
SOFTWARE TESTING, VERIFICATION AND RELIABILITY

A Measurement-based Aging
Analysis of the Java Virtual
Machine
Domenico Cotroneo, Salvatore Orlando,
Roberto Pietrantuono, Stefano Russo∗

Universitá di Napoli Federico II,
Dipartimento di Informatica e Sistemistica
Via Claudio 21, 80125 - Napoli, Italy

SUMMARY

In this work, a software aging analysis of Java-based software systems is conducted.
The Java Virtual Machine (JVM) is the core layer in Java-based systems, and its dependability greatly
affects the overall system quality. Starting from an experimental campaign on a real world testbed, this
work isolates the contribution of the Java Virtual Machine (JVM) to the overall aging trend, and identifies,
through statistical methods, which workload parameters are the most relevant to aging dynamics.
Results revealed the presence of several aging dynamics in the JVM, including: i) a throughput loss trend
mainly dependent on the execution unit, ii) a slow memory depletion drift, due to the JIT-compiler activity,
iii) a fast memory depletion drift caused by dynamics inside the garbage collector.
The outlined procedure and obtained results are useful in order to i) identify the presence of aging
phenomena, ii) perform on-line aging detection and time-to-exhaustion prediction, and iii) define optimal
rejuvenation techniques.
Copyright c© 2007 John Wiley & Sons, Ltd.

keywords: Software Aging, Software Reliability Evaluation, Workload Characterization, Java
Virtual Machine.

1. Introduction

Software aging is a term that refers to a condition in which the state of the software or its environment
degrades with time [1]. The primary causes of this degradation are the exhaustion of operating system
resources, data corruption, and numerical error accumulation.
Recent studies showed that a large number of software systems, employed also in business-critical or
safety-critical scenarios, are affected by software aging. The Patriot missile defense system employed
during the first gulf war, responsible for the scud incident in Dhahran, is perhaps the most representative

∗E-mail: (cotroneo, saorland, roberto.pietrantuono, stefano.russo)@unina.it

Copyright c© 2007 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2007/09/24 v1.00]

2 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

example of a critical system affected by software aging. To project a target’s trajectory, the weapon
control computer requires a conversion from integer into a real value, which causes a round-off error
in the calculation of target’s expected position. System users were warned that “very long runtime”
could negatively affect system’s targeting capabilities. Unfortunately, they were not given a quantitative
evaluation of such “very long runtime”, thus leading to the well-known incident in which 28 people
were killed [2].
In order to reduce the development efforts and the time-to-market, there is an increasing use of Off-The-
Shelf (OTS) items in the development of complex software systems. Examples are virtual machines
or middleware layers, which are increasingly being used also in critical contexts. It is unrealistic to
assume that such complex systems are not affected by software aging. On the contrary, since they often
lack proper testing in the target environment, they are more subject to these phenomena. Thus, in order
to employ OTS in critical scenarios, it is very important to characterize their behavior from a software
aging perspective.
Software systems including such items may be regarded as a stack of software layers, each of them
using services from the lower layer and offering services to the upper one. Among the wide range of
this kind of layered systems, Java-based systems represent a relevant class to study, for the following
reasons:

1. they are currently employed in a wide range of contexts, including critical ones. For instance,
Java has been used to develop the ROver Sequence Editor (ROSE), a component of the Rover
Sequencing on Visualization Program (RSVP), used to control the Spirit Robot in the exploration
of Mars [3];

2. there is a growing interest in the scientific and industrial community toward the employment of
Java in safety and mission critical scenarios, as shown by a Java Specification Request (JSR-
302 [4]), which aims at defining those capabilities needed to use Java technologies in safety
critical applications.

Contribution. While performance aspects of the JVM have been extensively explored in the
past [5, 6, 7], software dependability issues received less attention. An example to augment fault
tolerance in the JVM has been proposed by Alvisi et al. [8], who conducted an interesting study on
how to apply state machine replication to the JVM. A similar approach has been used by Friedman
et al. [9], applied to the Jikes Research Virtual Machine. Regarding software aging, a work by
Silva et al. [10] highlighted the presence of aging phenomena in a Java-based SOAP server. Several
research studies analyzed aging introduced by long-running applications (such as web servers [11] and
DBMS servers [12]) measuring the aging contribution at operating system level. They neglected the
contribution of intermediate layers, such as middleware, virtual machines, and, more in general, third-
party off-the-shelf (OTS) items. Such layers may impact resource exhaustion dynamics and become a
significant source of aging.
The methodology presented in this paper allows to identify and analyze the contribution of such
intermediate layers in a Java-based software system.
Moreover, even though past studies highlighted the presence of aging independently of the workload
applied to the system (e.g., [13]), successive works showed that the software aging phenomena are
strictly related to the workload. Some studies addressed the relationships between workload and aging
trends (e.g., [14,15,11]), but the selection of workload parameters and the assessment of their effect on
aging trends have been partially addressed only by Matias and Filho [16], and Hoffmann et al. [17]. The

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 3

former addressed the evaluation of the effects of workload parameters on the response variable, whereas
the latter coped with the selection of the most relevant workload parameters. However, the work by
Matias and Filho [16] encompassed only controllable workload factors, whereas workload parameters
to monitor in layered systems are often uncontrollable. Variable selection techniques presented by
Hoffmann et al. [17] do not focus on the influence of workload parameters on aging trends.
From the above considerations, it is clear that in order to develop a methodology to analyze software
aging in Java-based systems, two challenging issues have to be addressed.
First, new methods are needed to isolate the contribution of the JVM to the aging trends from the
ones of other software layers.
Second, since there is a strict relationship between workload and aging trends, it is crucial to
investigate how these trends are affected by changes in the workload being applied.
By exploiting statistical techniques such as cluster analysis, principal component analysis and multiple
regression, this paper proposes a methodology to analyze workload-correlated aging phenomena by i)
pinpointing software layers in which aging phenomena are introduced; ii) identifying which workload
parameters are more relevant to the development of aging trends, and iii) evaluating the relationships
between workload parameters and aging trends. The methodology includes three phases:

1. Design and Realization of Experiments, in which several long-running experiments are executed
with different workload levels thus allowing to collect data about system resource usage (at
different layers) and workload.

2. Workload Characterization, in which workload data are analyzed in order to characterize the
behavior of the observed component as a function of the workload level imposed during the
experiments.

3. Software Aging Analysis, in which aging trends exhibited at different layers and existing
relationships between applied workload and aging phenomena are evaluated.

By applying this methodology, software engineers are able to gain insights about the sources of aging,
identifying the components more affected by this phenomenon. Moreover, results of such an analysis
allow engineers to design strategies to counteract aging during operation, by obtaining predictions of
aging trends, and by determining the best time schedule to rejuvenate the system and to clean its state.
The rest of the paper is organized as follows. Section 2 surveys the research on software aging and
provides background on the JVM architecture. Section 3 discusses the presence of aging in the JVM,
and presents the tool implemented to monitor and collect data relevant to the subsequent aging analysis,
namely JVMMon. Section 4 outlines the steps of the proposed methodology, while Section 5 shows its
application to the case-study, discussing the results. Section 6 concludes the paper.

