
Prioritizing Correction of Static Analysis
Infringements for Cost-Effective Code Sanitization

Gabriella Carrozza∗, Marcello Cinque†‡, Ugo Giordano†, Roberto Pietrantuono†‡, Stefano Russo†‡
∗SELEX ES, A Finmeccanica Company, Piazza Montegrappa 4, 00195, Roma, Italy. E-mail: gabriella.carrozza@selex-es.com

†DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy.
E-mail: {macinque, ugo.giordano, sterusso, roberto.pietrantuono}@unina.it

‡ Critiware s.r.l., Incipit, Via Cinthia, Complesso Univ. Monte S. Angelo, 80126, Napoli, Italy
E-mail: {marcello.cinque, stefano.russo, roberto.pietrantuono}@critiware.com

Abstract—Static analysis is a widely adopted technique in the
industrial development of software systems. It allows to auto-
matically check for code compliance with respect to predefined
programming rules. When applied to large software systems,
sanitizing the code in an efficient way requires a careful guidance,
as a high number of (more or less relevant) rule infringements
can result from the analysis.

We report the results of a static analysis study conducted
on several industrial software systems developed by SELEX
ES, a large manufacturer of software-intensive mission-critical
systems. We analyzed results on a set of 156 software components
developed in SELEX ES; based on them, we developed and
experimented an approach to prioritize components and violated
rules to correct for a cost-effective code sanitization. Results
highlight the benefits that can be achieved in terms of quality
targets and incurred cost.

I. INTRODUCTION

A common way to reduce software defectiveness is to
improve activities related to the detection of defects before
systems deployment. “Early detection” refers to the attempt
of discovering defects at the earliest stage (i.e., in the same
development phase in which they get injected) in order to
avoid their later degeneration into operational failures and re-
duce fixing and maintenance costs. A powerful early detection
technique, widely adopted for large-scale software systems,
is static code analysis. It is based on the exploration of all
possible execution paths in a program at compile time to check
if some properties of interest (e.g., coding rules, programming
conventions) are respected. Its application is very useful to
identify programming errors (such as buffer overflows, null
pointer dereferences, the use of uninitialized variables) that
can escape both compilers’ detection facilities and testing
campaigns. The use of static analysis can be traced back to
’90s, with many respectful software giants, like Microsoft
and Nasa, massively using this technique with very good
results [1], [2]. Results of static analysis can provide several
insights into the quality of the code, indicating, for instance,
which components have the greatest violation share and which
kind of rules are more violated. A common problem with
static analysis approaches is the overwhelming amount of
information they provide, which makes it difficult to recognize
the most important infringements to correct and the most

critical components. This is especially relevant when dealing
with large software projects, spanning hundreds of components
and millions of lines of code, where the proper allocation of
efforts for cleaning the code can have a significant impact both
in terms of quality increase and cost reduction.

This paper presents the approach taken to face this problem
in the context of an industry-academia collaboration between
University of Napoli and SELEX ES1. The company massively
adopts static analysis on its products for supporting code
improvement and defect detection/removal. Considering the
huge amount of code, judiciously prioritizing efforts for code
sanitization is expected to lead to considerable cost savings.
To this end, we applied static analysis on a set of 156 software
components developed in SELEX, with reference to 167
coding rules; based on results, we defined and experimented
a method for effort allocation, using its output as feedback
to developers and tester as suggested improvement actions.
Specifically, SELEX engineers have been provided with:

• statistics about rule violations across components, which
are important indicators used to understand the current
status and set the desired improvement goals;

• statistics about rules most often violated by programmers,
which are useful for internal regulations (i.e., coding stan-
dard enforcement, tailored training) and to suggest rules
that can be confidently neglected (thus, not computed in
the future) because not often violated;

• a direct indication regarding which components and
which rules should be prioritized for an effective code
sanitization. With a so-high number of components, it is
important for SELEX engineers to focus their effort to at-
tain a desired quality objective at minimal cost. We define
three variants of an optimization model depending on the
desired quality goal, and investigated their performance
in terms of cost reduction with respect to a random effort
allocation resembling the currently adopted approach.

