
On the impact of debugging on software
reliability growth analysis: a case study

Marcello Cinque1, Claudio Gaiani2, Daniele De Stradis2,
Antonio Pecchia1, Roberto Pietrantuono1, and Stefano Russo1

1 1Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,
Universita’ degli Studi di Napoli Federico II,

Via Claudio 21, 80125, Naples, Italy.
{marcello.cinque, antonio.pecchia, roberto.pietrantuono,

stefano.russo}@unina.it
2 Assioma.Net, Via G. Spano, 6/11 - 10134 Torino

claudio.gaiani@assioma.net

Abstract. Reliability is one of the most relevant software quality at-
tributes. A common way to analyze software reliability is the use of soft-
ware reliability growth models (SRGM). There is a variety of SRGMs
that have been proposed across years, which aim at providing estimates
of reliability at a given time, as well as predictions of reliability that
will be achieved with the advancement of testing. One of the most im-
pacting assumptions of SRGMs is the immediate debugging of detected
faults. But in reality, the debugging process is increasingly complex in
real project settings, and its impact cannot be neglected at all. This
paper reports the results of a case-study in which we analyze the debug-
ging process of a Customer Relationship Management (CRM) system,
and study its impact on SRGM-based reliability estimation and predic-
tion.

Keywords: Software reliability, Software reliability growth model, SRGM, re-
liability prediction, reliability estimation, debug, repair, fault removal, fix

1 Introduction

Software reliability estimation and prediction play a key role for project sched-
ule, cost, and quality control. A substantial field of research, developed over the
past three decades, is about the usage of software reliability growth mod-
els (SRGMs). SRGMs is a wide class of models conceived to fit inter-failure
times from test data, in order to estimate the next time to failure based on the
observed trend. Information provided by SRGMs can be used to: i) estimate
software reliability at a given time, as well as the number of residual defects in
the software, ii) predict the expected reliability given a budget (e.g., in terms
of testing time or testing effort), iii) schedule the optimal time to release at a
given reliability level, iv) compare actual and estimated release time in order

to identify delays and their causes. SGRMs make a set of common assump-
tions to meet the mentioned objectives. Most usual assumptions are immediate
debugging, perfect debugging, dependent inter-failure times, equal probability
to find a failure across time units [1]. In the literature, a greater attention is
being paid to the assumptions about debugging, since their impact is more rel-
evant than the others in real projects. While several works introduce modeling
approaches to overcome these assumptions [2], [4], [17], several empirical stud-
ies make it evident that debugging is a complex process to model in real-world
projects [19], [20], [21]. There are many factors impacting the computation of the
actual repair time, and the regularity of the debugging process, such as the type
of defect, its priority/severity, and human factors (e.g., skills and attitude of the
developer(s) involved in the fixing process and clearness of the bug description).

In these settings, assumptions on debugging are easily violated as complex-
ity and size of a software project increase. Average times to repair a defect are
very unlikely to be immediate, as repairs are unlikely to be perfect (for example,
debug is likely to introduce regression bugs especially in continuous develop-
ment scenarios and large systems). The debugging process might even become a
bottleneck for project releases, and its impact cannot be neglected at all.

The impact of an irregular and variable debugging process, besides hamper-
ing a correct modeling, influences the assessment of release quality estimation
and on SRGM-based predictions. These can determine errors in taking decisions
on when to stop testing or on what is the expected reliability and/or residual
defectiveness, typical objectives of SRGMs.

In this paper we analyze 3,392 real-world issues of an industrial case-study3

collected over a time period of two years. On these data, we first i) use SRGMs
to characterize the software reliability growth under the assumption of imme-
diate debugging actions; ii) then, we characterize out the debugging process;
iii) finally, we evaluate the impact of the debugging time evolution on reliability
estimation and prediction, and thus on release scheduling performed by SRGMs.
The study shows that:

1. Collected issues are amenable to be modeled by SRGMs; we applied a set of
7 models to fit data and found the truncated logistic and truncated normal
SRGM being the best fitting models. Hence, despite the real data do not ful-
fill classical SRGM assumptions, such as dependent inter-failure times and
equal failure detection probability, the models have shown to be robust. How-
ever, since the models are built on opened issues, nothing can be said about
the non-immediate debugging assumption Therefore, such models are useful
for SRGMs-based predictions, only provided that the underlying debugging
time is negligible.