2. Research on Software Aging

Software Aging can be defined as a continued and growing degradation of software internal state
during its operational life. It leads to progressive performance degradation, occasionally causing system
lockout or crashing. Due to its cumulative property, it occurs more intensively in continuously running
processes that are executed over a long period. Software aging phenomena are due to the activation of
aging-related bugs [18]; typical examples of these bugs are memory bloating and leaking, unreleased
file locks, data corruption, storage space fragmentation, and accumulation of round-off errors.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

4 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Software aging has been widely observed, reported and documented for a consistent number of
operational software systems. It has been observed in telecommunications billing applications, as well
as in the related switching software [19]; it caused a 55 meters errors in the target trajectory calculation
after 8 hours of execution, in the cited Patriot missile control software [2]; it was also detected in the
Apache Web Server [20], and even in the Linux Kernel code [21].
Moreover, it is well known that a consistent number of systems progressively slow down until they need
to be rebooted. To counteract aging, a proactive approach to environment diversity has been proposed,
in which the operational software is occasionally stopped and then restarted in a “clean” internal state.
This technique is called software rejuvenation, and it was first proposed in 1995 by Huang et al. [22].
Countermeasures against aging during operation require the assessment of the current health of the
system, the estimation of the expected time to resources exhaustion (a measure often called Time to
Exhaustion, or TTE), and the determination of the optimal rejuvenation schedule. Solutions proposed
to counteract software aging can be broadly classified into two approaches: the analytic modeling and
the measurement-based approach.
Analytic Modeling Approach

Analytic modeling generally aims at determining the optimal time to perform software rejuvenation
in operational software systems. The optimal rejuvenation schedule is determined starting from
analytical models, which are conceived to represent the aging phenomenon, and the accuracy depends
on the assumptions that are made for the model construction. Approaches in this category assume
failure and repair time distributions of a system and obtain optimal rejuvenation schedule to maximize
availability, or minimize loss probability or downtime cost.
Analytical models were first employed in order to prove that, when dealing with systems affected
by software aging, software rejuvenation allows reducing the cost due to system downtime [22] and
minimizing program completion time [23]. Regarding the kind of the considered aging effects, several
works take into account only failures causing total unavailability of software [22, 23, 24], whereas
Pfening et al. [25] consider a gradually decreasing service rate (i.e., a performance degradation); a
model that takes into account both the effects together in a single model is reported by Garg et al. [15].
Different probability distributions were also chosen for time-to-failure (TTF). Some works, such as the
ones by Garg al. [24] and by Huang et al. [22], are restricted to a hypo-exponential distribution, whereas
other papers employ more general distributions for TTF, like the Weibull distribution (e.g., [23]).
However these TTF models are unable to capture the effect of load on aging.
Although some authors, like Andrzejak and Silva [26], Bao et al. [14], and Garg et al. [15], considered
workload in their analyses, it is still unclear how the impact of workload variation on software aging
should be evaluated; the selection of relevant workload parameters that need to be taken into account
and the level at which they have to be observed are still open issues.
In analytic modeling approaches, stochastic processes are commonly used. In the work by Pfening
et al. [25] a Markov Decision Process (MDP) was used to build a software rejuvenation model in a
telecommunication system including the occurrence of buffer overflows. Garg et al. [24] used Markov
semi-ReGenerative Processes (MGRP), in conjunction with Stochastic Petri Nets (SPN), in order to
build a simple but general model to estimate the optimal rejuvenation schedule in a software system.
Petri Nets, in particular Stochastic Deterministic Petri Nets (SDPN) were employed by Wang et al. [27],
in order to build a model to analyze performability of cluster systems under varying workload. A
recent approach based on Petri nets has been presented by Salfner and Wolter [28]. In their work,
authors focused on the evaluation of time-triggered system rejuvenation policies using a queuing

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 5

model, formulated as an extended stochastic Petri net. Non-homogeneous, continuous time Markov
Chains were instead used by Garg et al. [15]. Semi-Markovian Processes were also used to model
proactive fault management by Bao et al. [14]. A common shortcoming with analytic modeling is that
the accuracy of the derived rejuvenation schedule deeply depends on the goodness of the model (i.e.,
how good the stochastic model used to represent the system approximates the real behavior of the
system) and on the accuracy of the parameters used to solve the model (e.g., failure rate distribution
expected value, probability of transition from the “steady” state to the “degraded” state).
Measurement-Based Approach

The measurement-based approach applies statistical analysis to data collected from systems and
applies trend analysis or techniques to determine a time window over which to perform rejuvenation.
The basic idea of measurement-based approaches is to directly monitor attributes subject to software
aging, trying to assess the current “health” of the system and to obtain predictions about possible
impending failures due to resource exhaustion or performance degradation. A measurement-based
software aging analysis performed on a set of Unix workstation is reported by Garg et al. [13]. In this
paper, a set of 9 Unix Workstations was monitored for 53 days using an SNMP-based monitoring tool.
During the observation period, 33% of reported outages were due to resource exhaustion, highlighting
how much software aging is a non-negligible source of failures in software systems.
An interesting workload-based software aging analysis is reported in the work by Vaidyanathan and
Trivedi [11]. The paper presented results of an analysis conducted on the same set of Unix workstation
used by Garg et al. [13]. While the latter considered only time-based trend detection and estimation
of resource exhaustion without considering the workload, the former took the system workload into
account and built a model to estimate resource exhaustion times. It considered some parameters to
include the workload in the analysis, such as the number of CPU context switches and the number
of system call invocations. Different workload states were first identified through statistical cluster
analysis and a state-space model was built, determining sojourn time distributions; then, a reward
function, based on the resource exhaustion rate for each workload state, was defined for the model. By
solving the model, authors obtained resource depletion trends and TTE for each considered resource in
each workload state. The methodology presented by Vaidyanathan and Trivedi [11] allows carrying out
a workload-driven characterization of aging phenomena, more useful and powerful than the workload-
independent characterization presented by Garg et al. [13]. A further improvement of this work was
presented by Vaidyanathan and Trivedi [29], where a hybrid approach was adopted (i.e., analytical
and measurements-based), by i) building a measurement-based semi-markovian model for system
workload, ii) estimating TTE for each considered resource and state (using reward functions), iii) and
finally building a semi-Markov availability model, based on field data rather than on assumptions about
system behavior.
The work by Vaidyanathan and Trivedi [29] extends the previous one [11] by performing transient
analysis, formulating the TTE as the mean time to accumulated reward in a semi-Markov reward model,
and developing an availability model that accounts for failure and rejuvenation, useful to derive optimal
rejuvenation schedules.
Another interesting measurement-based approach to software rejuvenation, based on a closed-loop
design, was presented by Hong et al. [30].
Although several measurement-based analyses dealt with resource exhaustion, only a few of them deal
with performance degradation. Software aging that manifests itself as a progressive loss of performance
was deeply studied for OLTP servers [12] and for the Apache Web Server [31, 20].

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

6 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

In the work by Gross et al. [12] pattern recognition methods were applied in order to detect aging
phenomena in shared memory pool latch contention in large OLTP servers. Results of this work
showed that these methods allowed to detect significant deviations from “standard” behavior with a
2 hours early warning. On the other hand, Trivedi et al. [31, 20], analyzed performance degradation in
the Apache Web Server by sampling web server’s response time to predefined HTTP requests at fixed
intervals. Collected data were analyzed using the same techniques employed by Garg et al. [13]. Results
showed a 0.061 ms/hr degradation for response time in the Apache Web Server, and a 8.377 Kb/hr
depletion trend for physical memory. Used swap space, on the other hand, showed a seasonal pattern,
as a direct consequence of built-in rejuvenation mechanisms in the Apache web Server. Software Aging
in a SOAP-based server was also analyzed by Silva et al. [10], where authors presented a dependability
benchmarking study to evaluate some SOAP-RPC implementations, focusing in particular on Apache
Axis, where they revealed the presence of aging.
An analysis addressing the impact of workload parameters on aging trends was presented by Matias and
Filho [16], where the memory consumed by an Apache Web Server was observed together with three
controllable workload parameters: page size, page type (dynamic or static), and request rate. Applying
the Design Of Experiments (DOE) technique, several experiments were performed with different level
of the three workload parameters; effects of single and combined workload parameters on the output
variable (memory used) were evaluated through the Analysis of Variance (ANOVA) technique. A
closed-loop software rejuvenation agent was also implemented. Finally, Hoffmann et al. [17], proposed
a best practice guide for building empirical models to forecast resource exhaustion. This best practice
guide addresses the selection of both resource and workload variables, the construction of an empirical
system model, and the sensitivity analysis.

