
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Dynamic test planning: a study in an industrial context

Gabriella Carrozza1, Roberto Pietrantuono2, Stefano Russo2,3

1 SESM s.c.ar.l., A Finmeccanica Company, Via Circumvallazione Esterna di Napoli, 80014 Napoli, Italy
e-mail: gcarrozza@sesm.it

2 DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
e-mail: roberto.pietrantuono@unina.it

3 Critiware spin off, Incubatore Incipit, Complesso Univ. di Monte S. Angelo, Via Cinthia, 80126, Napoli, Italy
e-mail: stefano.russo@unina.it

The date of receipt and acceptance will be inserted by the editor

Abstract. Testing accounts for a relevant part of the
production cost of complex or critical software systems.
Nevertheless, time and resources budgeted to testing are
often underestimated with respect to the target quality
goals. Test managers need engineering methods to per-
form appropriate choices in spending testing resources,
so as to maximize the outcome.

We present a method to dynamically allocate testing
resources to software components minimizing the esti-
mated number of residual defects and/or the estimated
residual defect density. We discuss the application to a
real-world critical system in the homeland security do-
main. We describe a support tool aimed at easing indus-
trial technology transfer by hiding to practitioners the
mathematical details of the method application.

1 Introduction

1.1 Context and motivation

In many software systems, testing is the predominant
factor of cost. Engineers are constantly under pressure,
asked for delivering high-quality products within strin-
gent times and with underestimated resources. For test
manager, one crucial problem is to use these resources
in the best possible way. The decision on how to effec-
tively distribute the resources available for testing, or
how to optimize the budget for a target quality level is
of primary concern.

In mission-critical large-scale systems this need is
particularly felt, since a lot of effort is devoted to testing
compared to design, and the benefit of a proper upfront
planning is greater. These systems are often developed
in a highly modular way, adopting a strong component-
based approach to foster reuse and a build-by-integration

approach. However, in many cases, testing processes do
not exploit the advantage coming from component-based
development adequately. Indeed, it would be desirable
for test managers to preliminary allocate testing resources
at the beginning, by considering the trade-off between
testing effort and achievable quality.

The common industrial practice disregards such an
important step. We believe that the main reasons are
the lack of simple and tool supported methods, as well
as the lack of evidence of success of the proposed ap-
proaches into real industrial contexts. There exist indeed
mathematically sound methods, but with no proven ap-
propriateness to the specific needs raising from real con-
texts. Thus, very generic criteria are typically applied in
the practice, such as allocating resources driven by re-
quirements (e.g., testing a component until all require-
ments have been tested at least once), or driven by the
size (more testing to bigger modules). Sometimes, intu-
ition drives testing choices: based on experience, a tester
may deem one component more “critical” than another,
therefore deserving more testing. As there may be rele-
vant differences among components in terms of quality
- e.g. because they come from different teams (internal,
or external in case of outsourcing), or they are based on
different programming paradigms - their defectiveness
can vary significantly [1]. Moreover, a component can
be newly developed, or it may be a reused unit that al-
ready underwent a functional testing phase, hence with a
higher testing maturity. These differences intuitively call
for a tailored engineering approach, in which more test-
ing resources are spent where there is actually a greater
need (i.e., poorer quality).

The work described in this article is developed within
an industrial context where the need of such an approach
is particularly felt. It is a result of the industry-academia
collaboration among Federico II University, SELEX ES
and SESM. SELEX ES is a large company manufactur-
ing critical systems in domains such as air and maritime

2 Carrozza, Pietrantuono, and Russo: Dynamic test planning

traffic control, and homeland security. SESM acts as
research center supporting the “Software Engineering”
unit in the software verification and validation (V&V)
activities, and as facilitator of technology transfer.

Despite the great effort of SELEX ES into V&V
strategies to ensure high quality software level, as well
as into forefront development methodologies and tools,
the increasing complexity of the produced systems is de-
manding additional and strong commitment to identify
new means for staying on the cutting edge of V&V tech-
niques. Test planning is one of these key concerns. In-
deed, for large-scale critical systems, an accurate plan-
ning is difficult, because of the high variability from the
planning time to the testing completion. Testing a sin-
gle component may in fact require months; during this
period changes related to the testing process, the envi-
ronment, the personnel, and the technology often affect
the result in terms of defect detection, and are likely to
invalidate any assumption made at planning time. More-
over, the diversity of tested units, of their development
teams, and of testing teams as well, is a further factor of
variability. This is even harder to handle for integration
testing, at subsystem or system level, for which compo-
nents heterogeneity always put testers in a tight spot.
Such a context has led us to develop a systematic ap-
proach to support test planning in a dynamic way, with
expected benefits in terms of effort/quality trade-off.

1.2 Contribution

In this paper, we describe a method to dynamically al-
locate testing resources to software components, so as
to minimize the estimated number of residual defects,
and/or the estimated residual defect density, given a
fixed testing budget. The method grounds upon soft-
ware reliability growth models (SRGMs) [2], used at
component-level to monitor the testing progress of each
component. From these, an estimate is obtained of the
quality achievable for a component in relation to the
testing effort devoted to it. Then, by iteratively solv-
ing an optimization problem, the next testing effort is
directed towards the component that contributes the
most to reduce the residual number of defects (density)
in the overall system, thus improving the final trade-off
between effort spent and residual defectiveness.

The proposed solution we have implemented is, un-
like existing ones: i) dynamic, namely able of using test-
ing data as they become available, exploiting them to
adjust performance online, and robust with respect to
variations during testing and volatility of planning time’s
assumptions; ii) simple in its application, and with as
few assumptions as possible on the testing process; iii)
ready-to-use, supported by an automatic tool. As result,
we formulated the method, provided an algorithm, im-
plemented it in a tool called effecT! c© (effective Testing),
and evaluated everything on the testing process of a SE-
LEX ES system. The system subject to experiments is

a critical application in the domain of homeland secu-
rity ; its aim is the management of port, maritime, and
coastal surveillance. The results show how applying a
systematic method to effort scheduling can bring advan-
tages even in presence of variable contexts. This is push-
ing the company to pursue this direction to replace an
intuition-driven test resource allocation method with a
quantitative, quality-driven, and tool-supported one.

In the following, the related work in testing resource
allocation is first surveyed (Section 2). Then, the pro-
posed method is presented (Section 3). Section 4 reports
the results of the study we conducted at SESM to eval-
uate the approach. Section 5 describes the implemented
support tool. Section 6 concludes the paper.

2 Related work

The problem of identifying those parts of a system that
should receive more resources during testing has been
addressed by many researchers.

Typically, testing aims to detect as many defects as
possible. Hence, most criteria try to allocate a greater ef-
fort to software modules expected to contain more faults.
To this aim, much research focused on fault-proneness
models, i.e., models able to estimate the defectiveness of
software modules based on process or product metrics.

Less frequently, the testing goal is to improve relia-
bility1 [3]. In this case, effort allocation criteria do not
look for modules with more faults, but with a greater
impact on overall reliability. Many of such methods in
the literature use Software Reliability Growth Models.

The method we present lies in between: it aims at
improving the defect detection ability but using SRGMs.

2.1 Fault-proneness models for static defect prediction

Fault/defect2 prediction usually adopts a“white-box” ap-
proach to rate the expected defectiveness of software
modules. It starts from a sample of modules with known
values for software metrics and known number of expe-
rienced defects; the sample is used to build defects pre-
dictive models, adopting software metrics as predictors.
There is no explicit allocation scheme, but testers are
implicitly suggested to put more effort on modules with
higher expected defectiveness.