2. The observed debugging process has a non-negligible time, as expected,
equals to 12.8 days on average. The statistical characterization highlights
a good quality of the process. Issues are closed regularly and in a reasonable
time and, as desirable, severe issues are solved faster than minor ones. It

3 The actual name of the system in not disclosed here due to confidentiality reasons

also emerged that the queuing time of issues is not negligible (about a third
of the overall fixing time), hence it has to be considered to avoid inaccurate
results.

3. The non-immediate debugging has an impact on both reliability estimation
and prediction, and on the optimal release schedule, in a different way: in
both cases the impact is dependent on the debugging process quality in
terms of debugging time and debugging time variation, but while the impact
on reliability estimation is quite insensitive with respect to the testing time
dimension, the release schedule prediction error can greatly variate according
to the testing time. As testing times proceeds, the optimal release schedule
prediction can be affected considerably by the debugging time.

The paper is organized as follows. Section 2 presents related work in the
area of SRGMs, while Section 3 introduces available dataset. Section 2 SRGMs
that have been used to model available data. Section 5 discusses the debugging
process and the impact of debugging on reliability and best schedule estimation,
and Section 6 concludes the work.

2 Related Work

Reliability analysis can be conducted by modeling approaches, by measurements,
and by hybrid approaches [5] [6] [7] [23] [24]. Reliability is very tightly related
to testing, since the latter is supposed to grow as more testing time is devoted
to the software [8]. In the testing phase, one of the most successful approaches
for reliability analysis is SRG modeling. There are many SRGMs available in
the literature. A very successful one was proposed by Goel and Okumoto in
1979 [9], describing the failing process by an exponential mvf distribution. Other
common models were proposed later, such as: the generalized version of the
exponential model, which uses the Weibull distribution [13]; the S-Shaped model
[10], conceived to capture the possible increasing/decreasing behaviour of the
failure rate during the testing process; the Gokhale and Trivedi log-logistic model
[11], that also follows an increasing/decreasing pattern describing the initial
phase of testing as characterized by a slow initial learning phase; more recent
ones, as the models based on the Gompertz SRGM, proposed by Ohishi et al. [15],
derived from the statistical theory of extreme-value. Many other models have
been proposed in the literature, and several tools have been developed to deal
with parametrization and fitting of models (such as SMERFS, SoRel, PISRAT,
and CASRE). All these models are based on a set of common assumptions, the
most impacting ones being the immediate and perfect debugging.

In the past, some research has defined SRGMs accounting for the perfect de-
bugging assumption, namely by including the imperfect debugging in the model.
For instance, there is a class of SRGMs known as infinite-failure models, which,
contrarily to the finite-failure models, assume that an infinite number of faults
would be detected in infinite testing time [2]. These are meant to capture de-
bugging where faults may be reintroduced. An example is the Musa-Okumoto

logarithmic Poisson execution time model [3], the more recent failure-size pro-
portional model proposed in [4], as well as the model by Jain et al. [16].

As for the immediate repair assumption, some researchers modeled the debug-
ging process through queuing models, thus considering also the non-immediate
debugging time. For instance, the work in [17] uses a queue model for the correc-
tion process, while authors in [18] discuss both finite and infinite server queuing
models for reliability measurement through SRGMs. On one side there are these
models that can take into account the debugging times from a theoretical point
of view; on the other side, there are empirical studies that analyze the character-
istics of bug fixing process in real projects, which make it evident that debugging
is a complex process to model. Thus, parametrizing models can be a non-trivial
task. There are several factors that impact the computation of the actual de-
bugging time. For instance, the study in [19] reports an analysis on 1500 defects
revealed in 5 years on an IBM middleware, classifying defects per topic and de-
veloper expertise, showing that the time to repair is impacted from these two
factors. Zhang et al. [20] found some factors influencing the time lag between
the defect assignment to a developer and the actual starting of the repair action,
through a case-study on 3 open source software. They found that the assigned
severity, the bug description, and the number of methods and changes in the
code as impacting factors. The work in [21] reports a study specifically focused
on finding bottlenecks in the issue management process, through a case-study of
the Apache web-server and the Firefox browser. The main cause of inefficiency is
the time lag in which the correction is verified after the repairing to confirm the
correct resolution. These are all factors that cause irregularities in the debugging
process, and can make the impact of debugging on reliability estimation/predic-
tion more variable and difficult to control. In this work, such impact is studied
with reference to one specific real-world case-study.

