (ii)
assess the robustness of Ei with respect to the failure of resources which it has
a control dependency (due to reading or writing operations). The dependency
relation causes a mutual effect among involved entities, so that a failure in one
of them can impact the behavior of depending ones. If we denote with Ei the
entity with an assigned CL, and with Ej a depending entity, in order to assign a
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Table 1. CL assignment due to state dependency. s=min(CL[Ei], CL[Ej ])

Ej(write) Not robust Robust
Ei(read)
Not CL[Ej]=s CL unchanged
Robust reading/writing critical resource reading critical resource

CL[Ej]=s CL unchanged
Robust writing critical resource non critical resource

CL to Ej , we consider the behavior of Ei once a failure of Ej occurs. According
to the failure-modes Ei can tolerate the failure of Ej , mitigate it, or it can
not be able to tolerate such a failure. If the failure of Ej is mitigated, we can
lower the criticality level of Ej (i.e. increasing its ranking). Otherwise, we set
CL[Ej ] = CL[Ei], because Ej has to be considered as critical at least as Ei. In
other words, if the failure of an entity is mitigated, this entity can be considered
less critical for the overall system. In practice, we evaluate the robustness of an
entity to other entities failures, through failure injections campaigns, according
to the adopted failure-modes. As for resources, we are interested in figuring out
if a resource is risky for the system, i.e., if its failures are not tolerated by the
entities accessing it.

STEP 3. In the third step, we modify CLs according to the state depen-
dencies. Two entities, e.g., Ei and Ej , might depend on each other through a
resource R by either reading or writing access. If both entities read from R,
there is no dependency between them, because they do not alter the state of the
resource. Similarly, if both the entities only write on R (thus no one reads the
changed state) we say that there is no dependency. A dependency exists if one
of the entities writes and the other one reads the resource. In this case, if both
entities have been assigned a CL, there are four possibilities shown in Table 1.
A CL can be modified according to the robustness of the entities to the failures
of R. If the writing entity is robust to the failures of R (e.g., if it can detect
and recover from a failure by exploiting temporal and/or spatial redundancy),
we do not modify the CL assigned in the previous step. Otherwise, if it does not
tolerate the failures of R, i.e., some writings can be lost and this can compromise
the reading entity, we have to consider CL[Ej ] at least critical as the reading
entity (i.e., CL[Ej ] ≤ CL[Ei]).

STEP 4. In the final step, we adjust the CL values. Since the algorithm
analyzes the system through each of the provided services individually, an entity
Ei might be involved in more than one service and thus assigned more than one
CL. The final CL for Ei is the minimum of observed CLs.

The output of the algorithm is a set of labels: for the entities, they indicates
a CL value; as for resources, each label points out if it is a critical resource for
the system or not. Furthermore, the algorithm allows achieving insights on the
failure propagation paths and intrinsic mitigation means of the system.
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4 Case Study

The proposed integration strategy is applied to an Air Traffic Control (ATC)
system developed in the context of an academic-industrial collaboration. A pre-
liminary experience with this system is presented in [19]. The components and
the middleware layers composing the system are described in Section 4.1. In Sec-
tion 4.2 we present how the proposed strategy has been applied to the system.

4.1 ATC System

The reference case study consists of a real-world ATC system. In particular, we
consider a Flight data PLan (FPL) Processor, developed atop an open-source
middleware platform, named CARDAMOM2. A FPL provides information, such
as, the flight route, the expected trajectory of the airplane, airplane-related infor-
mation, and meteorological data. The ATC system uses (i) services of the
CARDAMOM platform, such as, the Load Balancer (LB), Replication (R), and
System Management (SMG), and (ii) an OMG-compliant3 Data Distribution Ser-
vice (DDS) [17]. The DDS allows the components of the application to transmit
the FPL instances. This is done by means of the read and write facilities pro-
vided by the DDS API, which allows to retrieve and to publish a FPL instance,
respectively.

Fig. 1. Overview of the target system: FPL Processor

Fig.1 depicts the FPL Processor. It is implemented as a CORBA-based dis-
tributed objects system. The FPL Processor is composed by the Facade object
and a pool of Processing Servers managed via the LB service. The system
components interact as follows: the Facade object accepts FPL processing re-
quests (i.e., insert, delete, update) supplied by external Clients and guarantees
the data consistency by means of mutual exclusion among requests accessing
the same FPL instance. The Facade redirects each allowed request to 1 out of
N Processing Server, according to the round robin service policy. The selected

2 CARDAMOM is a CORBA-based middleware platform providing services to sup-
port the development of software architectures for safety and mission critical systems
(http://forge.objectweb.org/projects/cardamom)