3. Aging in the JVM

3.1. The Architecture of the JVM

In this section, the main components∗ of the JVM architecture are described. The specification for
the Java Virtual Machine [32] has been implemented in different ways by many vendors. JVM
implementations differ from one another not only with regard to the interface toward the operating
system but also in the implementation of internal components. In this paper, focus is on the Sun Hotspot
1.5 VM. In order to understand the internal behavior of the Sun Hotspot VM, its source code has
been carefully analyzed, due to the lack of appropriate documentation concerning the implementation
of VM components. The resulting schema is depicted in Figure 1. The JVM is composed of four
main components: i) The Execution Unit, which includes the core components of the JVM needed
for executing Java programs, e.g., the bytecode interpreter and the Java Native Interface (JNI); ii)
The Memory Management Unit, which manages memory operations (e.g., object allocation, object
reference handling, garbage collection); iii) The System Services Unit, which offers Java Applications
“higher level” services, such as thread synchronization management and class loading; and iv) the

∗In this context, the tern “component” is intended as a logically independent unit of an architecture performing a well-defined
function

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 7

Hardware

Operating System

Java Applications

Host System ISA

Java API (JDK)

Memory Management Unit

Reference
Handling

Garbage
Collection

Finalization

System Services Unit

OS Virtualization Layer Unit

Thread ManagementTimersClass LoaderManagement & Debugging

Fast

Allocation

Mechanisms

Execution Unit

JIT
Compiler

Interpreter
Exception
handling

JNI

Host System ABI

User Host System ISA

Vendor-specific Packages

JVM ISA

Figure 1. Architectural Model of the Java Virtual Machine

OS abstraction layer, which provides a platform-independent abstraction of the host system’s ABI
(Application Binary Interface).
The Execution Unit
It dispatches and executes operations, acting like a CPU. An operation could be a bytecode instruction,
a JIT-Compiled method or a native instruction. The Interpreter translates single bytecode instructions
into native machine code, whereas the Just-In-Time(JIT) compiler optimizes the execution of a set
of instructions (methods) translating it into native code. Methods to JIT-compile are automatically
selected by the JVM by exploiting the code locality principle: the JVM is able to identify “hotspots”
in the application, i.e., pieces of code that are executed more frequently. Native instructions need
no translation: they are dynamically loaded, linked and executed by the Java Native Interface (JNI).
Furthermore, the Exception Handler deals with exceptions thrown by both Java Applications and the
Virtual Machine. In particular, exceptions thrown by the VM are called unchecked and are related to
errors originated inside the virtual machine.
The Memory Management Unit
It handles the JVM heap area, managing object allocation, reference handling, object finalization, and
garbage collection. The heap area is organized into three generations, i.e., three memory pools holding
objects of different ages: the young generation, the tenured generation, and the permanent generation.
Objects are first allocated in the young generation, and when the latter becomes full, a minor collection
occurs; surviving objects are moved to the tenured generation. The young generation consists of eden
and survivor space. The latter is divided into two further survivor spaces (called semispaces) that are

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

8 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

used to implement the garbage collection copying algorithm.
Whenever a new object is allocated, it is stored in the eden space. Objects that survive garbage
collection are first promoted to the survivor space and then to the tenured generation. Due to the
high “infant mortality” of Java objects, only a few of them reach the tenured generation. This way,
the performance of the JVM is improved, since the frequency of full garbage collection cycles, which
involve both the young and the tenured generation, is reduced. The young and the tenured generations
are used to store Java objects and are therefore subject to garbage collection; instead, the permanent
generation is mainly used to store Java classes loaded into the JVM: objects in this area are not subject
to garbage collection. Even if the maximum size of these generations is fixed at JVM startup, their
actual dimension depends upon the memory requirements of the application, since the JVM has the
ability to dynamically grow or shrink the size of each generation.
The Sun Hotspot JVM provides several garbage collectors. By default, the JVM employs a serial, stop-
the-world garbage collector; this collector uses a copying algorithm on the young generation, using
semispaces in the survivor space, and a compact, mark-and-sweep algorithm on the tenured generation.
It is also possible to use multi-threaded garbage collectors to improve either program completion time
or throughput. Furthermore, Fast Allocation Mechanisms are provided to allocate memory areas for
internal VM operations.
The System Services Unit
Components included in this unit offer services to Java Applications. The Thread Management
component handles Java threads as specified by the Java Virtual Machine Specification† and the Java
Language Specification (JLS) [33]. The Class Loader is in charge of dynamically loading, verifying and
initializing Java classes. Finally, the Management and Debugging component includes functionalities
for debugging Java applications and for management of the JVM.
The OS abstraction layer
This component provides a platform-independent abstraction of the host system’s Application Binary
Interface. It represents a common gateway for all JVM components to access host system’s resources.

3.2. Is the JVM affected by Software Aging?

Software aging manifests itself as a continuous and progressive degradation of performances with time,
due to resource exhaustion or throughput loss; a JVM is affected by aging when its activity contributes
to the resource exhaustion and/or to the throughput loss trend (e.g., when the activity of an internal
JVM component, such as the JIT compiler, contributes to a progressive memory consumption, it is
possible to state the JVM is getting aged).
In previous authors’ work [34], a failure analysis of the JVM have been shown, in order to figure out
whether aging failures are really a threat to JVM’s dependability. In that analysis, failure data were
extracted, in the form of reports, from publicly available bug databases, where developers and users
of Java applications usually submit failures/bugs. Data were extracted from Sun‡ and Jikes§, resulting
in 700 bug submissions related to JVM failures. Other JVM implementations, such as Kaffe, J9, and

†http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html
‡Sun Hotspot Bug Database: http://bugs.sun.com
§Jikes RVM bug database: http://jikesrvm.org

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 9

2% 8%

16%
29%45%

STARTUP PHASE HOURLY FREQUENCY DAILY FREQUENCYWEEKLY FREQUENCY UNKNOWN
Figure 2. Distribution on non-deterministic failures by time-to-failure

JRockit had no public bug databases or very poor ones¶. Data extracted from bug reports allowed
classifying failures along several dimensions, i.e., Failure Manifestation, Failure Source, Severity,
Environment, Workload. Such data have been used to start an in-depth study of the development of
aging phenomena. In particular, the procedure adopted to perform an aging-oriented analysis of failure
reports was the following:

1. Exclude failures marked as “Always Reproducible”: failures that are due to aging phenomena
are usually strictly dependent on the workload applied to the JVM, and are therefore not easily
reproducible in a different environment. Obviously, remaining failures (64% of the total number
of failures) exhibit a non-deterministic behavior.

2. Among the remaining failures, exclude those that occurred when a non-relevant workload was
applied: without a relevant workload it is generally impossible to observe the development of
aging phenomena. Only a 2% of failures occurred with a negligible workload, although workload
estimation was not possible for 30% of occurred failures (due to lack of data in reports).

3. Analyze the distribution of the remaining failures (32% of the total number of failures) with
regard to the estimation of the time to failure.