3 Data Source

The target system is a Customer Relationship Management (CRM) software
for a multinational company operating in the healthcare sector. The system
follows a classical three-layer architecture, with a Frontend, a Backend, and a
Database, glued together with an Enterprise Application Integration (EAI) layer.
The system provides classical CRM functionalities, such as, sales management,
user profiles, agenda, contacts, inventory, procurement of goods, and various
reporting tools. Data used in this study are issues collected from the tracker of
the target system. In particular, we use data extracted from 3392 issues collected
for 30 months, ranging from September 2012 to January 2014. For every issue,
several attributes are available, such as:

– Status: the working status of the issue; the following statuses are considered
(detailed in section 5): new, published, in study, launched, completed, tested,
delivered, suspended, and closed;

– Timestamps: the dates of every status transition are tracked; the most im-
portant timestamps are the ones related to the new status (when an issue

is opened) and the closed status (when an issue is solved); the timestamps
related to intermediate statuses are also useful to analyze the phases of the
workflow, such as, how much time an issue is queued waiting to be fixed
(e.g., from the new to the in study status) or how much time is devoted to
the fixing itself (e.g., from the in study to the closed status);

– Assignees: the number of resources allocated on the issue;
– Affected Version: the version of the system affected by the issue;
– Severity : the severity of the issue, classified in blocking, major and minor;
– Affected Component : the name of the component (and subcomponent) af-

fected by the issue;
– Resolution: final classification of the issue, as fixed, won’t fix, or not a defect.

Data have been polished to remove inconstancies and useless issues (for instance,
newly opened issues that are canceled without being treated). Finally, 3335 issues
have been considered in the study.

4 Reliability analysis through SRGMs

In this Section, we present the analysis conducted of reliability growth vs. testing
time, starting from the collected issues. To this aim, we adopt software reliability
growth models (SRGMs). At this stage, we consider the testing process followed
by an immediate and perfect debugging. Thus, the model is obtained by consid-
ering the opening time of the issues.

We consider the most common class of SRGMs, those describing failure occur-
rence as a non-homogeneous Poisson process (NHPP). These are characterized
by the parameter of the stochastic process, λ(t), indicating the failure inten-
sity, and by the mean value function (mvf), m(t), that is the expectation of the
cumulative number of defects detected at time t [11]: N(t): m(t) = E[N(t)];
dm(t)
dt = λ(t). The different types of SRGMs can be described by their mean

value function, that appears in this form m(t) = aF (t), where a is the expected
number of total defects.

A common belief about SRGMs is that it does not exist one single model
able to work well with any set of data, but the best model needs to be selected
for each specific context. For our purpose, we consider the list reported in Table
1, in order to capture the actual behavior of the testing process. It also reports
the corresponding expression of the mean value function (mvf); the estimated
number of defects is always the mvf ’s first parameter, a.

Therefore, to select the best fitting SRGM, we try to fit the issue data with
every SRGM listed in Table 1 by the EM algorithm [14], and then perform
a goodness of fit (GoF) test by means of the Kolmogorov-Smirnov (KS) test.
Among the SRGMs with KS test satisfied, we use the Akaike Information Cri-
terion (AIC) to select the model, taking the SRGM with the lowest AIC value
(as in [14]).