3 OMG specification for the Data Distribution Service, http://www.omg.org
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server (i) retrieves the specified FPL instance from the DDS middleware (e.g.,
DDS MW in Fig.1) by means of the read facility (ii) executes request-specific
computations, and (iii) returns the updated FPL instance to the Facade. The
latter publishes the updated FPL instance by means of the DDS write facility
and finalizes the request. Machines composing the testbed (Intel Pentium 4 3.2
GHz, 4 GB RAM, 1,000 Mb/s Network Interface equipped) run a RedHat Linux
Enterprise 4. An Ethernet LAN interconnects these machines. As normal oper-
ation profile, Client objects invoke the services provided by the Facade with an
average frequency of 50 requests per second. About 4,000 FPLs instances, each
of them of 77,812 bytes, are shared with the DDS MW.

4.2 Integration Strategy

The proposed strategy is applied to the ATC system as described in Section 3. In
the context of the analysis conducted in this paper, we assume the components of
the ATC application (Client, Facade and processing Servers) to be entities and
the DDS a resource. However, it should be noted that the grain of the model is
defined by the analyst; thus, alternative models might have been chosen without
the need to modify the proposed algorithm.

The interaction matrix is built by taking into account the interactions
among the system components, as described in Section 4.1. The matrix is shown
in Fig.2 (A); it has to be noted that all the services of the system exhibit the
same matrix. The interaction between the Facade and the DDS is stateful, as
the Facade writes the updated version of the FPL instance to the DDS. As a
result, a state dependence exists between each processing Server and the Facade.

The iterative algorithm is applied as follows. The Client, i.e., the border entity
of the reference system, is the entry point of the algorithm (Fig.2 (B) - step 1).
We assume HIGH to be a suitable criticality level for this entity; the choice is

Fig. 2. Experimentation: (A) interaction matrix; (B) steps of the algorithm
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Table 2. Failure-modes emulation: entities (ENT.), resources (RES.)

ENT. ATC component (CORBA object)

crash the process is terminated by means of bad manipulations of an uninitialized pointer
active triggering of an infinite loop in the code
hang

passive infinite wait on a locked semaphore
hang

RES. shared memory semaphore network

the vm area struct related target semaphore is network is made unavailable in
access to the target shared memory deleted with ipcrm two different ways (i) via the
denied is deleted from the addressing command-line util ifconfig eth0 down command

space of the process (ii) network cable disconnection
bits storing the memory access permissions are

read access policies are modified modified with semctl; not meaningful
denied by interacting with the OS 200 is set as new value in the case study

paging sub-system [18]
bits storing the memory access permissions are

write access policies are modified modified with semctl; not meaningful
denied by interacting with the OS 400 is set as new value in the case study

paging sub-system [18]
bit-flip technique. We perform

experiments by flipping target semaphore content negligible for the case study.A
corrupt. a single bit or a bit sequence is modified with semctl dedicated LAN environment

of increasing sizes {10, and the SETVAL flag interconnects testbed machines.
100, 1,000, 10,000, 100,000}

reasonable in the case study since the Client represents the most external point
where the service is delivered. We investigate how the failures emulated in the
Facade object impact the Client in the first iteration of the algorithm (Fig.2
(B) - step 2); obtained results allow allocating a proper criticality level to the
Facade object. We subsequently analyze how the Facade object behaves in case
of failures emulated in the components it depends on, i.e., the processing Server
and the DDS (Fig.2 (B) - step 3). Again, a criticality level is allocated to the
Server and we label the DDS (at the Facade, i.e., writer, side) as critical or
non-critical resource, according to the results of the failure-modes analysis. In
the last iteration (Fig.2 (B) - step 4), we investigate how failures emulated in
the DDS impact the processing Server; the DDS (at the Server, i.e., reader,
side) is labelled as critical or non-critical resource. Failures in the Facade and
Server object are emulated by triggering a faulty piece of code when a request
is invoked by the Client. The adopted emulation mechanisms are described in
Table 2 (ENT.). Experiment results are described in 5.1.

We analyze two OTS alternatives, coming from different vendors, as DDS
middleware. The DDS middleware plays a key role in the described ATC system,
both because (i) of the criticality of the domain and (ii) of the workload. For
reasons of confidentiality we do not disclose the actual names of the vendors; we
refer with DDS 1 and DDS 2 to the two DDS implementations. Both DDSs are
integrated in the ATC system as follows: a shared library (*.so, shared object)
is linked to the component that wants to use the DDS. The library relies on
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Fig. 3. Internal architecture of the DDS: (A) DDS 1, (B) DDS 2

external resources, e.g., shared memories and/or semaphores, used as support
data structures (Fig.3). To assess the criticality of the DDS, we investigate how
both the Facade and Server behave in case of failures occurring in the resources
used by the DDS library. Table 2 (RES.) shows how these failures are emulated
in the context of the Linux OS. Failures have been injected during the system
operational time with kernel modules. The analysis of the criticality of the DDS
is reported in Section 5.2 and 5.3, for each implementation, respectively.

