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ABSTRACT
Virtual execution environments and middleware are required
to be extremely reliable because applications running on
top of them are developed assuming their correctness, and
platform-level failures can result in serious and unexpected
application-level problems. Since software platforms and
middleware are often executed for long time without any
interruption, large part of the testing process is devoted to
investigate their behavior when long and stressful executions
occur (these test cases are called workloads). When a prob-
lem is identified, software engineers examine log files to find
its root cause. Unfortunately, since of the workloads length,
log files can contain a huge amount of information and man-
ual analysis is often prohibitive. Thus, de-facto, the iden-
tification of the root cause is mostly left to the intuition of
the software engineer.

In this paper, we propose a technique to automatically
analyze logs obtained from workloads to retrieve important
information that can relate the failure to its cause. The tech-
nique works in three steps: (1) during workload executions,
the system under test is monitored; (2) logs extracted from
workloads that have been successfully completed are used to
derive compact and general models of the expected behavior
of the target system; (3) logs corresponding to workloads
terminated unsuccessfully are compared with the inferred
models to identify anomalous event sequences. Anomalies
help software engineers to identify failure causes. The tech-
nique can also be used during operational phase, to dis-
cover possible causes of unexpected failures by comparing
logs corresponding to failing executions with models derived
at testing time. Preliminary experimental results conducted
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on the Java Virtual Machine indicate that several bugs can
be rapidly identified thanks to the feedbacks provided by
our technique.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Tracing

General Terms
Reliability

Keywords
log file analysis, automated analysis, model inference, work-
loads execution, JVM monitoring

1. INTRODUCTION
Nowadays we are witnessing to an increasing use of vir-

tual execution environments and middleware platforms for
the development of large and complex applications. Ex-
amples are Java Virtual Machines (JVMs), enterprise sys-
tems and Corba-based platforms. During application test-
ing, large part of the testing process is devoted to investigate
the behavior of underlying platforms when long and stress-
ful executions occur (these test cases are called workloads).
When a problem is detected, software engineers examine
log files to gain insights about failure manifestations and to
discover potential root causes. Although several research
efforts have been performed in the design and the imple-
mentation of (semi)automatic tools for log file analysis, such
as [9] and [10], the problem of automatically analyzing huge
log files has been only partially solved [1, 13, 4]. De-facto,
it is extremely hard to understand failure manifestations,
errors propagation and isolation, and to discover potential
root causes.

In this paper, we propose a technique to collect and ana-
lyze log files to obtain important information about failure
manifestations. The technique works in three steps:

1. during workload executions, the system under test is
monitored;

2. logs corresponding to workloads terminated correctly
are used to derive a model of the behavior expected
from the target system;



3. logs corresponding to either workloads terminated un-
successfully or failures observed in the field are com-
pared with the reference model to identify anomalous
event sequences.

The empirical experience presented in this paper focuses
on the Sun Java Virtual Machine (JVM), which is widely
used in the development of large and complex applications.
In order to apply such technique to JVM, we used JVM-
Mon [14], which is a tool for on-line monitoring and analysis
of JVM, and kBehavior [12], which is an inference engine
that generates general and compact Finite State Automata
(FSA) from execution traces. Our driving idea is to trace
the events raised by internal components of the JVM and, in
turn, to provide the logged data to the kBehavior inference
engine. Exploiting the information about the events inter-
nal to the JVM and deriving a general behavioral model,
we can point out anomalous interactions within the JVM
by comparing the reference models with the data logged in
faulty executions. Information about anomalous sequences
support testers in the identification of failure causes. In
this paper, we considered a 2 hours workload to derive the
reference models and we investigated causes of 8 publicly
documented bugs of the JVM.

The paper is organized as follows. Section 2 presents
the overall approach. Section 3 provides insights about the
JVMMon monitoring infrastructure that has been used in
our experiments. Sections 4 indicates how the collected data
is pre-processed before being provided to the inference en-
gine. Section 5 presents the kBehavior inference engine. Sec-
tion 6 illustrates failure analysis. Section 7 describes the ap-
plication of our technology to the JVM. Section 8 describes
related work. Finally, Section 9 summarizes contributions
of this paper and outlines future work.