The many works in this literature differ in the types
of metrics and data mining techniques. Commonly used
metrics are: function/method-level metrics (e.g., cyclo-
matic complexity), class-level metrics (e.g., number of
weighted methods per class, coupling between classes,
depth of inheritance), source file metrics (e.g., Lines of
Code or of Commented Code per file) [4].

1 Note that detecting more faults does not imply improving reli-
ability: this requires removing the faults occurring more frequently.

2 The term fault (defect) is preferred in the fault tolerance (soft-
ware engineering) community; here we use them as synonymous.

Carrozza, Pietrantuono, and Russo: Dynamic test planning 3

In [7], a set of 11 metrics (including McCabe com-
plexity, Lines of Code, Halstead’s metrics [5]) is used
with regression trees to predict modules more prone to
contain faults. Object-oriented (O-O) metrics were pro-
posed in [6] as predictors of faults density; the survey of
eight empirical studies in [8] shows that O-O metrics are
significantly correlated to faults. Basili et al. [9] focused
on validating O-O metrics for fault prediction.

Other studies investigated design metrics able to pre-
dict modules more prone to failures [10]. In [11], authors
adopt logistic regression to relate software measures and
fault-proneness for classes of homogeneous products. In
[12], authors mined metrics to predict the number of
post-release faults in five large Microsoft’s projects. They
adopted the statistical technique of Principal Compo-
nent Analysis (PCA) to transform the original set of
metrics into a set of uncorrelated variables, to avoid the
problem of redundant features (multicollinearity). Sub-
sequent studies confirmed feasibility and effectiveness of
fault prediction using public-domain datasets from real-
world projects, as the NASA Metrics Data Program, and
using regression and classification models [13,14].

In many cases, common metrics provide good predic-
tion results also across several different products. Recent
studies focused also on transferring prediction models
across different projects and companies [15]. However, it
is difficult to claim that a given regression model or a set
of models is general enough to be used even with very
different products, as discussed in [12,16].

The drawbacks of this approach are: i) the need of
having of an extensive knowledge base, from which the
empirical relation between metrics and defects can be
derived; ii) the need of the product’s source code, in or-
der to extract metrics; iii) the lack of formulation of an
explicit allocation scheme; these methods do not usu-
ally predict the number of defects, but the probability
of a module of being defective and/or the ranking of
more/less critical modules, thus supporting a “relative”
testing effort allocation, not an absolute one; iv) metrics-
based prediction is “static”, in that it does not take
into account additional testing data that could adjust
the prediction based on online observations; this limits
the approach whenever the predicting and the predicted
modules’ contexts are heterogeneous.

2.2 SRGMs for dynamic resource allocation

Reliability analysis can be conducted by modeling, by
measurements, and by hybrid approaches [17–19]. Soft-
ware Reliability Growth Models (SRGM) are useful means
to reliability analysis during testing. They describe how
reliability grows as software is improved during test-
ing by faults detection and removal. SRGMs are usu-
ally calibrated using failure data collected during test-
ing, namely fitting inter-failure times, and observing the
variation of the failure intensity (number of failures per

time unit) with testing time. The shape of the intensity
curve distinguishes the wide variety of SRGMs [2,20–24].

SRGMs are used to answer questions such as “how
long to test a software”, or “how many faults are likely
to remain”; this system-level usage is the most common.

Fewer works use SRGMs at component-level, to opti-
mize effort distribution among system components while
satisfying a reliability target. Among these, Yamada et
al. [25] formulated two variants of the problem of optimal
effort allocation in module testing, assuming the same
reliability growth model for all the involved modules.
In this and later papers, SRGMs include in the formula-
tion what is known as Testing Effort Function (TEF). In
fact, the time dimension for assessing reliability growth
can be expressed as calendar time, CPU execution time,
number of test-runs, or similar measures: but, in general,
the testing effort does not vary linearly with time, and
the TEF describes this non-linear relation [26,27].

Lyu et al. [28] target the same problem, proposing
an optimization model with the cost function based on
well-known growth models. They include the use of a
coverage factor for each component, to take into account
the possibility that a failure in a component could be
tolerated. Lyu and Huang formulate the same problem
with very little variations [29]. Cost, along with testing
effort function, is considered also in later works by the
same authors, e.g. in [30]. The authors in [31] also try
to allocate optimal testing times to components, with
an SRGM limited to the Hyper-Geometric (S-shaped)
model. The work in [32] considers also the software
architecture implicitly, by taking into account the uti-
lization of each component with a factor assumed to be
known. Finally, in our previous work [33], we formulated
a testing time allocation problem subject to a minimum
reliability constraint, in which we merged the idea of
SRGM-based allocation with an architectural model of
the system, expressed through a discrete-time Markov
chain, so as to explicitly account for components’ usage.

The usage of SRGMs implies some assumptions on
the process, that are easily violated in practice. These
include: perfect repair, immediate repair, independent
inter-failure times, no duplicate defect reports, no chan-
ge to the code during testing, equal probability to find a
failure across time units (e.g., also during holidays and
vacations) [35], [36]. These two last works argue that
SRGMs give good results even when data partly violate
the model’s assumptions.

The method we presented uses SRGMs, but it has
several differences with respect to SRGM-based past works:
i) the goal is to minimize the expected number of resid-
ual defects or the expected residual defect density, not
reliability; this avoids the assumption of conducting test-
ing according to an operational profile3; ii) the approach
uses several different SRGMs and exploits feedback from

3 Improving operational reliability is more desirable, but it re-
quires the knowledge of the operational profile, seldom available.

4 Carrozza, Pietrantuono, and Russo: Dynamic test planning

ongoing testing, to adjust the allocation online, rather
than assuming one model a priori. SRGMs are chosen
dynamically, selecting the one that best fits the actual
testing data. This greatly reduces the negative impact
of the SRGMs’ assumptions on result; iii) most previ-
ous studies validate models through numerical examples
outside industrial contexts. These studies do not con-
sider the impact of assumptions violation in real indus-
trial environments. It is our opinion that the lack of suc-
cess stories is one of the causes of the scarce adoption of
quantitative test planning methods. By conceiving and
experimenting the method into the SELEX ES indus-
trial process, the impact of assumptions violation is, in
a sense, included in the evaluation, thus providing evi-
dence that the approach can work in real settings.

3 The allocation method

3.1 Background

The method aims at minimizing the number of residual
defects in the code (defect-based allocation) or the resid-
ual defect density (defect density-based allocation) for a
testing budget given in terms of man-weeks.

We consider the most common class of SRGMs, those
that describe the failing process as a non-homogeneous
Poisson process (NHPP). These are characterized by the
parameter of the stochastic process, λ(t), indicating the
failure intensity, and by the mean value function (mvf),
m(t), that is the expectation of the cumulative number
of defects detected at time t [22]:

N(t): m(t) = E[N(t)]; dm(t)
dt = λ(t).

These provide indication on how testing is proceed-
ing, namely on how many defects are being detected over
time, and how many defects are expected to be found at
a certain testing time t. The different types of SRGMs
can be described by their mean value function, that ap-
pears in this form m(t) = aF (t), where a is the expected
number of total defects, and F (t) is a distribution func-
tion that can take several forms depending on the failure
occurrence process.