5 Failure-Modes Emulation Campaign

We conduct the failure-modes emulation campaign as described in 4.2. Each
emulation experiment has been repeated 10 times, in order to ensure that the
results were not distorted by transitory phenomena.

5.1 ATC Components: Facade and Processing Server

The entry point of the integration algorithm is the Client object, whose criticality
level has been assumed to be HIGH. We analyze the interaction Client/Facade
beforehand; results of the failure-modes emulation experiments allow allocating
a proper criticality level to the Facade. Crash failures of the Facade object causes
the interruption of the service invoked by the Client. For example, an update
request for a FPL instance does not succeed and the new data are lost, raising
an exception. The emulation of hang failures (both active and passive) causes
the interruption of the invoked service; in this case no exception is raised at the
Client side. However, if other services are invoked after a hang failure, the Facade
is able to process the new requests, since it is implemented as a multithreaded
CORBA object. As a result, we conclude that, even if hangs are less critical than
crash failures (the Facade encapsulates specific error mitigation mechanisms), a
service is never able to succeed in case of failures in the Facade object. The
Facade is as critical as the Client. We assign HIGH as criticality level.

We analyze the interaction Facade/Server. Crash failures of the Server ob-
ject cause the request forwarded by the Facade to be lost. However, processing
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Servers are organized as a load-balancing pool. For this reason, when the re-
quest is lost the Facade re-forwards the request to another server, until it is
correctly executed. The emulation of hang failures (both active and passive)
in the Server causes the interruption of the invoked service. Again, no exception
is raised at the Facade side, however, the Server will be able to execute new in-
coming requests because of the multithreaded implementation. We conclude that
the Facade is robust to crashes emulated in the Server; hangs are partially tol-
erated. The processing Server is less critical than the Facade, thus it is assigned
MEDIUM as criticality level.

5.2 Analysis of the DDS 1

The DDS 1 consists of a shared library to be linked to the application, and
internal middleware processes. Applicative processes (i.e., Facade and Processing
Server, respectively) communicate with the DDS internal ones (DA and DB,
networking processes) by means of a shared memory (Fig.3 (A)). Middleware
processes are responsible for the communication among the computing nodes of
a domain. Facade and processing Server interact with shared memories (named
MA and MB, respectively) on both the nodes. We investigate how the failures
emulated in these resources impact the correct behavior of the system.

As depicted in Fig.3 (A) the Facade object interacts with MA. As expected,
the Facade crashes with a “segmentation fault” message in case of an access,
read, or write denied. This is due to the nature of the Linux OS paging sub-
system. The corruption of MA has different consequences, depending on the
modified bits. In particular, the Facade enters a hang state if the corruption
affects lowest MA bits, a crash one, otherwise. The Processing Server inter-
acts with MB. It crashes with a “segmentation fault” message in case of an
access, read, or write denied. Apparently, the corruption of MB does not
make the Processing Server to hang or crash; however, after the emulation ex-
periment, the updated versions of FPL instances are not delivered to the server
anymore. Furthermore, no error notifications are returned.

We conclude that failures of MA and MB always compromise the mission of
the ATC system. MA and MB are critical resources at the writer and reader
side, respectively, since the DDS library, integrated in the ATC components,
does not encapsulate suitable mitigation means to tolerate injected failures.

5.3 Analysis of the DDS 2

The DDS 2 exhibits a different architecture (Fig.3 (B)). All the code of the DDS
is mapped into the application processes in the form of a shared library. As a
result, Facade and processing Servers interact directly with shared memories,
semaphores and the network. Let MA, SA1, SA2 and MB, SB1, SB2 be shared
memories and semaphores at Facade and Processing Server side, respectively.
Let N be the network. Fig.3 (B) depicts the interactions to transmit data, i.e.,
FPLs, between two computing nodes.

