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Abstract The interworking between cellular and wire-
less local area networks, as well as the spreading of
mobile devices equipped with several positioning tech-

nologies pave the ground to new and more favorable
indoor/outdoor Location-Based Services (LBSs). Thus,
Wireless Internet Service Providers (WISPs) are re-

quired to take several positioning methods into account
at the same time, in order to leverage the different fea-
tures of existing technologies. This would allow pro-

viding LBSs satisfying the user-required quality of po-
sition in terms of accuracy, privacy, power consump-
tion, and often, conflicting features. Therefore, this pa-

per presents GlobalPreLoc, a multi-objective strategy
for the dynamic and optimal selection of positioning
technologies. The strategy exploits a pattern mining al-

gorithm for future position prediction combined with
conventional multi-objective evolutionary algorithms,
for choosing continuously the best location providers,

accounting for the user requirements, the terminal ca-
pabilities, and the surrounding positioning infrastruc-
tures. To practically implement the strategy, we also

designed an architecture based on Secure User Plane
Location (SUPL) specification to provide indoor and
outdoor LBSs in interworking wireless networks exploit-

ing GlobalPreLoc features.
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Seconda Università degli Studi di Napoli, Via Roma 29, 81031
Aversa, Italy.
E-mail: massimo.ficco@unina2.it

R. Pietrantuono and S. Russo
Dipartimento di Ingegneria Elettrica e delle Tecnologie
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1 Introduction

Location-Based Services (LBSs) are considered one of
the drivers in the market of telecommunication ser-

vices [1]. Positioning of handset devices in wireless net-
works (3G/4G) is crucial to many nowadays popular
services, including navigation, tracking, information and

advertisement, and to more advanced services, e.g., for
fraud detection, location-sensitive billing, health care,
and traffic congestion avoidance. The spread of wire-

less hotspots into public and private areas (airports,
malls, hotels, offices, etc.), and the availability of mobile
terminals that support several positioning technologies

(e.g., GPS, Wi-Fi, Bluetooth, RFID), fosters the devel-
opment of integrated indoor/outdoor positioning sys-
tems. Therefore, in order to provide value added LBSs,

WISPs should be able to locate their users in both in-
door and outdoor scenarios exploiting the most appro-
priate positioning technology depending on the context.

Positioning techniques and technologies are known

to have very different features from each other. For in-
stance, techniques exploiting proximity to 802.11 wire-
less cells are suitable for indoor scenarios but have mod-

est accuracy, while GPS-based methods have high ac-
curacy, but they work well outdoor and entail a high
power consumption. Therefore, in the last years, several

Application Programming Interfaces (APIs) and archi-
tectural solutions have been proposed to develop loca-
tion providers, which integrate several positioning tech-

niques and technologies [2–4]. However, none of them
is able to leverage the different features of heteroge-
neous positioning systems in an optimal way with re-

spect to the user requirements. Indeed, some position-
ing requests might require a high accuracy regardless
power consumption, or response time, or privacy, while

others might prioritize a low power consumption even
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accepting a modest accuracy. The architecture and im-

plemented protocols are required i) to be able to use
several kinds of technologies and switching among them
seamlessly, ii) to offer mechanisms for specifying re-

quirements on the desired quality positioning requests,
and iii) to satisfy these multiple and possibly conflict-
ing objectives in an optimal and dynamic way.

In this paper, we present GlobalPreLoc, a solution
to enable WISPs to infer indoor/outdoor location in-

formation optimally, by exploiting a position prediction
pattern-mining algorithm and multi-objective metaheuris-
tics to account for different quality objectives. The so-

lution enables the dynamic selection of the best mix
of positioning technologies available at a given place
and time, accounting for the current position and pre-

dicted future movements of the terminal. At architec-
tural level, specific context-aware mechanisms are de-
fined to transparently and adaptively choose the most
suitable technology during the user movement, accord-

ing to the required quality of position (QoP), to the
mobile device capabilities, and to the surrounding po-
sitioning infrastructure. The optimization policy is im-

plemented with respect to the specified objectives (e.g.,
minimize the power consumption or computational cost)
and constraints (e.g., accuracy), and considering the

features of location providers available in the current
and predicted future positions.

Besides defining the locators selection algorithm, we
designed the actual architecture embedding the algo-
rithm as an extension of SUPL (Secure User Plane Lo-

cation) [6]. SUPL is a collection of open standard spec-
ifications that defines how location information should
be transferred between terminals and applications through

wireless networks (UMTS, Wi-Fi, etc.), independently
from the positioning systems. Finally, to implement the
entire solution, we also defined software abstractions

that offer to LBSs a uniform access to heterogeneous
positioning technologies, allowing to integrate commer-
cial and open location technologies developed using the

most widespread location APIs.

The paper is an example of soft computing appli-

cation to the area of mobile terminal positioning and
location-based services as a practical way to implement
context-aware policies by multi-objective approaches.

The remainder of the paper is organized as follows.
Sec. 2 provides basic background about SUPL. Sec. 3

presents the architectural details and the adopted in-
formation model. Sec. 4 describes the implemented ap-
proach based on Multi-objective Evolutionary Algorithms

(MOEAs) for the optimal selection of location providers.
Sec. 5 shows the results of the evaluation. Sec. 6 surveys
the related state-of-the-art about positioning systems.

Conclusions are described in Sec. 7.

2 Interoperability and standard for

location-aware computing

The delivery of multi-provider LBSs demands for proper
standards. SUPL [6] is an interoperability open stan-
dard, defined by OMA, for location-aware computing,

that groups a set of specifications defining a way for ex-
changing location information between SUPL Enabled
Terminals (SETs) and location applications. SUPL em-

ploys user plane data bearers, requiring IP-capable net-
works and minimum modification to the network el-
ements. It allows using several positioning strategies,

such as Assisted GPS (A-GPS), Enhanced Cell-Id, Time
of Arrival (TOA), and Time Difference of Arrival (TDOA).
SUPL defines how signaling and position information

should be transferred between actors through wireless
networks, independently from the positioning systems.
It also defines security, privacy and charging functions.

Fig. 1 shows the SUPL architecture. The architec-

ture includes the following entities:

– SUPL Enabled Terminal (SET): any device able to

communicate with a SUPL network;
– Mobile Location Service (MLS): an application re-

quiring position information to provide to LBSs;

– SUPL Agent : the service access point, which ac-
cesses the network resources to obtain location in-
formation;

– SUPL Location Platform (SLP): the core of the plat-
form; SLP is the entity responsible for estimating
and delivering the SET position. It is composed of

the SUPL Location Center (SLC) and the SUPL
Positioning Center (SPC). The SLC coordinates the
operations in the network and interacts with the

SET. It receives positioning requests, authenticates,

Fig. 1: SUPL architectural model
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and checks that applications are authorized to re-

quest the user location. The SPC is responsible for
operations needed for SET localization;

– WAP PPG, SMSC/MC, UDP/IP, and SIP Core:

the communication mechanisms for conveying loca-
tion request notification, used for communicating
with a SET. They include: OMA Push (based on

the Push Access Protocol and Push Over-The-Air
Protocol), SMS, UDP/IP and SIP Push messages.

– Emergency IMS Core: For IMS (IP Multimedia Sub-

system) emergency services, the SUPL location re-
quest notification is conveyed from the SLP to the
SET via the Emergency IMS Core using SIP Push.

MLS Application and SUPL Agent can independently
reside on the network or on the SET. If SUPL Agent

resides in the network, the service is named Network-
Initiated, otherwise it is named SET-Initiated.

In a Network-Initiated scenario, a SUPL Agent, to
obtain the SET position, sends a location request to
the SLP which the SET is associated with. The SLP

starts a location session sending a message via SMS or
WAP to the SET. Once a secure IP connection has been
established, the SET determines first its coarse-grain

position based on the identifier (Cell-Id) of the wireless
cell it is connected to. Then, if necessary, it computes
a finer position by a positioning method chosen among

those supported by the SET or by the infrastructure
and satisfying the required QoP.

In a SET-Initiated scenario, the SUPL Agent re-
ceives a positioning request from an application running
on the SET. The SUPL Agent establishes a connection

with the SLP, and then it sends a message (contain-
ing the Cell-Id) to begin a positioning session with the
SLP. If the coarse-grain position computed (based on

Cell-Id) meets the requested QoP, the session is fin-
ished, otherwise the communication proceeds as in the
Network-Initiated scenario. Except for initial message

delivery in the Network-Initiated scenario (in which an
SMS or a WAP message is used), the transport is based
on the TCP/IP protocol.

3 Location architecture for indoor and outdoor
scenarios

In the following subsections, we first present the de-
fined SUPL-based architectural model. We defined its

requirements in [5]. Hereafter, we report the detailed
design for what concerns the dynamic and optimal posi-
tioning strategy. After the high-level architecture, a de-

scription follows of: i) the location information model,
and ii) the software design of handset- and network-side
modules, and of the proposed API for supporting the

integration with the most widespread location APIs.

3.1 High-level architecture

3.1.1 Architectural entities

The proposed architecture enables WISPs to provide
LBSs that exploit dynamically both handset- and infra-
structure-based location providers. To this aim, the ar-

chitecture has to fulfill requirements of openness, strong
WISPs interoperability, exploitation of different net-
works and positioning providers, and of context-related

information to optimize cost-quality trade-offs. To sat-
isfy these requirements in both Wireless Wide Area
Networks (WWANs - e.g., UMTS and HSDPA), and

Wireless Local Area Networks (called Home Networks,
HNs - e.g., Wi-Fi), we devised a two-levels hierarchi-
cal SUPL-based architecture. The architecture is de-

signed to support several kinds of networks with dif-
ferent location-sensing features: the classical WWAN
infrastructures at the first level, and HNs at the second

level. Each level includes a number of positioning cells
managed by a different kind of SLP. High level SLPs
are software components responsible for both manag-

ing user position requests and locating mobile users
in the WWAN scenarios. Low level SLPs, called Lo-
cal SLP (L-SLP), are software components enabled to

locate mobile devices by HNs in public and private en-
vironments, without involving the WWAN provider, fa-
voring the scalability of the architecture.