2. INTEGRATION OF WORKLOAD EXE-
CUTION AND DYNAMIC ANALYSIS

The execution of ad-hoc workloads is often used to asses
reliability of execution environments and software platforms
in particular operative conditions. For instance, if testers
need to investigate the behavior of a JVM when running
applications that consume large amount of memory, a work-
load that continuously creates, and sometime destroys, ob-
jects can be executed. Monitoring the underlying platform
helps to reveal problems (if any) and their causes, but also
produces huge logs that are difficult to be manually ana-
lyzed. The proposed technique automatically analyzes the
information extracted during workload execution by com-
bining pre-processing, to reduce noise and skim irrelevant
information, and model inference, to automatically gener-
ate general and compact models of the expected behavior.
When the system under test fails, the inferred models can
identify anomalous sequences that are inspected by testers
to identify the fault that has been responsible for the expe-
rienced failure.

Figure 1 shows our approach. In the first step, we record
logs while the platform under test is executed with several
workloads. Workloads usually focus on specific issues, e.g.,
they stress garbage collection or concurrency. Logs obtained
in this step represent the behavior observed when the sys-
tem under test correctly manages the aspects stressed by
workloads.

In the second step, we produce models that summarize
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Figure 1: The three steps approach to log, process
and analyze data

and generalize the behavior traced into log files. To this end,
several intermediate phases must be completed. Firstly, we
produce multiple log files, smaller than the original one, that
include only events related to specific issues. For instance,
the initial log file can split into two smaller log files, one with
events related to memory management and one with events
related to concurrency. The generation of issue-specific log
files focuses model inference and analysis on specific prob-
lems. Typical monitoring frameworks annotate events with
additional information. For example, JVMMon annotates
the thread start event with the id of the thread that is
started. Including explicit values, such as numbers and
strings, in the model can over-restrict the inference, thus
resulting in several false positives at the analysis phase. For
instance, invoking a wait on a monitor with a hashcode that
has never been observed before can be erroneously recog-
nized as an anomalous event. To avoid these problems, but
still incorporating data-flow information in the model, we
refine the log files by replacing explicit values with symbolic
values that represent data-flow information. The obtained
log files are finally used to generate compact and general
models that represent the set of observed event sequences
with FSAs.

In the third step, if a target software platform fails, testers
can investigate failure causes supported by models generated
during testing. In particular, the events observed in the
failed execution are compared with inferred models. Anom-
alous sequences are reported to testers, who inspect both
the application and the traces to identify the exact cause of
the problem. The technique has the benefit to immediately
focus the attention of testers to few problematic sequences
of events. Early experiments show that false positives are
limited and anomalous sequences are extremely useful to
quickly identify causes of problems.

3. MONITORING
In this Section we present the architecture of the JVM,

which is the software platform that has been considered in
this paper, and the JVMMon tool, which is the monitoring
framework that has been used to extract events from the
JVM.
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Figure 2: Architecture of the Java Virtual Machine

Java Virtual Machine
The JVM is a virtual machine belonging to the High Level
Language VMs (HLL-VM) category [17]. An HLL-VM is a
VM which i) adds support for cross-platform programming,
ii) provides a virtual Instruction Set Architecture (ISA), and
iii) abstracts the Application Binary Interface (ABI) and
the ISA exposed by the underlying Operating System and
Hardware, thus making applications written for the virtual
machine platform-independent.

The virtual ISA of the JVM is a set of instructions called
bytecode; programs written in Java are compiled into byte-
code. The JVM is composed of four main components, de-
picted in Figure 2:

• Execution Unit - It dispatches and executes opera-
tions, emulating a CPU. An operation could be i) a
translated bytecode instruction, ii) a compiled byte-
code instruction, or iii) a native instruction. The In-
terpreter translates single bytecode instructions into
native machine code whereas the Just-In-Time(JIT)
compiler translates entire methods into native code
doing some optimizations. Instead, native instructions
need no translation since they are native machine in-
structions. They are dynamically loaded, linked and
executed by the Java Native Interface (JNI). More-
over, the Exception Handler handles exceptions thrown
by both Java Applications and the Virtual Machine.
Exceptions thrown by applications are defined checked,
while exceptions thrown by the VM are defined un-
checked and are related to errors originated into the
virtual machine.