The pie chart in Figure 2 reports the distribution of non-deterministic failures occurring with relevant
workload according to the time to failure. Unfortunately, there is a high level of uncertainty, since data
(even qualitative) about TTF was missing in a consistent number of reports. Only 2% of these failures
occurred during the startup phase, whereas 45% of these failures occurred after a significant time (16%
daily, 29% weekly). This means that in about half of the considered failures there are significant clues
of software aging phenomena.
Summarizing, it is possible to state that:

• About 40% of failures are absolutely NOT due to aging phenomena;

¶Further information on these JVMs can be found at: http://www.kaffe.org/, http://wiki.eclipse.org/index.php/J9, and
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html, for Kaffe, J9, and JRockit, respectively

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

10 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

• There is a high probability that 15% of failures are due to aging phenomena;
• For the remaining 45% of failures, it is not possible to state anything with certainty: however,

by analyzing the reports, it has been possible to deduce that a part of these failures is probably
related to aging.

Therefore, results of this study indicate that software aging is not an irrelevant phenomenon in the
JVM, since it is responsible for a non-negligible percentage of failures. Moreover, further analyses
carried out on the JVM (presented in a previous work [35]), confirmed the presence of software
aging phenomena. Based on the outcome of such studies, this paper defines and experiments a
measurements-based methodology for carrying out aging analyses in Java software systems. It first
presents the methodology; then shows results of its application to a Java-based software system, and
finally discusses in detail the key findings about aging dynamics evolution inside the JVM.

3.3. JVM Monitoring

In order to analyze aging phenomena in Java-based systems, it should be possible to collect enough
information, expressed by proper parameters, in each of the involved layers. In particular, parameters at
application level are set by the experimenter (i.e., they are controllable parameters), whereas parameters
at OS level are collected by well-known and available tools (two well-know aging indicators are
collected, i.e., throughput loss and memory depletion). However, to gain insights about the particular
aging contribution of the intermediate layer, i.e., the JVM, a set of internal parameters needs to
be identified, and then monitored. To this aim, an ad-hoc infrastructure, named JVMMon, has been
developed. Unlike other systems conceived to collect failure data, JVMMon has been designed to
intercept each event related to changes in the state of the JVM, including errors and failures.
The proposed monitoring infrastructure allows on-line analysis of the JVM state evolution through
a three- steps process: i) a monitoring agent, developed by using the JVM Tool Interface (JVMTI)
(which stems from the Java Platform Profiling Architecture [36]) and Bytecode Instrumentation (BCI),
intercepts events generated inside the JVM and collects data about its state; ii) a monitoring daemon
processes this information and updates the state of the virtual machine; iii) a data collector stores
collected data in a database, allowing on-line and off-line analysis. Since JVMMon is built upon
JVMTI, it may be employed with all JSR-163-compliant virtual machines.
Data Sources:

Data are collected using the following information sources:
JVMTI events - Several events raised from the JVM are intercepted by implementing JVMTI callbacks.
Events intercepted by JVMMon are reported in Table I.
JVMTI functions - JVMTI callbacks use these functions in order to update the state of the JVM
component, which the raised event is related to. The functions used to determine the state of the Java
Virtual Machine are reported in Table II.
Java Objects (through BCI) - Java methods are instrumented in order to obtain further information
about the virtual machine.
Events raised by the JVM are useful, along with the JVMTI functions and with Java Objects, to track
the state evolution of the JVM. In fact, starting from this information sources, workload parameters
describing the state of each JVM subsystem are derived. These allow figuring out how the internal

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 11

Table I. VM-related events intercepted to collect data about JVM evolution.

Event Raised when Additional information supplied
Class Load/Prepare Generated when the class is first loaded (Load) or when Thread loading the class, java.lang.Class instance

the class is ready to be instanced in applications (Prepare) associated with the class

Compiled Method Generated when a method is JIT-Compiled and loaded (or Method being compiled and loaded/unloaded, compiled

Load/Unload moved*) into memory or unloaded from memory code size and absolute address where code is loaded

Exception Generated when an exception is detected by a java or Thread throwing the Exception, location where it was detected,
native method java.lang.Throwable instance describing the Exception

Exception Catch Generated whenever a thrown exception is caught Thread catching the Exception, location where it was
caught java.lang.Throwable instance describing the Exception

Monitor Contended Generated when a thread is attempting to enter (enters) a Thread attempting to enter (or entering) the monitor, instance

Enter/Entered of the Java monitor acquired by another thread monitor

Monitor Generated when a thread is entering (leaving) Object.wait() Thread entering (leaving) Object.wait(), instance of Object,

Wait/Waited waiting timeout (if applicable)

Object Free Generated when the Garbage Collector frees an object Tag** of the freed object

Thread Start/End Generated immediately before the run method is entered Thread starting (terminating)
(exited) for a Java Thread

VMStart Generated w hen the JNI subsystem of the JVM is started.
At this point the VM is not yet fully functional.

VMInit Generated when JVM inizialization has completed. Thread executing the public static void main method.

VMDeath Generated w hen the VM is terminated. No more events

will be generated.
*When a JIT-compiled method is moved a Compiled Method Unload Event is generated, followed by a Compiled Method Load event
**Object Free events are generated only for tagged object. A tag is a 64-bit integer variable connectable to each object in JVM Heap

JVM components are evolving.

Table II. Functions Employed to retrieve data about Java Virtual Machine state

Function Retrieved Information

GetThreadState Bitmask describing the state of a Java Thread
GetThreadInfo Thread priority and context class loader
GetOwnedMonitorInfo Monitor owned by a thread
GetStackTrace Thread’s stack trace
IterateOverHeap Information about organization of object in Heap

Area (through an Heap Iteration callback function)
GetClassStatus Status of a Class
GetClassModifiers Access flags for a Class Instance
GetObjectSize Object size in byte
GetObjectHashcode Unique identifier associated with the object

Monitoring the state of the JVM: The state of the JVM may be defined as the union of the states
of its components. Some of these components, namely the JIT compilers, the Interpreter and the OS
Abstraction Layer, may be regarded as being stateless, whereas the state of the Class Loader, the
Thread Management Unit, and the Memory Management Unit is defined as follows:

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

12 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Class Loader - Its state is defined by the list of classes loaded in the permanent generation. A Java Class
could be loaded, prepared (the code is available in method area), initialized, unloaded
or in an erroneous state, if there was an error during preparation or initialization.
Thread Management Unit - The state of this component is characterized by the state of each Java
thread. Internal VM threads are not managed by this component. In order to characterize the state of
each Java Thread, JVMMon keeps track of the following information:
- State: current state of the thread (i.e., Runnable, Waiting, Blocked, Suspended, etc.)
- Stack trace: stack trace of the thread.
- Owned monitors: a list of monitors owned by a thread. According to the Java Language Specifications
(JLS) [33], only one thread at a time may own a monitor.
- Contended monitor and Waiting monitor: the monitor on which the thread is currently blocked.
- Scheduling timestamps: a timestamp is taken each time a thread is scheduled on an available processor
and each time the same thread yields the processor to another thread. This allows collecting scheduling
information also in multiprocessor systems.
Memory Management Unit: - Since the aim is to monitor the integrity of data structures on which
the reference handler and the garbage collector operate, the heap of the JVM is defined as the set of
objects allocated in the Java Heap since the VM has been started. JVMMon has been implemented to
distinguish the amount of memory committed to the application from the space actually allocated into
the heap of the JVM, thus allowing to obtain resource usage information both at the application and at
the JVM layer. This will be useful to isolate the layer in which prospective aging trends are introduced.
Monitoring JVM workload:

Since it is impossible to understand how aging phenomena evolve inside the JVM without
characterizing its workload, JVMMon is conceived to also monitor JVM workload parameters. This
task is accomplished by using i) JVMTI functions, ii) Bytecode Injection, and iii) performance counters
accessible through the jstat‖ interface.
A number of 30 workload parameters (reported in Table III) were monitored, in order to describe the
behavior of each relevant part of the JVM architecture. These parameters are related to the components
of the JVM described in Section 3.1.
JVMMon Architecture: Figure 3 shows the main components of JVMMon and their interconnections.
The JVMTI agent on the Monitored JVM collects data about JVM state, handling events triggered
by the JVM itself. This information is then sent to the Local Monitor Daemon which computes
the state of the monitored JVM. These two components are deployed on the same host and
communicate through shared memory. Each event raised by the monitored JVM is also logged on a
local file. Moreover, the JVMTI agent sends a heartbeat message at a fixed rate in order to make the
Local Monitor Daemon aware of JVM crash/hang failures.
The Local Monitor Daemon notifies the Data Collector about JVM failures and relevant state changes.
These events are then written in the Event Database. Each time the Data Collector is
notified, a snapshot of JVM state is retrieved and stored in the State Snapshots Database.
JVMTI Agent
This component is a shared library loaded at JVM startup. It is in charge of:

‖The jstat tool displays performance statistics for an instrumented HotSpot JVM

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 13

Table III. JVM workload parameters captured by JVMMon
COMPONENT PARAMETER DESCRIPTION U.M.

Runtime Unit
MET INV Method Invocation Rate methods / min
OBJ ALL Object Allocation Rate objects / min
ARR ALL Array Allocation Rate arrays / min

Class Loader

CLS INIT Time spent in class identification ms
CLS VER Time spent in class verification ms
CLS LOAD Time spent in class loading ms
INIT CLS Number of initialized classes classes / min

Memory Management

SM Object size mean bytes
SV Object size variance bytes
COLLECTOR0 INV Number of young generation invocations/min

collector (copying) invocations
COLLECTOR0 TIME Time spent during ms

young generation collection
COLL0 TIME PER INV Young collection duration ms
COLLECTOR1 INV Number of tenured generation invocations/min

collector (compacting) invocations
COLLECTOR1 TIME Time spent during ms

tenured generation collection
COLL1 TIME PER INV Tenured collection duration ms
SAFEPOINTS Number of safepoints(*) reached Safepoints/min

Jit Compiler

CI THR0 EVENTS Compiler thread 0 events Events/min
CI THR0 TIME Compiler thread 0 time ms
CI NATIVE COMPILES Native JIT-compilations Events/min
CI NATIVE TIME Native JIT-compilation time ms
CI OSR COMPILES On-Stack-Replacement (OSR) Events/min

(OSR) JIT-compilations
CI OSR TIME OSR JIT-compilations time ms
CI STD COMPILES Standard JIT-compilations Events/min
CI STD TIME Standard JIT-compilation time ms
CI TIME PER COMP Time per compilation ms

Thread Management Unit

TE Threading Events Events/min
WM Waiters (threads waiting on a mutex) # of threads

mean
WV Waiters (threads waiting on a mutex) # of threads

variance
NWM Notify waiters (threads waiting on # of threads

a condition variable) mean
NWV Notify waiters (threads waiting on # of threads

a condition variable) variance
*The Hotspot JVM uses a safepointing mechanism to halt program execution only when the locations of all objects are
known. When a safepoint is reached, each thread stops its execution, enters the VM and stores its current Java Stack Pointer.

1) Handling events generated by the JVM, implementing JVMTI callback functions.
2) Retrieving data about JVM state through both JVMTI API and BCI.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

14 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 3. JVMMon Architecture

3) Sending retrieved data to the Local Monitor Daemon.
4) Storing data about events in the Local Event Log.
5) Storing resource usage data in the Resource Usage Log.
6) Storing workload information in the Workload parameters Log.
Local Monitor Daemon
This component runs on a separate, non-instrumented, JVM. It communicates with the monitored
JVM through a shared memory and sends notifications of failures or relevant state changes to the
Data Collector. The VM state calculator sub-component is responsible for computing the
current state of the JVM; the State Change Notify MBeans sub-component copes with the
notifications towards the Data Collector.
The VM Failure Detector sub-component is in charge of detecting JVM failures. The detection
is performed at three different layers: i) Process Layer: JVM crashes (i.e., a SIGSEGV failure) are
detected by checking for its PID; ii) Local log Layer: Hang failures (i.e., a deadlock between Java or
VM threads) are detected by checking whether events are being written on the local log or not; iii)
Communication Layer: the failure detector listens on a socket for heartbeat messages and checks if the
monitored VM is still able to communicate.
Data Collector
This component collects data from multiple instrumented Virtual Machines. A connection is

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 15

established with each Local Monitor Daemon. Event listeners handle state change
notifications whereas the Snapshot retriever performs state snapshot retrieval. Data is then
stored in the Event Database and in the State Snapshot Database.

4. Aging Analysis Steps

When an OTS item providing a complete virtualization of the execution environment, like the JVM,
is employed, it may happen that aging trends are not detected at all, since they develop at the JVM
level, and are not visible at the OS level. For instance, since the JVM pre-allocates system memory
required for its heap area, there is no chance at the OS level to distinguish how much of such heap area
is actually used by Java objects.
Moreover, even isolating the JVM aging contribution, its relationship with JVM-specific workload
parameters, as those in Table III, should also be taken into account. In fact, such parameters describe
the usage of the JVM subsystems, hence providing insights about potential sources of aging within the
JVM. However, the number of such parameters can easily reach an order of magnitude that makes it
difficult to evaluate the influence of each parameter on the measured aging trends. Therefore, when
targeting software aging analysis in Java-based systems, two challenging questions arise:

• Is it possible to isolate the contribution of each layer to the overall aging trends?
• Is there a way to select only those workload parameters that are relevant to the development of

aging phenomena?

As for the first question, it has been previously argued that monitoring system resources only at the OS
layer does not allow to gain insights about the behavior of each layer. Thus, an approach where these
resources are monitored at each layer is preferable. In this way, given a particular resource (e.g., used
memory), it will be possible to compare its usage at different layers, and locate the layer(s) in which
aging phenomena are introduced.
As for the second question, it is important to address the selection of the smallest set of workload
parameters that have the greatest influence on aging phenomena. This problem, also known as
dimension reduction or feature selection, is one of the most prevalent topics in the machine learning
and pattern recognition community. In the approach adopted in this paper, Principal Component
Analysis [37] is employed, which is a technique to transform original data into a set of (first-order)
uncorrelated data, and then statistical Null Hypothesis testing to select only those workload parameters
that have a real influence on aging phenomena. Finally, Partial Linear Regression is employed in order
to estimate relationships between workload and aging trends. The choice of linear models is reasonable
for aging phenomena, since each experiment is conducted with a constant workload and invariable
conditions for a long time, with the goal of activating repeatedly aging bugs and depleting resources
progressively, i.e., proportionally to time. Several studies [13,11,20] have shown that linear models are
able of describing such relationships in a reliable way.
To address these issues, the approach presented here is characterized by three phases, described in the
next sections:

1. Design and Realization of Experiments, where several long-running experiments are planned
and executed under different workload levels, in order to stress the system and observe its

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

16 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

behavior. In this phase, data about system resource usage and about workload parameters at
different layers are collected.

2. Workload Characterization: in this phase, workload data are analyzed in order to characterize
the system behavior as a function of workload level imposed during the experiments.