The L-SLP can be either integrated into a HN or

located in a separate network entity. In the latter case,
it can manage several HNs, and can locate the SETs
within their coverage area. In order to locate users,

the L-SLP has to manage technology-dependent data
and topological information; for instance, the location-
sensing technologies deployed in surrounding area, the

correspondence between HN cell identifiers (e.g., the
SSID and the MAC address of the access point), and
their geographic coordinates, as well as the topological

description of the managed area. Note that using HNs
in the private and public domains allows sharing indoor
location information with applications and users con-

nected to the WISPs’ mobile or fixed network; thus, in
order to use confidential information (e.g., geographical
coordinates) about public/private location-sensing sys-

tems (e.g., access points, reader of RFID tags), proper
(business) agreements need to be established with the
public authority or the responsible for the private en-

vironment. Alternatively, several private and open geo-
database of wireless access points will be used for geolo-
cation, such as Skyhook [46] and Geomena [49]. High

level SLPs can manage multiple L-SLPs within their
coverage area. Similarly to the SLP role as foreseen in
the SUPL specification, they can act as Home SLP (H-

SLP) or Visited SLP (V-SLP). In the former case, it is
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responsible for retrieving the SET’s position and inter-

facing with the MLSs. When a SET leaves the service
area of the H-SLP of its WISP, a SUPL roaming oc-
curs. In this case, to estimate the SET position, the

H-SPL contacts the V-SLP to which the SET is con-
nected, requesting the V-SLP to either provide just an
initial position estimation (e.g., based upon Cell-Id),

or a fine-location estimation. To locate SETs in wide
area scenarios, each high-level SLP is free to choose a
positioning method according to the QoP requested by

the MLS applications, the capability of the SET, and
the positioning infrastructure deployed in the consid-
ered area.

3.1.2 Communication scenarios

Communication between the SLP and the SET depends
on the provided service, i.e., pull (i.e., SET-initiated)
and push (i.e., Network-initiated) services. In any case,
exchanged messages are the same foreseen by SUPL

(see [6] for the exact content of SUPL messages), even
though additional entities are present in our architec-
ture (such as the L-SLP).

In the push service the MLS application, which re-
sides in the network, requires the position of a SET.
This can be the case of an advertisement information

service, which requires to be notified as soon as a SET
enters within a specific area (e.g., a shopping mall).
Supposing that the SET is located within the H-SLP

area, and it is covered by some of the L-SLP’s HNs (e.g.,
a Wi-Fi network), the scenario can be summarized as
follows (Fig. 2):

– Step A: The MLS application requests the SET po-
sition to the H-SLP. The request includes the QoP

requirements.
– Steps B-C : The H-SLP creates a location session

with the SET sending a SUPL INIT message via a

SMS or a WAP message, which contains the posi-
tioning method it intends to use. The data connec-
tion can be established through a cellular interface

(e.g., GPRS, UMTS, HSDPA), or through one of its
wireless interfaces (e.g., IEEE 802.11), depending on
the device equipment and on connection availability.

– Step D: Once a secure IP connection is established,
the SET determines its location identifier (lid), which
is the id of the access point or the cell with which

it is associated. Then, it sends the identifier to the
H-SLP in a SUPL POS INIT message to start a po-
sitioning session, including its supported positioning

methods.
– Steps E-G: On the base of the received identifier, a

coarse-grain position can be computed, for example

by using services such as Google Latitude [50]. If the

Fig. 2: Push communication scenario

estimated position does not meet the QoP require-
ments, the H-SLP sends a SUPL START message to
the L-SLP with which the target SET is associated

(selected on the base of the received lid), in order to
inform it that a finer SET position is required. Then
a POS INIT message is forwarded to the L-SLP.

– Steps H-I : During a SUPL POS session, on the base

of the QoP required by the MLS, the L-SLP com-
putes a SET finer position with a method chosen
among those supported by the SET and by the sur-

rounding positioning infrastructure, and selected ac-
cording to the algorithm MOEA-based strategy ex-
plained in Sec. 4. The position is sent to the H-SLP.

– Steps L-M : The H-SLP forwards the computed po-
sition to the requesting MLS application.

In the pull service (Fig. 3), the positioning is re-
quired by an application which resides on the requester

SET. An example is an information service, which re-
quires user position to obtain information about sur-
rounding points of interest. The scenario can be sum-

marized as follows:

– Step A: A handset-resident MLS application requests
the SET position. The SET establishes a data con-
nection with the H-SLP to start a positioning ses-

sion. Then, it sends a SUPL START message con-
taining its lid, the supported positioning methods,
and the MLS QoP.

– Step B: The H-SLP uses the lid to compute a coarse
position. If the position meets the requested QoP,
it sends the position to the SET in a SUPL END

message, and the session is finished; otherwise, it
forwards the message to the L-SLP with which the
target SET is associated.

– Steps C-F: The L-SLP sends a SUPL RESPONSE
message (including the positioning method and tech-
nology to use), and waits for the SUPL POS INT

message.
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Fig. 3: Pull communication scenario

– Step G: During a SUPL POS session, the SET will
provide its position. and the required QoP, the L-
SLP computes a SET finer position.

– Steps H-I : The H-SLP forwards the computed posi-
tion to the requesting MLS application.

The focus of this article is on the mechanism to al-

low MLS applications to exploit, in a transparent man-
ner, multiple location providers, and choose the most
suitable one based on their QoP requirements (e.g.,

accuracy, power consumption, response time). These
are embedded in the SUPL POS messages. To choose
the best method for a given objective function, some

context-related information need to be obtained at run-
time. For instance, to minimize power consumption and
satisfy a QoP constraint, the terminal needs to know

which techniques are available in a given area at a given
time. To address such issues, a representation model of
positioning information and the mechanisms for infer-

ring dynamically such information need to be provided.
These are described in the next two sections.

3.2 Information management of the covered area

A positioning system should exploit not only seman-
tically rich spatial models – as those proposed in [51]
– but also the characteristics of the available position-

ing infrastructure and positioning methods [1]. Specif-
ically, to enable different positioning methods to be
chosen transparently and to switch dynamically among

them, some knowledge is required about the technolo-
gies available in the areas (both indoor and outdoor).
In the proposed architecture, this information is man-

aged by SLPs. The SLP adopts a hybrid location model.
It expresses the location of a mobile device in terms
of symbolic and geometric coordinates, representing a

point or region of the physical world of interest to the
end users; we call zones these locations. As for indoor
environments, such as a building, each zone represents

an area of interest, like a room or a hallway. As for

outdoor, each zone could represent a coarse-grained lo-

cation (e.g., a garden, a street, a court). Combining the
location representations of the hierarchical model and
the graph-based solution, the model can take into ac-

count the interconnections and the spatial containment
relationships among zones (e.g., outdoor zones can be
hierarchically divided into countries, states, cities and

blocks; whereas indoor zones can be described by build-
ings, floors and rooms). The model includes the con-
cept of Area as a set of zones. An Area groups ad-

jacent zones covered by the same positioning technol-
ogy. In the scenario shown in Fig. 4, four Areas are
present: Area 1 is Bluetooth-based and overlapped to

Area 2; Area 2 and Area 4 are covered by Wi-Fi tech-
nology; Area 3 by GPS. RFAreas are regions covered
by RFID tags. Areas have borderzones, i.e., transit

zones among them. For instance, a building entrance

hall is considered as borderzone of an indoor Area cov-
ered by WLAN infrastructure. Similarly, each outdoor
zone close to the indoor borderzone is considered as

an outdoor borderzone. Borderzones may be used to
implement a mechanism for enabling different position-
ing technologies simultaneously or separately, as well

as switching among them, according to the Area where
the user is moving.

Fig. 4: Areas and borderzones scenario

In the designed architecture, each high-level SLP is
responsible for managing the correspondence between

the L-SLP and the associated wide area cell identifiers
(Cell-Ids), whereas each L-SLP manages a fixed num-
ber of Areas, and the position information about the

zones they cover. For each Area, it is necessary to take
into account the wide area cell it belongs to, and the
positioning technology therein deployed.

3.3 Low-level architectural model

At the low level, the core component of the architecture

is the L-SLP, which is responsible for collecting context-
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related information to choose and switch among the

available location providers. A location provider may
refer both to a single-source positioning approach, where
one specific technology is used (e.g., GPS, Wi-FI), and,

more generally, to multiple-source approaches (here-
after called multi-technology), where data from differ-
ent technologies are merged together to estimate the

position (also known as data fusion).
The L-SLP is the item that most contributes to con-

fer flexibility (by the dynamic switch mechanism), ef-

ficiency (by supporting the optimal location provider
choice according to the QoP), and extensibility (by the
API definition). Fig. 5 depicts the low-level positioning

architecture. It includes the applications, the SUPL en-
tities, and the positioning subsystem equipped on the
SET.

Fig. 5: The integrated architecture

The architectural model consists of:

– the Mobile Location Service (MLS): it includes both
pull and push applications. In order for MLSs to
support and integrate different location providers,

we propose a software abstraction (Location API),
whose implementation can be mapped onto the most
common positioning APIs (including Google Gears

and JSR-179), or native APIs (e.g., the S60 Loca-
tion Acquisition API).

– the Handset-based Positioning System (HPS): it is

responsible for enabling the combined/separated use
of different positioning technologies on the mobile
device, according to the information received by LSLC.

Moreover, it derives position data by using its loca-
tion sensing equipment.

– the Local SUPL-Location Center (LSLC): it coor-

dinates the operations in the HN covered area, and
interacts with the SET in order to choose the most
appropriate positioning approach in a given Area,

according to the required QoP, and to technologies

supported by the mobile device and available in its

coverage area.
– Local SUPL-Positioning Center (LSPC): it is re-

sponsible for performing the positioning procedures.

It interacts with the HPS and with the surrounding
positioning infrastructure to infer the user position,
and converts the positioning results into the desired

format (e.g., Cell-Id into location coordinates).

A more detailed description of all the conceptual enti-
ties and their interactions follows.

3.3.1 Location API

The Location API level provides application developers
with a Java Application Programming Interface, which
offers two main functionalities: (i) to infer mobile lo-

cation, and (ii) to manage representations of location
information in the mobile device. In particular, to sup-
port the integration of different location providers de-

veloped by the most widespread location APIs, we pro-
pose a high-level abstraction that includes the applica-
tion functionalities provided by both JSR-179 specifi-

cation and Google Gears API.

Fig. 6 represents the proposed Location API. The
LocationProvider class provides the current location
of the terminal to the application. Since a mobile device

can have several location providers, the Criteria class
allows to specify the criteria to choose the most appro-
priate LocationProvider object. The application can

query the LocationProvider to retrieve current device
location; alternatively, the application can ask it for re-
trieving periodic updates or the last know location.

Fig. 6: Location API

The Location class represents the device’s current

location information in terms of timestamped coordi-
nates, accuracy, speed, and information about the method
used for positioning, plus optional textual address in-

formation. The logic used by applications to choose the



Using Multi-Objective Metaheuristics for the Optimal Selection of Positioning Systems 7

provider that best fits their requirements has been de-

veloped according to the SUPL specifications. In par-
ticular, the positioning method specified by the LSLC
is communicated to the SET via the LSLC Agent and

mapped on Criteria attributes, in order to identify
the constraints for the location provider selection that
best fits the required QoP.

3.3.2 Handset-based Positioning System

HPS is designed as a hybrid handset-based position-

ing system. It enables the development of pull location-
aware applications, which can exploit multiple position-
ing technologies in the mobile device, including RFID,

Bluetooth, IEEE 802.11, and GPS [47,48].