Results showed that, given pre-defined quality targets on the
code (in terms of average number of rule violations, or of their

1SELEX ES, a Finmeccanica company, is an international leader in elec-
tronic and information solutions for defense, aerospace, security, surveillance,
network management, information security and mission-essential services.

standard deviation, or of a desired percentile value) and a fixed
budget, the greatest gain in quality achieved, in our experi-
ment, is up to 15.99% of average number violation reduction,
up to 59.61% in terms of standard deviation reduction, and up
to 42.21% in terms of expected cost for residual violations2.
Besides the effective results, we experienced that, in our
long-lasting academia-industry partnership, key factors for the
success of the collaboration were: the definition of a clear and
short-term objective, the continuous feedback from one side
to another, the aptitude of someone from the company for
exploring new and non-trivial solutions to common problems,
and the low intrusiveness of techniques proposed by the
academic partner in the daily work of company’s practitioners.

II. BACKGROUND AND RELATED WORK

A. Automated Static Analysis Tools

Static analysis can be used to check if the code meets
the expectations around security, dependability, performance,
and maintainability [3]. It is able to provide a foundation
for producing solid code, by exposing structural errors or
preventing entire classes of defects. Automatic static analysis
(ASA) tools identify specific types of anomalies (i.e., violation
of properties) by pattern-based analysis, data and control flow
analysis, path flow analysis, and so on. A common usage
of ASA is to check the source code against patterns known
to cause defects or, more generally, to penalize quality. This
focuses on checking compliance to coding standard rules for
preventing improper language usage, satisfying industry stan-
dards (e.g. JSF, MISRA etc.), and enforcing internal coding
guidelines [4]. There is a wide range of tools, some open
source and some commercial, that differ by the language type
that are able to analyze. For example, FindBugs3 and PMD4

are two open source tools that analyze, respectively, the Java
bytecode and source code. By static rule-based analysis, they
identify potential problems related to programming errors as
well as programming style issues. PC-lint c© and FlexeLint c©5

check C/C++ source code for detecting defects, anomalies,
non-portable constructs, inconsistencies and redundant code.
Additionally, there are several tools that support multiple
programming language, such as SonarQube6. None of the tools
strictly encloses another, and each tool is likely to find different
types of defects [5].

Although the usage of tools leads definitely to benefits, they
have limitation when applied in practice. An important issue
of ASA is the large number of false positives, warning about
defects that the program does not actually contain. An extreme
case is reported in [6], where authors report more than 96% of
raised coding concerns not relating to any defect or refactoring
modification. To overcome this issue, it is often possible to

2Results in the paper are always reported as a percentage measure, for
confidentiality reasons.

3http://findbugs.sourceforge.net/.
4http://pmd.sourceforge.net/
5http://www.gimpel.com/html/products.htm
6http://www.sonarqube.org/

customize the tools by filtering out non-relevant rules, so as
to reduce, at least in part, the number of false positives.

From a research perspective, there are two main streams
regarding ASA and code quality: i) understanding whether
(and which) ASA issues are real indicators of defects, or ii)
whether ASA issues can be used as early indicators of defect-
prone modules (e.g. software components, files, classes).
Along the former stream, besides the mentioned problem of
false positives (spotted in several papers, e.g., [6], [7], [8]),
many studies observed that it is more effective to use a set
of ASA issues to identify the most defect-prone components
rather than an individual ASA issue. For instance, the authors
in [9] found a positive correlation between FlexeLint issues
and a large-scale telecommunications system; similarly it is
done in [7], where issues densities from two ASA tools,
PREfix and PREfast, are used successfully to predict defect-
prone components, and in [10] which confirmed the correlation
between ASA tools (FindBugs and PMD) issues and defect
data Eclipse SDK. To the best of our knowledge, while there
are several approaches to allocate effort for testing activity
(e.g., [11], [12], [13]), the problem of allocating effort for
code sanitization activity after the application of ASA has not
been addressed; in the following, we focus on such a problem
with reference to components and types of violated rules.

