
Search-based Optimization
for the Testing Resource Allocation Problem:

Research Trends and Opportunities
Roberto Pietrantuono and Stefano Russo

Università degli Studi di Napoli Federico II
80125 Napoli, Italy

roberto.pietrantuono/stefano.russo@unina.it

ABSTRACT
This paper explores the usage of search-based techniques for the
Testing Resource Allocation Problem (TRAP). We focus on the
analysis of the literature, surveying the research proposals where
search-based techniques are exploited for different formulations of
the TRAP. Three dimensions are considered: the model formula-
tion, solution, and validation. The analysis allows to derive several
observations, and finally outline some new research directions to-
wards better (namely, closer to real-world settings) modelling and
solutions, highlighting the most promising areas of investigation.
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1 INTRODUCTION
Testing is the predominant factor of cost of software development.
Engineers are demanded for delivering high-quality products on
time and working with underestimated resources. Hence, test man-
agers strive to use available resources in the best possible way.
The need for cost-effective test planning led researchers to address
this problem by systematic methods. Testing resource allocation is a
planning procedure to assign testing resources to software compo-
nents so as to achieve a target goal under given constraints. A lot
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of research effort has been spent to formulate models to optimize
the resources allocation. These allows distributing resources on
a quantitative basis, and not merely relying on the intuition or
experience of test/project managers.

In recent years, as size and complexity of software systems in-
creased and multiple objectives are required to be balanced to get
optimal trade-offs (e.g., cost, schedule, reliability), the usage of
search-based strategies to solve these problems spread out.

In this paper, we survey existing studies using search techniques
to solve the Testing Resource Allocation Problem (TRAP). We ana-
lyze 17 studies with respect to several dimensions and highlighted
current research trends in this area with respect to TRAP models
formulation (Section 4), to search-based techniques adopted for
models solution (Section 5) and to the model validation approach
(Section 6). We then highlighte new research opportunities toward
models and solutions better aligned with modern software devel-
opment contexts (Section 7).

2 THE TESTING RESOURCE ALLOCATION
PROBLEM

The problem of identifying those parts of a system1 that should
receive more resources during testing has been addressed by many
researchers [19]. Typically, testing aims to detecting asmany defects
as possible, and testing resource allocation aims at distributing
resources among modules so as to detect more defects with less
effort [24]. Therefore, most of criteria allocate a greater effort to
software modules expected to contain more defects.2 To this aim,
much research focused on defect-proneness models, i.e., models able
to estimate the defectiveness of software modules based on process
or product metrics. The output of these models are either the list
of modules believed to be defect-prone (namely, containing at least
one fault) and defect-free – in a binary classification formulation
– or the rank of modules from the most to the least defect-prone
one – when, more rarely, formulated as a ranking problem. The
problem with this formulation is that the output does not directly
tell how to allocate testing resources to modules, i.e., there is no
allocation scheme following the classification/ranking task. Clearly,
defect-prone modules (or the highest in the rank) deserve more
testing resources, but the amount of resources is not quantified
(apart from few exceptions, e.g. [1]).
1Here we refer to a component or module as an independently testable functionality.
The terms are used as synonymous if not differently specified.
2Note that the software engineering literature typically uses the term defect, while in
reliability and TRAP research the term fault is used, according to the fault-error-failure
chain definition [3]: in this work we use them synonymously to denote the adjudged
cause of an observed failure.
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To properly quantify resources to distribute to modules, re-
searchers formulated the TRAP as an optimization problem. The
objective, in this case, is more refined, since the effort allocation
criterion does not merely look for modules with more defects, but
for the ones with a greater impact on the overall user-perceived
reliability.3 Reliability measure deals not only with how many de-
fects are in the software, but also with how often they are activated
and manifest themselves as failure. Thus, a software module with
more defects than another can be more reliable inasmuch as those
defects are less often activated and cause less frequent failures in
operation [8]. TRAP models have reliability improvement as a main
optimization objective, often contrasted with, or constrained on,
testing cost, testing effort or testing time objectives – more details
in the next Section.

The general form of a single-objective TRAP model looks like
one of the following:

max ! RS (x |T1,T2, . . . ,Tn ) s .t . T = sumn
i=1Ti ≤ T ∗

min! T =
∑n
i=1Ti = s .t . RS (x |T1,T2, . . . .Tn ) ≥ R∗

min! C(T1,T2, . . . ,Tn ) s .t . RS (x |T1,T2, . . . .Tn ) ≥ R∗∑n
i=1Ti ≤ T ∗

(1)

where:
RS is the overall reliability of the software (or related functions,

e.g., expected failure intensity, that is number of failure per
time unit);

T is the total testing effort, and
Ti is the effort allocated to module i (out of n modules);
C is a cost function dependent on testing efforts;
T ∗ is the maximum available testing effort to distribute;
R∗ is the minimum level of required reliability.