Fig. 7: The Handset-based Positioning System

Fig. 7 presents the HPS conceptual model to be im-

plemented on the SET. The ConcreteProvider class
implements the LocationProvider interface, by using
specific location API (Google Gears or JSR-179). At

lower level, the ConcreteProvider uses the
PositionEstimator interface to retrieve geometric and
symbolic position data used to build Location objects.

ConcreteEstimator objects are enabled to interact with
LSPC in order to associate a specific set of coordinates
or symbolic representation with the current user loca-

tion. The ConcreteEstimator uses SensingMethod ob-
jects to infer raw sensor data, through the following two
strategies:

– Position sensing : If the SensingMethod relies on the
direct availability of sensing devices (e.g., a GPS

terminal), the ConcreteEstimator can directly re-

trieve coordinates from it. Such an estimator is called

PositionSensingEstimator.
– Position inferring : If the SensingMethod relies on a

wireless networking infrastructure (e.g., Bluetooth

or IEEE 802.11), the ConcreteEstimator cannot
directly retrieve position coordinates. Such an es-
timator, called GenericEstimator, has to interact

with the LSPC to infer the current position. It sends
the raw data (e.g., the RSS of Bluetooth signals) ob-
tained through the SensingMethods, and then it re-

ceives the position coordinates back (e.g., computed
by a fingerprinting technique) [7].

3.3.3 Local SUPL Positioning Center

LSPC supports multiple heterogeneous positioning meth-
ods in HNs. In order to improve the availability and
the accuracy of positioning, it integrates and correlates

different data obtained through the surrounding infras-
tructure and the SET’s positioning subsystem. More-
over, it is able to combine geometric and symbolic repre-

sentations to represent the current user location. In par-
ticular, in order to transform raw sensor data into po-
sition information, it manages “technology-dependent”

data related to the positioning infrastructure deployed
in the covered area. For example, these may include:
(i) the addresses and position of Wi-Fi access points

deployed in a building, for supporting a triangulation
RSS-based method; and (ii) the positions of wireless
base stations, for Cell-Id positioning.

Fig. 8: The Local SUPL Positioning Center

Fig. 8 depicts the architecture of the LSPC sub-
system. The Locator, which interacts with the SET

through the SET Agent, uses positioning techniques
(e.g., triangulation, proximity, fingerprinting, data fu-
sion) to infer the current position, by combining “static

position” information related to the covered area (e.g.,
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the RSS radio map and the coordinates of the consid-

ered wireless access points) with raw data received by
the SET or by the infrastructure (e.g., the RSS re-
ceived from the SET’s neighboring wireless sensors).

The sensorIdentifier associates each wireless sensor
(e.g., Wi-Fi access points, RFID tags) with its identi-
fier (e.g., MAC address), whereas the adjacentSensor

represents the list of adjacent sensors. The Locator uses
the TopologyMapManager and the PositioningDataManager
components to manage “static position” information

and “technology-dependent” data respectively.

3.3.4 Local SUPL Location Center

The LSLC is the component managing positioning re-

quests. It is in charge of selecting the optimum location
provider that better fits the required QoP objectives, as
well as avoid unnecessary use of resources. The Global-

PreLoc strategy is mainly implemented by this module.
LSLC services are triggered when: (i) the SET performs
the first position request; (ii) the device moves into a

new Area1; (iii) the application changes QoP; (iv) the
raw sensor data become unavailable (e.g., for interfer-
ence phenomena); and (v) periodically (e.g., for power

reduction).

Fig. 9: The Local SUPL Location Center

Fig. 9 shows the high-level object model of the LSLC
component. In order to enable context-aware control
and management of the location providers, the

SensingSelector must: (i) choose the right location
provider according to the QoP, the current state of the
SET, and the characteristics of the positioning infras-

tructure where the SET moves, and (ii) enable a new
technology on the mobile device, disabling the previ-
ous one (if necessary). Therefore, it implements mech-

anisms and algorithms to enforce the policies for the

1 An area, as defined in section 3.2, groups adjacent zones
covered by the same positioning technology; the movement
to a new area occurs whenever a SET enters an area covered
by a positioning technology different from the current one

dynamic selection of location providers and for the au-

tomatic switching among positioning technologies. The
PolicyEngine implements specific policies used to se-
lect the location provider on the base of the applica-

tion requirements, such as the required accuracy, power
consumption, expected response time, or privacy level.
All these features strictly depend on the adopted posi-

tioning techniques and the underlying technology that
each location provider uses: for example, the power con-
sumption depends on the kind of used interface, if it is

power-saving or not, if it is integrated in the SET or
available by an external device (e.g., a GPS device in-
teracts with the SET via Bluetooth), or if it uses an

infrastructure-based approach. Similarly, the accuracy
is tied to the technique used, as there are great differ-
ences between GPS, Bluetooth- and WiFi-based posi-

tioning techniques.

Tab. 1 shows an example of classification of tech-
nologies with respect to the considered features (ac-
curacy, power consumption, privacy and security level,

response time to serve the positioning request, and cost
in terms of number of exchanged messages between
the SET and the L-SLP). Location providers can be

handset-based or infrastructure-based, and can adopt
different technologies (e.g., Wi-Fi, Bluetooth), includ-
ing “multi-technology”, where sensors data fusion is

used to combine measurements coming from different
technologies. The column of the Table comprise all the
features that we consider in our work. Additionally, we

assume to use the fingerprinting positioning technique
for handset-based approaches and proximity technique
for infrastructure-based ones. In the following, we put

the focus on the strategy we implemented for the policy
engine to select the best mix of location providers.

4 Optimal selection of location providers

4.1 Overview

Each positioning request coming from an MLS applica-

tion includes the policy for location provider manage-
ment, expressed by the required QoP. When different
policies are simultaneously required (e.g., a high accu-

racy and a low power consumption), there may be a
conflict. Thus, there is the need of coping with several
possible conflicting objectives and constraints, and of

choosing the best location provider satisfying the QoP
requirements.

To introduce GlobalPreLoc, let us first consider the

features of a QoP request. The PolicyEngine treats
power consumption, accuracy, cost, and response time
as numerical variables (expressed, respectively in: Ampere-

hour, meters, number of messages, milliseconds); pri-
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Table 1 Features for location provider management (H: Handset; I: Infrastructure)

Positioning Technology Accuracy Power Privacy Security Response Cost

Approach Cons. Time

H-based Wi-Fi high high low high low medium

H-based Bluetooth high low low high low medium

H-based RFID high low low low low medium

H-based GPS medium high very high very high very low medium

H-based Wireless cell very low very low high high low very low

H-based Multi-techn. very high very high very low medium medium very high

I-based Wi-Fi low medium high high low very low

I-based Wireless cell very low very low high high low very low

vacy and security are instead expressed by an ordinal

scale from 1 to 5, with higher number indicating lower
privacy/security (see [6] for a detailed description of
privacy and security mechanisms offered by SUPL). A

possible simple mechanism is to implement a greedy
strategy, where the PolicyEngine selects the best lo-
cation provider based on the current position and avail-

able technology. For instance, let us discretize the time
in a set of time points tk ∈ {t0, . . . , tn}. Consider that
a positioning request is issued at time tn. A greedy ap-

proach would manage the requests by selecting, at any
time point tn+1, tn+2, . . . , the best solution satisfying
the QoP at that time. To deal with possible conflicting

requests, such a strategy could allow the user to spec-
ify a set of priorities among constraints, preferring the
policy with the highest priority.

Such a strategy is simple to implement, but it is
not able to opt for the best solution in a given tempo-
ral range. In fact, the complexity of the problem raises

when one considers that the best location provider at
time tn depends not only on the characteristics of the
positioning technologies available in the current posi-

tion, but also on how the SET will move in the next fu-
ture. For instance, if i) the QoP requires a high accuracy
level and, secondarily, also a minimal power consump-

tion, and ii) the SET is located in outdoor, than the
best choices could be either “GPS” or “Multi-technology”
(the latter providing a better accuracy, but higher power

consumptions), depending on future positions. If the
SET is going to move to an indoor area with available
a Bluetooth or RFID technology (with a low power con-

sumption), than the best choice for tn could be “Multi-
technology”, as the indoor future position will allow
using a low-consumption location provider. If the SET

is going to move outdoor, than the GPS could be a bet-
ter option, because its power consumption is lower. In
the next section, we introduce the optimization strategy

developed to support such kinds of policy.

4.2 The global MO evolutionary strategy

For what said, the PolicyEngine should consider, for

an optimal choice, the prediction of future movements
of the SET. In the following, the problem is formulated
as a multi-objective optimization problem, with objec-

tives depending on the QoP, and constraints depending
both on the QoP and on data about movement predic-
tion. Such a strategy is called GlobalPreLoc (globally-

optimal, prediction-based, location provider selection).
We address the described problem by two complemen-
tary approaches: i) a pattern mining approach for pre-

dicting future movements of the SET according to past
positions, and ii) a periodic optimization approach that,
using data on predicted future positions, chooses the

best set of location providers for the current and future
positions, matching the QoP objectives and constraints.

Specifically, considering a set of equally-spaced dis-

crete time points t0, . . . , tn, let us suppose the algorithm
is run at time tn. In the first phase, it predicts the fu-
ture movements of the SET (in terms of visited zones),

for a time window W = {tn+1, . . . , tn+N}; then, based
on this prediction, the algorithm looks for the best set
of location providers for each future time point of W .

Note that, the most important output is the future-
aware choice for the immediately next time point, tn+1;
the choices given by the solution for all the other time

points of W can be updated by running the algorithm
again in any tn+k, with k > 1. This may happen for two
reasons: i) the algorithm is run with the goal of keep-

ing always the most updated prediction and optimal
solution with respect to the next N time points; ii) the
algorithm is run because the prediction of future posi-

tions, made at time tn, turned out to be wrong at time
tn+k. The decision on how often we run the algorithm
in W is important because it regulates the performance

in terms of trade-off between computational cost and
the opportunity of having up-to-date solutions with re-
spect to the problem variability. This point is further

discussed in the evaluation section.
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4.2.1 Prediction of future position

This phase aims at predicting locations to which the
SET will move in the next set of time points th ∈ W .

There are several approaches toward this aim, that can
be distinguished in: (i) state-space models, (ii) tem-
plate matching techniques, and (iii) data mining tech-

niques. State space models describe the spatial move-
ment through sequence models, such as hidden Markov
models [8], Conditional Random Fields (CRFs) [9], or

their extensions [10,11]. They are suitable to capture
the movements as transitions among states, supporting
the generation of possible future visits and the estima-

tion of an associated probability, but they suffer from
high training complexity [8]. Template matching ap-
proaches compare extracted features to pre-stored pat-

terns or templates, using some similarity metrics specif-
ically defined for comparison (e.g., those used for string-
matching problems) [12]. These techniques have also

been reported to have issues with high runtime com-
plexity, noise intolerance, or spatial activity variation.