The Facade process relies on MA, SA1 and SA2. As we expected, the Facade
object crashes with a “segmentation fault” message in case of an access,
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read, or write denied. The corruption of MA does not compromise both the
behavior of the Facade and data transmission (i.e., each subsequent DDS write
invocation correctly succeeds). Furthermore, the improper modification of the
shared memory content is notified with the following message:

“* Transport Shmem attach writer: incompatible shared memory segment

found. All applications using * must use compatible shared memory

protocols”. This warning message is triggered by the DDS library every 10
seconds and it is printed on the console of the Facade. We can conclude that
failures of MA do not necessarily compromise the mission of the ATC system.
In this case, the library of the DDS 2 encapsulates mitigation mechanisms that
tolerate the corruption and notify the faulty state of the resource. SA1 and SA2

access/read denied, and corruption do not affect Facade operations. The
write denied emulated on both the semaphores is notified with the following
messages: “* Mutex lock: OS semop() failure error OXD. * send:!take

semaphore”, and: “* Mutex ive: OS semctl() failure error OXD. * send:

!give semaphore.”, respectively. The warning messages are triggered by the
DDS library every 10 seconds and are printed on the Facade console. We conclude
that failures emulated on SA1 and SA2 do not compromise the mission of the
ATC system. DDS 2 tolerates and notifies emulated failures: thus, semaphores
are not critical resources.

Processing Server uses MB, SB1 and SB2. Failure emulation provides findings
similar to the Facade. DDS 2 tolerates, and occasionally notifies, emulated fail-
ures. Facade and processing Server communicate through N . When we emulate
network unavailability with any of the proposed mechanisms, updated FPL in-
stances are lost. However, both processes do not exhibit any explicit notification.
Communication between the nodes is restored when the network is resumed. N
unavailability compromises the mission of the system, however DDS 2 is robust
to transient failures of the network.

6 Design Implications and Lessons Learnt

Experiments show that the Facade is the most critical object in the ATC sys-
tem. Failures of different types occurring in the Facade are not tolerated by the
Client; furthermore, a crash of the Facade object compromises the mission of
the system as a whole. On the other hand, the processing Server is not partic-
ularly critical. The proposed approach highlights that the system encapsulates
error mitigation means to tolerate the failures occurring in the processing Server.
As a result, most of the testing/validation efforts should be devoted to the Fa-
cade object. Alternatively, additional mitigation means might be included in the
system to reduce the criticality of the Facade, considering the observed failure-
modes. In general, the overall safety level of a system depends on the nature of
the dependencies among its components. Thus, such dependencies should always
be analyzed as showed. Indeed, the architecture of the system and design choices
affect the ability of the system to react and to mitigate the failures.
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The analysis of the two DDSs reveals that different implementations of the same
service, i.e., the data distribution, affect the ability of tolerating failures. We ob-
served that both DDSs use shared memories. In DDS 1 they have a critical role.
Communications occur via sharedmemorybothat theFacadeandProcessingServer.
In other words, it is a single point of failure, since each emulated failure compro-
mises data transmission. DDS 2 uses shared memories too. Anyway, in this case
they provide only support facilities. Their corruption does not compromise data
transmission. DDS 1 does not use semaphores, thus avoiding the introduction of
new potential failure sources. However, they do not represent an actual depend-
ability threat in DDS 2. Even if they are used to access resources, their failures do
not compromise the service completion. Again, the same resource, e.g., the shared
memory provided by the Linux OS, is critical for the first DDS implementation,
but not for the other. This enforces that, in general, distinct OTS implementations
might result in different fault tolerance features with respect to the execution envi-
ronment; these features have therefore to be assessed, in order to make convenient
choices (e.g., choosing a different OTS, or implement fault tolerance mechanisms).

Despite the different features of the DDS, the choice of a less dependable
implementation does not affect the criticality levels of the components in the
proposed case study. As discussed, a state dependence exists between the pro-
cessing Server and the Facade. A state dependence might modify the criticality
level of the writer entity, when it is not robust to the failures of the resource (see
Table 1). However, the Facade, i.e., the writer, is already more critical than the
processing Server, thus the criticality of these two components does not change
due to the dependence. We observe that, in general, both (i) the fault tolerance
capabilities of the OTS, and (ii) the criticality of the components of the system
that use the OTS are worth to be assessed, since the choice of a specific OTS
component depends on both these aspects.

In the future, we will extend the integration approach to other domains and
applications. We aim to compare in terms of dependability, other than differ-
ent architectures, different execution environments. Moreover, we will extend
the approach by considering different kinds of OS/middleware resources, as well
as other failure-modes, in order to increase the accuracy of the experimenta-
tion. One of our goals is to investigate further failure emulation techniques to
deal with software, coming from different suppliers, for which vendor does not
share the code and does not provide practical support for the integration (i.e.,
a failure emulation completely transparent to the OTS internals). This will help
establishing a common procedure, independently from the OTS suppliers.
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