The multi-objective version just considers two or more of these
objectives together.

These functions are interdependent. For instance, the achieved
reliability of a module depends on the testing effort devoted to
it; the cost depends on testing effort (e.g., including the cost of
tester) but can also account for the cost of debugging during testing
or during operation. Thus, models vary based on the adopted ob-
jective function. Moreover, there are different ways of expressing
inter-module architectural dependencies, which determine how an
attribute of interest at system level (e.g., reliability) is computed
from the same attribute at module level.

Besides formulation, the variety of solution techniques gives
raise to further alternatives. Indeed, traditional optimal TRAP advo-
cates the usage of exact methods (e.g., non-linear programming, dy-
namic programming). However, for complex system configurations
and/or for handling multiple contrasting objectives, (meta)heuristic
approaches are needed. Thus, depending on how each objective func-
tion is constructed, on how many of them are considered, on how the
architecture is described in the model, and on the solution method,
several TRAP variants are possible. Figure 1 provides a taxonomy
of TRAP models.

3Reliability, in this research area, is defined as the probability of failure-free operation
of a computer program for a specified time in a specified environment [22].

In the next Section, the focus is on the subset of problems solved
by metaheuristics (i.e., excluding exact methods), so as to figure
out how researchers applied search techniques to different variants
of TRAP.

3 SEARCH-BASED TECHNIQUES FOR TRAP:
RESEARCH RESULTS

The research considered an initial set of 188 papers, extracted by
a keyword-based search on the software testing resource allocation
problem followed by a manual filtering, conducted on the SciVerse
Scopus4 and the IEEE Xplore5 search engines. From the abstract,
most of them (114 papers) were filtered out, because the papers
were note not directly related to the allocation problem (19 of them
were on software reliability growth models; 31 on fault/change
prediction techniques; 64 on allocation strategies unrelated with
testing resources), getting to 74 papers dealing with TRAP. Out of
this, we eliminated the papers that just formulate the TRAP problem
(without discussing the solution method) and those (mostly, single-
objective) adopting exact methods. The final set of selected primary
studies solving the TRAP via a search-based technique includes 17
papers, ranging from 2003 to 2017.6

Figure 2 shows the distribution of the final set of studies by
year and by publication venue – conference proceedings or journal.
On this set, we analyzed i) the model formulation, ii) the model
solution, and iii) the model validation.

4http://www.scopus.com
5http://ieeexplore.ieee.org/
6The final set of papers are References [2], [9], [11], [12], [16], [17], [18], [21], [23],
[25], [27], [28], [29], [30], [31], [33], [34].

Figure 1: Classification of Testing Resource Allocation Prob-
lems (TRAPs)
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Figure 2: Search-based TRAP studies per year

Table 1: Search-based TRAP studies by Formulation

Objective Function and Architecture Frequency
Objective: Obj. Function∗ n out of 17
Reliability (R) 10
Time/Effort (T) 7
Cost (C) 15
Objective: SO vs MO
Single-objective 8†
Multi-objective 9
Architecture Model
None 9
Usage factor 1
Parallel-series model 6
Architecture-based (Markovian) model 1
∗The sum of occurrences is greater than 17, as multi-objective
considers more of them together.
†Considered objectives in the single-SO case are:
C: 6 times out of 8; R and T: 1 out of 8 (in the same article);
R combined with C: 1 out of 8

4 MODEL FORMULATION
TRAP models are distinguished based on the number (single- or
multi- objective) and type of considered objectives, on how they
describe the architecture in terms of inter-module relations (e.g.,
by usage factors, by parallel-series structures [19], by architectural
models [26]). Table 1 shows the result of the analysis with respect
to the model formulation, discussed in the following Sections.

4.1 Objectives
Looking at the general formulation (Eq. 1), the goals of interest for
a TRAP formulation are: reliability, testing time/effort, cost. One or
more of them can be set as objective or as constraint, obtaining
several different formulations. The first part of Table 1 reports
the number of studies considering reliability, testing time/effort
and cost as an optimization goal, in both a single-objective (SO)
formulation and in a multi-objective (MO) formulation.