For our purpose, we adapt a technique falling in

the category of data mining, as its runtime complexity
is low compared to state-space models and template
matching techniques. Data mining techniques in this

field aim at extracting a set of association rules on tra-
jectories patterns, then used for prediction. The works
in this category usually define a model based on fre-

quent patterns, acting on a trajectory defined as an
ordered sequence of locations tagged with time-stamps
[13–16]. Many of them are based on a modified version

of the Apriori algorithm [17,14] and report high accu-
racy values, up to 80% [14]. In this work, we leverage
the variant described in [17], called WhereNext, where

patterns are equipped with temporal information and
an evaluation function is defined allowing to choose the
best set of patterns for the construction of a good pre-

diction model. A brief description of the adopted algo-
rithm follows.

The WhereNext scheme

The WhereNext strategy makes use of the concept of
trajectory, which is a commonly adopted abstraction in

location prediction problems. A trajectory is defined as
a spatio-temporal sequence: T =< x0, y0, t0 >, . . . , <
xn, yn, tn >, where ti (i = 0, . . . , n) denotes a times-

tamp such that ti < ti+1, ∀ 0 < i < n, and (xi, yi)
are points in the bi-dimensional space (R2). In other
words, each point li =< xi, yi, ti > indicated the object

in position xi, yi at time ti.

The algorithm aims at constructing a set of associ-
ation rules on the locations traversed by users, in order

to apply them for prediction whenever a new trajectory

is observed. Specifically, the rules are constructed on a

set of “regions” in which the space is divided. Regions
are what we called zones in our information model.

The first objective of WhereNext is to mine the
most frequent trajectories from the ones observed in
the past and stored in a database of trajectories. To

this aim, the notion of T-patterns is borrowed, as de-
fined in [18] and used in many works. A T-pattern is a
description of frequent trajectories that consider both

the space (divided in regions) visited and the time of
the visit in term of duration. A T-pattern is defined as:
a pair (S,A), where S =< R0, . . . , Rn > is a sequence

of regions, and A = α1, . . . , αn is the temporal anno-
tation of the sequence. A T-pattern is represented as
(S,A) = R0

α1−→ R1
α2−→, . . .

αn−−→ Rn. The last notation
indicates that the object has been in region R0, then

moved to R1 and took α1 time units; then it moved to
R2 in α2 time units, and so on.

The T-pattern mining algorithm to extract the most
frequent traversed patterns considers two values, σ and
τ , which represent a spatial and a temporal minimum

threshold for pattern selection, respectively. The for-
mer refers to the minimum spatial density required to
a zone in order to be selected as “frequent” region; it

is computed by considering each single trajectory and
incrementing the density value of all the zones contain-
ing any of its points. The latter is the minimum time

the object is required to be in a region.

The T-patterns are represented in a model called

T-pattern Tree, which allows for an efficient querying
of the rules through the tree navigation. From the tree,
the association rules are, in fact, immediate. They are

of the form: R0
α1−→ R1

α2−→ R2 ⇒α3 R3, meaning that,
if the trajectory matches the pattern made up of R0,
R1 and R2 satisfying temporal properties depending

on α1 and α2, then the predicted next region is R3.
The T-pattern Tree representation allows to compactly
represent these rules and to manage the many possi-

ble rules associated with each T-pattern (e.g., R0
α1−→

R1 ⇒α2 R2
α3−→ R3 is another rule of the previous pat-

tern). More formally, the T-pattern Tree is defined as a

triple PT = (N,E,Root(PT )), where N is a finite set
of nodes, E is a set of labeled edges and Root(PT ) is a
fake node representing the root of the tree. Each edge

from a node u to v is labeled with a time interval int,
of the form [timemin, timemax], representing the travel
time interval of the transition from node u to v. The

algorithm for the construction of a T-pattern Tree is
reported in [17].

WhereNext acts in two main phases: first, the database
of trajectories is queried in order to extract the set of
trajectories of interest, then used to build the men-

tioned T-patterns Tree. This includes the most frequent
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movements of users. In the second phase, given an ob-

served trajectory T , the T-pattern Tree is used to ap-
ply the association rules giving the prediction of the
next expected location of T . To perform the predic-

tion, WhereNext assigns a punctual score to each node,
indicating the goodness of the node r, from the predic-
tion point of view, with respect to T (i.e., its likelihood

of being reached by T , given that it already reached
the parent node r− 1). The score is assigned according
to the spatio-temporal distance of the node with re-

spect to the trajectory, regulated by a spatio-temporal
window wherein the moving object will be after the
time specified in the edge towards r. Thus, if this tra-

jectory’s window intersects the region of the node, the
node’s punctual score is maximum (the spatial density
value of the region); otherwise, if the window needs to

be enlarged by a temporal threshold tht to intersect the
region, the score is the maximum divided by the time
distance between the intersection point and the region;
if the (enlarged) window does not intersect the region,

the score is the maximum divided by the weighted sum
of the spatial and temporal distances between the re-
gion and the nearest point of the trajectory. Finally, if

the distance between is greater than a spatial threshold
ths, the score of the node is 0.

From the punctual score assigned to each node, a
path score is derived that denotes the goodness of an

entire path w.r.t. to T . The path score is obtained
from punctual scores by means of several functions;
Wherenext defines three aggregation functions, consist-

ing in the average, the sum, and the maximum of punc-
tual scores on nodes. Given a trajectory T and a T-
pattern Tree, the algorithm computes the path score

relative to T for each path, according with the aggre-
gation function selected. When the tree is visited, the
predicted path (i.e., the association rule to apply) is the

one with the best score; the region associated with it
(i.e., the consequent of the association rule) is returned
as the predicted next region. The T-Patterns Tree is of

course updated from time to time.

The efficiency of the described algorithm can be im-
proved if we can consider the personalized mobility pro-
files of each user, namely if we can associate user’s iden-

tity to mobility patterns. In this way, the search for the
most likely path can exploit the repetitiveness of mo-
bility patterns of a single user. However, in such a case,

there might more severe privacy concerns, as the needed
information is about the mobility profile of individual
users. The optimization could therefore be implemented

whenever such a piece of information is allowed to be
used by the service provider for satisfying the request
of the MLS application (different MLS applications can

have different privacy requirements).

To apply the algorithm for our problem, suppose

that the algorithm is recalled at time tn. This means
that it is applied to the trajectory Tn =< l0, . . . , ln >,
with li =< xi, yx, ti >, obtaining a prediction of trajec-

tory Tn+1, namely
T̂n+1 =< l0, . . . , l̂n+1 >. To get predictions for tn+2, the
algorithm is applied again, assuming the correctness of

T̂n+1, obtaining T̂n+2, and so on up to T̂n+N . Predic-
tions of the farthest time points in the future are of
course subject to a greater error probability. If a predic-

tion error is experienced at some point th, WhereNext
is run again in order to obtain an updated prediction,
which the MOEA algorithm will rely on. Given the set

of J known zones in which the SET can be, denoted
with Z = {Z1, . . . Zj , . . . ZJ}, the output of applying
WhereNext at time tn is the set of zones in which the
SET is expected to be in the next tn+1, . . . , tn+N times-

tamps2. These are used for global optimization purpose.

4.2.2 Optimization Problem Formulation

The information from prediction is used to formulate

the optimization problem, presented in the following.

Notation, Representation, and Constraints

Let us introduce some notations useful in the following:

– LP = {lp1, lp2, . . . , lpi, . . . , lpM}: the set of location
provider chosen;

– W = {t′1, . . . , t′k, . . . , t′N} = {tn+1, . . . , th, . . . , tn+N}:
time window over which the selection of location
provider is carried out. We denote it with t′ to dis-

tinguish the future timestamps, for which we want
the prediction and the optimization, from the past
timestamps used by the prediction algorithm for

training purposes.
– xi,k ∈ 0, 1: a binary variable denoting the choice of

the location provider lpi for the time instant t′k.

– PZ = {pz1, . . . pzk, . . . pzN}: set of predicted zones
by the prediction algorithm in which the SET is ex-
pected to move in the next N time instants. Each

zone is associated with a map of deployed location
providers; this means that xi,k is forced to be 0
whenever the zone predicted at time t′k (pzk) does

not deploy the location provider lpi. We denote with
ZC k a vector with the list of constraints regarding
the zones for the t′k time instant. An entry of ZC k

is the index i for which: xi,k = 0. Thus, we have N
vectors, one per time point, each having, in general,
different size.

2 Note that, the zones predicted at each future timestamp
are not necessarily different from each other.
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– F = {Power,AccuracyError, Privacy, Cost,Res−
ponseT ime, Security}: set of features of location
providers that the SET can use. Each location provider
is associated with a table containing the informa-

tion on the typical performance for each feature
F (namely, the power consumption per time unit,
the expected accuracy, cost, response time, secu-

rity and privacy level). This information is widely
available through the characterizations provided in
the literature ([29]); alternatively, they can be mea-

sured on the field in a preliminary training phase.
The value of a feature is denoted by its lowercased
name (namely: power, accuracy error, privacy, cost,

response time, security).
– QoPobj = {Obj1, Obj2, . . . Objr, . . . ObjR}: set of op-

timization objectives required by the MLS applica-

tion to the PolicyEngine. Each objective refers to
one of the features in F :
Fr = {Power | AccuracyError | Privacy | Cost |
ResponseT ime | Security}. The value of a generic
feature Fr is denoted by fr. Each objective can be
expressed as a minimization goal.

– QoPconstraints = {c1, c2, . . . cq, . . . cQ}, each QoP con-

straint is a bound on one of the features in F ; we
denote with the subscript l or u a lower or upper
bound respectively, so as: Cq = poweru expresses

the constraint power ≤ poweru, Cq = privacyu ex-
presses the constraint privacy ≤ privacyu and so
on. Generically, fr,{l|u} denotes the lower or upper

bound of the feature value fr.

The objective is to select the best set of location providers
for each discrete time point of the time window opti-

mizing the QoPobj , while satisfying the
QoPconstraints. Feasible solutions are assignment of lo-
cation providers lpi to time instants t′k; representation

is therefore binary, with decision variables being xi,k.

Objective and model

The set of objective functions associated with the ob-
jectives Obj1, . . . Objr, . . . ObjR are:

Objr =

N∑
k=1

M∑
i=1

xi,kfr r = 1, . . . , R

where the MLS application choses the R objectives to
optimize among the set of features F . The set of con-
straints is expressed by QoPconstraints, and by ZCk vec-

tors (namely, the zone constraints, indexed by j; zck,j is
an item of ZCk). An additional constraint is that only
one location provider can be chosen as the best one in

a given time interval. This leads to the requirement:

∑M
i=1 xi,k = 1 ∀k ∈ W . The formulation is therefore:

min Objr =
N∑

k=1

M∑
i=1

xi,kfr r = 1, . . . , R (1)

subject to:

−QoP constraints :
c1 : fr {< | ≤ | > | ≥} fr,{l|u} r ∈ [1, R]

c2 : fr′ {< | ≤ | > | ≥} fr′,{l|u} r′ ∈ [1, R] ̸= r
. . .
cq : frq−th {< | ≤ | > | ≥} fr,{l|u}

rq−th ∈ [1, R] ̸= r′, . . . rq−th−1

−ZCk constraints sets :
xi,1 = 0 ∀i : i = zc1,1, zc1,2, . . . i = zc1,|ZC1|
xi,2 = 0 ∀i : i = zc2,1, zc2,2, . . . i = zc2,|ZC2|
. . .
xi,N = 0 ∀i : i = zcN,1, zcN,2, . . . i = zcN,|ZCN |∑M

i=1 xi,k = 1 ∀k : k = 1, . . . , N.