B. Parasoft c© tools for programming conventions analysis

To improve the quality of software, it is highly recom-
mended to follow “programming conventions”, which are
guidelines that recommend about programming style, prac-
tices, and methods to follow when writing a program. Usu-
ally, these conventions cover file organization, indentation,
comments, declarations, statements, programming principles,
architectural best practices, and so on. In SELEX ES, the
Parasoft c© test tool (for C/C++ and Java) has been used
to analyze statically the code and monitor compliance with
standard rules. Parasoft c© test is an ASA tool that includes
technology for static code analysis, peer code review automa-
tion, unit test case generation and execution, and runtime
error detection. It differentiates the coding rules into two main
groups: Bug Detective (BD) and Coding Rules (CR). The first
group includes those rules that, if not met, are more likely to
lead to software defects; the rules of the second group refers
to programming style guidelines. These two groups are in turn
divided into sub-groups of rules, reported in Table I7.

III. INDUSTRIAL CONTEXT AND DATA SOURCE

SELEX ES is actually the outcome of a recent process
through which three big companies have been merged into one,
addressing an impressive variety of user application domains.
It is the prime software company within the Finmeccanica
group, being in charge of almost the 80% of the overall
software solutions underlying the mother company’s portfo-
lio. The presented study results from an active collaboration

7Note that we grouped together (in BD-G5 and CR-G12 denoted as “other
rules”) the rules referring to Java, which are numerous and less relevant for
us, being most of the code in C/C++.

TABLE I: Macrogroups of coding rules.

Macrogroups of rules Number of rules

BD-G1 Possible Bugs 11
BD-G2 Resources 4
BD-G3 Security 7
BD-G4 Threads & Synchronization 3
BD-G5 Other rules 13
CR-G1 Formatting Rules 5
CR-G2 Metrics rules 1
CR-G3 Coding Convention Rules 6
CR-G4 MISRA Rules 34
CR-G5 Naming Convention Rules 1
CR-G6 Initialization Rules 3
CR-G7 Optimization Rules 1
CR-G8 Object Oriented Programming Rules 5
CR-G9 Memory and Resource 6
CR-G10 Comments Rules 1
CR-G11 Exceptions Rules 2
CR-G12 Other rules 67

between University of Naples and SELEX ES on software
quality topics, which started few years ago and is yielding
relevant research results in the area of testing [14], [11], [15],
[16], and defect analysis and process evaluation [17].
This study has been running close in touch with the SELEX
ES SW Engineering function (hereafter SWEng), accounting
for about 800 people distributed over more than 20 plants in
Italy and UK.

Fig. 1: Selex development lifecycle

For systems development, the SWEng department adopts,
as reference development life-cycle process, a customization
of the traditional V-model (Figure 1). In terms of artifacts
and software documentation, the critical domains they address
demand the application of a rigorous widely known military
standard named MIL-STD-498 [18], which establishes uni-
form requirements for software development and documen-
tation. According to [18], software projects are organized
into configuration items (named CSCI, Computer Software
Configuration Item) that represent the smallest software unit
addressed in this paper. CSCIs we considered go from 100
to hundred of thousands of LLOC (Logical Lines of Code)
and come from several industrial capabilities like “Basic
and Middleware Applications”, “Human Machine Interface”,
“Surveillance Data Processing”. To cope with the variety of

applications, the SWEng function has designed a uniform
policies and processes framework encompassing phases from
requirements analysis to software verification and system val-
idation. Within this framework, the SWEng direction decided
to introduce static analysis in the overall process. The real
strength of such a move lies into the feeling that, apart from
outcomes in terms of infringed coding rules, many other
results in terms of software quality and cost reduction can
be pursued. The study conducted to this aim has been run on
a set of 156 CSCIs, amounting to a total of 11,66 Million
of LoC. The source code has been made available for the
analysis, and the output used for investigating the effectiveness
of proposed models. The following steps are implemented: i)
application of Parasoft c© tool to CSCI source code; ii) output
data normalization in terms of percentage of rule violations
per CSCI; iii) inferring of basic percentage statistics on rule
violations, considering separately the BD from CR groups; iv)
definition and application of effort allocation models, suggest-
ing which violations to remove to cost-effectively achieve a
desired quality goal. The next subsections report the results
for these steps.