Many models have been proposed in the literature,
and several tools have been developed to deal with pa-
rameterization and fitting of models (such as SMERFS,
SoRel, PISRAT, and CASRE). For our purpose, we con-
sider the list reported in Table 1 because of their wide
spread in the literature and of their ability to capture
several different potential behaviours of the testing pro-
cess. In particular, we use the model proposed by Goel
and Okumoto [20], which describes the failing process
by an exponential mvf distribution, as it is one of the
most successful and popular models for reliability growth
analysis. The Delayed S-Shaped curve [21], also very
popular, has been proposed in order to capture the pos-
sible increasing/decreasing behaviour of the failure rate

Table 1. Software Reliability Growth Models

Model m(t) function

Exponential [20] a · (1− e−bt)

S-shaped [21] a · [1− (1 + gt)e−bt]

Weibull [2] a · (1− e−bt
γ
)

Log Logistic [22] a · (λt)κ

1+(λt)κ

Log Normal [23]* a · Φ(log(t)−µσ)

Truncated Logistic [24] a · (1−e−t/κ)

(1+e−(t−λ)/κ)

Truncated Normal [42]* a · Φ((t−µ)/σ)
1−Φ(−µ/σ)

* Φ indicates the normal distribution

Common assumptions of the listed SRGMs
Perfect repair, immediate repair, independent inter-failure times,
no duplicate defect reports, no change to the code during testing,
equal probability to find a failure across time units
(e.g., also during holidays and vacations).

during the testing process. With similar purposes, the
logistic-based distributions (namely, the log-logistic [22]
and the truncated logistic [24]) describe the processes
in which the initial phase of testing is characterized by
a slow increase because of the gradual improvement of
testers skills in the initial learning phase, and because
of defects being mutually dependent (i.e., some defects
are not detectable before some others are). We also con-
sider the generalized version of the Goel-Okumoto model
capturing the S-Shaped nature of software failure occur-
rence, wherein Goel simply proposed an additional pa-
rameter turning the exponential into a Weibull distribu-
tion [2]. Finally, the normal-based (log- and truncated-
normal) SRGMs are considered as they demonstrated
a noticeable ability to fit a wide variety of reliability
growth scenarios and to software failure data collected
in real software projects [23], [42].

Table 1 reports the models along with the corre-
sponding expression of the mean value function (mvf);
the estimated number of defects is always the mvf ’s first
parameter, a, while the quantity in parenthesis is F (t).
In the formulation of the approach, we considered that,
in practice, there is no model to fit all the situations.
Thus, we fit testing data with all the considered SRGMs,
by using the EM algorithm [40], and then choose the best
one as explained in the next Section.

3.2 Method description

Let us denote the expected number of residual defects
as E[Defects], and the expected residual defect density,
measured in #defects/KLoC, as E[Density]. These are
the two alternative objectives to minimize. For our pur-
poses, components are autonomous, independently testable,
and deployable units. The test manager has to distribute
a budget B of testing resources (in number of man-
weeks), among a set of components; the i-th component

Carrozza, Pietrantuono, and Russo: Dynamic test planning 5

will thus receive a testing effort equal to Wi man-weeks4.
The key idea is to use SRGMs to predict the detection
ability of each component’s testing process iteratively,
and based on that, to allocate resources to components
where testing will have the highest detection power. The
method is based on the following main steps:

1. Initialization. Testing starts at time t0, when there
may be no (previous) data available on testing of
components to build any initial SRGM5. Without
any additional information, which could help to pri-
oritize testing efforts at this stage, the initial allo-
cation is done uniformly to all components, and the
testing starts.

2. Start-up check. In this initial phase, at each time
units (our time unit is the week), the method checks if
the optimal allocation procedure can be applied with
the available defect data. Specifically, we try to fit de-
fect data of each component with every SRGM listed
in Table 1 by the EM algorithm [40], and perform a
goodness of fit (GoF) test by means of the one-sample
Kolmogorov-Smirnov (KS) test (with 90% confidence
level) for comparison of samples with reference prob-
ability distribution. If the test is satisfied for at least
one SRGM, it means that defect data sample can
be said, with 90% of confidence, to come from that
SRGMs distribution. In this case, the component is
ready for the subsequent step (it is said to be statis-
tically valid). In general we will have more SRGMs
that fit one component, and will keep track of them
for the next steps. This start-up check can be auto-
matically repeated at each time unit from the begin-
ning, or performed when the tester is confident that
there are enough data for each component: in the
practice, as rule of thumb, we observed that after no
more than 20% of the total testing time there is at
least one valid SRGM for every component6. Thus,
we advise to start checking from about 10-15% of the
initially allotted testing time on.
As a guard, we conceived the possibility to skip to
the next step also with only a subset of statistically
valid components; in such a case (e.g., when there
are components with very few and/or highly irregu-
lar data), the optimal allocation will apply only to
that subset.

3. SRGM Selection. Given a number N of components
with associated a set of statistically valid SRGMs,
we select the best SRGM for each component by ap-
plying a goodness-of-fit measure based on the Akaike

4 We assume that the number of man-weeks worked per week
is fixed; namely, the assigned resources are spent uniformly across
the weeks.

5 This is the worst case; it may happen indeed that past data
exist, and can be used as starting point to build a model.

6 Authors in [35] indicate a time of 25% to have an SRGM with
a definitive accuracy deviation of 20%; however in our method we
practically need much less time, since we do not select a definitive
model now, but we will iteratively select the best model (and thus
improve the initial accuracy deviation) as testing time proceeds.

Information Criterion (AIC). In particular, for each
SRGM satisfying the KS test, the AIC value is com-
puted as: AIC = −2log[L] + 2ϕ, where ϕ is the de-
gree of freedom for the SRGM, i.e. the number of free
parameters, and L is the maximized value of the like-
lihood function for the estimated model. The model
with the lowest AIC value is preferred, denoting the
minimal information loss that we incur by selecting
that model. The AIC is also successfully used in [41].
If, from the previous step, there is some component
with no statistically valid SRGM, these are excluded
from the optimal allocation strategy only for that
iteration. These components will receive an amount
of resources proportionally to their current detection
rate7.

4. Optimization. Each component is thus represented
by a potentially different SRGM, characterized by
its mean value function (mvf) as described in Ta-
ble 1. The mvf is used to estimate the number of
total defects in the software, as well as the cumula-
tive number of defects detected after a given testing
effort. The total number of defects is estimated by
the parameter a of the SRGMs mvf (cf. with Table
1); we denote it as ESTi (i.e., number of estimated
defects for the component i). The number of defects
expected at a given effort value is computed by the
mvf (denoted as m(.)). Their difference represents
the prediction of residual defects after a given test-
ing effort value, and are the basis of the objective
functions to minimize. Depending on the goal (de-
fect or density minimization), one of the following
optimization problems is solved:

min! E[Defects] =
∑N
i=1(ESTi −m(W ∗i +Wi))

s.t.
∑
Wi ≤ B∗

(1)

min! E[Density] =
∑N
i=1

ESTi−m(W∗
i +Wi)

SIZEi

s.t.
∑
Wi ≤ B∗

(2)

where: N is the number of components; ESTi is the
number of expected defects in the i-th component;
Wi is the testing effort to allocate to the i-th com-
ponent; W ∗i is the testing effort already allocated to
the i-th component; m(W ∗i +Wi) is the (estimated)
number of defects that would be removed if compo-
nent i receives an effort of (W ∗i +Wi); SIZEi is the

7 We assure them to receive a certain amount of resources, in
order to not stop completely their testing, so as to have more data
for it in the next iteration. This amount will be the same as the pre-
vious iteration but diminished by a factor α ∈ [0, 1]. The latter is
computed as: αj = [DRj −mini(DR)]/[maxi(DR)−mini(DR)],
where DRj is the current detection rate (defect/weeks) of the com-
ponent j and the index i spans across components. Thus, if Cj had
the best detection rate, it receives the same amount as the previous
cycle; otherwise, it is penalized.