Handling of Multiple Solutions

The objectives are measured on orthogonal scales, so
we use Pareto optimality, wherein a solution X is said
to dominate another solution Y, if X is no worse than

Y in all objectives and it is strictly better than Y in
at least one objective. Using Pareto optimality, several
approaches can be implemented to select the knee point

of a Pareto front [19]. We leave the decision on how
to deal with the solution set to the MLS application
requiring the optimization, allowing it prioritizing one

objective over another.

We adopt the simple approach in which the MLS

application (hence the user) is allowed to specify a set of
weights for the pursuedR objectives, w = 1, . . . wr, . . . wR

(so that
∑R

r=1 wr = 1 and 0 ≤ wr ≤ 1), denoting the

importance of each objective. Let us denote the set of
the R fitness values (one per objective) of a solution
X as: Y (X ) = {y1,x, . . . , yr,x, . . . , yR,x}. We normal-

ize these values in [0,1] over the entire Pareto front:

y′r,x =
yr,x−minx(yr,x)

maxx(yr,x)−minx(yr,x)
. The chosen solution X ∗

is the one with the maximum utility function value:
U(Y ′(X )) = −

∑R
r=1 wr · y′r,x.

Computational Search

We use three different metaheuristics in this study in
order to infer the best performing one for the formu-

lated problem. We consider: NSGA-II [20], SPEA2 [21],
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IBEA [22]. They all are well-known evolutionary algo-

rithms (EAs), which are among the most popular meta-
heuristics for solving MO problems.
Adopting three schemes leads to have 3 variants of

the GlobalPreLoc strategy, depending on the selected
MOEA algorithm.We denote them as:GlobalPreLocNSGA,
GlobalPreLocSPEA2, andGlobalPreLocIBEA. Their per-

formance is compared in the experimental section with
respect to scenarios we are interested in for the posi-
tioning problem.

4.2.3 Frequency of application

As mentioned in the previous sections, depending on
the desired trade-off between computational cost and
optimality, several policies are possible for applyingGlob-

alPreLoc. The trade-off is regulated mainly by the fre-
quency by which we run the algorithm. In fact, con-
sidering the past time units, {t0, . . . , tn}, suppose the

algorithm is applied at time tn, and give the zones pre-
diction and the corresponding optimal location provider
selection for the time window W : {tn+1, . . . , tn+N}.
Then the algorithm can be run again afterN time units,
or it can be applied again after 1 time unit to update
the global solution for the next N units, taking the two

extremes. Let us assume that the algorithm is run every
F time units. The optimal solution from the QoP point
of view, but also the most expensive one, is to run the

algorithm at every time unit th ∈ {tn+1, tn+N}, namely
F = 1, considering the window W sliding forward of 1
time unit. In this way, the solution at any time ac-

counts always for the position prediction in the next N
time units (in this sense, it is optimal). On the other
hand, the worst but cheapest solution is to run the op-

timization only each N time units, namely F = N ,
meaning that the solution found at tn is not changed
until tn+N and is optimal only for the time window

{tn+1, tn+N}. In other words, the solution does not con-
sider the predictions at times successive to tn+N (i.e.,
tn+N+1, tn+N+2, . . . ) until the next evaluation at time

tn+N . The parameter F may be important to decide
the trade-off between optimality and execution cost.
Any intermediate solution between F = 1 and F = N

makes sense. Additionally, to deal with possible pre-
diction errors, we decided to act as follows, whenever
F > 1 (e.g., F=5): the prediction is carried out ei-

ther each F time points or whenever the actual zone in
which the SET is at time th ∈ [tn+1, tn+F ] is different
from the predicted one. In this case, the prediction at

time tn was wrong, and thus the algorithm is run again
although th < tn+F . In the next section, GlobalPreLoc
is evaluated with respect to several aspects, including

its sensitivity wit respect to this point.

5 Evaluation

We evaluate GlobalPreLoc by running it under all the
mentioned MOEAs, in order to assess the performance
with respect to several aspects. Specifically, the eval-

uation aims at addressing the following research ques-
tions:
RQ1 (Validation): How does the three GlobalPreLoc

strategy perform compared to a random selection strat-
egy? This is a typical question performed as a prelim-
inary ‘sanity check’; in fact, any intelligent computa-

tional search technique is expected to outperform ran-
dom search unless there is something wrong in the for-
mulation.

RQ2 (MOEA solute quality comparison): Which of the
adopted MOEAs provides better solutions for the loca-
tion provider selection problem? This question focuses

on the comparison among MOEAs according to some
common performance metrics regarding the goodness
of the proposed Pareto solutions.

RQ3 (Cost comparison): Which of the adopted MOEAs
performs better in terms of computational time? As a
MOEA is not run just once in the GlobalPreLoc scheme,

we are interested not only in the goodness of the solu-
tion from the optimality point of view, but also on how
long it take, and thus how much it is computationally

expensive (namely, we consider the computational time
as indicator of computational “cost”).
RQ4 (Sensitivity): What is the impact of the frequency

of application of GlobalPreLoc on the solution cost-
quality trade-off? Since, GlobalPreLoc foresees to run
a MOEA instance from time to time, depending on the

width of the time window and on the frequency of ap-
plication, several solutions can be obtained depending
on such tuning. We therefore assess the algorithms in

various settings.

In the following, we describe: i) the evaluation met-
rics by which the algorithms are compared to each other;
ii) the scenarios under which we compare the algo-

rithms; iii) the method used to tune the parameters
of the MOEAs; iv) the sensitivity analysis with respect
to the algorithm application frequency. From this, the

total number of runs comes out, which turned out to
be 180 combinations each one repeated 100 times. Algo-
rithms implementation and experimental settings have

been carried out by using jMetal [23], an object-oriented
Java-based framework aimed at the development, ex-
perimentation, and study of metaheuristics for multi-

objective optimization problems3.

3 jMetal is freely available at http://jmetal.sourceforge.net/
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5.1 Evaluation Metrics

Unlike single-objective evaluation, multi-objective al-
gorithms cannot be evaluated by a direct comparison

among solutions. To provide a quantitative assessment,
we employ two well-known indicators: the Hypervolume
(HV) [24], and the generational distance (GD) [25]. To

compute these, we normalize fitness values to avoid
unwanted scaling effects [23] and compute a reference
Pareto front of the solutions RF , by considering the

union of the reference fronts of the approaches com-
pared. The HV is one of the most accurate indicators;
it calculates the volume, in the objective space, cov-

ered by members of a non-dominated set of solutions
from an algorithm of interest. The larger this volume,
the more it covers of the non-dominated solution space,
hence the better the algorithm. It provides a measure

taking into account the convergence and diversity of
the obtained approximation set, and allows measuring
the performance of different algorithms as compared to

each other. The GS is the average distance between the
set of solutions S, and the reference front RF . It is
computed as the average n-dimensional Euclidean dis-

tance between each point in S and its nearest neigh-
bour in RF . Finally, other than measuring the quality
of provided solutions, we need also to care about their

computational cost. We consider the average time (T )
for one run of the algorithm (namely, for computing
one solution set), as indirect measure of computational

cost.
As evolutionary algorithms are of stochastic nature,

we need to adopt inferential methods to interpret re-

sults correctly. To this aim, we perform 100 indepen-
dent runs for each combination of algorithm and sce-
nario. The HV indicator and GD indicators are then

computed for each run. They are compared by means
of the non-parametric Wilcoxon test [26], being it ro-
bust to non-normality, where the Bonferroni correction

is applied to account for multiple comparison protec-
tion. All the statistical tests are performed with a con-
fidence level of 95%.

5.2 Setting of scenarios

We analyze a number of scenarios in which the location
provider selection problem may occur. Each scenario is

characterized by how many objectives are required to
optimize (and the related constraints), and on the char-
acteristics of the zones in which the SET moves. To this

aim, we consider the following parameters to generate
scenarios:
1) Number of objectives: we consider three different sit-

uations, where we want to optimize 2, 3, or 4 objectives

altogether, and also set a bound for their value. They

are: power consumption and accuracy (for the 2 objec-
tive case), plus privacy level (for the 3 objective cases),
plus response time (for the 4 objective cases).

2) Number of Positioning Infrastructure Objects (PIO):
PIOs represent fixed objects, which can be used to lo-
calize the terminals (e.g., Bluetooth or WiFi antennas,

RFID tags). In the scenarios, we vary the number of
PIOs (and therefore the number of technologies avail-
able in each zone), to represent a scenario with larger

and smaller number of available location providers. We
consider a basic scenario in which the number of zones
is fixed to 20, and the number of data points in the win-

dow W is fixed to N=10. Based on this, we take four
different number of PIOs: 40, 60, 80, 100, leading to an
average number of location providers per zone of 2, 3,
4, and 5 respectively. On the other hand, we determine

the type of PIO by randomly selecting among the avail-
able types (i.e., Bluetooth, WiFi, GPS etc.), with equal
probability of selecting each type. The available types

of PIO are the ones of Table 1, which are 8. Note that,
for the purpose of evaluating the MOEA algorithms, the
characteristics of the zones are not relevant, because the

needed parameters to set up the optimization problem
are those describing the deployment of technologies in
each zone. This configuration generates 12 scenarios.

On each scenario, we run the three algorithms ending
up to 36 instances, each one executed 100 times for sta-
tistically relevant analysis.