IV. RESULTS

A. BD and CR Rules Violations

Tables II and III report, respectively, the total BD and CR
rule violations separated by group expressed in percentage
terms. As for BD, rules of group 1 (“possible bugs”) are
clearly the most relevant ones accounting for 81% of total
violations; for CR, the most relevant groups are the first 4
(about 75% of total violations) along with the last one (“other
rules”) accounting for about 20 % violations.

The distribution of rule violations across CSCIs is character-
ized by a high standard deviation; the coefficient of variation of
BD rules amounts to 2.34 (namely, standard deviation more
than the double of the mean), and 1.82 for CR rules. This
suggests a high skew, hence there are few CSCIs with high
number of violations – a first indication useful for an effective
allocation of sanitization effort.

For a more useful characterization, we are required to take
into account the different size of the CSCIs, thus focusing
on densities. Specifically, we consider violations per each
10KLoC (for the BD rules), and per each 1 KLoC (for the
CR rules). The former are normalized over 10KLoC as they
are deemed more critical by SELEX engineers with respect
to CR violations. Then, to filter out less relevant rules, we
focus on the top-15 BD and CR rules, namely the 15 rules
most frequently violated in terms of violations per 10KLoC
and per 1KLoC for BD and CR rules, respectively. The top 15
BD rules belong to these groups: 8 to BD-G1 (including the
top 5), namely “possible bugs”, 1 to BD-G2 (“resources”), 1 to
BD-G3 (“security”), 1 to BD-G4 (“threads synchronization”),
and 4 to BD-G5 (“others”). The top 15 CR rules belong to
groups as follows: 2 to CR-G1 (“formatting”), 1 to CR-G2
(“metrics rules”), 3 to CR-G3 (“coding conventions”), 5 to CR-
G4 (“MISRA”), 1 to CR-G10 (“comments”), and 3 to CR-G12
(“others”). The type of violated rules provide hints on what

TABLE II: Percentage of group violations over total violations for Bug Detective rules.

BD-G1 BD-G2 BD-G3 BD-G4 BD-G5

% of group violations 81.07% 8.57% 2.72% 1.41% 6.23%

TABLE III: Percentage of group violations over total violations for Coding rules.

CR-G1 CR-G2 CR-G3 CR-G4 CR-G5 CR-G6 CR-G7 CR-G8 CR-G9 CR-G10 CR-G11 CR-G12

% of group violations 6.58% 12.80% 36.03% 19.86% 0.54% 0.23% 0.38% 0.77% 0.30% 1.88% 0.93% 19.69%

are the most common encountered problems, driving possi-
ble process-level actions (enforcing coding standard, driving
training, etc.).

Fig. 2: Distributions of BD violations.

Fig. 3: Distributions of CR violations.

The top-15 rule violations account for most of violations:
the top-15 BD rules amount to the 94.69% of total BD
violations; the top-15 CR rule violations amount to the 80.05
% of the total CR violations. We can reasonably neglect the
remaining ones, reducing significantly the rules that developers
need to check against (their removal is considered as a lower
priority activity with respect to the top-15). Figures 2 and
3 show the distribution of the percentage number of BD
violations per each 10KLoC and of CR rule violations per
each 1KLoC rule, with respect to the 156 CSCIs and to the
top-15 rules. The distributions are both right-tailed, with 10%
of CSCIs accounting for about 47% of total BD violations per
10KLoC and for 69% of total CR violations per 1KLoC. Both
results on rule types and distribution across CSCIs suggest
that efforts could be focused on few CSCIs and few rules.

In the next section, the models to perform the allocation
automatically and optimally are presented.

B. Optimization Model

The key is to exploit static code analysis to suggest how
much effort to devote to improve the quality of a CSCI code,
and by means of what type of activities – namely, which,
among the violated rules, are worth to be corrected. The
objective is to focus on CSCI and activities more likely to lead
to a cost reduction while satisfying a user-specified constraint
on remaining violations.

1) Model formulation: Models are parametrized and ap-
plied separately to the top 15 BD and CR rules (i.e., one
model for BD and one for CR). Let us denote by vi the total
number of violations of the i−th type, and by vi,j the number
of violation of type i revealed in the CSCI j. A violation, if
not removed, can result in a software defect in later stages;
on the other hand, its removal requires some effort. The effort
required to the removal of a violation is, of course, lower than
the effort to remove a defect. We assume each type of violation
being characterized by a pair <REi, wi>, where:

• REi (Removal Effort) is the effort per unit needed to
remove one violation of the i−th type;

• wi is a [0,1] weight rating the type of violation i with
respect to the expected impact that its non-removal has
on the system quality.