Figure 1 shows the entire set of the raw data and the model fitting them.
We can note a pronounced saturation around the day 100, causing no model

Table 1: Software Reliability Growth Models

Model m(t) function

Exponential a · (1− e−bt)

S-shaped a · [1− (1 + gt)e−bt]

Weibull a · (1− e−bt
γ
)

Log Logistic a · (λt)κ

1+(λt)κ

Log Normal * a · Φ(log(t)−µσ)

Truncated Logistic a · (1−e−t/κ)

(1+e−(t−λ)/κ)

Truncated Normal * a · Φ((t−µ)/σ)
1−Φ(−µ/σ)

* Φ indicates the normal distribution

satisfying the KS test. For visually capturing the trend, we however reported
the model having the lowest AIC value among the SRGMs, which is a truncated
logistic one. At a closer look, we noticed that the saturation point around day
100 corresponds to the release of the first major version; data from the day 190
on refer to defects belonging to version 2.0 of the software. Thus, we split the
dataset into two groups, according to the release (Figure 5(a)-5(b)).

Fig. 1: Cumulative number of opened issues

Table 2 shows the statistics of the selected models for the two versions. The
estimates in this case are very close to actual data, both satisfying the KS test.
Such models can provide estimates and predictions in terms of: residual issues at
a given time, percentage of detected issues over the total expected ones; failure

(a) Cumulative number of opened issues for version 1

(b) Cumulative number of opened issues for version 2

Fig. 2: Cumulative number of opened issues and fitted SRGMs for both versions

Table 2: SRGM Fitting Results
Version Current # Selected Current Estimate KS Test Exp. # of Defects Scale Shape AIC

of Defects SRGM of # of Defects true at at t =∞ param. param.
1 665 Trunc. 663.93 90% 671.38 13.00 34.78 -1491.77

Normal
2 2647 Trunc. 2640 90% 2808.22 20.95 85.54 -6834.93

Logistic

intensity; reliability. Note that these measures are equivalent to each other, since
the expected cumulative number of issues at time t is the mvf(t) function, whose
first derivative is the failure intensity function λ(t); the latter can be used in the
computation of reliability (e.g., [11], [22]). Considering these measures, testers
can evaluate, for instance, what is the best time to release.

Taking the version 1 model, it is evident how the testing process is getting
saturated, detecting less and less faults as the testing proceeds. The process
detected more than 99% of the total expected defects and will take much time
to detect residual ones: thus this has been a good time to release. Looking at
version 2, testers detected roughly the 94% of total expected defects. If, for
instance, they decide to release with the same quality as version 1, i.e., at 99%,
the model predicts a testing time of 448 days, thus still 448 - 308 = 140 days
of residual testing days. Based on these and similar analyses, tester can take
decisions on when to stop testing.

Such types of analysis have been conducted on the opening time of the issues.
This means that 99% of quality is assumed to be the 99% of the total estimated
issues that have been opened : this is the actual released quality only under the
assumption that the correction of those issues have been done immediately and
perfectly. In fact the actual quality is given by the closed issues, whose fixing
contributes to the actual reliability growth. In the next Section, we first analyze
the debugging process in our case study, and then we remove the immediate de-
bugging assumption in the SRGMs, in order to see what changes in the reliability
analysis.

5 The debugging process

5.1 Debugging process characteristics

In the reality, the debugging process is not perfect and immediate, but it follows
the workflow depicted in Figure 3 for the system under analysis. When an issue
is opened, it becomes new and it is enqueued, waiting to be processed (published
status). Once an issue starts to be processed (in study), it is assigned (launched)
to a developer and, once completed, it could be assigned to another developer
for further processing, when needed. Then, the amendment is tested, delivered,
and finally closed. It may happen that the testing process may fail. In this
case, the issue becomes suspended after delivered, and then reopened again for
another cycle of processing (transition in the published status). From the data,
we also found issues that never go in the closed status, either because still under

processing (e.g., this happens for recent issues opened in january 2014) or because
finally classified with a “won’t fix” resolution.

Fig. 3: Workflow of the debugging process. Statuses in gray represent the “idle”
part of the process, where issues are enqueued waiting to be processed.

Clearly, the overall debug process is far from being immediate. Just to have
an idea, defining TTFix (Time To Fix) as the overall time needed for an issue to
transit from the new status to the closed status, the mean TTFix on the overall
dataset is equal to 12.8 days.