• OS Virtualization Layer Unit - It provides a plat-
form-independent abstraction of the host system’s ABI.
This abstraction layer provides a common gateway for
all JVM components to access host system resources.

• Memory Management Unit - It handles both the
JVM heap area and the stack area, managing object
allocation, reference handling, object finalization and

garbage collection. Moreover, Fast Allocation Mecha-
nism are provided to allocate temporary memory areas
for internal VM operations.

• System Services Unit - Components included in this
unit offer services to Java Applications. The Thread
Management component handles thread creation and
termination and it implements mechanisms for thread
synchronization as specified by the Java Virtual Ma-
chine Specification [11] and the Java Language Speci-
fication [8]. The Class Loader is in charge of dynam-
ically loading and verifying Java classfiles. Timers
component provides functionalities to access system
timers through the JVM. Finally, the Management and
Debugging component includes functionalities for de-
bugging Java applications and for the management of
the JVM.

JVMMon
JVMMon is JVM monitoring infrastructures which has been
presented in [14]. Unlike other systems conceived to collect
failure data, JVMMon has been designed to intercept events
related to state changes of the JVM, thus collecting the evo-
lution of JVM state along with errors and failures. JVM-
Mon allows on-line analysis of JVM state evolution through
a three-step process: i) a monitoring agent, developed us-
ing the JVM Tool Interface (JVMTI) (which stems from
the Java Platform Profiling Architecture [7]) and ByteCode
Instrumentation (BCI), intercepts events generated inside
the JVM and collects data about its state; ii) a monitoring
daemon processes these information and updates the state
of the virtual machine; iii) a data collector stores collected
data in a database, allowing on-line and off-line analysis.
Since JVMMon is built upon JVMTI, it is applicable to all
JSR-163 compliant Virtual Machines. Interested readers can
find further details in [14]

4. PRE PROCESSING
In general, pre-processing is based on two phases: feature

selection and data transformation [5]. The former removes
noisy and irrelevant data from the trace files that are used to
infer behavioral models. The latter suitably transforms the
data values that are specific to a given execution and can-
not be immediately compared with values traced in different
executions, e.g., timestamps and hashcodes.

Feature selection
Feature selection filters events and attributes that are use-
ful, and thus should be considered in model generation, from
the ones that are of little use, and thus should not be consid-
ered in model generation. Since the complete set of events
recorded by JVMMon and the type of investigated problems
are known a-priori, we associate to each class of problems its
sets of relevant events. When a model is inferred to identify
a particular problem type, e.g., concurrency issues, all irrel-
evant events are removed from log files before starting the
inference process, e.g., only information related to threads
are preserved in the input file.

In this paper, we focus on two classes of problems: con-
currency and memory handling problems. Events selected
as relevant for concurrency problems are thread start and
end, wait for a lock and lock acquisition, thread disabled and



enabled, and exceptions related to concurrency. Events se-
lected as relevant for memory handling problems are garbage
collector start and stop and object creation. More events can
be considered for both classes of problems, however JVM-
Mon does not yet support complete traceability.

Data transformation
Data transformation consists of filtering, normalizing and
aggregating attribute values to increase quality of the out-
puts provided by inference algorithms. The choice of the
transformation criterion depends from the nature of the at-
tributes. Table 1 shows the JVM events and the parameters
selected for our experiments. Most of parameter values are
specific to the single executions where they are observed and
are not suitable to be directly included into (general) behav-
ioral models. For instance, the hashcode of a monitor is not
usually preserved between different executions and it makes
little sense to include it into an inferred model.

Table 1: Events recorded by JVMMon.
Kind of issue Event Name Parameters
Concurrency Thread start tid
Concurrency Thread stop tid
Concurrency Thread waiting tid,mhash
Concurrency Thread notified tid,mhash
Concurrency Thread waiting for a lock tid,mhash
Concurrency Thread acquiring a lock tid,mhash
Concurrency Concurrency Exception class name
Memory Garbage collector start
Memory Garbage collector stop

Legend: tid indicates the thread id, mhash indicates thehash-

code of the monitor.