6 Carrozza, Pietrantuono, and Russo: Dynamic test planning

size of component i measured in KLoC, used to com-
pute the defect density; B∗ is the residual budget at
the current iteration8.

5. Dynamic Update. Wi are the decision variables of the
optimization problem, and are subject to the con-
straint that the total amount of allocated testing
effort must not exceed the budget B∗. This allows
to allocate efforts according to the prediction of the
number of defects that will be found or of the defect
density that will be achieved. However, as more data
become available, the situation changes: it may hap-
pen that more data allow a more accurate estimation
of residual defects (density), or, more importantly,
the estimation can significantly deviate, because of
changes in the testing process and thus in the detec-
tion trend. This calls for a dynamic approach, able
to re-allocate resources from time to time, in order
to “follow” the optimal solution, and exploit feed-
back coming from the testing process. Thus, after a
predefined time, the defect data of each component
are fitted again with every SRGM (by the KS test);
step 3 (SRGM selection) and 4 (optimization prob-
lem) are taken again with the new data, starting a
new iteration and re-allocating testing efforts accord-
ingly.

The simplified algorithm follows.

The dynamic allocation algorithm.
Input: budget, nComp, SIZE, reallocStep, startCheck ;
//upper case variables are arrays; lower case are scalar
1. i=1; t=0; ready=false
2. while i ≤ nComp do
3. W∗

i = Wi = budget/nComp;//Uniform Allocation
4. end while
5. // start testing
6. while !ready do
7. // do testing
8. t++;
9. if (t ≥ startCheck)
10. D-DATA = readData();// read defect data
11. SRGM-MATRIX = fitData(D-DATA);
12. ready=checkSRGM(SRGM-MATRIX);
13. end if
14. end while
15. toAllocate = updateBudget(budget, t); //for the next step
16. while (toAllocate > 0) do
17. SRGM = selectSRGM(SRGM-MATRIX);
18. W = solveOpt(SRGM,D-DATA,SIZE,W∗,toAllocate);
19. //compute actual effort employed
20. r = computeResidualEffort(W, t);
21. if (r !=0) W’ = allocateResidualEffort(W, r);
22. else W’=W;
23. // do testing with the allocated W ∗ man-weeks
24. t = t+ reallocStep; //for the next step
25. toAllocate = updateBudget(budget, t); //for the next step
26. if (toAllocate > 0)
27. D-DATA = readData();

8 B∗ also takes into account the possible resources already allo-
cated to non-statistically valid components (see note 7)

28. SRGM-MATRIX= fitData(D-DATA);
29. end if
30. end while
31. end

The algorithm starts with a uniform allocation of the
budget to components. It takes as input parameters: the
budget to allocate, the number of components, their size,
the reallocation step, namely how often to recompute the
allocation, and the time at which to begin the start-up
check. Initially, the allocation is done uniformly (lines 2-
4); then, during testing, the start-up check is performed
to decide when there are enough data for the next step
(lines 6-14). In particular, the readData function gets de-
fect data for each component into the D-DATA matrix
(line 10); the fitData function (line 11) iteratively fits
data with all SRGMs, performing the KS test, and pro-
vides the SRGM-MATRIX with valid SRGMs per com-
ponent; the checkSRGM function receives this matrix
and sets ready to true when all components have at least
one valid SRGM9. When there are enough data, the step
3, 4, and 5 of the method start; namely, the residual re-
sources (toAllocate) are re-allocated optimally and iter-
atively updated (we enter the while loop, line 16).
The SRGM-MATRIX is given to input to the select-
SRGM function (line 17), that computes the AIC values
and outputs the best SRGM for each component (hence,
SRGM is a vector). These are then given as input to the
solveOpt function (line 18), which solves one of the two
optimization problems formulated above, depending on
the tester’s choice. This returns the optimal allocation
vector W 10.
The function computeResidualEffort at line 20 calculates
the resources (in man-weeks) remaining after the alloca-
tion: for instance, if a component receives 1 man-week,
and the next update is in 4 weeks, there are unspent re-
sources that could be potentially re-employed.
The function allocateResidualEffort is in charge of re-
allocating those resources to the other components, pro-
portionally to the W vector of already allocated efforts.
The final allocation is given by the W ′ vector, which con-
siders the optimal allocation plus the possible residual
efforts redistributed. After testing with those resources,
the remaining budget is updated for the next alloca-
tion step (line 25). If there are still resources to allo-
cate, the new defect data are read and used to build the
SRGM-MATRIX for the next iteration. The procedure
ends when resources are no more available.

Note that, in general, the best frequency of reallo-
cation (i.e., the re-allocation step) is dependent on the

9 This function also manages the case in which the tester wants
to go on with even a subset of statistically valid components; in
such a case, the function sets ready to true when at least x com-
ponents are valid, with x decided by the tester (omitted for sim-
plicity).
10 It also applies the detection rate proportional allocation de-

scribed above (note 6), in case there is some component with no
valid SRGM

Carrozza, Pietrantuono, and Russo: Dynamic test planning 7

specific case under study and on defect data occurrence
pattern. The ideal case would be to reallocate whenever
defect occurrence trend is noticeably and stably chang-
ing in some of the components under test. In the prac-
tice we observe that, for datasets/systems resembling the
one experimented hereafter, a minimal re-allocation step
of 1 month (i.e., 4 weeks) is required, in order to have
enough time to observe stable changes in the detection
rates while avoiding too frequent reallocations. Alterna-
tively, the allocation can be done not necessarily at a
fixed frequency, but each time the tester wants to real-
locate the effort (i.e., the update rate can be variable
too). By a slight variant of the algorithm (i.e., modify-
ing the updateBudget function and removing the real-
locStep), tester can decide when to reallocate resources
by observing, online, the detection rate trends, visually
revealing changes in one or more components.

4 Evaluation

4.1 Context

We show the application of the method, describing the
experiment conducted within the mentioned industry-
academia collaboration.

SELEX ES systems are typically built with a compo-
nent-based development approach. Components are na-
med CSCIs (Computer Software Configuration Items),
according to [34]. Each component is first tested white-
box, then it undergoes a black-box functional test that
aims at marking it as “ready-to-use”. This functional
testing step is performed by the Software Verification
unit, when a major release (known as build) of a com-
ponent is delivered: if this gets through, the CSCI is
“qualified” internally and it is ready to be integrated
with other CSCIs. The Software Verification Unit is also
in charge of verifying the integrated system (or even sys-
tem of systems) before starting the acceptance testing of
the final solution. The case study we present is a system
for homeland security, in charge of managing the port,
maritime, and coastal surveillance. More in detail, the
system is made up of five CSCIs, whose characteristics
are summarized in Table 2 as far as they are of interest
for this paper. CSCIs names, as well as further details
on the system, are omitted for confidentiality reasons.

We point out the following system/process features:

– CSCIs perform different missions, from low-level dri-
vers to Web applications and GUIs;

– CSCIs are written in various programming languages
(C, C++, JAVA);

– CSCIs have been developed by different teams;
– some CSCIs were outsourced, hence some teams were

external to SELEX ES;
– CSCIs development times vary from a few weeks to

12 months;

– CSCIs defects/bugs have been stored in several ways,
using different tools (e.g., Mantis bug tracker or un-
structured xls files) and logging different information;

– neither developers/testers nor project managers were
aware of this study, so as to avoid possible bias.