The REi values are assessed by historical data about the
removal of violations of the i−th type observed in the past.
Weights are assigned by experts judgement (i.e., SELEX
engineers), who gives more importance to specific type of
violation they deem more critical (also based on the tool’s
suggestions about the severity of each rule type and about
the affected characteristics, e.g., reliability, maintainability,
security). Let us denote with Ed the effort per unit to remove
a defect in the integration testing phase. Similarly to REi,
an estimate of this value is obtained by historical repository
tracing the man-hours devoted to defect removal activities;
clearly, Ed >> REi. We have:

NREi = wi ∗ Ed (1)

where NREi is the Non-Removal Effort, and represents the
expected effort per unit incurred if the violation of type i is
not removed. It is given by the the unitary effort for a defect
removal weighted by the impact of violation i. Obviously, it
would be extremely expensive to eliminate all the violations of

all types from all CSCIs. The problem is to find the optimal
trade-off between the number and the type of violations to
remove (i.e., determining the cost of removing violations), and
the risk of not removing them. In the following, we denote
with xi,j the number of violations of the i-th type that we
decide to eliminate from CSCI j, which are our decision
variables. Violations removal needs to be carried out within a
budget constraint and a minimal quality constraint. Depending
on how the quality constraint is expressed, we have different
variants of the model:
Target Average (T-A): in this model variant, engineers want
the mean number of violations over CSCIs to be under a
specified target, v̄max.
Target Average and Standard Deviation (T-A & T-STD):
this is a more restricted choice than the previous one, requiring
also the standard deviation to be less than a user-specified
target (stdmax), besides the mean.
Target Number (T-N): engineers want a given number of
CSCIs, denoted as CN , with less violations than a user-
specified vmax.

For all the variants, the objective is the same: reducing the
total cost, denoted as C, that is the sum of costs on all the
CSCIs (Cj). Considering the above definitions:

Cj =

m∑
i=1

xi,j ·REi +

m∑
i=1

[
(vi,j − xi,j) ·NREi

]
(2)

It represents the cost, for a CSCI j, of removing
∑

i xi,j

violations plus the expected cost of not removing them. The
optimization model follows:

Minimize C =

n∑
j=1

Ej

=

n∑
j

[m∑
i=1

(xi,j ∗REi) +

m∑
i=1

[
(vi,j − xi,j) ∗ (wi ∗ Ed)

]]
(3)

subject to:

0 ≤ xi,j ≤ vi,j

and one of the following constraints according to the variant:

1
N

n∑
j=1

∑m
i=1(vi,j − xi,j) ≤ v̄max (T-A Model)

1
N

n∑
j=1

∑m
i=1(vi,j − xi,j) ≤ v̄max (T-A&T-STD Model)

STD[
∑m

i=1(vi,j − xi,j)] ≤ stdmax

∑n
j=1 qj ≥ CN (T-N Model)

where qj =

{
1 if

∑m
i=1 vi,j − xi,j > vmin

0 otherwise

where j = 1 . . . n−1, n are the CSCIs, xi,j are the decision
variables, and STD denotes the standard deviation, STD[X] =√∑