To cope with attribute values, we defined three feature
extraction functions that abstract from concrete values and
use symbols (in our case numbers) to specify data-flow infor-
mation, i.e., information about the values that are generated
and used in different events. In particular, the feature ex-
traction functions rewrite each sequence of parameter values
according to specific strategies. Table 2 shows how the three
rewriting strategies (GO, RI and RA) transform a same in-
put (original data).

Global ordering (GO) assigns a different number (it starts
with 0 and proceeds incrementally) to each different con-
crete value, and always uses the same number when a same
concrete value is used. This function is useful to identify
patterns of reused values. Figure 3 column GO shows an
application of this rewriting strategy to an example trace.
Since values A, B, A, A have been rewritten as 0, 1, 0, 0, if in
a different trace starting with the same pattern is observed,
e.g., F, P, F, F, the rewriting strategy would anyway replace
it with 0, 1, 0, 0. For instance, thread names can change
in different executions, but global ordering can reveal re-
current pattern of thread waited and notified independently
from their name.

Relative to instantiation (RI) replaces each attribute value
with a number that indicates how many attribute values
never observed before have been detected from the first ap-
pearance of value to be rewritten. This rewriting strategy
is extremely useful to capture pattern that consists of at-
tribute values that are generated, used and then discarded.
Figure 3 column RI shows an application of this rewriting
strategy to an example trace. In this example, RI captures

Table 2: Results obtained with data transformation
techniques.

Orig. data GO RI RA
Params Params Params Params

E1 A T1 21 0 0 0 0 0 0 0 0 0
E1 B T2 23 1 1 1 0 0 0 0 0 0
E1 A T1 23 0 0 1 2 2 1 2 2 1
E4 A 0 2 1
E5 T1 21 0 0 2 2 1 3
E3 C T2 21 2 1 0 0 1 2 0 3 1
E3 C T2 27 2 1 2 1 1 0 1 1 0

E2 Y T0 39 3 2 3 0 0 0 0 0 0
E2 Y T0 42 3 2 4 1 1 0 1 1 0

E1 A T3 39 0 3 3 4 0 2 5 0 2
E1 B T4 42 1 4 4 5 0 2 8 0 2
E1 A T3 42 0 3 4 4 2 1 2 2 1
E4 A 0 4 1
E6 T1 0 5 8
E6 T2 1 4 7
E5 T3 39 3 3 2 2 3 3
E3 C T4 39 2 4 3 2 1 2 7 5 1
E3 C T4 29 2 4 5 2 1 0 1 1 0

E2 Z T0 21 4 5 0 0 3 6 0 9 10
E2 Z T0 23 4 5 1 1 3 5 1 1 13

E1 A T5 21 0 6 0 5 0 6 5 0 2
E1 B T6 23 1 7 1 4 0 5 8 0 2
E1 A T5 23 0 6 1 5 2 5 2 2 1
E4 A 0 5 1
E6 T1 0 7 10
E6 T2 1 6 10
E6 T3 3 3 10
E6 T4 4 4 9
E5 T5 21 6 0 2 6 5 3
E3 C T6 21 2 7 0 3 1 6 7 7 1
E3 C T6 31 2 7 6 3 1 4 1 1 0

Legend

Orig. data is the data recorded into log files, GO indicates the

global ordering data transformation strategy, RI indicates the

relative to initialization data transformation strategy and RA

indicates the relative to access data transformation strategy.

a pattern of two values, represented as 0, 0, that are sequen-
tially generated and then used according to pattern 2, 2, 1,
1. RI is robust with respect to noisy values that can appear
in the middle of the pattern, in fact the sequences are iden-
tified even if additional values and events are observed in
the middle.