5.3 MOEA parameters

The tuning of algorithmic parameters is a necessary,
and often unreported, information for allowing repli-
cation of experiments. We adopted the following pro-

cedure for parameters tuning. Specifically, we set up
a maximum number of fitness evaluations for all the
algorithms (500,000), in order to make a fair compari-

son among different parameter configurations. Keeping
this value fixed, we varied the population size and num-
ber of generations as in Table 2. We differentiate five

settings, similarly to [27]: very small (VS), small (S),
medium (M), large (L), and very large (VL) population
size. All configurations are allowed an identical budget

of fitness evaluations (500,000), hence ensuring that all
require approximately the same computational effort.
Each algorithm is run 100 times with each configura-

tion; results are compared in terms of HV and GD by
the Wilcoxon test with a confidence level of 95%, and
the best configuration is selected4. In particular, the

4 p-values are adjusted by the Bonferroni correction, in or-
der to account for multiple comparison protection.
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Table 2 Configurations of MOEA algorithms

Configuration Population Size Generations

Very Small (VS) 50 10,000
Small (S) 100 5,000
Medium (M) 200 2,500
Large (L) 500 1,000
Very Large (VL) 1,000 500

Table 3 Parameters setting

Scenario # #Obj. #PIOs MOEA Configuration

NSGA SPEA2 IBEA

1 2 40 S VS S
2 3 40 VS VS S
3 4 40 S S S
4 2 60 VS VS VS
5 3 60 VS VS VS
6 4 60 S VS S
7 2 80 S VS VS
8 3 80 VS VS S
9 4 80 VS VS VS
10 2 100 VS VS VS
11 3 100 VS VS VS
12 4 100 VS VS VS

configuration having the highest HV with a confidence

of 95% is preferred; if there is no configuration statisti-
cally better than the others, the configuration with the
lowest GD (again at 95% of confidence) is selected. If no

configuration is significantly better than the others in
both HV and GDmeasure – a case never occurred in our
trials– than the medium configuration is selected. This

evaluation step is performed for each scenario, resulting
in a total number of runs of 12 scenarios * 3 algorithms
* 5 configurations * 100 repetitions = 18,000. The cho-

sen configuration for each MOEA in each scenario is in
Table 3. The “very small” configuration turned out to
be the best configuration in the majority of cases, for

all the algorithms. The successive analyses on each sce-
nario are conducted under such “best settings”. Addi-
tionally, we adopted the single point crossover operator,

with crossover probability of 0.9, a bit flip mutation op-
erator, with probability of mutation 1 over the number
of bits [28]. The selection is done via binary tourna-

ment. The archive size is 100.

5.4 Sensitivity analysis

The previous settings allow for a static analysis of al-
gorithms with respect to several independent instances
of the optimization problems. We carry out a further

analysis to evaluate the trade-off between cost and so-
lution quality under different values of the application
frequency F . Given a window of length N=10, we con-

sider different values of F . To run this analysis in a

concise way, we take the best instance for each MOEA

algorithm from the previous section’s evaluation and
run the following procedure:

1. We first consider the best situation in terms of ex-
pected solution quality, namely F = 1, in which the

algorithm is run N times at each time unit, hav-
ing always the most updated optimal solution. For
this, we collect the total cost to run the algorithm

N times, denote it as C1, and take the sets of the
N solutions (x∗

j , with j = 1, . . . , N) as reference so-
lutions (where x∗

j is the one with the best utility

function value).
2. We consider the other extreme, F = N , in which

the algorithm is run just once and the solution ob-

tained is assumed to be the best one for all the
time points regardless of future predictions in tN+k

(k = 1, . . . , N). This is equivalent to say that, for

each time point j, we have N identical solutions x j

= xF=N . For each j, we evaluate the number of time
unitss in xF=N in which the solution differs from x∗

j ,

representing how many times running the algorithm
at time j differed from the optimal solution (i.e., the
number of different chromosomes). This value is de-

noted as εj ; we take the sum over j, ϵ =
∑

j εj and
consider the percentage with respect to all the possi-
ble changes, (N−1)+(N−2)+· · ·+1 = N(N−1)/2,

denoted with ϵ%N
. We also consider the cost of run-

ning the algorithm in this case (which is run just
once), CN < C1.

3. Similarly, we consider all the intermediate case, for

1 < F < N . When F takes an intermediate value,
e.g., F = 3, we expect that the solutions may differ
from the reference one in 1 < j < F , in F < j < 2F ,

. . . , and in kF < j < N (with k representing the
number of times we run the algorithm before reach-
ing tN ). However, the number of changes are ex-

pected to be lower compared to the case F = N ,
because the re-computation of the optimal solution
at some intermediate time point is expected to re-

duce the difference with the optimal case F = 1.
Also in this case, the ϵ%F

and the cost CF to run
the algorithm k times are collected.

Letting F varying between 1 and N, we analyze the

output ϵ%F
and cost CF values. The analysis is repeated

30 times, taking the average ϵ̄%F
and C̄F values.

5.5 Results

This section presents the results with respect to re-
search questions 1-4.
Results for RQ1 - Validation: the first research ques-

tion is aimed at establishing if the proposed strategy



16 M. Ficco, R. Pietrantuono, and S. Russo

is worth with respect to a random selection. The sec-

ond is implemented in a way to satisfy the constraints
on location providers availability in each zone (namely,
it can select only the location providers available, at a

given time point, in the zone in which the SET is mov-
ing) and of selecting only one location provider at a
time. Considering the 12 scenarios and 3 MOEA algo-

rithms (hence 36 cases), the random search has always
been statistically worse than any MOEA algorithm for
both quality indicators, according to the Wilcoxon test,

with a confidence of 95%. Because of very low solution
quality (HV is always less than 0.1), the random search
is not considered a possible alternative to a MOEA,

but just as a means to validate the choice of adopting a
MOEA. We do no longer consider it in the next research
questions.

Table 4 Number of times when algorithm x (in row)
was significantly better than y (in column), with 95%
confidence over the 12 scenarios. In the remaining

times, x and y do not differ significantly.
(a) HV Indicator

NSGAII SPEA2 IBEA

NSGAII – 3/12 1/12
SPEA2 2/12 – 2/12

IBEA 7/12 10/12 –

(b) GD Indicator

NSGAII SPEA2 IBEA

NSGAII – 0/12 1/12
SPEA2 12/12 – 5/12
IBEA 10/12 4/12 –

Results for RQ2 - MOEA quality comparison: MOEA
are compared with respect to the HV and GD indica-

tors. We use the best configuration of each algorithm
as in Table 3. Table 4 shows, for each scenario, the
outcome of the Wilcoxon test for both HV and GD in-

dicators. We have the IBEA algorithm performing bet-
ter than NSGAII 7/12 times, and better than SPEA2
10/12 times according to the HV indicator. While NS-

GAII and SPEA2 are quite similar, since 3/12 times
NSGAII outperforms SPEA2, 2/12 times the opposite
occurs, and the remaining 7/12 times the HV is statis-

tically the same. Results of the GD indicator tells that
IBEA has still better performance than NSGAII, while
it has similar performance as SPEA2 (4/12 against 5/12);

SPEA2 always outperforms NSGAII.

A better comprehension of results is given by Tables

5-6, showing in detail the outcomes of the Wilcoxon
tests, and then by the box plots in Figure 10-11, where
the extent of the difference among algorithms is also

visible. From box plots, IBEA turns out to provide less
variable results across scenarios for the HV indicator;
the GD indicator plots highlight the good performance

of SPEA2, which is comparable with IBEA. NSGAII
overcomes IBEA only in one scenario, the number 4,
while it always performs worse than the others. Tak-

ing the mean among the median value of each scenario,
we notice that NSGAII is slightly better than SPEA2
for the HV indicator (they are: 0.448, 0.446, and 0.477

for NSGAII, SPEA2, and IBEA, respectively), while for
the GD indicator they are: 0.0192, 0.0134, and 0.0146
for NSGAII, SPEA2 and IBEA. In other words, regard-

ing HV, IBEA confirms to exhibit the best behaviour,
NSGAII is slightly better than SPEA2, as the former
outperforms the latter 3/12 against 2/12 and the mean
of medians is slightly better (even when they are statis-

tically the same, NSGAII has slightly higher values in
the average). As for GD, SPEA2 and IBEA are compa-
rable to each other, with SPEA2 having a lower average

value. Considering the standard deviations of medians
across scenarios, the variability of results of the three
algorithms is approximately the same (0.150, 0.140, and

0.132 for HV; 0.008, 0.006, and 0.007 for GD, consider-
ing, in the order, NSGAII, SPEA2, and IBEA).

Results for RQ3 - Cost comparison: we took the aver-
age execution time for computing a solution for each
algorithm. Experiments are run on a machine equipped

with 3 GHz Intel Core i7, dual core, 8GB of RAM, and
a 256 MB SSD HD, running Mac OS X 10.8.5.

Table 7 Number of times when algorithm x (in row)

was significantly better than y (in column), with 95%
confidence over the 12 scenarios for the TIME indica-
tor. In the remaining times, x and y do not differ sig-

nificantly.

NSGAII SPEA2 IBEA

NSGAII – 12/12 12/12
SPEA2 0/12 – 0/12
IBEA 0/12 12/12 –

Table 7 reports a concise snapshot of the results,
which are extensively reported for each scenario in Ta-

ble 8. Compared to quality indicators, results on com-
putation time are much clearer. There is a net out-
come: NSGAII is the best one in every scenario, fol-

lowed by IBEA, then by SPEA2. Looking at the ex-



Using Multi-Objective Metaheuristics for the Optimal Selection of Positioning Systems 17

Table 5 Wilcoxon tests w.r.t. HV indicator
(a) Scenario 1

SPEA2 IBEA

NSGAII – N
SPEA2 N

(b) Scenario 2

SPEA2 IBEA

NSGAII – ▽
SPEA2 ▽

(c) Scenario 3

SPEA2 IBEA

NSGAII – –
SPEA2 ▽

(d) Scenario 4

SPEA2 IBEA

NSGAII N –
SPEA2 ▽

(e) Scenario 5

SPEA2 IBEA

NSGAII – ▽
SPEA2 ▽

(f) Scenario 6

SPEA2 IBEA

NSGAII ▽ –
SPEA2 N

(g) Scenario 7

SPEA2 IBEA

NSGAII N –
SPEA2 ▽

(h) Scenario 8

SPEA2 IBEA

NSGAII – ▽
SPEA2 ▽

(i) Scenario 9

SPEA2 IBEA

NSGAII – ▽
SPEA2 ▽

(j) Scenario 10

SPEA2 IBEA

NSGAII N ▽
SPEA2 ▽

(k) Scenario 11

SPEA2 IBEA

NSGAII – ▽
SPEA2 ▽

(l) Scenario 12

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 ▽

Table 6 Wilcoxon tests w.r.t. GD indicator
(a) Scenario 1

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 ▽

(b) Scenario 2

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 N

(c) Scenario 3

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 N

(d) Scenario 4

SPEA2 IBEA

NSGAII ▽ N
SPEA2 N

(e) Scenario 5

SPEA2 IBEA

NSGAII ▽ –
SPEA2 N

(f) Scenario 6

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 ▽

(g) Scenario 7

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 ▽

(h) Scenario 8

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 ▽

(i) Scenario 9

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 –

(j) Scenario 10

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 –

(k) Scenario 11

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 N

(l) Scenario 12

SPEA2 IBEA

NSGAII ▽ ▽
SPEA2 −

Table 8 Wilcoxon tests w.r.t. TIME indicator
(a) Scenario 1

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(b) Scenario 2

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(c) Scenario 3

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(d) Scenario 4

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(e) Scenario 5

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(f) Scenario 6

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(g) Scenario 7

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(h) Scenario 8

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(i) Scenario 9

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(j) Scenario 10

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(k) Scenario 11

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

(l) Scenario 12

SPEA2 IBEA

NSGAII N N
SPEA2 ▽

tent of the differences, Figure 12 highlights, through
box plots, that there is very high difference between
NSGAII and SPEA2. NSGAII takes, in the average,

111ms, whereas SPEA2 takes 829 ms; IBEA takes an in-

termediate value, 439ms. Box plots highlight very tight
confidence intervals for all the algorithms, especially
for NSGAII, i.e., very low variability in the single sce-

nario. Standard deviation of median values across sce-
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

(j) Scenario 10 (k) Scenario 11 (l) Scenario 12

Fig. 10: Boxplots for the HV quality indicator the 12 scenarios

narios also confirm the superiority of NSGAII: 27.03ms,

68.40ms, 63.66ms for, respectively, NSGAII, SPEA2,
IBEA.