Most of works (10 out of 17) include a reliability function as
maximization objectives. In few cases (3 out of 17) it is considered
as a lower-bound constraint. Most of solutions exploit Software

Reliability Growth Models to capture the relation between the relia-
bility growth (in terms of fault detection/correction process) and the
testing effort (or time) devoted to each module. SRGMs are a wide
class of models fitting inter-failure observed during testing and
debugging to predict the next time to failure. The general form of
the most common class of SRGMs, the Non-Homogeneous Poisson
Process (NHPP) SRGMs, is:

m(t) = a
(
1 − e−D(t )

)
(2)

where:
m(t) is the cumulative number of detected and corrected faults

at time t ;
D(t) =

∫ t
0 λ(s)ds models the Fault Detection Process (FDP) by

means of the fault detection rate per remaining fault (or failure
intensity) λ;

a is the expected number of total faults.
The shape of D(t) determines the specific SRGM (e.g., exponential,
S-Shaped, Logarithmic, Log-Logistic).

Equation 2 captures the FDP but neglects the fault correction
process (FCP), namely it assumes an immediate debugging time,
which can have a severe impact on the estimation accuracy [6], [7].
Researchers developed debug-aware SRGMs, which are more rarely
integrated into TRAP models. The general debug-aware form is
[20]:

m(t) = e−C(t )
(∫ t
0 ac(s)eC(s)[1 − e−D(s)]ds

)
(3)

wherem(t) now represents the cumulative number of detected and
corrected faults, and C(t) =

∫ t
0 µ(s)ds models the FCP by means of

the fault correction rate per detected but not corrected fault, µ. Thus,
the objective to maximize is the sum, over each module, ofm(t) or
a function thereof.7

Testing time or effort is the second objective. It appears as objec-
tive in 7 out of 17 cases, while it is almost always (except 1 case)
a constraint (because it represents the available budget – in terms
of time or effort – to not overcome). Rarely, models account for
the relation between the testing effort (in terms of man-power) and
testing time (in terms of calendar time, CPU time or number of test
cases). In fact, while the simpler case assumes the testing effort
E varying linearly with time T , this is, in general, not true. In the
literature, the relation is modeled by the so-called Testing Effort
Functions (TEFs), which model such a non-linearity by a function
F : E = F (T ) – the most common TEF, shown to well represent the
usual trend of testing effort, is the logistic TEF [14], [13], [15]. When
considering a TEF,m(t) in Eq. 2 and Eq. 3 change, since the effort
Y is considered in lieu of time, making it more complex to solve. 4
out of 17 search-based TRAP models exploit a TEF to account for
this difference.

Finally, almost all models (15 out of 17) account for cost as
objective. Cost is a measure related to the effort spent, but goes
beyond it. There are various cost models; a common model is the
following one [14], [32]:

C(t) = C∗
1 · (δ/24) ·mc (t)+C

∗
2 · (δ/24) · (md (∞)−mc (t))+C

∗
3 · (Y/24)

(4)
where:
7E.g., the failure intensity λ(t ), or the expected reliability at operational time t , ex-
pressed as R(t ) = exp(−λ(T ) · t ), where λ(T ) is the failure intensity at the end of
testing (at time T) assuming no change in the software during operation [26]).
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C∗
1 is the cost per man-day to correct a fault during testing;

C∗
2 is the cost per man-day to correct a fault at runtime (typi-
cally C∗

2 ≥ C∗
1 [4]);

C∗
3 is the cost per testing-effort expenditure unit (e.g., man-day),
i.e., hourly or daily cost of a tester;

δ is the average number of hours to fix a fault.

As for the number of objectives, early works focused on single-
objective (SO) optimization. Examples are the works by Kapur et
al. [16], who consider the cost as objective, solved by a genetic
algorithm (GA), by Dai et al. [9], who formulate a combined re-
liability and cost function, solved by a GA, and by Aggarwal et
al. [2], who maximize reliability (and then, minimize effort in a
second formulation) again using a GA. if we refer to the whole set
of TRAP models (including the ones solved by exact methods or
with no solution algorithm), single-objective works are indeed the
vast majority. However, restricting the scope to works solved by
search techniques, there is a balance, since multi-objective (MO)
problems are difficult to handle without search techniques: 8 pa-
pers formulate a single-objective problem, while the remaining
9 deal a multi-objective one.