Relative to access (RA) replaces each attribute value with
a number that indicates the number of values that have been
observed from its last occurrence. This strategy is useful to
identify recurrent definitions and uses of attribute values,
independently from their concrete values. Figure 3 column
RA shows an application of this rewriting strategy to an
example trace. In this example RA captures that pairs of



Original trace GO RI RA
START T#0 S 0 S 0 S 0
WAIT T#0 10233621 w0 1 w1 0 w1 0
START T#1 S 1 S 0 S 0
WAIT T#1 30008954 w1 1 w1 0 w1 0
START T#2 S 2 S 0 S 0
WAIT T#2 3823508 w2 2 w1 0 w1 0
START T#4 S 3 S 0 S 0
WAIT T#4 4973260 w3 3 w1 0 w1 0
...
WAITED T#6 29919449 WD6 449 WD26 320 WD45 45
WAIT T#6 17691874 w6 574 w26 0 w1 0
WAITED T#6 17691874 WD574 WD26 1 WD1 1
WAIT T#6 29919449 w6 449 w26 321 w1 3
WAIT T#9 4205299 w9 99 w23 318 w5 5
WAITED T#10 15202027 WD10 27 WD10 296 WD49 49
WAITED T#15 10656878 WD15 78 WD6 292 WD45 45
WAIT T#15 21357990 w15 90 w6 0 w1 0
...
WAITED T#19 23378358 WD19 58 WD1 289 WD38 38
WAIT T#19 27649674 w19 74 w1 0 w1 0
WAITED T#19 27649674 WD19 74 WD1 1 WD1 1
WAIT T#19 23378358 w19 58 w1 290 w1 3
WAIT T#18 14098944 w18 44 w2 293 w5 5
WAITED T#12 17365216 WD12 216 WD8 298 WD44 44
WAITED T#7 9472129 WD7 29 WD25 324 WD39 39
WAIT T#7 6942026 w7 626 w25 0 w1 0
WAITED T#7 6942026 WD7 626 WD25 1 WD1 1

Figure 3: Excerpt of a trace taken from our experi-
ments.

variables, e.g., 39, 42 and 21, 23, are used according to a
recurrent pattern.

These strategies have been applied to traces extracted
from JVM executions. An excerpt of a log file containing
events related to concurrency is shown in Figure 3. The
first column indicates the original set of events and related
attributes, while the other columns show the string that is
used to replace attribute values (values of single attributes
are separated by _).

GO provided the worst results. GO is useful when re-
current event sequences are highly deterministic, otherwise
observation of additional events modifies the values used to
rewrite attributes, causing many potential matching labels
to not match anymore. Unfortunately, deterministic behav-
iors seldom occurs in practice. RI captured several inter-
esting patterns, notwithstanding size and complexity of the
log file. For instance, in the early portion of the log, it dis-
covered a repeated sequence of threads that start and then
wait. Finally, RA captured both the initial pattern and
several recurring patterns that indicate threads that are en-
abled, disabled, re-enabled, disabled again (on a different
monitor), and finally disabled.

In this empirical experience, RA provided the best re-
sults. However, both RI and RA appear to be promising
rewriting strategies. The former because of its robustness
to noisy events and the latter because of its high effective-
ness in discovering recurring patterns. Finally, GO appears
to be useful with simple examples, but extremely limited
with realistic log files.

5. MODEL GENERATION
In this phase, the kBehavior inference engine [12] incre-

mentally analyzes the pre-processed log files and generates
a FSA that both summarizes and generalizes the observed
event sequences. At each step, kBehavior reads a trace and
updates the current FSA according to the content of the
trace. The updated FSA guarantees to generate all traces

that have been analyzed. Since kBehavior is incremental, as
well as the pre-processing techniques, models can be com-
pletely produced at run-time without recording traces, re-
sulting in an enormous reduction of occupied disk space.

input trace: S0, WD_11_11, w_1_0, WD_1_1, w_1_3,

w_5_5, WD_15_15, WD_13_13, w_1_0, w_3_0, S0

Figure 4: An example FSA extended with a new
trace. The state with the triangle is the initial state.
The state with the double border is the final state.
The dotted arrows and state q8 are added as a con-
sequence of the extension step.