Results of RQ4 - Sensitivity : the last research question
is about sensitivity of results against the frequency of
application, F . Taking the best instances, Figure 13

shows the trade-off between computational time and
the percentage of error committed in not running the
algorithm at every time unit. The latter percentage is

related to the goodness of the solution with respect to
the variability of the problem (e.g., how much robust
are the solutions to variations in terms of SET move-

ments, where higher variation would require higher ap-

plication frequency F ); the indicator is not related to

the quality of the provided solutions with respect to the
reference front (i.e., the extent to which they are opti-
mal), which is already captured by previous indicators.

Results show that, for NSGAII, applying the algo-
rithm each time unit for 10 time units (we considered
a window of width N = 10) costs about 600 ms; up to

F = 3 the error is still around 10%, for a total time
of 200ms; then the error increases considerably. A sim-
ilar sensitivity is observed by the other two algorithms,

with execution times much greater (from about 8000
to 1000 ms for SPEA2, and from 3500 to 500 ms for
IBEA). A balance point for the three algorithms seems

to be F = 3. However, the choice depends mainly on
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(a) Scenario 1 (b) Scenario 3 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

(j) Scenario 10 (k) Scenario 11 (l) Scenario 12

Fig. 11: Boxplots for the GD quality indicator the 12 scenarios

the user requirements (e.g., it has a computational ca-
pability of 1000ms, then he can choose F = 1 for the
best results).

In summary, in our problem instance we observed
that, regarding quality indicators, IBEA has the best
balance between HV and GD (it has the best HV val-

ues, and GD values comparable to SPEA2 ones); re-
garding time, NSGAII is by the best one, SPEA2 the
worst one, and IBEA in the middle. Sensitivity to F is

roughly the same for the three algorithms. Therefore, if
the user has strict requirements on the computational
capability, then NSGAII with F = 3 is the best config-

uration; if a higher computational time can be afforded,
than it can turn to IBEA and choose F based on avail-

able computational capability; if computational time is
not a problem at all, than it can opt between IBEA and
SPEA2 (depending on the importance he gives to HV

and to GD), and of course F = 1.

5.6 Remarks on tuning of further parameters

In the previous sections, we evaluatedGlobalPreLoc with
respect to several parameters. Besides those ones, there
are other parameters that need to be tuned by observ-

ing field data, or by a preliminary experimentation be-
fore deploying the system. For instance, the frequency
of application of the algorithm may depend also on the

chosen width of the time interval Width = tk−tk−1. Its
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

(j) Scenario 10 (k) Scenario 11 (l) Scenario 12

Fig. 12: Boxplots for the TIME quality indicator the 12 scenarios

best tuning needs to be done by collecting preliminary

field data, where the velocity of the SETs’ movements
and regularity of movement patterns play an important
role. In fact, the frequency of application of the algo-

rithm and the correctness of proposed solutions depend
mainly on how fast the SET moves and on how quickly
and unpredictably it changes direction. A high speed

and irregularity requires a tightWidth and small F val-
ues, incurring higher computation cost to get the same
optimal solutions. Further analysis will be devoted to

this in our future work. Other choices regard the param-
eters of WhereNext ; our experiments are not intended
to validate WhereNext, whose performance are already

assessed in [17], but we were interested in WhereNext

as end users and its experimentation is out of the scope

of this work.

6 Related work

This section reviews some relevant works that propose

software architectural solutions for positioning.

La Marca et al. [31] propose a software architecture
for indoor and outdoor positioning, which provides a
Java package to develop pull LBSs exploiting handset-

based positioning. Mobile devices can infer their own
position by looking for Cell-Ids of radio beacons of the
surrounding wireless equipments, such as IEEE 802.11

access points, Bluetooth devices, and GSMwireless cells.
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(a) NSGA

(b) SPEA2

(c) IBEA

Fig. 13: Sensitivity of solutions to the frequency of ap-
plication of the MOEA algorithms

It only supports the proximity positioning technique

(the position accuracy is related to the coverage area of
the wireless networking beacons). It does not support
policies for automatic switching among providers.

Several works propose suitable abstractions to struc-
ture the components of a generic positioning architec-
ture. Nord and Synnes [32] describe how different lo-

cation providers can be integrated through appropriate
wrappers to provide LBSs with a uniform API. They
use the GPS for outdoor scenarios, and the WaveLan

positioning servers for indoor. Hosokawa et al. in [33]
propose an architecture for seamless navigation, whose
goal is to reduce the need of knowing details about the

positioning systems and maps, as well as to support
the dynamic switching among the positioning systems.
Other middleware solutions include: i) the Platform for

LBSs (PoLoS) [34], whose main feature is the “exten-
sibility”, via a modular architecture that can be easily
extended with additional functionalities; ii) the Frame-

work for Location Aware ModElling (FLAME), an ar-

chitecture that aims at abstracting from the adoption

of different positioning technologies [35]; iii) the Loca-
tion Operating REference model (LORE), proposed by
IBM, for location-aware services development, support-

ing heterogeneous positioning techniques and industry-
standard location APIs, location modeling, location-
dependent query processing, and intelligent location-

aware message notification [36].

More advanced solutions include the possibility of
accessing low-level details for improving the context-

awareness features of LBSs and, more in general, of
positioning management operations and management
decisions. An example is the Middelwhere solution, pro-

posed by Ranganathan et al. [37], which supports infra-
structure-based approaches and push LBSs. It intro-
duces a distributed middleware infrastructure for po-

sitioning, which separates applications from location
sensing technologies. Like our solution, it enables the
integration of different location technologies, but it does

not support automatic switching and QoP policies for
the optimal selection of providers. Moreover, it uses a
CORBA-based technology to enable distributed com-

munication among components, the LBSs, and the wrap-
per of the location technologies. Hightower et al. pro-
pose a layered location stack [38]. They describe how to

partition the layers of positioning architectures and how
to pass parameters between them. An API is designed
to integrate indoor and outdoor technologies. Hohl et

al. [39] propose a software platform for development of
a global infrastructure based on computer representa-
tions of regions of the physical world, augmented by vir-

tual objects. Recognizing that basic services are usually
re-implemented by spatial-aware application develop-
ers, the main purpose of that work is to propose a uni-

form access to the platform for different spatial-aware
applications. Pfeifer [40] combines heterogeneous posi-
tioning data from different sources, by exploiting prin-

ciples of data fusion. The goal is to obtain more pre-
cise and more reliable results according to the various
needs of LBSs. The authors in [29] present POSIM (Po-

sitioning System Integration and Management), a mid-
dleware that enables integration and management of
multi-positioning systems on the same device. POSIM

enables to access and control positioning information at
a high level of abstraction via context-awareness man-
agement decisions, as well as to access to low-level posi-

tioning details when needed. Like our solution, POSIM
allows the access to heterogeneous positioning systems
in a uniform way, and chooses and merges location in-

formation on the base of the characteristics depending
on the applicable context. Specifically, POSIM allows
implementing policies to guide the positioning proce-

dure based on LBS requirements (e.g., minimize power
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consumption), user preferences, device and infrastruc-

ture characteristics in a dynamic way, through its Policy
Manager.

Proprietary solutions have also been proposed. Al-
catel [3] proposes a software architecture to coordinate

positioning requests from a common location server across
public and private access environments. On the other
hand, it does take into account neither the interop-

erability among different WISPs, nor standard issues
related to application scenarios, protocols, and archi-
tectures. IBM [41] proposes a middleware that adopts

Open Location Service standard [42] to specify the in-
terfaces to access to positioning services of an infrastructure-
based server. Other examples of commercial solutions
are provided by TomTom [43], Ekahau [44], and Cisco

Systems [45]. They offer Software Development Kit (SDK)
for the development of personal applications. TomTom
is a GPS-based automotive navigation system used to

provide road assistance to mobile users. Ekahau and
Cisco Systems adopt the infrastructure-based approach,
based on Wi-Fi network.

The architecture proposed in this paper also sup-

ports, like some of the more recent solutions presented
above, the integration in a uniform way of both in-
door and outdoor location providers and exploits both

handset- and infrastructure-based positioning approaches.
The main distinguishing point, that we presented in this
paper, is the strong focus on optimality of policies for

location provider selection. Context-awareness is signif-
icantly enforced in our solution, by a mechanism that
supports the dynamic and transparent switch among

heterogeneous indoor/outdoor location providers dur-
ing the user movement, accounting for the application
requirements, the device capabilities, and the surround-

ing positioning infrastructure. It is the first solution ex-
ploring position prediction algorithms for implement-
ing optimal policies that satisfy multiple application

requirements and constraints at the same time. More-
over, from the architectural point of view, our solution
presents further advantages. By implementing the ar-

chitecture and protocols on top of open standard so-
lutions, we provide several further benefits. First, the
inclusion of new positioning methods is facilitated by

the SUPL paradigm, in a transparent and standard
way for WISPs and location provider developers. Sec-
ond, a standard-based solution fosters the WIPSs inter-

operability, favoring the LBS multi-vendor integration,
with benefits for both WISPs, in terms of positioning
solutions availability and infrastructure cost, and for

users as well, in terms of wider and better availability
of LBSs. Additionally, the solution, as it is conceived,
enables WISPs to locate their end-users in public and

private environments.

7 Conclusion

This paper presented a solution to optimally select loca-
tion providers in a newly defined positioning architec-
ture. The solution exploits a pattern-mining position

prediction algorithm and MOEAs to solve the selec-
tion problem under multiple QoP objectives and con-
straints, representing the application requirements.

The SUPL-based positioning architecture has been

first discussed; the main benefits with respect to exist-
ing solutions have been highlighted, here summarized:

– Openness: it is based on open standards, in order to
encourage WISPs interoperability, and hence multi-

vendors LBSs integration in the new generation of
wireless networks;

– Interoperability : software abstractions have been spec-

ified in order to support the integration of location
providers implemented by the most widespread lo-
cation APIs;

– Extensibility and evolution: due to the independence
between the communication and the positioning in-
frastructure, the positioning methods and the com-

munication technology can evolve independently, keep-
ing the integration between them simple in this ar-
chitecture;

– Standard compliance: the architecture and protocol
are kept compliant with SUPL specification, so as
to favor an easy integration with existing SUPL-

based solution and an incremental implementation
of a solution based on our architecture (L-SLP can
be incrementally added to the infrastructure).