More in detail, we have evaluated the following statistics from issues’ data:

– MTTFix (in days): the expected value of the TTFix;
– MEDTTFix (in days): the median of the TTFix;
– StdDevTTFix (in days): the standard deviation of the TTFix;
– MQT (in days): the Mean Queuing Time, that is, the expected value of the

time that an issue is enqueued waiting to be processed;
– MEDQT (in days): the median of the queuing time;
– StdDevQT (in days): the standard deviation of the queuing time;
– #Res: average number of resources allocated to the issue;
– Kurtosis: it indicates the peakedness of the distribution;
– Skewness: it measures the asymmetry of the distribution; a positive value

indicates a right-tailed distribution, whereas a negative value indicates a
left-tailed one.

The achieved statistics are summarized in Table 3, where issues have been
grouped according to their severity (minor, major, and blocking). From the
statistics, it can be noted that overall the debug process has a good level of
quality. Issues are closed in a reasonable time framework (from 9 to 16 days
on average, 5-6 days median), even if very variable (high standard deviation),
depending on the complexity of the issue. Moreover, as desirable, blocking issues
are solved faster than major issues, that, in turn, are solved faster than minor
issues. Another indication of the quality of the process is provided by kurtosis
and skewness indicators. The high value of kurtosis denotes that the most of

variance is due to few high peaks, as opposed to the undesirable situation of
frequent small deviations from the mean time to fix; these high peaks are of
course desired in the left side of the distribution, indicating that a lot of defects
have a short time to fix: thus a good value of kurtosis does not suffice by itself,
but the skewness matters too. In particular, a positive skew is desired, as in
our case, indicating that the time to fix distribution is right-tailed, with a lot of
defects with low time to fix. An example of distribution of the number of issues
according to the TTFix is shown in Figure 4 for minor issues. It can be observed
that the distribution is right-tailed with a pronounced peak in the left side. The
distribution of major and blocking issues, here omitted, exhibit an even better
shape, as expected by looking at their kurtosis and skew values.

Table 3: Statistics of the TTFix distributions. Mean values and standard devia-
tions are measured in days.

Severity MTTFix MEDTTFix StdDevTTFix MQT MEDQT StdDevQT #Res Kurtosis Skewness

Minor 15.88 6.16 29.29 5.67 0.89 16.39 3.69 42.81 6.29
Major 12.69 5.76 25.28 3.42 0.81 9.98 3.75 52.26 6.85

Blocking 9.85 4.70 21.42 2.46 0.65 8.42 3.72 79.89 8.24

Fig. 4: Distribution of the number of minor issues according to the TTFix.

Regarding the number of resources allocated to defect, we can note that on
average 3.7 resources are allocated on defects, irrespective from their severity.
Finally, considering the queuing time, again we can observe that the MQT of
blocking issues is shorter than the one of major and minor ones, as desirable.

However, this time is not negligible and equals to about one third of the overall
debug process on average. Hence, estimations based solely on the measure of
the time to process the issue, ignoring the queuing time, could end up with
inaccurate results.

5.2 Impact of non-immediate debug

This Section discusses the impact of debugging on the SRGM-based analysis.
Synthetic statistics about the observed debugging process tell that its overall
features reflect a good process, with low average and median time to fix, a net
shape of the distribution, severities times to fix as expected, and so on. Fig-
ure 5(a) and 5(b) report the raw data about the cumulative number of opened
(testing process) and closed (debugging process) issues, along with SRGMs fit-
ting them. The graphs show what is the impact of the debugging times on the
achieved quality.

The closed defect curve is the one actually contributing to reliability increase
(namely, when the defect is actually removed); the opening curve would represent
the reliability increase only under immediate repairs. Thus, in the following, we
consider the difference between the two curves and their corresponding models
in order to infer conclusions about the debugging impact.