i
(xi−x̄)2

n .
2) Application of the Models: The model output suggests

how many violations of each type we should remove from each
of the 156 CSCI, in order to attain the desired target at minimal
effort. We compare four different scenarios: the three variants
against each other and against a Random (R) strategy. The
latter reflects the current practice, where each CSCI manager
independently decides how many violations to remove for its
CSCI, arbitrarily choosing the type of violation. We force the
random strategy to consume all the available budget so as to
have a fair comparison with the other strategies. Additionally,
note that the solution computed by the proposed models is
an exact one; instead, the solution provided by the random
allocation may be different from run to run. Therefore, we
repeated the execution of the random strategy 50 times, in
order to have statistically meaningful results, and considered
the average solution in terms of total cost.
Model Parametrization
Costs of removal per violation type, REi, are, in our case,
estimated by averaging the effort employed in the past to
remove violations of each type, adjusted by SELEX engineers.
For BD rules, RE values are between 1 and 5 minutes per
violation in the average, depending on the violation type,
while, in the case of CR rules, for which the tool support
for automatic removal is remarkable, the time is less than
1 minute. Moreover, SELEX engineers considered a defect
removal effort, Ed, amounting to 10 times the average effort
for removing a rule violation8. Weights are assigned as men-
tioned above, i.e., by means of severity scales. RE and NRE
parameters for BD and CR rule are reported in Table IV.

TABLE IV: RE and NRE Values (minutes).

BD Rules RE NRE CR Rules RE NRE

1 5 22.6 1 0.1 0.01
2 4 18.8 2 0.5 1.0
3 3 21.6 3 0.1 1.25
4 3 13.6 4 0.05 1.42
5 4 8.8 5 0.1 1.53
6 4 8.8 6 0.2 0.88
7 2 16.8 7 0.1 1.12
8 5 18.4 8 0.3 0.77
9 2 28.0 9 0.2 0.22
10 3 25.8 10 0.1 0.22
11 1 5.2 11 0.1 0.33
12 1 7.6 12 0.05 0.55
13 1 3.2 13 0.1 0.44
14 2 11.6 14 0.1 0.66
15 2 8.8 15 0.2 1.25

The budget for violations removal satisfying these con-
straints is included in the minimization objective as

8Note, by this choice, the cost is different in the case of BD and CR:
in principle, the cost of removing a defect is independent from the type of
violation (BD or CR); however, engineers consider CR rules less related to
defects (despite the mathematical correlation, which does not mean causation),
as their role is different than bug detective rules. Therefore the Ed is kept
proportionally lower than in the case of BD violations.

∑
j

∑
i xi,j ∗ REj ; we also impose it to be not greater than

800 man-hours for BD and 800 man-hours for CR treatments
(i.e., this means that solutions not satisfying the constraints
within just 800 man-hours are infeasible; thus, they would
require more relaxed constraints on achievable quality or more
man-hours). SELEX engineers set up the following BD-related
quality objectives, for the three models: i) an average number
of violations (v̄max) reduced of at least 40% wit respect to the
current average9; ii) a standard deviation stdmax reduced of at
least 75% with respect to the current standard deviation along
with an average reduced of at least 30% in this case; iii) at
least the 70% of CSCIs with a number of violations less than
50% of the current average. As for CR rules: i) an average
number of violations reduced of at least 25% with respect to
the current one; ii) a standard deviation reduced of at least
30% with respect to the current one along with an average
reduced of at least 20%; iii) at least the 70% of CSCIs with
less than 25% than the current average.
Evaluation Metrics
Given the same budget, the comparison is on the following
relative metrics with respect to the random case: the percentage
gain of number of violations suggested to remove; the percent-
age reduction of the total estimated cost (TOTCost, namely,
the sum of cost of removal and of non-removal, as described
by the objective function); the percentage reduction of the
average number of violations across CSCIs after applying the
solution; the percentage reduction of the standard deviation
of the number of violations across CSCIs; the number of
CSCI with

∑
i vi,j < vmax. Note that the cost of non-removal

may be considered as a measure of risk: in fact, since the
cost of violation removal is given as input (i.e., it is the
budget, 800 man-hours, and is always exploited fully by the
algorithm), the remaining cost is only the non-removal one,
which indirectly indicates the risk of having those residual
violations. A higher cost means having residual violations with
the greatest expected impact.
Results
Tables V and VI report the results of the experiment in terms
of gain or reduction with respect to random case, as well as
the reduction achieved with respect to the initial average and
standard deviation, indicating to what extent targets have been
met. They show that:

• the T-A model meets its target on the average number of
violations; the provided solution is also able to satisfy the
last target on the number of CSCI with v < vmax, even
if not required. The standard deviation is also reduced
considerably, being it 57% (for BD) and 28% (for CR)
less than the original one, and 33% and 14% less than
the random solution. The number of violations suggested
to remove is 16% higher than the random solution (in
the BD case), and it is impressive in the CR case where
a +78% is achieved. The total cost is reduced of 32%
and 42% in the two cases. This solution allows removing

9As mentioned in the introduction, we cannot disclose, for confidentiality
reasons, the absolute number of violations.

much more violations than the other cases, and also the
most cost-impacting ones.