4.2 Procedure

CSCIs have been tested between 2009 and 2012, using a
total amount of testing resources of 326 man-weeks, de-
tecting in total 1,119 bugs. On this dataset, we compare
various allocation schemes to figure out if, and to what
extent, the proposed method outperforms the others.

The comparison is with a uniform allocation (same
number of weeks for all CSCIs), and a size-based alloca-
tion (a common rule-of-thumb approach), proportional
to the size of CSCIs (we used LoC as size measure).
Overall, we compare four schemes: i) uniform; ii) size-
based ; iii) defect-based ; iv) defect density-based. We com-
pare the results in terms of total number of defects that
would have been detected by allocating effort according
to each scheme.

Thus, we use the same data for all the cases, so as
to avoid the bias that could be introduced by using dif-
ferent testing techniques, different testers, technologies,
environment, and in general different testing processes.
In fact, the objective of the experiment is to figure out
which allocation scheme performs better given the same
underlying testing process.

Detected defects for each CSCI are in Figure 1(a)-
1(e). The trends show that a method should avoid to al-
locate man-weeks to CSCIs in which no, or few, defects
will be detected, saving those resources for a CSCI test-
ing with a higher detection rate (e.g., the first weeks of
CSCI 1 and 2). To be sure to have enough data for each
CSCI, we assume an initial budget of 150 man-weeks of
testing11 to distribute among CSCIs. In both schemes
defect- and density-based schemes of our method, the
“update” step is set to 4 weeks, namely the allocation is
recomputed each month. Moreover, the first allocation,
carried out uniformly, is kept until the 8-th week, since it
has been the lower limit to have statistically significant
SRGMs.

4.3 Results

Table 3 shows the results obtained by the uniform al-
location. From the initial budget B = 150 man-weeks,
the uniform scheme simply assigns 30 man-weeks per
CSCI. The number of defects detected is observed after
8 weeks, and then every 4 weeks, in order to have a com-
parison with the proposed method (there is no dynamic

11 We assume to have a budget lower than 326 man-weeks, so
as to avoid to allocate a number of man-weeks to a CSCI greater
than the amount actually available (e.g., CSCI 1 has been tested
with 32 man-weeks, if the number of man-weeks allocated by the
scheme is greater than 32, the experiment may be invalid).

8 Carrozza, Pietrantuono, and Russo: Dynamic test planning

Table 2. Features of the analyzed CSCIs components

CSCI LoC Development Description
Time (months)

C1 39059 11 The CSCI has the primary goal of assuring interoperability
during Expeditionary Warfare operations between operative/strategic
and tactical systems for Network-Centric Operations support.

C2 55154 6 The CSCI is in charge of managing anomalies,
alarms and smart agents associated with maritime track

C3 22208 10 It is in charge of managing presentation layer components

C4 59535 12 It manages standard-compliant messages and
related standard communication protocols

C5 34700 10,5 It is responsible for verification and validation of messages
of application-level protocols, and their correct
sending/publication/receiving/representation

(a) Detected defects for CSCI 1 (b) Detected defects for CSCI 2

(c) Detected defects for CSCI 3 (d) Detected defects for CSCI 4

(e) Detected defects for CSCI 5

Fig. 1. Cumulative number of detected defects for each component

Carrozza, Pietrantuono, and Russo: Dynamic test planning 9

allocation update at the monitored points, since this is
a static scheme). After 8 weeks a high number of defects
is detected for CSCI 3, where more than 100 defects are
detected very soon. Resources are however predefined,
and the same amount of effort (i.e., 30 man-weeks per
each) is preserved for each CSCI. With time, the number
of defects gets to 488. This is definitely a good number,
especially thanks to CSCI 2, which has an abrupt in-
crease only after 24 weeks; before that time, the number
of defects detected was 354.

The size-based scheme allocation is reported in Ta-
ble 4, again monitored every 4 weeks, after the initial 8
weeks. In this scheme, we envisaged a re-employment of
unspent resources: as may be seen from the first row of
Table 4, there are three cases in which the number of
man-weeks is less than 30; thus, when those efforts have
been spent (e.g., for CSCI 3 after 15 weeks, assuming
one man), residual man-weeks are re-employed propor-
tionally to the size of CSCIs. In this case, results of the
first 15 weeks are the same as the uniform case; at week
16, CSCI 3 exhausts its resources and we no longer ob-
serve defects detected. It similarly happens later on for
CSCIs 1 and 5; on the other hand, the man-weeks allo-
cated to C2 and C4, namely 38 and 41 man-weeks, make
them achieve 162 and 128 detected defects, many more
than the corresponding ones in the uniform allocation.
The second approach ends up with 523 detected faults,
35 more than the previous one. Accounting for the size
improved the final result.

Our dynamic defect-based and density-based alloca-
tions (Tables 5 and 6, respectively) reserved initially 8
man-weeks per CSCI, with updates each 4 weeks. Af-
ter the first 8 weeks, a new solution is computed each
4 weeks, with available man-weeks re-allocated to each
CSCI. To this aim, a new SRGM is built at each up-
date and for each CSCI, by considering the defect data
collected up to that week (if no defect is detected, the
SRGM remains unchanged). This SRGM provides the
estimate of the total number of defects contained in a
CSCI (i.e., the ESTi parameter of the objective func-
tion), and is used to obtain the prediction of defects that
will be detected under the proposed solution - namely,
by assigning the resources to the CSCI as suggested by
the solution (i.e., the m(W ∗ +W) parameter of the ob-
jective function). As more defects are found, the SRGM
changes, and thus the total estimate and the predicted
number of detected defects will change too.

Results are reported in Table 5. Each row reports,
in the right part, the number of residual man-weeks to
allocate after x weeks, and the computation of the new
allocation replacing the previous one; in the left part,
each row reports, for each CSCI: the number of defects
actually detected after x weeks (denoted with DET), the
EST value, and the m(W ∗ +W) value under the found
solution. The difference between EST and m(W ∗ +W)
is the prediction of residual defects.

The allocation starts with 30 man-weeks per CSCI;
after the first 8 weeks, based on detected defects, the al-
location changes, and the method suggests placing more
resources on C3 and C5, where detection is working bet-
ter. Let us observe the results after 12 weeks. Both the
8-th and 12-nd week results have the same number of de-
tected defects than the previous approaches. This is be-
cause after 12 weeks there is no CSCI without resources.
However, at this time the allocation is recomputed based
on SRGMs built with data from week 0 to week 12, and
there are CSCIs that will receive no effort (C2) or a low
effort (C1) in the next weeks, for the bad detection of
their testing. On the other hand, C4 exhibits a detec-
tion trend from week 8 to 12 with an abrupt increase,
which makes the SRGM estimate 1105 defects. Accord-
ingly, 33.05 man-weeks are allocated to C4, predicted as
sufficient to detect all the defects; the residual resources
are distributed between C3 and C5. After 20 weeks, the
defects detection trend in C5 makes the SRGM predict a
significantly higher EST value than the others (at week
20, it detected 68-40=20 defects in 4 weeks): with this
rate, the predicted m(W ∗ + W) value is also high, and
thus all the resources are devoted to it to minimize the
predicted residual defects. Note that, at week 20, the de-
tection rate of C3 is even better (namely 159-132= 27
defects in 4 weeks); however the shape of the detection
trend is smoother when approaching to week 20, lead-
ing the SRGM to estimate lower values for EST , and
thus for m(W ∗ + W). The algorithm finds more conve-
nient to place all the resources on C5 as, according to
the prediction, C3 has lower improvement margin (EST
is estimated at 171.63, and the current detected defects
are DET = 159; thus only EST -DET = 12.63 defects
could be detected; whereas, for C5, there is much room
for improvement: EST − DET=287.8). This is a good
choice, since C5’s detected defects go from 68 to 312 in
8 weeks. At week 24, it detected 239-68=171 defects in
4 weeks.