Let us define ∆issues(t) and ∆time(F), respectively, as: i) the difference be-
tween the opened and closed issues at a fixed time t (thus, pending issues at
t, which is the vertical distance between the raw data curves), and ii) the time
required to close a given number of opened issues, F (namely, the delay of the
debug process compared to testing, which is the horizontal distance between
the raw data curves). We also define the differences between the corresponding
models as ρmvf (t) and ρtime(F). These are the differences between the opened
and closed issues at time t and at mvf = F , respectively, as estimated/predicted
by the corresponding SRGMs. The ∆ values are used to: i) evaluate the differ-
ence between the actually achieved quality (in terms of number of closed issues)
and the believed one4, which is the quality under immediate repair assumption
(i.e., the opened issues), as well as ii) the difference between the actual time
required to close F issues and the believed time (again, under immediate de-
bugging, through the opening curve). This is the impact of assuming immediate
debugging on quality/time estimates. On the other hand, the ρ values are used
to assess the same differences on predicted values, which are needed to take deci-
sions like “when to stop testing”. This is the impact of the immediate debugging
assumption on predictions made through SRGMs.

The version 1 has already detected 99% of the total estimated issues and
has been released, while the version 2 is still at 94% and is still to release: thus,

4 Quality in the following is expressed through the (predicted) number of closed issues
or the (predicted) percentage of closed issues with respect to the total one; for what
said previously about the equivalence of this information to failure intensity and thus
reliability, “quality estimation” and “quality prediction” are equivalent to “reliability
estimation” and “reliability prediction”

(a) Cumulative number of opened and closed issues for version 1

(b) Cumulative number of opened and closed issues for version 2

Fig. 5: Cumulative number of opened-closed issues and fitted SRGMs for both
versions

we compute on version 1 the ∆ differences on actual data to see the impact
on estimated quality/time, whereas, on version 2, we compute the ρ values on
future predictions, at percentages greater than the achieved 94%.

Let us first consider the version 1. At the last day, 98.19, the total opened
issues were 665, namely about the 99% of total estimated ones. The actual quality
at that time is given by the closed issues, that are 578 , thus the 86.14 % of the
total estimated one, rather than the believed 99%. The error is therefore:

ε∆issues =
∆issues(98.19)

Closed(98.19)
· 100 =

665 − 578

578
· 100 = 15.05% (1)

where Closed(t) is the number of closed issues at time t.
This means that if tester released actually at 99% of total issues and use the
opening curve assuming immediate repair, the release quality is overestimated of
15.05 %. Similarly, if tester used the opening curve assuming immediate repair,
the removed 578 issues occurred, in his view, after 63.98 days, rather than at
98.19; thus there is a time estimation error of:

ε∆time =
∆time(578)

ClosedT ime(578)
· 100 =

98.19 − 63.98

98.19
· 100 = 34.84% (2)

where ClosedT ime(F) is the time of closing of the F − th issus. This is
interpreted as: using the immediate debugging assumption, the required quality
is reached 34.84% later than the believed time. The first raw of Table 4 reports
results for release quality values from 95% to 98%, besides the mentioned 99%
case.

Table 4: Results on the impact of debugging time on both versions

Version Achieved or Predicted release quality
95% 96% 97% 98% 99%

Version 1: ε∆issues 14.15% 14.59% 13.61% 14.06% 15.05%

Version 1: ε∆time 14.63% 16.07% 20.37% 31.28% 34.84%

Version 2: ερmvf 0.04% 0.18% 0.33% 0.63% 1.05%

Version 2: ερtime 0.31% 1.18% 3.58% 14.89% ∞

On the other hand. If tester has not achieved a high quality level yet, s/he
may want to use SRGMs for a prediction purpose and decide on when to stop
testing. This is well represented by version 2. In this case, detected issues have
been 2647, namely the 94.4 % of total estimated ones. We evaluate the impact of
debugging time on prediction accuracy supposing that tester wants to release at
95%, 96%, 97%, 98%, and 99% of total defects (namely: 2662, 2690, 2718, 2746,
2774 defects). In these cases, if s/he uses the opening curve, the release should
be at the days: 321, 339, 363, 396, and 447.