The algorithm used by kBehavior to extend a current
FSA given a new trace is based on the identification of sub-
machines in the current FSA that generates sub-sequences in
the input trace. Once these relations are identified, the por-
tions of the input trace that do not correspond to any sub-
machine are used to create new branches in the current FSA
so that the updated FSA generates both all event sequences
generated by the previous FSA and the event sequences rep-
resented in the input trace. For example, Figure 4. shows
how a FSA can be extended providing a new input string
to kBehavior. In this simple example, the portion of the
input string that does not correspond to any submachine
lead to addition of a new branch to the current FSA. How-
ever, in the general case, a FSA is extended by gluing FSAs
obtained from the recursive execution of kBehavior on the
portions of the input string that cannot be associated with
sub-machines. Technical details can be found in [12].

6. FAILURE ANALYSIS
In the failure analysis phase, we execute the target appli-

cation either in the new field or with new workflows and,
when a failure is observed, we compare the behavior de-
scribed by inferred models with traces recorded in this phase.
The goal of the comparison is to automatically identify anom-
alous patterns, i.e., event sequences that differ from the ones
observed in previous executions. Anomalous patterns are
likely to indicate the source and the cause of the failure, and
can be efficiently inspected by testers independently from
the original size of the log file.

A straightforward way to compare a trace and a model



is to check if the model generates the trace. If the trace
is generated by the model, there are no anomalies. If the
trace is generated only up to a given point, namely p, there
is an anomaly. The tester can thus inspect the set of events
surrounding p and the sub-machine around the state that
has been reached by generating all symbols of the trace up
to position p. Unfortunately, this strategy has little effec-
tiveness when multiple anomalies or noisy data are present
in a single trace. If a trace includes multiple anomalous
patterns, the first anomaly in the trace hides all successive
anomalies. Similarly, if the early portion of a trace includes
unexpected but legal event sequences, the anomaly associ-
ated with the noisy data hides any successive anomaly. This
happen because when an anomaly is detected, the remain-
ing portion of the trace cannot be matched anymore and
the checking is interrupted. This strategy is extremely in-
effective when applications are executed for long time, thus
traces are extremely long and several interesting information
can be located in several points of a same trace, such as the
case of workflow executions.

trace to be matched: S0, w_1_1, w_1_0, WD_1_1, WD_1_1,

WD_1_1, w_1_5, w_7_5, WD_16_16, WD_17_17, w_1_0,

w_3_0, S0

Figure 5: An example of a matching between a FSA
and a trace. The gray areas indicate the parts that
should be added as a consequence of an extension
step. In this case, they represent the anomalies that
are presented to the user.

To avoid loss of important information, we implemented
the matching process between traces and FSAs on top of the
kBehavior extension mechanism, which is extremely useful
in pairing event sequences and sub-machines independently
from their positions. For instance, a sub-sequence that is
located at the beginning of the trace can be associated with
any sub-machine of the FSA. Thus, we use the trace to be
matched to extend the current model, and we consider all
the extensions points as the set of anomalous events that
must be inspected by testers. In this way, presence of noisy

data or multiple anomalies do not hinder effectiveness of
the matching process because all anomalous sequences are
identified. Figure 5 shows an example of a matching between
a trace and a FSA.

7. PRELIMINARY EXPERIMENTS
We validated the technique proposed in this paper by eval-

uating its capability to detect common problems in JVM,
which is a widely adopted software platform. In our valida-
tion, we considered the two classes of faults that have been
identified as the major causes of failures in the JVM [3]:
problems related to memory handling and problems related
to concurrency. To reproduce these problems, we extracted
eight bug descriptions and the corresponding sample pro-
grams that exhibit these faulty behaviors from Sun [18] and
Jikes [6] online repositories. Three bugs are related to mem-
ory handling issues and five bugs are related to concurrency
issues. The analyzed bugs are summarized in Table 3.

In this empirical experience, we executed the JVM with
a workload and we collected data (monitoring), then we de-
rived models of the observed behavior (model inference) and
finally we used these models to identify problem causes on
the sample programs (failure analysis).