An example of MO TRAP is by Huang et al. [33], who take the
three objectives together, with cost described by Eq. 4, testing time
with no TEF and a general SRGM, and also consider the relation
among modules (i.e., architecture) explicitly in the formulation;
Sangeetha et al. [27] use an exponential SRGM and a problem-
specific const function under effort constraint; Pietrantuono et al.
[25] consider a general TEF-aware testing time function, a debug-
aware SRGM, and a cost function as in Eq. 4, also considering the
uncertainty of parameters to get a robust solution. To summarize,
two remarks follow.

Observation 1
Considering the aggregate count (without distinguishing single-
objective and multi-objective formulations), a Cost function is
present in almost all the cases, the Reliability (10 cases) and testing
time/effort (in 7 cases); in single-objective formulations (8 out of
17 cases), cost is again almost always present as optimization goal
(except one case), reliability and testing time/effort appear only in
1 paper, where both formulations are proposed in sequence. Thus,
cost is indeed deemed the most important optimization goal, under
testing time/effort and/or reliability constraints.

Observation 2
Testing time/effort is considered just once in single-objective opti-
mization and 7 times in multi-objective setting (the least considered
one); on the other hand, it is set as a constraint in 16 out of 17 stud-
ies – hence the formulations represent the most common situation
where a given budget is available and should not be overcome). A
refinement in modeling the testing time/effort is considered just in 4
cases, wherein a TEF is used to model the time-effort relation.

4.2 Architecture Model
While SRGMs describe the reliability-testing relation of a single
module, the relation between modules should be also taken into
account. In fact, the allocation process should also consider how
often a module is used – e.g., if the total reliability computation
does not account for module usage, a solution can assign a lot of
testing resources to a rarely used module, which will not actually
contribute to the total reliability, thus wasting resources. About
half of the works (9 out of 17) do not account for any form of
inter-module relation. A solution, often adopted by TRAP models,
but rarely seen (only 1 case) for search-based TRAP models, is to
consider a usage factor – a [0-1] weight expressing the frequency
(or probability) with which a module will be involved [25].

Another solution is to consider structures of series-parallel (or
more complex, like bridged, star) and the associated structure func-
tion [19], [34]. This approach is taken from the literature on Redun-
dancy Allocation Problem (RAP) – the one to determine at design
time the minimum required component-level reliability against a
system-level reliability objective. In search-based TRAPs, this was
adopted in 6 cases.

A more complete solution is to consider Markovian architectural
models, like Discrete-time Markov Chains (DTMC), representing
modules by states, with transition probabilities describing the exe-
cution flow from one component to another [10], [26]. The derived
measure, such as the so-called visit count (i.e., the average number
of visits to a component), is used in the system-level reliability
computation.

Observation 3
Despite its practical importance to obtain results close to the reality,
the architecture is often not considered in the TRAP models. When
considered, it is accounted for by means of parallel-series models,
which however are more appropriate for redundancy allocation
problem.

5 MODEL SOLUTION
17 out of 74 papers (that is 23%) consider metaheuristics to solve
the allocation problem, because the complexity of the formulated
model would lead to unacceptable computational time by an ex-
act method solution. Table 2 lists the metaheuristics used in the
selected studies and how many times they performed better than
other competing metaheuristics.

Observation 4
A good variety of metaheuristics have been tried to solve the TRAP
problem – 12 MO and 7 SO metaheuristics in 17 papers. The most
used ones are (variants of) the NSGA-II (Non-dominated Sorting
Genetic Algorithm) followed by the HaD (Harmonic Distance) algo-
rithm for multi-objective problems and the GA for single-objective
problems (used 6 times).
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Table 2: Search-based TRAP studies by Solution

Search Algorithm: Best-
Multi-Objective+ Frequency performing⋄

NSGA-II 7 3 times out
of 7 comparisons

HaD 4 1 out of 5
MODE 2 1 out of 1
WNS-MODE 2 1 out of 2
PAES 2 0 out of 2
MOCELL 2 0 out of 2
CELLDE 1 0 out of 1
MOEA/D 1 1 out of 1
IBEA 1 0 out of 1
RWGA 1 1 out of 1
SPEA2 1 0 out of 1
SMPSO 1 0 out of 1
Search Algorithm: Best-
Single-Objective+ Frequency performing⋄

GA 6 1 out of 1
GLSA 1 1 out of 1
Hill Climbing 1 1 out of 1
Simulated Annealing 1 0 out of 1
K-A 1 0 out of 1
Y-X 1 0 out of 1
T-M 1 0 out of 1
+ Listed algorithms are either in their original version or variants
tailored to TRAP.
⋄ Count the number of wins with respect to the number of
comparisons: in a paper, there might more comparisons
(e.g., on 2 and then 3 objectives), or no
comparison at all.