After 28 weeks, the detection rate of C5 becomes
slower, as it is going toward the saturation. The SRGM
estimates a total of 316.43 defects being present in the
CSCI, and the room for improvement is therefore only
316.43 − 312 = 4.43 defects. Contrarily, the SRGM of
C3 and C4 (which are the same since the last detec-
tion, namely, since week 20) tell that the residual de-
fects for C3 and C4 are 12.62 and 5.69 respectively. The
tool redistributes the residual 10 man-weeks to these
two CSCIs, managing to detect further 7 defects with
that effort. The final result is 552 defects detected (i.e.,
13.11% more than uniform, 5.55% more than size-based),
with an estimated defect density of 0.5869 defects/KLoC
(computed as

∑
i(ESTi −Detectedi)/SIZEi).

Finally, the density-based allocation (Table 6) ex-
hibits results very similar to the defect-based one; also
in this case C1 and C2 receive no more resources after
20 weeks, and the allocations are slightly more balanced
because of the smoothing effect of the CSCI sizes. The

10 Carrozza, Pietrantuono, and Russo: Dynamic test planning

Table 3. Results of the uniform allocation

C1 C2 C3 C4 C5
Allocated man-weeks 30 30 30 30 30

Detected Defects per CSCI Total Det. Defects Residual man-weeks

after 8 weeks 10 6 107 9 31 163 110

after 12 weeks 11 6 112 46 36 211 90

after 16 weeks 12 6 129 55 37 239 70

after 20 weeks 27 15 133 57 44 276 50

after 24 weeks 33 44 150 62 65 354 30

after 28 weeks 51 110 159 62 85 467 10

after 30 weeks 63 114 160 62 89 488 0

Table 4. Results of the size-based allocation

C1 C2 C3 C4 C5
Allocated man-weeks 27.46 38.78 15.61 41.87 26.29

Detected Defects per CSCI Total Det. Defects Residual man-weeks

after 8 weeks 10 6 107 9 31 163 110

after 12 weeks 11 6 112 46 36 211 90

after 16 weeks 12 6 114 55 37 224 70

after 20 weeks 27 15 114 57 44 257 50

after 24 weeks 39 54 114 76 65 348 30

after 28 weeks 51 148 114 94 68 475 10

after 30 weeks 51 162 114 128 68 523 0

detected defects are the same of the previous scheme up
to week 24 (with the exception of C3, where the effect
of the reemployment of resources makes it detect one
additional defects at week 16). After week 24, the re-
sults slightly change because of the different allocation
between C3, C4, and C5. The final result is similar to
the defect-based allocation, namely 547 defects (12.09%
and 4.58% more than uniform and size-based, respec-
tively), but with a better estimated density, 0.5572 de-
fects/KLoC, which was the pursued objective.

Figure 2 summarizes the total number of defects found
by the various approaches as time (weeks) proceeds; this
provides an easy comparison of methods’ detection abil-
ity over time. The histogram bars have the same value
for the first 12 weeks. Then, the dynamic schemes out-
perform the others.

4.4 Remarks

Assumptions like perfect and immediate debugging, inter-
failure times independence, unchanged code, equal test-
ing quality over time, no differences among testing teams,
and similar ones, are typically violated in real contexts.
Our SRGM-based method showed to be effective in a real
context, in spite of possible assumptions’ violations. The
mentioned study presented in [35] reported that SRGMs
provided good results after about 25% of total testing
time, with prediction accuracy deviating only by 20%
even with partially violated assumptions. In our case, for
the extent of assumptions’ violations, the model fitted
with 25% of time was statistically valid but turned out to

Fig. 2. Number of detected defects over testing time

be not the definitive ones; in the remaining 75%, the se-
lection of the best SRGM changed several times, because
of data variability12. For instance, there are components
like C1 and C2 where testing gave no result for months
(ten/fifteen weeks) and abruptly improved after week 20:
defects revealed in the later weeks clearly show that this
is not because of the components’ greater quality, but
more likely because of a lack of good testing before week
20. This may depend on several reasons, related to hu-
man, technical, environmental, or technological factors

12 The models that more often fitted data have been: exponen-
tial, especially in the beginning, truncated logistic, and truncated
normal.

Carrozza, Pietrantuono, and Russo: Dynamic test planning 11

Table 5. Results of the defect-based allocation

Iteration Number of Detected Defects (DET) Total Man-weeks to Reallocation of man-weeks
time in Estimated defects (EST) Detected (Re-)allocate (#of allocated man-weeks)
weeks Predicted detections (m(W*+W)) Defects

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 weeks (t0)

DET 0 0 0 0 0 0 150 30 30 30 30 30

8 weeks

DET 10 6 107 9 31 163 110 5.93 5.93 52.41 5.99 39.72
EST 11.00 6.02 128.67 9.01 35.12
m(W*+W) 10.99 6.00 128.66 9.00 35.11

12 weeks

DET 11 6 112 46 36 211 90 1.41 0 26.69 33.06 28.83
EST 11.00 6.02 118.97 1105.58 39.04
m(W*+W) 10.99 6.00 118.97 1105.5 39.00

16 weeks

DET 11 6 132 55 40 244 70 0 0 38.45 1.69 29.86
EST 11.00 6.02 140.92 55.53 42.52
m(W*+W) 10.99 6.00 140.90 55.52 42.50

20 weeks

DET 11 6 159 57 68 301 50 0 0 0 0 50
EST 11.00 6.02 171.62 62.69 355.80
m(W*+W) 10.99 6.00 159.08 57.00 169.09

24 weeks

DET 11 6 159 57 239 469 30 0 0 0 0 30
EST 11.00 6.02 171.62 62.69 432.94
m(W*+W) 10.99 6.00 159.08 57.00 331.13

28 weeks

DET 11 6 159 57 312 545 10 0 0 7.84 2.15 0
EST 11.00 6.02 171.62 62.69 316.43
m(W*+W) 10.99 6.00 166.02 61.10 316.26

30 weeks

DET 11 6 161 62 312 552 0 - - - - -

changing over time; in any case, it is a clear example
of violation of SRGM assumptions. Thanks to the pe-
riodic re-computation of SRGMs, the method resulted
to be a robust solution to such noisy variations. In fact,
in this specific study, the strange behaviour of CSCI 1
and 2 favored the static approaches, which had a suffi-
cient amount of man-weeks to intercept the increase of
detected defects in both CSCIs (approximately 20 man-
weeks). If the same schemes were used with 100 man-
weeks (or with more regular data for C1 and C2), the
static methods did not intercept the increasing points,
detecting many fewer defects with respect to the dy-
namic case. Notwithstanding this advantageous situa-
tion for the static scheme, the dynamic methods in-
evitably outperformed it, because they allowed to save
precious resources in the first weeks to be reallocated
elsewhere, pursuing globally more efficient allocations
toward other CSCIs.