To stress both memory handling and concurrency, we ex-
ecuted for 2 hours the James mail server [2], which is known
to extensively use both aspects. The underlying JVM has
been monitored with JVMMon. The collected data has
been pre-processed and analyzed to produce general mod-
els for both memory handling and concurrency aspects. Fi-
nally, the sample applications have been executed with the
same JVM and the collected data has been matched with
the inferred models. In all cases, our technique detected
anomalous event sequences. In three of the experiments,
the anomalous event sequences directly pointed to the cause
of the failure (bugs 4697804, 5073365 and 6450205), while
in five of the experiments the technique indicated unex-
pected event sequences, but they were not clearly related to
the failure (bugs 4916841, 4485942, 6450200, 6281487 and
5047214).

In most cases, the lack of a clear correlation between the
anomalous sequences and the failure of the application can
be related to the lack of useful events that have not been
logged since the actual prototype implementation of JVM-
Mon does not capture all event types yet. However, for all
five bugs, the feedback provided by our technique has been
useful to track part of the relevant events that incrementally
lead the JVM to failure. In one of the completely successful
experiences, the pattern of anomalous events identified by
our technique interestingly represents a sequence that can be
generalized as representative of an entire class of problems.

To provide an example of the real problems that our tech-
nique can automatically identify, we describe two of the
three bugs that have been completely captured by our tech-
nique.

Bug 4697804
Bug 4697804 reproduces a fault leading the JVM to crash

because of an out of memory error. Such error is related to
a faulty behavior of the garbage collector, that, after several
cycles, is not able to free memory anymore. In particular,
the garbage collector needs to allocate data structures of
fixed size and data structures requiring an amount of mem-
ory proportional to the amount of live data in the heap. The
faulty behavior can be observed when resources available to



Table 3: Description of the faults analyzed.
Memory management faults
Fault ID Description

Bug 4697804 Wrong behavior of the Garbage Collec-
tor.

Bug 4485942
Cleared soft reference not added to ref-
erence queue if get() is called.

Bug 4916841 JDialogs not deleted in certain condi-
tions.

Thread management/concurrency faults
Fault ID Description

Bug 5073365
Unexpected NullPointerException
calling setPriority() on terminated
threads.

Bug 6450205
Anomalous behavior of ThradPoolEx-
ecutor class managing killed threads.

Bug 6450200
Requests of pool size reduction not per-
formed by ThradPoolExecutor.

Bug 6281487 Starvation of writer thread when using
ReentrantReadWriteLock.

Bug 5047214
Anomalous InterruptedException
thrown by Thread.interrupt().

JVM diminish, and the garbage collector attempts to ex-
pand the heap but cannot successfully obtain space for data
structures it needs. If this happens, the JVM fails to throw
an OutOfMemory exception because no further Java code
can be run, thus it prints an out of memory error and exits.

Matching the log file with our inferred models lead to the
identification of six anomalous sequences. Three of them
were related to new classes that have been loaded by the
JVM. However, these anomalies were clearly dependent from
the new application that has been considered and have been
immediately discarded. Two anomalies indicated a new class
loading schema for the class Cleaner, which is an important
information related to the failure. The most important in-
formation is the last anomaly that indicated an unexpected
sequence of Garbage Collector Start-Garbage Collector Fin-
ish that indicates the continuous attempts of freeing mem-
ory and expanding the heap. It is worth to point out that
this kind of violation can be considered as representative of
a wider class of faults able of leading the garbage collector
to such anomalous behavior.

Bug6450205
Bug 6450205 reproduces a thread management problem

of the ThreadPoolExecutor class in J2SE 1.5.0, which man-
ages the execution of submitted tasks using pooled threads.
When a new task is submitted, it is normally assigned to one
of the idling thread in the thread pool. If there are fewer
running threads than corePoolSize parameter or the queue
is full, a new thread is created to handle the request. If a
thread is idling for more than KeepAliveTime parameter, it
is terminated. The correct behavior of this class prescribes
that the number of threads must never be less than core-
PoolSize parameter value. Code reproducing bug 6450205
violates this condition by enabling the unexpected termina-
tion of all threads.