But using the closing curve, to those times it corresponds: 2661, 2685, 2709,
2729, 2745 of removed issues, which will cause quality overestimation errors. For
instance, suppose that tester wants to release at 97%. In this case, the quality
overestimation error will be:

ερmvf =
ρmvf (363)

SRGM(Closed(363))
· 100 =

2718 − 2709

2709
· 100 = 0.33% (3)

Similarly to the version 1 case, there will also be an error about the time
prediction. If tester uses the opening curve assuming immediate debugging to
release at 97%, the opened 2718 issues in 363 days will be closed (looking at the
closing curve) only at day 376, causing an error of5:

ερtime =
ρtime(2718)

SRGM(ClosedT ime(2718)
· 100 = (376− 363)/363 · 100 = 3.58% (4)

where SRGM(ClosedT ime(F)) is the predicted time required to close F
issues. The second part of Table 4 reports results form 95% to 99% release
criteria. As may be noticed, the errors on quality overestimation are quite small
in version 2, compared to version 1, and are slightly increasing with the desired
quality. The small error denotes a very good debugging process, whose curve is
strictly following the opening one. Notwithstanding, it is interesting to note how
the error on the time prediction is higher, and increases rapidly for increasing
values of the desired release quality, due to the saturation of both curves. From
98% to 99%, it increases up to infinite. This is interpreted as follows: if tester
wants to release at 98% of the total estimated issues, and uses the opening curve
assuming immediate repair, it would predict a testing time of 14.89% days less
than the actually required testing time. If this desired quality goes beyond the
98%, such an error increases abruptly, reaching infinite at 99%. Thus, depending
on the desired quality and on debugging process characteristics, this testing time
underestimation error may be very high and is much more sensitive than the
quality overestimation error.

In general, such time error always goes to infinite at some point (precisely,
at the saturation point of the closing curve); in the practice, it can go to infinite
considerably earlier if the debug process is not as close to the testing process
as in the version 2 case. For instance, in version 1, for the same type of error
(computed on raw data) the infinite occur soon after 578 issues, i.e., at only
86.14 % of the total estimated ones.

To summarize, the worse the debugging process, the greater the error on
quality estimation is, and the earlier the time prediction error goes to infinite: but

5 Note that, unlike the case of ∆time value, here the difference is taken between the
predicted time to close the number of issues that tester wants to remove and the
predicted time to open that number of issues. For ∆time values, we take the time
to close the number of issues actually closed subtracted by the time at which that
number of issues was opened (i.e., the “believed” time for achieving that quality).

while the quality estimation/prediction error is directly related to the number
of pending issues quite independently from the release time (e.g., in the same
way at 70%, 80%, or 90%), the time estimation/prediction error is much more
sensitive: at high quality values, the underestimation of the required testing time
can be very high, depending on the saturation of the opening and closing curves.

6 Conclusion

In this paper we analyzed the impact of the debugging time on reliability estima-
tion and prediction. Characterization of issues found in a real-world industrial
project indicates that the time taken by the debugging process is not negligible.
For example, the debugging time causes an overestimation of the perceived soft-
ware quality up to 15.5% in our dataset; similarly, it causes the underestimation
of the testing time that would be required to obtain a given quality for a soft-
ware product. In the future we aim to analyze further dataset and issues found
in industrial projects in order to achieve a representative characterization of the
debugging time and more accurate reliability estimation.

Acknowledgment

This work has been partially supported by the European Commission in the
context of the FP7 project “ICEBERG”, Marie Curie Industry-Academia Part-
nerships and Pathways (IAPP) number 324356.

References

1. C. Stringfellow, A. Amschler Andrews: An Empirical Method for Selecting Software
Reliability Growth Models. Empirical Software Engineering, 7 (4) (2002)

2. W. Farr: Handbook of Software Reliability Engineering, M.R. Lyu (Ed.), chapter:
Software Reliability Modeling Survey, pp. 71–117. McGraw-Hill, New York, NY
(1996)

3. J.D. Musa, K. Okumoto: A logarithmic Poisson execution time model for software
reliability measurement. In Proc. 7th Int. Conf. on Software Engineering (ICSE),
pp. 230–238 (1984)

4. B. Zachariah, R.N. Rattihalli: Failure Size Proportional Models and an Analy-
sis of Failure Detection Abilities of Software Testing Strategies. IEEE Trans. on
Reliability, vol.56, no.2 (2007)

5. J. B. Dugan, Automated Analysis of Phase-Mission Reliability, IEEE Transaction
on Reliability, vol. 40, 45-52, 1991.

6. Garzia, M.R., Assessing the Reliability of Windows Servers, Proc. of IEEE De-
pendable Systems and Networks, (DSN-2002).