Then, the focus is put on the dynamic location provider

selection and switching. In fact, in order to improve the
availability and accuracy of positioning, the architec-
ture allows using measurements from the handset and

the infrastructure, and dynamically choosing the most
appropriate positioning technologies, according to the
required QoP, the terminal capabilities, and the po-

sitioning infrastructures that are available at a given
time and place. The usage of a position prediction al-
gorithm allows basing this choice on current and future

expected user movements. The solution as designed of-
fers the possibility to instantiate the concrete approach
by using other prediction algorithms and/or MOEAs

besides the one adopted in this paper.

Currently, we are working to add further function-
alities. Mainly, we are focusing i) on implementing new
prediction algorithms in order to infer most likely user

movements from tracked data (e.g., RSSIs) and enable
further optimization policies, as well as on ii) extend-
ing the support to new location providers and addi-

tional optimization criteria. At higher level, we intend
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to conceive solutions to further promote interoperabil-

ity among WISPs and ease the formulation of agree-
ments about the mentioned business privacy issues.

References

1. Ilarri S., Illarramendi A., Mena E., and Sheth AP. Se-
mantics in Location-Based Services, IEEE Internet Com-
puting, vol. 15, no. 6, 2011, pp.10-14.

2. Liu H., Darabi H., Banerjee P., and Liu J. Survey of Wire-
less Indoor Positioning Techniques and Systems, IEEE
Transactions on Systems, Man and Cybernetics, vol. 37, no.
6, Nov. 2007, pp. 1067-1080.

3. Faggion N., Leroy S. Alcatel Location-based Services So-
lution, Sep. 2005, Alcatel Telecommunication.

4. Google Gears, the Google Gears Geolocation
API, available at http://code.google.com/intl/it-
IT/apis/gears/api geolocation.html. Last update Feb.
2011.

5. Ficco M., Pietrantuono R., Russo S. Supporting ubiqui-
tous location information in interworking 3G and wire-
less networks, Communications of the ACM, vol. 53, no.
11, 2010, pp. 116-123.

6. The OMA Secure User Plane Location (SUPL) - v.3,
available at: www.openmobilealliance.org/Technical/ re-
lease program/supl v3 0.aspx. Last Release 2011.

7. Ficco M., Esposito C., and Napolitano A. Calibrating In-
door Positioning Systems With Low Efforts, IEEE Trans-
actions on Mobile Computing, vol. 13, no. 4, April 2014,
pp. 737 - 751.

8. Wesley Mathew, Ruben Raposo, and Bruno Martins.
2012. Predicting future locations with hidden Markov
models. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (UbiComp ’12). ACM, New York,
NY, USA, 911–918.

9. D. L. Vail, M. M. Veloso, and J. D. Lafferty. Conditional
random fields for activity recognition. In Proceedings of
the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1–8. ACM, 2007.

10. T. G. Dietterich. Machine Learning for Sequential Data:
A Review. In Proceedings of the Joint IAPR Interna-
tional Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 15–30. Springer-Verlag, 2002.

11. N. Nguyen and Y. Guo. Comparisons of sequence labeling
algorithms and extensions. In Proceedings of the 24th In-
ternational Conference on Machine Learning, pages 681–
688. ACM, 2007.

12. O. Ossama and H. M. O. Mokhtar. Similarity Search in
Moving Object Trajectories. In Proceedings of the 15th
International Conference on Management of Data, pages
1–6. Computer Society of India, 2009.

13. M. Morzy. Prediction of moving object location based on
frequent trajectories. ISCIS, volume 4263 of LNCS, pages
583–592. Springer, 2006.

14. M. Morzy. Mining Frequent Trajectories of Moving Ob-
jects for Location Prediction. In Proceedings of the 5th
International Conference on Machine Learning and Data
Mining in Pattern Recognition, pages 667–680. Springer-
Verlag, 2007.

15. G. Yavas, D. Katsaros, O. Ulusoy, and Y. Manolopoulos.
A data mining approach for location prediction in mobile
environments. D.K.E., 54(2) pages 121–146, 2005.

16. H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid
prediction model for moving objects. ICDE 2008 pages
70–79.

17. A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti.
WhereNext: a location predictor on trajectory pattern
mining. In Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 637646. ACM, 2009.

18. F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Tra-
jectory pattern mining. KDD 2007: 330–339.

19. Deb Kalyanmoy and Gupta Shivam. Understanding knee
points in bicriteria problems and their implications as
preferred solution principles, Engineering Optimization,
43(11), pages 1175-1204, 2011.

20. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

21. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improv-
ing the strength Pareto evolutionary algorithms. In EU-
ROGEN 2001, pages 95–100, 2002.

22. Zitzler E, Knzli S. Indicator-based selection in multiob-
jective search. In: Yao X et al., editors. Parallel prob-
lem solving from nature (PPSN VIII). Berlin, Germany:
Springer Verlag; 2004. p. 832–42.

23. J.J. Durillo, A.J. Nebro jMetal: a Java Framework for
Multi-Objective Optimization. Advances in Engineering
Software 42 (2011) 760-771.

24. Zitzler E, Thiele L. Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto
approach. IEEE Trans Evol Comput 1999;3(4): 257–71.

25. Van Veldhuizen DA, Lamont GB. Multiobjective evo-
lutionary algorithm research: A history and analysis,
Tech. Rep. TR-98-03, Dept. Elec. Comput. Eng., Grad-
uate School of Eng., Air Force Inst.Technol., Wright-
Patterson, AFB, OH; 1998.

26. J. Cohen, Statistical power analysis for the behavioral
sciences, 2nd ed. Lawrence Earlbaum Associates, 1988.

27. Filomena Ferrucci, Mark Harman, Jian Ren, and Fed-
erica Sarro. 2013. Not going to take this anymore:
multi-objective overtime planning for software engineer-
ing projects. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13), 462-471.

28. Francisco Chicano, Francisco Luna, Antonio J. Nebro,
and Enrique Alba. 2011. Using multi-objective meta-
heuristics to solve the software project scheduling prob-
lem. In Proceedings of the 13th annual conference on Ge-
netic and evolutionary computation (GECCO ’11), Na-
talio Krasnogor (Ed.). ACM, 1915-1922.

29. Bellavista P., Corradi A., Giannelli C. The PoSIM mid-
dleware for translucent and context-aware integrated
management of heterogeneous positioning systems, Com-
puter Communications, vol. 31, 2008, pp. 1078-1090.

30. Chen JC, Maa CS, Wang YC, and Chen JT. Network-
Side Mobile Position Location Using Factor Graphs,
IEEE Trans. on Wireless Communications, vol. 5, no. 10,
Oct. 2006, pp. 2696-2704.

31. La Marca A., et al. Place Lab: Device Positioning Using
Radio Beacons in the Wild, in Proc. of the 3rd Int. Conf.
on Pervasive Computing, LNCS, vol. 3468, 2005, pp. 116-
133, Springer-Verlag.

32. Nord J., Synnes K., and Parne P. An Architecture for
Location Aware Applications, in Proc. of the 35nd Int.
Conf. on System Sciences, IEEE CS Press (2002).

33. Hosokawa Y., Takahashi N., Taga H. A system architec-
ture for seamless navigation, in Proc. of the Int. Conf. on
Distributed Computing Systems, Mar. 2004.



24 M. Ficco, R. Pietrantuono, and S. Russo

34. Spanoudakis M., Batistakis A., Priggouris I., Ioanni-
dis A., Hadjiefthymiades S., and Merakos L. Extensible
platform for location based services provisioning, in Proc.
of the Int. Conf. on Web Information Systems Engineering,
Dec. 2003.

35. Coulouris G., Naguib H., and Samugalingam K. FLAME:
an open framework for location-aware systems, Ubiquitous
Computing, Oct. 2002.

36. Chen Y., Chen XY., Rao FY., Yu XL., Li Y., and Liu D.
LORE: an infrastructure to support location-aware ser-
vices, in IBM Journal of Research and Development, vol.
48, no. 5, 2004, pp. 601-615.

37. Ranganathan A., Al-Muhtadi J., Chetan S., Campbell R.,
and Mickunas D. MiddleWhere: A Middleware for Loca-
tion Awareness in Ubiquitous Computing Applications,
in Proc. of the 5th Int. Conf. on Middleware, LNCS, vol.
3231, 2004, pp. 397-416, Springer-Verlag.

38. Hightower J., Brumitt B., and Borriello G. The location
Stack: Layered Model For Location in Ubiquitous Com-
puting, in Proc. of the 4th IEEE Int. Workshop on Mo-
bile Computing System and Applications, IEEE CS Press
(2002).

39. Hohl F., Kubach U., Leonhardi A., Rothermel K., and
Schwehm M. Next Century Challenges: Nexus - An Open
Global Infrastructure for Spatial-Aware Applications,
in Proc. of the ACM International Mobicom Conference,
1999, pp. 249-255, ACM Press.

40. Pfeifer T. Redundant positioning architecture, Computer
Communications, vol. 28, no. 13, Aug. 2005, pp. 1575-
1585. Elsevier Press.

41. Lee S., Cheng S., Hsu J.Y., Huang P., and C. You. Emer-
gency care management with location-aware services, in
Proc. of the Pervasive Health Conference and Workshops,
2006, pp. 1-6. IEEE CS Press.

42. Hansen S., Richter K., and Klippel A. Landmarks in
OpenLS: A Data Structure for Cognitive Ergonomic
Route Directions, LNCS, vol. 4197, 2006, pp. 383-393.
Springer-Verlag.

43. TomTom International BV: Software development, avail-
able at: www.tomtom.com/pro/page.php?ID=2

44. Ekahau, Inc.: Ekahau Positioning Engine 2.0, available
at: www.ekahau.com.

45. Appear Network, Inc.: Appear Context Engine, available
at: www.appearnetworks.com.

46. Skyhook Wireless, Skyhook CEO un-
daunted by mobile giants, available at
www.crunchbase.com/company/skyhook-wireless. Last
update June 2011.

47. Ficco M., and Russo S. A hybrid positioning system
for technology-independent location-aware computing, in
Software: Practice and Experience, vol. 39, Feb. 2009, pp.
1095-1125.

48. Di Flora C., Ficco M., Russo S., and Vecchio V. Indoor
and outdoor location based services for portable wireless
devices, in Proc. of the IEEE Int. Workshop on Services
and Infrastructure for the Ubiquitous and Mobile Internet
(SIUMI’05), Jun. 2005, pp. 244-250, IEEE CS Press.

49. Geomena, an open geo database of Wi-Fi access points,
available at http://geomena.org/. Last update Sept.
2011.

50. Google Latitude enables users to update and read their
current location, and their location history, available at
www.google.it/mobile/latitude/. Last update Oct. 2010.

51. Karam R., Favetta F., Kilany R., and Laurini R. Lo-
cation and Cartographic Integration for Multiproviders
Location-Based Services, in Advances in Cartography and

GIScience, LNCS, vol. 1, Springer, 2011, pp. 365-383.