5 The support tool

The allocation schemes are implemented in the effecT! c©

test planning tool by the academic spin off company
Critiware. The tool consists of an Analyzer and a Plan-
ner (Figure 3). The Analyzer allows to evaluate the
effectiveness of the testing and defect fixing processes
through a series of reports showing the detected defects,
their type and severity, the assigned priority, the V&V
techniques which detected them, the reproducibility fea-
tures, the time-to-fix distribution, the defect opening vs.
closing curves. We focus here on the Planner, which is
responsible for providing testers with a means to plan
the allocation of testing effort optimally13. Both blocks
exploit the underlying database (DB), containing infor-
mation on testing sessions (and on the fixing process)
performed on each CSCI. This includes data on detected
defects, their detection time, their severity, priority, and

13 The Analyzer is left out from the explanation, since it does
not regard the test planning issue presented here.

12 Carrozza, Pietrantuono, and Russo: Dynamic test planning

Table 6. Results of the defect density-based allocation

Iteration Number of Detected Defects (DET) Total Man-weeks to Reallocation of man-weeks
time in Estimated defects (EST) Detected (Re-)allocate (#of allocated man-weeks)
weeks Predicted detections (m(W*+W)) Defects

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 weeks (t0)

DET 0 0 0 0 0 0 150 30 30 30 30 30

8 weeks

DET 10 6 107 9 31 163 110 17.72 17.72 37.94 17.72 18.89
EST 11.00 6.02 128.67 9.01 35.12
m(W*+W) 11.00 6.01 128.66 9.00 35.11

12 weeks

DET 11 6 112 46 36 211 90 0.15 0.14 34.91 31.33 23.44
EST 11.00 6.02 118.97 1105.58 39.04
m(W*+W) 11.00 6.01 118.97 1105.5 39.00

16 weeks

DET 11 6 133 55 40 245 70 0.87 0.84 38.74 0.85 28.69
EST 11.00 6.02 140.36 55.53 42.52
m(W*+W) 11.00 6.01 140.34 55.52 42.50

20 weeks

DET 11 6 159 57 68 301 50 0 0 1.33 0 48.66
EST 11.00 6.02 171.62 62.75 355.80
m(W*+W) 11.00 6.01 161.76 55.98 166.62

24 weeks

DET 11 6 160 57 189 423 30 0 0 0 0 30
EST 11.00 6.02 168.57 62.69 405.72
m(W*+W) 11.00 6.01 160.01 55.98 329.67

28 weeks

DET 11 6 160 57 312 546 10 0 0 2.65 0 7.35
EST 11.00 6.02 168.57 62.75 337.03
m(W*+W) 11.00 6.01 161.86 55.98 325.47

30weeks

DET 11 6 161 57 312 547 0 - - - - -

Fig. 3. Architecture of the effecT! c© support tool

data on the testing session itself, such as the start/end
date, the testing techniques used, the V&V phase.

The Planner comprises the following modules:

– Testing Data Manager. The module manages in-
formation provided by the tester via the GUI, regard-
ing i) the name of the software components to which
tester wants to allocate resources, ii) the budget to
allocate (in man-weeks or man-months), and iii) the
desired re-allocation step14. If components are reused
modules, a testing session was performed in the past;
in this case data about detected defects are retrieved
from the DB. Alternatively, the module can import
these data from an external .csv file. If they are new
CSCIs, for which no testing data are available yet,
the tool provides a defect tracking functionality: the
tester inserts data, through the GUI, about each new
defect detected during testing, and stores them in the
DB.

14 The re-allocation step input can also be empty, giving the
possibility to the tester of requiring the re-allocation at any time
s/he wants by just pressing a button.

Carrozza, Pietrantuono, and Russo: Dynamic test planning 13

Fig. 4. Screenshots of the effecT! c© tool

– SRGM Builder. This module uses defect data pro-
duced by the previous module about CSCI testing
sessions, and iteratively fits them with a set of 7
SRGMs. The Builder shows all SRGMs to the tester,
along with the goodness-of-fit test result and the AIC
value, and suggests the best fitting model15.

– Allocator. This module implements the algorithm
for the optimization problems (Eq. 1 and 2), taking
the SRGM for each CSCI as input, and the defect
data. It outputs the vector of values suggesting the
effort to be devoted to each CSCI.

– Controller. This module coordinates all the opera-
tions: its core is the algorithm presented in Section
3. Thus, it receives commands from the GUI, queries
the previous modules (i.e., at each cycle, it retrieves
data from Testing Data Manager, fits them with
SRGMs by the SRGM Builder, and recalls the al-
locator to distribute the residual effort), and provides
results back to the tester.

A screenshots of effecT! c© is in Figure 4. It shows an
output of the SRGM builder, namely an SRGM obtained
from data of a CSCI.

6 Conclusions

In the current industrial practice, the task of allocat-
ing testing resources to components of a large software
system is often left to the sensibility of test/project man-
agers, who typically decide on the basis of their experi-
ence or intuition. Simple yet sound engineering methods
are highly desirable to guide their choices in a system-
atic and measurable way. We have presented a method
to compute dynamically the resources to allocate for the
testing of software components, so as to minimize the
number of residual defects and/or the estimated resid-
ual product defect density.

15 The best fitting SRGM is chosen by default.

The method stems from the actual need of a large
system integration company. It has been applied with
reference to a real-world critical software system for ho-
meland security, whose coarse-grain components are de-
veloped and tested over several months. The results re-
port on the improvement of the testing process outcome,
given a predefined amount of testing resources.

The spread of any new method in the industrial prac-
tice requires proper knowledge and technology transfer
means; for this reason, we have realized and described
the architecture of a tester support tool. This eases the
application of the proposed method, hiding the tester
from the complex mathematical details. Future work will
address accounting for other historical data, such as de-
fect severity, or context-related information, such pro-
cess metrics or metrics related to human factors.

7 Acknowledgement

This work has been partially supported by MIUR under
project SVEVIA (PON02 00485 3487758) of the public-
private laboratory COSMIC (PON02 00669) and by the
European Commission in the context of the FP7 project
ICEBERG, Marie Curie Industry-Academia Partnerships
and Pathways (IAPP) number 324356. The work of Dr.
Pietrantuono is supported by the project Embedded Sys-
tems in Critical Domains (CUP B25B09000100007) in
the framework of POR Campania FSE 2007-2013.

References

1. D. Cotroneo, R. Pietrantuono, S. Russo: Testing tech-
niques selection based on ODC fault types and software
metrics. Journal of Systems and Software, 86 (6), 1613-
1637 (2013)

2. A. L. Goel: Software Reliability Models: Assumptions,
Limitations and Applicability. IEEE Transactions on
Software Engineering, SE-11(12), 1411-1423 (1985)

3. D. Cotroneo, R. Pietrantuono, S. Russo: Combining op-
erational and debug testing for improving reliability.
IEEE Transactions on Reliability, 62 (2), 408-423 (2013)

4. C. Catal, B.M. Diri: A systematic review of software fault
prediction studies. Expert Systems with Applications, 36
(4), 7346-7354 (2009)

5. M. Halstead: Elements of Software Science, Elsevier Sci-
ence, New York (1977)

6. S.R. Chidamber, C.F. Kemerer: A Metrics Suite for Ob-
ject Oriented Design. IEEE Transactions on Software En-
gineering, 20(6), 476-493 (1994)

7. S.S. Gokhale, M.R. Lyu: Regression Tree Modeling for
the Prediction of Software Quality. In: Proc. 3rd ISSAT
(1997)

8. R. Subramanyam, M.S. Krishnan: Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity: Im-
plications for Software Defects. IEEE Transactions on
Software Engineering, 29(4), 297-310 (2003)

14 Carrozza, Pietrantuono, and Russo: Dynamic test planning

9. V.R. Basili, L.C. Briand, W.L. Melo: A Validation of
Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering, 22(10), 751-
761 (1996)

10. N. Ohlsson, H. Alberg: Predicting fault-prone software
modules in telephone switches. IEEE Transactions on
Software Engineering. 22(12), 886-894 (1996).