• the T-A & T-STD model achieves its targets on average
and stander deviation, while also meeting the target on
number of CSCI with v < vmax. The gain in terms of
standard deviation is paid in terms of number of removed
violations and total cost, where the gains are much more
limited than the T-A model; it focuses on acting more
on the few CSCIs with a high number of violations to
meet the standard deviation target than on most impacting
rules.

• the T-N model achieves its target while also meeting the
target on the average (not the one on the standard devi-
ation). Results are very similar to the standard deviation
model. Also in this case, a great reduction is devoted to
standard deviation reduction.

The T-A model is able to select the best types of violations to
remove, because its target is met early, and thus the residual
effort is devoted to lower the non-removal effort value by
selecting the most impacting types of violation. Of course,
the choice of the target influences the output; thus the user
can relax constraints on T-A & T-STD and T-N solutions to
reduce the total expected cost. This means favoring a type-
aware removal of violations with respect to just reducing the
number of violations. Conversely, whenever the targets are
met with margin (e.g., in the T-A case), the tester can decide
to spend less money and re-compute a solution with a lower
available budget (e.g., 600 man-hours). Multi-objective models
would also make sense. In any case, results enable the models
as useful tools for quantitative reasoning and decision support
in the code cleaning phase.

V. CONCLUSION

This paper presented the results emerged from a study about
static analysis performed on the industrial software systems
developed by SELEX ES. The study revealed several practical
implications of the systematic use of static analysis results
for early detection of software defects and for the effective
allocation of sanitization efforts on a lower set of most critical
CSCIs. In addition, the developed models represent a tool
for quantitative reasoning and decision support in the code
cleaning phase before starting system tests and release the
software. Presented results are the fruit of a research-industry
collaboration between SELEX ES and the University of Naples
Federico II. We attribute the success of this partnership to the
following upfront choices: the primary factor for success is to
have the commitment by key people in the company on a real
concrete need, whose solution would bring tangible benefits in
the future. However, while high-level objectives cannot pro-
duce tangible results soon (e.g., improving the V&V process),
we found it useful to break a high-level goal into sub-goals
whose outcomes are immediately visible to practitioners. This,
in turn, is expected to foster practitioners to provide good-
quality data and their support for further experiments, enabling
a virtuous feedback loop between the parties. Moreover, we
experienced as further essential requirement the guarantee that

TABLE V: Results of the allocation for BD rules compared to the random solution.

Model % Gain on Total # % Reduction % Reduction of Avg # Viol. % Reduction Std of # Viol. Number (and %) of CSCI
of Viol. to Remove of TOTCost [% Reduction w.r.t. initial Avg] [% Reduction w.r.t. initial Std] with v < vmax

T-A +16.12% -32.95% -14.94% [-55.83%] -33.15% [-57.68%] 122 (78.20% of CSCIs)
T-A & T-STD +16.14% -29.13% -14.96% [-55.84%] -59.61% [-75.43%] 110 (70.51% of CSCIs)
T-N +16.82% -25.12% -15.6% [-56.17%] -57.65% [-73.19%] 110 (70.51% of CSCIs)

TABLE VI: Results of the allocation for CR rules compared to the random solution.

Model % Gain on Total # % Reduction of TOTCost % Reduction of Avg # Viol. % Reduction Std of # Viol. N. CSCI with
of Viol. to Remove [% Reduction w.r.t. initial Avg] [% Reduction w.r.t. initial Std] v < vmax