3. Software Aging Analysis, in which aging trends at different layers and their relationships with
relevant workload parameters are evaluated.

4.1. Design of Experiments

The first step of the conducted aging analysis is the experimental design. The goal of this step is to
define and to execute the list of experiments needed to evaluate aging dynamics, and their relationship
with workload parameters. Considering the Design of Experiments (DOE) approach [38, 39], the
main points of this phase are the definition of application-level load that will stress the system, and
the definition of what information has to be collected during experiments. The latter concerns both
workload parameters indicating the usage of the observed layer, and system resource usage indicating
potential aging trends development. In the following, details of this step are provided.
The Design of Experiments (DOE) is a systematic approach to investigate systems or processes. A
series of structured measurement experiments are designed, in which planned changes are made to one
or more input factors of a process or system. The effects of these changes on one or more response
variables are then assessed. For the purpose of the analyses conducted in this paper, a limited form of
DoE is considered, in which the number of experiments is determined by one input factor, representing
the application-level load.
The first step in planning such experiments (also called factorial experiments) is to formulate a clear
statement of the objectives of the experimental campaign; the second step is concerned with the choice
of response variables; the third step is to identify the set of all factors that can potentially affect the
value of response variables; a particular value of a factor is usually called level. A factor is said to
be controllable if its level can be set by the experimenter, whereas the levels of an uncontrollable
or observable factor cannot be set, but only observed. Given m controllable factors, an m-tuple of
assignments of a level to each of those factors is called a treatment. The number of treatments required
to estimate the effects of factors on response variables is determined by the number of controllable
factors and the number of levels assigned to each factor. Given m factors and q levels, the number of
required treatments isN = qm. A response variable y can then be written, using several kinds of model.
The most common models are the effects model and the regression model. In particular, assuming a
two-factor factorial experiment, the response variable can be written, according to an effects model, as:

yi,j,p = µ+ αi + δj + (αδ)ij + εi,j,p for

 i = 1, 2, . . . , a;
j = 1, 2, . . . , b;
p = 1, 2, . . . , c.

(1)

where µ is the overall mean effect, αi is the effect of the ith level of the first factor (which has a
levels), δj is the effect of the jth level of the second factor (which has b levels), (αδ)ij is the effect of
the interaction between αi and δj ; εi,j,p is the random error term referred to the pth observation (out
of c observations). The εi,j,p variables are typically assumed to be mutually independent, normally
distributed random variables with zero means and common variance σ2 (as also assumed in the
following experiments). Given Equation 1 describing the effects model, the corresponding regression

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 17

Figure 4. Design of Experiments for Software Aging Analysis in OTS-based systems

model representation of the factorial experiment is the following:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε (2)

that is a linear combination of the factors x1, x2 and their products, where:

• the parameter β0 is called the intercept parameter and does not describe the effect of any factor
onto the response variable;
• the parameters βi are the main effect parameters and describe the effect of each factor on the

response variable;
• the parameter β12 is the interaction parameter and describes the effect of the combination of the

two factors on the response variable;
• the ε term is the random variable error term that captures the effect of all uncontrollable

parameters.

This representation, whose parameters are derived by the least squares method, is particularly useful
when all the factors in the experiment are quantitative. Since the presented analysis deals with
quantitative factors, the regression model representation is adopted in the following.
Figure 4 depicts the approach to employ the DOE technique for software aging analysis. Among the
several layers in which a Java-based software system may be divided, a particular layer (lt) is chosen
as the target of the analysis. The goal of the conducted experiments is to analyze the effects of changes
in the workload parameters of the target layer on software aging trends. The latter, measured in terms
of memory depletion and performance degradation, will be the response variables.
As shown in Figure 4, application-level workload parameters can be controlled by the experimenter,
in order to stress the whole system with synthetic workloads, whereas component-level workload

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

18 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

parameters may only be observed. In this study, a series of experiments Exp#1 . . . Exp#N will be
conducted, in which levels of the m controllable parameters W c

1 , . . . ,W
c
m are set to ensure that each

experiment will be executed with a different workload (i.e., with a different combination of levels).
For each experiment, the following data will be collected: i) resource usage data for layers l1, . . . , lr,
needed for aging trends estimation; they are denoted, in Figure 4, as Y lj1 . . . Y

lj
w , for a given layer lj ,

andw resource usage indicators; ii) values of observable workload parametersW obs
1 , . . . ,W obs

s related
to the observed target layer lt.
Most of the employed factors are uncontrollable. We are therefore more interested in the ε term of the
Expression 1 and 2 rather than in the effects of controllable parameters. Standard statistical analysis
techniques, such as Analysis of Variance (ANOVA), which analyze only the effect of controllable factors
on response variables (adopting the model of Equation 1), cannot be employed. Given this scenario, for
a fixed number of experiments, the number of controllable factors has been reduced to only 1 factor,
incrementing at the same time the number of levels for it, and focusing the attention on the effects of
uncontrollable factors through subsequent regression analyses. The experiments will then be performed
in the following way:

1. Choose a controllable factor to drive the synthetic workload applied for each experiment;
2. Select the target layer and its workload parameters that have to be monitored, grouped by the

particular component or sub-system they belong to;
3. Define the number of levels q to assign to the above mentioned controllable factor;
4. Choose an interval to sample resource usage and workload information during each experiment;
5. Run the N = q experiments, collecting resource usage information for each layer, and workload

information for the target layer.

4.2. Workload Characterization

Once data have been collected, the next step of the methodology is concerned with workload
characterization. Specifically, the purpose of this phase is to identify which workload parameters
are more relevant for the subsequent aging analysis. Parameters evolution is first observed within
each experiment, then as function of the application-level workload. Finally, redundant information
is removed: the output is a minimal set of uncorrelated variables describing workload evolution, to be
related with software aging in the last step. The specific goals of the workload characterization are the
following:

• Intra-Experiment Characterization: perform a statistical characterization of the behavior of the
target layer for each experiment. For each workload parameter, a cluster analysis is performed to
identify the different workload states that can be visited during the experiment. Then, mean and
trend of each workload parameter in each identified cluster (i.e., workload state) are computed.
• Inter-Experiment Characterization: identify variations among experiments by relating synthetic

data extracted from each experiment with the controllable workload parameter W c.
• Principal Component Analysis: reduce the complexity of the analysis by minimizing, through

the Principal Component Analysis technique, the number of variables to consider when assessing
the relationships with aging trends.

The three phases, reported in the conceptual diagram of Figure 5, are described in the following.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 19

Figure 5. Workload characterization phases

Intra-Experiment Characterization
The first step of the conducted analysis deals with the detection of clusters, in order to identify
the different workload states traversed by the observed layer during the experiment. The workload
parameters W obs

1 , . . . ,W obs
s are grouped according to the component they belong to; for each of these

groups a cluster analysis is performed by using the Hartigan’s k-means clustering algorithm ∗∗.
If the variables for clustering are not expressed in homogeneous units, a normalization must be applied.
In the developed methodology, the following normalization method is used:

x′i =
xi −mini{xi}

maxi{xi} −mini{xi}
(3)

where x′i is the normalized value of xi. Through this transformation, all time series W obs
i (t) are

transformed into normalized time series W obs′

i (t) whose values range between 0 and 1. In order to
augment the effectiveness of cluster analysis, outliers in data are eliminated by removing samples
whose (euclidean) distance from the mean value of the time series was higher than 2 times its standard
deviation.
The clustering algorithm starts by assigning an initial value to each centroid. Then, it iteratively updates
centroids and assigns points in normalized data series to the closest centroid until centroids no longer
move. The choice of the number of clusters is a crucial point in the workload characterization for
a given component C, since it defines the number of states traversed by the component during the
experiment. To this aim, an approach based on frequency count [40] has been used. Given a component
C in the target layer lt, whose related workload parameters are W obs,C