11. G. Denaro, M. Pezzè: An Empirical Evaluation of Fault-
proneness Models. In: Proc. 24th Int. Conference on Soft-
ware Engineering (ICSE), pp. 241-251 (2002)

12. N. Nagappan, T. Ball, A. Zeller: Mining Metrics to Pre-
dict Component Failures. In: Proc. 28th Int. Conference
on Software Engineering (ICSE), pp. 452-461 (2006)

13. T. Ostrand, E. Weyuker, R. Bell: Predicting the Loca-
tion and Number of Faults in Large Software Systems.
IEEE Transactions on Software Engineering, 31(4), 340-
355 (2005)

14. T. Menzies, J. Greenwald, A. Frank: Data Mining Static
Code Attributes to Learn Defect Predictors. IEEE Trans-
actions on Software Engineering, 33 (1), 2-13 (2007)

15. J. Nam, S. Jialin Pan, S. Kim: Transfer Defect Learning.
In: Proc. 35th Int. Conference on Software Engineering
(ICSE), pp. 382-391 (2013)

16. T. Zimmermann et al.: Cross-project Defect Prediction:
A Large Scale Experiment on Data vs. Domain vs. Pro-
cess. In: Proc. 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Eng., pp.
91-100 (2009)

17. J.B. Dugan: Automated Analysis of Phase-Mission Relia-
bility. IEEE Transactions on Reliability, 40, 45-52 (1991).

18. M.R. Garzia: Assessing the Reliability of Windows
Servers. In: Proc. of IEEE Dependable Systems and Net-
works conference (2002).

19. R. Pietrantuono, S. Russo, K.S. Trivedi: Online Moni-
toring of Software System Reliability. In: Proc. of the
European Dependable Computing Conference (EDCC),
209-218 (2010).

20. A.L. Goel, K. Okumoto: Time-dependent error-detection
rate model for software reliability and other performance
measures. IEEE Transactions on Reliability, R-28(3),
206-211 (1979)

21. S. Yamada, M. Ohba, S. Osaki: S-Shaped Reliability
Growth Modeling for Software Error Detection. IEEE
Transactions on Reliability, R-32(5), 475-485 (1983)

22. S.S. Gokhale, K.S. Trivedi: Log-logistic software relia-
bility growth model. In: Proc. 3rd Int. High-Assurance
Systems Engineering Symposium, pp. 34-41 (1998)

23. R.E. Mullen: The lognormal distribution of software fail-
ure rates: application to software reliability growth mod-
eling. In: Proc. 9th Int. Symposium on Software Relia-
bility Engineering (ISSRE), pp. 134-142 (1998)

24. H. Okamura, T. Dohi, S. Osaki: EM algorithms for logis-
tic software reliability models. In: Proc. 22nd IASTED
Int. Conference on Software Engineering, pp. 263-268
(2004)

25. S. Yamada, T. Ichimori, M. Nishiwaki: Optimal Alloca-
tion Policies for Testing-Resource Based on a Software
Reliability Growth Model. Int. Journal of Mathematical
and Computer Modeling. 22(10-12), 295-301 (1995)

26. C. Huang, S. Kuo, M.R. Lyu: An Assessment of Testing-
Effort Dependent Software Reliability Growth Models.
IEEE Transactions on Reliability, 56 (2), 198-211 (2007)

27. S. Yamada, H. Ohtera, and H. Narihisa: Software reliabil-
ity growth models with testing effort. IEEE Transactions
on Reliability, R-35, 19-23 (1986)

28. M.R. Lyu, S. Rangarajan, A.P.A. van Moorsel: Opti-
mal Allocation of Test Resources for Software Reliability
Growth Modeling in Software Development. IEEE Trans-
actions on Reliability, 51 (2), 336-347 (2002)

29. C.Y. Huang, J.H. Lo, S.Y. Kuo, M.R. Lyu: Optimal Al-
location of Testing Resources for Modular Software Sys-
tems. In: Proc. 13th Int. Symposium on Software Relia-
bility Engineering (ISSRE), pp. 129-138 (2002)

30. C.Y. Huang, J.H. Lo: Optimal Resource Allocation for
Cost and Reliability of Modular Software Systems in the
Testing Phase. Journal of Systems and Software, 79 (5),
653-664 (2006)

31. R.H. Hou, S.Y. Kuo, Y.P. Chang: Efficient allocation
of testing resources for software module testing based
on the hyper-geometric distribution software reliability
growth model. In: Proc. 7th Int. Symposium on Software
Reliability Engineering (ISSRE), pp. 289-298 (1996)

32. W. Everett: Software Component Reliability Analysis.
In: Proc. Symposium on Application-specific Systems
and Software Eng. and Techn. (ASSET), pp. 204–211
(1999)

33. R. Pietrantuono, S. Russo, K.S. Trivedi: Software Reli-
ability and Testing Time Allocation: An Architecture-
Based Approach. IEEE Transactions on Software Engi-
neering, 36 (3), 323-337 (2010)

34. U. S. Department of Defense, MIL-STD-498. Overview
and Tailoring Guidebook, 1996. [Online]. Available at:
www.abelia.com/498pdf/498GBOT.PDF

35. V. Almering, M. Van Genuchten, G. Cloudt, P.J.M. Son-
nemans: Using Software Reliability Growth Models in
Practice. IEEE Software, 24 (6), 82-88 (2007)

36. C. Stringfellow, A. Amschler Andrews: An Empiri-
cal Method for Selecting Software Reliability Growth
Models. Empirical Software Engineering, 7 (4), 319-343
(2002)

37. W. Farr: Handbook of Software Reliability Engineering,
M.R. Lyu (Ed.), chapter: Software Reliability Modeling
Survey, pp. 71-117. McGraw-Hill, New York, NY (1996)

38. J.D. Musa, K. Okumoto: A logarithmic Poisson execu-
tion time model for software reliability measurement.
In Proc. 7th Int. Conference on Software Engineering
(ICSE), pp. 230-238 (1984)

39. B. Zachariah, R.N. Rattihalli: Failure Size Proportional
Models and an Analysis of Failure Detection Abilities of
Software Testing Strategies. IEEE Transactions on Reli-
ability, 56 (2), 246-253 (2007)

40. H. Okamura, Y. Watanabe, T. Dohi: An iterative scheme
for maximum likelihood estimation in software reliability
modeling. In: Proc. 14th Int. Symposium on Software Re-
liab. Eng. (ISSRE). IEEE CS Press, pp. 246256 (2003).

41. K. Ohishi, H. Okamura, T. Dohi: Gompertz software re-
liability model: Estimation algorithm and empirical vali-
dation. Journal of Systems and Software, 82 (3), 535-543
(2009)

42. H. Okamura, T. Dohi, S. Osaki: Software reliability
growth model with normal distribution and its param-
eter estimation. In: Proc. Int. Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering
(ICQR2MSE), pp. 411-416 (2011)