7. Pietrantuono, R.; Russo, S.; Trivedi, K.S., “Online Monitoring of Software System
Reliability,” Dependable Computing Conference (EDCC), 2010 European , vol.,
no., pp.209,218, 28-30 April 2010, doi: 10.1109/EDCC.2010.33

8. Cotroneo, D.; Pietrantuono, R.; Russo, S., “Combining Operational and Debug
Testing for Improving Reliability,” Reliability, IEEE Transactions on , vol.62, no.2,
pp.408,423, June 2013, doi: 10.1109/TR.2013.2257051

9. A.L. Goel, K. Okumoto: Time-dependent error-detection rate model for software
reliability and other performance measures. IEEE Trans. on Reliability, R-28(3)
(1979)

10. S. Yamada, M. Ohba, S. Osaki: S-Shaped Reliability Growth Modeling for Software
Error Detection. IEEE Trans. on Reliability, R-32(5) (1983)

11. S.S. Gokhale, K.S. Trivedi: Log-logistic software reliability growth model. In: Proc.
3rd Int. High-Assurance Systems Engineering Symposium, pp. 34–41 (1998)

12. S. Yamada, H. Ohtera, and H. Narihisa: Software reliability growth models with
testing effort. IEEE Trans. on Reliability, vol. R-35 (1986)

13. A. L. Goel. Software Reliability Models: Assumptions, Limitations and Applica-
bility. IEEE Trans. on Software Engineering, SE-11(12) (1985)

14. H. Okamura, Y. Watanabe, T. Dohi, 2003. An iterative scheme for maximum
likelihood estimation in software reliability modeling. In: Proc. 14th Int. Symp. on
Software Reliab. Eng. (ISSRE-2003). IEEE CS Press, pp. 246256.

15. K. Ohishi, H. Okamura, T. Dohi: Gompertz software reliability model: Estimation
algorithm and empirical validation. Journal of Systems and Software, 82 (3) (2009)

16. Madhu Jain, T. Manjula, T. R. Gulati, Software Reliability Growth Model (SRGM)
with Imperfect Debugging, Fault Reduction Factor and Multiple Change-Point,
Proceedings of the International Conference on Soft Computing for Problem Solv-
ing (SocProS 2011), 2011, Deep, Kusum and Nagar, Atulya and Pant, Millie and
Bansal, Jagdish Chand Eds. Advances in Intelligent and Soft Computing, Springer,
pp. 1027-1037.

17. J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability, Measurement, Pre-
diction and Application, McGraw Hill, 1987.

18. Chin-Yu Huang, Wei-Chih Huang, Software Reliability Analysis and Measurement
Using Finite and Infinite Server Queueing Models, Reliability, IEEE Transactions
on (Volume:57, Issue: 1), 2008. 192–203.

19. Tung Thanh Nguyen and T.N. Nguyen and E. Duesterwald and T. Klinger and P.
Santhanam, Software Engineering (ICSE), 2012 34th International Conference on,
2012. 1297 –1300

20. Feng Zhang and F. Khomh and Ying Zou and A.E. Hassan, An empirical study
on factors impacting bug fixing time, Reverse Engineering (WCRE), 19th Working
Conference on, 2012.

21. Akinori Ihara and Masao Ohira and Kenichi Matsumoto, An analysis method
for improving a bug modification process in open source software development,
Proceedings of the joint international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution (Evol) workshops, ACM.
2009, 135–144.

22. Pietrantuono, R.; Russo, S.; Trivedi, K.S., “Software Reliability and Testing Time
Allocation: An Architecture-Based Approach,” Software Engineering, IEEE Trans-
actions on , vol.36, no.3, pp.323,337, May-June 2010, doi: 10.1109/TSE.2010.6

23. M. Cinque, D. Cotroneo, and A. Pecchia, “Event Logs for the Analysis of Software
Failures: A Rule-Based Approach”. Software Engineering, IEEE Transactions on,
vol.39, no.6, pp.806-821, June 2013

24. F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. S. Trivedi, ”Analysis of
bugs in Apache Virtual Computing Lab,” 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp.1-6, 2013