Other popular algorithms for the multi-objective cases are those
based on Differential Evolution, namely Multi-Objective Differen-
tial Evolution (MODE), Weighted Normalized Sum-Multi-Objective
Differential Evolution (WNS-MODE) and the hybrid Cellular Differ-
ential Evolution (Cell-DE), combining Multi-objective Cellular (MO-
Cell) and MODE, which account for 5 cases altogether. Furthermore,
widely-used metaheuristics are tried for TRAP, like Pareto Archived
Evolution Strategy (PAES), Multi-objective Particle Swarm Opti-
mization (SMPSO), and Indicator-based Evolutionary Algorithm
(IBEA).

For the single-objective case, other algorithms, besides the con-
ventional GA, are: a variant of GA, the Genetic Local Search Algo-
rithm (GLSA), combining GA with local search; the well-known
Hill Climbing (HC), Simulated Annealing (SA) and other problem-
specific algorithms (K-A, Y-X, T-M, from initials of authors’ name).

In the multi-objective case, there is a wider variety of approaches
(unlike the SO case); the prevalence of NSGA-II is not necessarily
because it performs (or is expected to perform) better, but because of
its popularity and because TRAP studies focus more on proposing
new models than on finding the best metaheuristic. This hypothesis
is corroborated by looking at the number of times in which NSGA-II
performs better than others – a detail reported in Column 3 of Table
2.

Specifically, most of the studies compare several metaheuristics
according to either conventional coverage, convergence and di-
versity metrics (e.g., hypervolume, (inverse) generational distance,

spread) or using problem-specific metrics (i.e., which algorithm
yields the best solution, or the best cost-optimality trade-off, for a
given objective function). From comparisons, the following remark
emerges.

Observation 5
In the MO case, NSGA-II performs better than competing meta-
heuristics in 3 out of 7 cases. It is the most used algorithm, but in 4
cases it is not the best one. HaD loses a comparison in 4 out of 5 cases.
Algorithms based on DE (MODE, WNS-MODE) wins a comparison
in 2 out of 3 cases, while the hybrid CellDE looses 1 out 1 times.
PAES, IBEA, SPEA2, SMPSO, and MOCell lose their comparisons (7
cases in total). MOEA/D, RWGA and MODE are compared 1 time
(in different studies) and win the comparison against the others.

In particular, NSGA-II is defeated: by the Random-Weighted Ge-
netic Algorithm (RWGA) [29] in a comparison with 6 other meta-
heuristics – hence, RWGA performance is worth to be highlighted;
by the Multi-objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) [28] (both coupled with a local search strategy);
by the HaD [31] in a 3-objective comparison case; by MODE in
[30]. On the other hand, it won the comparison against MOCell,
PAES and IBEA in [25]; a variant of NSGA-II for TRAP won against
WNS-MODE and HaD in [34]; NSGA-II won against HaD in [31] in
a 2-objective comparison.

It is worth to highlight the good performance of DE-based algo-
rithms (they loose 1 out of 3 against a problem-specific variant of
NSGA-II), the average performance of NSGA-II, and the bad perfor-
mance of several older metaheuristics. It is also worth to mention
less usual algorithms MOEA/D and RWGA, which won 1 out of 1
comparison (the former against NSGA-II and HaD, the latter against
NSGA-II, CellDE, PAES, SPEA2, SMPSO, MOCEL). The following
two further observations are about SO algorithms and local search
strategies.

Observation 6
In the SO case, there are less cases where a comparison is carried
out. GA performed better than Y-X and T-M algorithms [11], GLSA
outperforms Simulated Annealing an K-A algorithms, while Hill
Climbing outperforms a greedy-based policy.

Observation 7
In the two cases in which it is used, the effect of local search was
found to be beneficial [11], [28]. The former reports the formulation
of the discussed GLSA variant of GA in a single-objective setting;
while the latter adopts a local search strategy to improve multi-
objective metaheurstics: MOEA/D, HaD, NSGA-II.

6 MODEL VALIDATION
Table 3 shows the number of times in which a study has been vali-
dated by numerical examples or by an experimental study and/or
in an industrial context. The distinction refers to how the dataset,
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on which metaheuristics are tested, is derived and on the consid-
ered system under test: in a validation by numerical examples, the
dataset is generated artificially for the purpose of illustration or
taken from the literature; in experimental validation, a randomized
experiment or a quasi experiment is conducted, and it can be in an
industrial setting or not (e.g., on open source software).