Our tool analyzed the log file corresponding extracted
from the faulty application and identified an anomalous event

sequence that indicates that all previously created threads
terminated in an unexpected way. This fault causes loss of
performance because when all threads have been terminated
new tasks have to wait for a creation of a new thread before
they can be executed. This problem is hard to diagnose, be-
cause it causes performance degradation, and a failure can
be observed only when a significantly amount of tasks are
assigned to thread pool. Information provided by our tool
pointed out to event sequences representing this misbehav-
ior.

8. RELATED WORK
Log file analysis is commonly used to investigate causes of

failures that have been experienced either in-the-field or dur-
ing testing. These techniques may differ for the kind of data
that is analyzed, the purpose of the analysis and the results
that can be produced. We can classify log file analysis tech-
niques in two main groups: techniques that infer models of
faulty behaviors to predict and identify failures [10, 15], and
techniques that use user-specified models of the expected be-
havior to analyze logs and detect anomalous executions [1].

Techniques in the former group analyze traces to infer
models (e.g. decision trees or data clusters) that represent
observed faulty behaviors. These models can be used to
predict further occurrences of a same problem. Traces can
be either extracted by monitoring faulty applications [10] or
injecting faults into correct systems [15]. The latter group
of techniques verify if traces satisfy user-supplied models of
the expected behavior, e.g., FSA, to identify possible prob-
lems [1].

The technique presented in this paper avoids the short-
coming of requiring the existence of user-specified models
and complements techniques that infer faulty behaviors [10,
15]. Inferring faulty behaviors may be useful when large
amount of data about faulty executions is available. In this
case, inference techniques can accurately model faulty be-
haviors, thus being able to precisely predict future occur-
rences of a same problem. Moreover, observing new legal
behaviors do not generate false positive on techniques based
on models of faulty behaviors, while can induce false posi-
tives in techniques that model correct behaviors. However,
the technique presented in this paper is useful in the many
cases in which little information about faulty executions is
available.

Finally, clustering and machine learning algorithms have
been extensively used to reduce the size of log files and to im-
prove their quality [16]. These approaches are useful in many
contexts, but are not able to capture the recurrent patterns
that we identify thanks to data transformation strategies.
In particular, the experience presented in this paper shows
that data transformation strategies revealed recurrent pat-
terns - which would not be visible otherwise - that can be
suitably processed by kBehavior.

9. CONCLUSIONS
Log data are extensively collected in long running appli-

cations, such as software platforms and middleware, both
during testing and during field execution. These data can
be extremely useful to identify failure causes. Unfortunately,
these logs can reach huge sizes and their manual analysis can
be extremely difficult and expensive. If a formal specifica-
tion of the expected behavior is available, log files can be



automatically analyzed [1]. Unfortunately, formal specifica-
tions are expensive to be produced and are seldom available.
If repositories of faulty executions are available, it is possi-
ble to infer models of these problems and then match them
with the logged data [10, 15]. However, repositories of faulty
executions are not commonly available for all applications.

In this paper, we presented a technique based on the infer-
ence of models of expected behavior, which can be easily de-
rived during testing (when workloads are executed). These
models are used to identify anomalous event sequences in log
files extracted during faulty executions. Models are gener-
ated from set of events specific for a given class of problems,
i.e., log files are partitioned into multiple issue-specific log
files. Moreover, our technique suitably support the use of at-
tribute values that can be associated with recorded events.

We applied the technique to the JVM, which is one of the
most used virtual execution environment. Preliminary ex-
periments were conducted with 8 known bugs of the JVM.
Results show that failure causes can be automatically iden-
tified for 3 of the 8 bugs. Interesting unexpected event se-
quences have been detected in the 5 remaining classes of
bugs, but they were not completely correlated to the failure
causes. This limitation is mainly due to the partial moni-
toring that is currently performed by JVMMon.

Future work is about increasing the accuracy of the moni-
toring provided by JVMMon, developing automated analysis
techniques that correlate the unexpected event sequences to
the root cause of the problem, defining techniques for auto-
matically removing false positives and extending the empir-
ical investigation to a larger set of platforms.
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