T-A +78.47% -42.21% -15.99% [-30.22-%] -14.50% [-28.83%] 117 (75 %)
T-A & T-STD +22.09% -2.84% -4.50% [-20.67%] -21.65% [-34.79%] 110 (70.51 %)
T-N +22.66% -2.34% -4.62% [-20.77%] -22.89% [-35.82%] 110 (70.51%)

any introduced innovation (technique, method, model, tool)
has, at least initially, a low impact on current processes – hence
on the everyday work of employees – and a low “cost” (e.g.,
no additional work required to practitioners, for instance, to
produce data, to run experiments, to customize a tool). In fact,
instead of trying to change the process from the top, we found
that starting from engineers’ daily work and from exploiting
the information available ’for free’ is by far more useful. On
the other hand, such an agile approach do not allow to fully
exploit all the amount of information potentially available.
This could lead to produce approximate results until more
accurate information is available, and to repeat some steps
depending on the quality of the data available at a given time.
In this specific case, the method introduced was a good trade-
off between the effort required and the potential benefits of the
models on provided data. Also, being the models not bound
to company-specific information, replicating this approach in
a new company is straightforward, provided that the same
success factors are ensured in a new scenario.

ACKNOWLEDGMENT

This work has been partly supported by the SVEVIA
(Innovative methods and techniques for Software VErification
and ValIdAtion of near-realtime complex systems) Research
Project funded by the Italian Ministry of Education and
Research (Grant no.: PON02 00485 3487758).

REFERENCES

[1] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and
M. Vouk, “On the value of static analysis for fault detection in software,”
Software Engineering, IEEE Transactions on, vol. 32, no. 4, pp. 240–
253, April 2006.

[2] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Automated Software Engineering, vol. 17, no. 4, pp.
375–407, 2010.

[3] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[4] Static code analysis best practices. [Online]. Available: www.parasoft.
com/StaticCodeAnalysis

[5] N. Rutar, C. Almazan, and J. Foster, “A comparison of bug finding tools
for java,” in Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on, Nov 2004, pp. 245–256.

[6] F. Wedyan, D. Alrmuny, and J. Bieman, “The effectiveness of automated
static analysis tools for fault detection and refactoring prediction,” in
Software Testing Verification and Validation, 2009. ICST ’09. Interna-
tional Conference on, April 2009, pp. 141–150.

[7] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, May 2005, pp. 580–586.

[8] C. Boogerd and L. Moonen, “Assessing the value of coding standards:
An empirical study,” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, Sept 2008, pp. 277–286.

[9] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M. Vouk, “Pre-
liminary results on using static analysis tools for software inspection,” in
Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, Nov 2004, pp. 429–439.

[10] R. Plosch, H. Gruber, A. Hentschel, G. Pomberger, and S. Schiffer, “On
the relation between external software quality and static code analysis,”
in Software Engineering Workshop, 2008. SEW ’08. 32nd Annual IEEE,
Oct 2008, pp. 169–174.

[11] G. Carrozza, R. Pietrantuono, and S. Russo, “Dynamic test planning:
a study in an industrial context,” International Journal on Software
Tools for Technology Transfer, pp. 1–15, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10009-014-0319-0

[12] M. Lyu, S. Rangarajan, and A. van Moorsel, “Optimal allocation of
test resources for software reliability growth modeling in software
development,” IEEE Trans. on Reliability, vol. 51, no. 2, pp. 336–347,
2002.

[13] R. Pietrantuono, S. Russo, and K. Trivedi, “Software reliability and
testing time allocation: An architecture-based approach,” Software Engi-
neering, IEEE Transactions on, vol. 36, no. 3, pp. 323–337, May 2010.

[14] G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono, and S. Russo,
“Engineering air traffic control systems with a model-driven approach,”
IEEE Software, vol. 30, no. 3, pp. 42–48, 2013.

[15] G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono, and S. Russo, “Inte-
grating mdt in an industrial process in the air traffic control domain,”
in Software Reliability Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium on, 2012, pp. 225–230.

[16] D. Cotroneo, R. Pietrantuono, and S. Russo, “Combining operational and
debug testing for improving reliability,” Reliability, IEEE Transactions
on, vol. 62, no. 2, pp. 408–423, June 2013.

[17] G. Carrozza, R. Pietrantuono, and S. Russo, “Defect analysis in mission-
critical software systems: a detailed investigation,” J. Softw. Evol. and
Proc., vol. 27, no. 1, pp. 22–49, 2014.

[18] U. D. of Defense, Overview and Tailoring Guidebook, MIL-STD 498,
1996.