Observation 8
The vast majority of studies on search-based TRAP use numeri-
cal illustrations to validate their models. Typically, one or more
metaheuristics are tested on numerical examples, and the system
under test is often an artificial example too (especially in the case
of parallel-series systems). Only two cases test their approach in
industrial settings – one at Cisco Norway, on a videoconferencing
system (VCS) [29], and the other at an Healthcare company, on an
CRM software [25] – and one on open source software [12].

7 RESEARCH DIRECTIONS
The observations resulting form exploring the state of the art in-
spires new research directions. We mention the most relevant ones:

• TRAP objective functions. Both SRGMs for reliability ob-
jective as well as effort and cost models, are notoriously
subject to numerous assumptions. Despite 40 years of re-
search on SRGMs, there is still the need to work on new and
more favourable models reflecting the current testing (and
debugging) practices to capture the real reliability growth
trend.
Similarly, there is wide room for improvement in the for-
mulation of effort and cost models more closely represent-
ing real processes. With multi- and many-objectives search
techniques, much more can be done in terms of resource
allocation optimization by more refined models tailored
to current production processes, e.g.: including separate
cost or effort goals for debugging and testing processes
(e.g., testers/debuggers by skills, experience); including bug-
debugger assignment policies (e.g., select debugger based
on bug severity) or functionality-testers assignment policies
(e.g., select tester based on functionalities to test).
Other aspects to model include the human factors involved
in a testing/debugging process, which is a wide research area
too, and other attributes of interest besides reliability, such
as power consumption, security and performance.

• TRAP in new contexts. A concrete realization of the above
research direction is to devise TRAP models for emerging
software production contexts, such as agile and DevOps
processes, where the rapid release cycles allow for exploitat-
ing runtime data as feedback for building models closer to
the system-in-operation. An optimal allocation of testing

Table 3: Search-based TRAP studies by Validation

Validation Method Frequency
Numerical 14
Experiment and/or Industry application 3

resources could take place at each cycle leveraging data of
previous ones.
Of course, this research area entails revisiting objective func-
tions too. For instance, new SRGMs (e.g., based on SRGMs
with multiple change points) or new ways to model the
testing-reliability relation for these new processes are needed.
Similarly, the description of the architectural relation among
modules is no longer static, at design time, but applications
are loosely coupled and dynamically interact with each other
at runtime (e.g., web services, microservices). Hence, archi-
tectures and behavioural models inference at runtime (ex-
ploited for re-allocating resources from time to time) be-
comes a crucial research area.

• TRAPunder uncertainty. Models are naturally affected by
uncertainty. While it is undebatable that uncertainty should
be reduced (e.g., by more accurate models, as discussed
above), some uncertainty remains inevitable in software-
related processes. Hence, besides uncertainty reduction, un-
certainty tolerance becomes important.
Robust optimization is one way of dealing with that, as it con-
siders the uncertainty associated with models’ parameters
(e.g., in terms of confidence interval) and provides ranges of
solutions (i.e., interval-solutions instead of point-solutions)
under different possible values of such parameters. An exam-
ple is in our previous work [25]. A further possibility is to
adopt a dynamic strategy, namely to solve the TRAP model
more times as the testing proceed.
With time, the impact of upfront assumptions becomes clear,
and the solution becomes adaptive with respect to the real
runtime context (e.g., SRGMs becomes more and more ac-
curate as faults are detected) [5], [21]. This leads to a new
research direction aimed at developing/applying dynamic
search-based metaheuristics to TRAP models.

• TRAP in the real world. For TRAP models to increase
their popularity and usefulness, much more real-world ex-
periences are needed, as resulting from Section 6. Applying
models to concrete instances, especially in industry, allows
eliciting new requirements and testing assumptions to figure
out which ones are realistic and which call for new, more
comprehensive, models. To this end, the support of tools
would also be paramount.

8 CONCLUSIONS
As size and complexity of software systems and of related test-
ing/debugging process increase, search-based strategies becomes
increasingly important for the Testing Resource Allocation Prob-
lem. This work conducted an analysis on the existing literature
on TRAP. The sample size of 17 papers do not allow for drawing
general conclusions, but the work highlighted the main dimensions
along which TRAP models are built and evolve, and which search
techniques are being used for their solution. Then, it outlined pos-
sible directions to develop new and more accurate models, possibly
more suitable for modern software current software development
processes. The work finally drew four research directions, empha-
sizing the importance of both new formulations and of real-world
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(industrial) experiences to advance state-of-the-art and state-of-the-
practice together.
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