1 , . . . ,W obs,C
g , the range of

∗∗The Hartigan’s algorithm is a well-known algorithm for cluster analysis (“Clustering Algorithms, John Wiley and Sons, 1975”)

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

20 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 6. An example of the frequency count approach, for a component C with two parameters W obs,C
i , W obs,C

j

.

values [wobs,Cimin
;wobs,Cimax

] is considered for each parameter W obs,C
i , that is then divided into 100 equally

sized intervals (the choice of 100 intervals is tied to the chosen clustering algorithm). For each interval,
the number of wobs,Ci samples falling into that interval is counted; in this way the number of sample
occurrences is described as a function of the interval. In order to infer the number of clusters, the
number NCWi

of relative peaks in the frequency count function is first calculated, for each workload
parameter. Then, the number of cluster is determined as:

NC = max{NCW1
, NCW2

, . . . , NCWg
} (4)

An example of the frequency count process is described in Figure 6.
It is worth noting that the number of clusters affects the complexity of subsequent analyses, since

it represents the number of workload states and it determines the number of data series to build. To
reduce such a complexity, this number could be reduced by merging clusters, e.g., by choosing the
two clusters that result in the smallest increase in total SSE (sum of the squared error), or by merging
clusters with the closest centroids. The choice of how many clusters to merge depends on the desired
trade-off between the complexity of the analysis and its accuracy, that is related to the accuracy of
clustering. In this analysis, no clusters reduction was applied.
Once the cluster analysis has been carried out, the intra-experiment characterization is completed by
calculating the expected values for each workload parameter and for each cluster, and by estimating
the potential linear trends in time series. This step is carried out in order to have a synthetic measure of
the average behavior of a workload parameter in each workload state, and a measure of how it evolves
during successive visits in that state, for a given experiment. In the next step, these measures act as
independent variables in the inter-experiment characterization, where their evolution across different
experiments is observed.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 21

Since the cluster analysis splits the original time series into several non contiguous intervals, each one
representing a different visit in a particular workload state, an approach for trend estimation, which is
similar to the one adopted in time series with seasonal patterns, has been adopted. In particular, the
trend for each interval is first estimated, and then a weighted average of the trend estimated for each
interval is computed.
Assuming that the cluster analysis revealed the presence of V clusters for the component C, the
intra-experiment characterization will therefore calculate, for each workload parameter W obs,C

i , the
expected value:

E[W obs,C
i]j =

1
n

n∑
f=1

wobs,Ci,f with f ∈ jth Cluster, for j = 1 . . . V. (5)

where wobs,Ci,f denotes the number of samples of the corresponding workload parameter in the interval
f , with n denoting the number of intervals. Regarding the linear trend, given a set of r non contiguous
intervals, and called m1, . . . ,mr the number of data samples in each one of these intervals, the linear
trend in data, for the jth cluster, may be expressed as:

T [W obs,C
i]j =

1
n

r∑
f=1

mf TREND(W obs,C
i)f (6)

where TREND is the autoregressive function employed to calculate the trend in a single interval, and
mf denotes the number of data samples in each interval f . To assess if a trend exists in f , statistical
hypothesis testing is applied. Null hypothesis testing is a common procedure in which a first hypothesis,
called the null hypothesis and denoted withH0, is tested against an alternative hypothesis, denoted with
H1. The null hypothesis usually refers to a condition in which a particular treatment does not have any
effect on the output variable. In this case, the null hypothesis of no trend in data is tested against the
alternative hypothesis stating the presence of a linear trend in data, using the student’s t statistic.
The student’s t test is a hypothesis test in which the test statistic (i.e., a random variable that is function
of the random samples, and such that its distribution is known) follows a student’s t distribution if
the null hypothesis is supported. The null hypothesis has to be rejected when the calculated value for
the statistic falls into the tails of the t distribution. The border between the center and the tail of the
distribution is set up according to the chosen significance level: the lower is the confidence level, the
higher is the probability of being in the tail of the distribution.
Thus, the value of TREND for an interval f is 0 in the case that the null hypothesis of no trend in data
cannot be rejected, as it often happens when dealing with intervals with a low number of data sample
(i.e., intervals related to short visits in a particular workload state).
More in detail, in order to verify the presence of a trend, the test considers the linear regression of the
dependent variable Y on the independent one X (that is time in trend analysis), namely Y = a+ bX .
If a trend exists, b should be different from 0. The test is based on the consideration that the statistic t =
r(
√
n− 2)/

√
1− r2 = (b−β)/Sb follows a student’s t distribution with n−2 degrees of freedom [41],

where:

• n is the sample size;
• r is the Pearson correlation coefficient;
• b is the regression coefficient;

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

22 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 7. The Intra-Experiment Characterization Process, with n components and s workload parameters

• β is the regression coefficient value hypothesized in H0, which is β = 0 in this case;
• Sb is the standard error of the coefficient estimate. The latter is equal to the standard deviation

of residuals, s, over the square root of the sums of squares of the independent variable, SSx:
s/
√
SSx.

The hypothesis H0 : β = 0 is tested against the hypothesis H1 : β 6= 0 at the chosen level of
significance α (that is α = 0.05 in this case). The test is based on the idea that if the null hypothesis is
supported (i.e.,H0 : β = 0, that means no trend in data) the statistic t follows a student’s t distribution;
whereas if the regression coefficient b is systematically different from 0 (i.e., H1 : β 6= 0 supported),
than the t value progressively diverges from the center of the distribution. When the t value becomes
greater than the critical value tα/2 (since a two-tailed test is considered), than this means that the
difference between b and β = 0 is significant, and the hypothesis that there is no trend in data is
rejected.
The sequence of operations needed to perform the intra-experiment characterization is reported in
Figure 7: once workload parameters are grouped according to the layer’s components, a cluster analysis
is performed on each of these groups; after that, the expected values and the linear trend in data are
calculated for each cluster found in the previous phase, by using Equation 5, Equation 6, and the
described student’s t test.
Inter-Experiment Characterization

This phase aims at analyzing the impact of workload parameters on aging trends, by building new data
series from synthetic data obtained in the previous phase. By this way, it will be possible to observe
the evolution of the workload parameters W obs

1 , . . . ,W obs
s as a function of the controllable workload

parameter W c, which regulates the synthetic workload imposed on the overall system.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 23

For instance, in Java-based systems, where the target layer is supposed to be the Java Virtual Machine,
a typical workload parameter to be monitored is the Object Allocation Frequency, i.e., the number of
objects inserted into the Java Heap in a given unit of time. Assuming that no clusters are detected, the
intra-experiment analysis returns, for each experiment, the average object allocation frequency and its
trend. The inter-experiment characterization, in turn, builds two new data series describing the average
object allocation rate and its trend as a function of the synthetic workload imposed on the application,
thus allowing to gain some insights about the JVM’s heap behavior. Assuming s observable parameters
and V clusters, the number of data series constructed in this phase is s∗V ∗2. Indeed, it is necessary to
build a data series not only for each observable workload parameter, but also for each workload state
visited by this parameter. Since cluster analysis is performed for each experiment, it may happen that
two different experiments reveal a different number of clusters. This situation simply indicates that
one or more workload states have not been visited during some experiments. In other words, it may
happen that data series built during the inter-experiment phases have some missing points. Moreover,
if one or more workload states are visited only in a few experiments, they may be treated as outliers
and excluded from subsequent analysis.
Principal Component Analysis
It is very unlikely that data series returned by the inter-experiment characterization are uncorrelated.
Correlation among data may distort the analysis of the effects of workload parameters on aging trend:
indeed a higher weight would be given to correlated variables, thus actually amplifying the effects of
such variables on aging trends.
In order to partially remove correlation among data (first-order correlation), Principal Component
Analysis (PCA) [37] is applied, which transforms original data into a set of new uncorrelated data.
As for cluster analysis, data have to be normalized first, on order to have all data series with the same
weight.
PCA computes new variables, called Principal Components, which are linear combination of the
original variables, such that the first-order correlation among all principal components is removed. PCA
transformsm variablesX1, X2, . . . , Xm intom principal components PC1, PC2, . . . , PCm such that:

PCi =
m∑
j=1

aijXj with 1 ≤ i ≤ m (7)

The values of the aij coefficients are in the range [−1; 1]. This transformation has the following
properties:
i) V ar[PC1] > V ar[PC2] > . . . > V ar[PCm], which means that PC1 contains the most of
information and PCm the least;
ii) Cov(PCi, PCj) = 0 ∀i 6= j this means that there is no information overlap among the
principal components. Note that the total variance in the data remains the same before and after the
transformation, i.e.,

∑m
i=1 V ar[Xi] =

∑m
i=1 V ar[PCi].

Principal components are decreasingly ordered according to their variance. It is therefore possible to
remove the last components, which have the lowest variance, thus reducing the number of variables
to take into account for assessing the relationships between workload and aging trends. Removing the
last components guarantees that only a minimum percentage of information contained in the original
data is thrown away. Typically, a very small percentage of original variables (e.g., 10%) are able to
explain from 85% to 90% of the original variance. Therefore, for each component in the observed
layer, a subset z of the calculated m principal components is selected, being z � m. Each of these

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

24 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 8. Software Aging Analysis process

components is expressed as in the Equation 7.
Thus, principal components are linear combinations of parameters; parameters contribute to each PC
through the aij coefficients, which express the weight that each workload parameter has in the principal
component(s), where it appears. A weight that is close to 1 (or -1) means that the workload parameter
has a very high impact on the principal component, whereas a weight that is close to 0 means that the
workload parameter has a negligible impact on the principal component. The software aging analysis
will select the principal components that have the greatest influence on measured aging trends; after
that, analyzing the composition of each principal component, it will be possible to identify workload
parameters that are more relevant to aging trends.

4.3. Software Aging Analysis

The purpose of the last step is to detect and estimate aging trends in resource usage data, and then to
analyze relationship between such trends, if any, and the workload characterized in the previous step.
Variables describing the resource usage, represented by Y lij in Figure 4, are monitored in each
experiment in order to collect resource usage data. They act as response variables of the aging trend
analysis over time, and they are measured in terms of memory depletion and performance degradation.
Then, the relationships between detected trends and workload parameters are analyzed.

The process to accomplish this step is depicted in Figure 8. The first phase deals with the detection
and the estimation of aging trends in resource data, collected during the experimental campaign. The
second phase deals with the assessment of the relationship between the estimated aging, if any, and
component-layer workload parameters.
To this aim, the following steps are carried out: i) Hypothesis testing, to assess the presence of trend in

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 25

data, ii) Linear regression, to estimate this trend, if present, and iii) Hypothesis testing on principal
components and multiple regression, for the assessment of the aging-workload relationship.

The same test as the one adopted for trend detection in workload data series (see Section 4.2) has
been used for assessing the presence of aging trends in resource usage data: namely, the student’s test.
If the presence of aging trend in data is confirmed by this test, linear regression is applied to estimate
such a trend. Linear regression is a method that models the relationship between a dependent variable
Y , independent variables Xi, i = 1, . . . , n, and a random term ε. Linear regression has many practical
uses. Commonly, it is used for prediction, i.e., to find the best model fitting an observed data set of Y
and X values in order to predict value of Y given a new value of X . In this case, the Xi variables are
called predictor variables. Linear regression is also used to quantify which variables out of a given set
Xi, i = 1, . . . , n, is more or less related to the response variable Y , i.e., which of them better “explain”
the variation of Y . In such a case, the Xi variables are also referred to as explanatory variables.
The linear regression model can be written as Y = β0 + β1X1 + β2X2 + . . . βnXn + ε, where
β0 is the intercept (“constant” term), the βi are the respective parameters of independent variables,
and n is the number of parameters to be estimated in the linear regression. The ε term represents the
unpredicted or unexplained variation in the response variable; it is conventionally called the “error”,
regardless of whether it is really a measurement error or not, and it is assumed to be independent of
the Xi variables. As far as resource usage data are concerned, only the time is taken into account
as independent variable, thus the regression model can be reduced to y = a + bx + ε. In order to
carry out the parameters estimation, least squares analysis is employed. Least squares analysis is a
technique that allows finding the curve that best fits a given set of data, where “best” means the curve
that minimizes the sum of the squares of the y-coordinate deviations from it.
Aging trends are estimated for each monitored resource, for each layer in the system, and for each
cluster detected in the intra-experiment analysis. It is important to repeat parameters estimation for
each cluster since, given that each cluster corresponds to a different workload state, there is a high
probability that software aging phenomena develop in a different way too.

Once the aging trends have been calculated, linear regression (in this case multiple regression)
is employed again, in order to assess the relationships between aging trends and the principal
workload components built in the workload characterization step. The parameters of regression model,
determined by the least square analysis, are validated using the student’s t test. In particular, for the

parameter βj , the test statistic has the following form: tj = βj/SE(βj) = βj/
√
s2(X ′X)−1

jj , where SE
is the standard error of the least-square estimate, computed as the square root of the diagonal elements
of the estimated variance-covariance matrix (i.e., s2(X ′X)−1

jj).
Partial regression parameters whose t-values do not fall into the tails of the distribution will be
discarded: indeed, if the null hypothesis cannot be rejected, there is no effect of the workload principal
component on the aging trend. For instance, suppose that in the regression model described by
Y = β0 +

∑n
i=1 βiPCi, only the β1 coefficient is significant at 95% confidence level; it means

that only PC1 contributes to aging (i.e., to the Y variable). After discarding invalid parameters, the
regression model is solved again with the remaining parameters, until all parameters show a t-value
falling into the tails of the t distribution.
Finally, once the effect of PCs on aging trends has been assessed, the impact of original workload
components can be evaluated by analyzing the structure of each principal component. Since each
principal component has the form PCi =

∑m
j=1 aijXj , the goal is to express Xj variables as a

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

26 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

function of PCi components. In general, this is not possible, since the number of principal components
z is usually far less than the number of original workload parameters s. To perform a meaningful
estimation of the relationships between the original workload parameters and aging trends, given s
workload parameters and z principal components, it is possible to proceed as follows:

1. Delete, if possible, s-z variables having a little influence on the principal components, i.e., those
variables whose coefficient is relatively close to 0 for each principal component. In this way,
workload parameters can be expressed as a function of principal components.

2. For each principal component, consider only the workload parameters with the highest
coefficient. Even if it will not be possible to accurately express the relationships between
workload and aging trends, an overestimation of such relationships can be obtained.
Overestimating the effects of workload on aging trends will lead to predict a shorter time for
resources exhaustion, which is always better than predicting a time longer than the actual TTE.

5. Case Study

The presented methodology is used to characterize software aging dynamics in Java-based software
systems, isolating the contribution of the JVM layer to the overall aging trends and estimating the
influence of the workload on aging. In the following section, the methodology is applied to a case
study, namely a Java-based system constituted by the Apache JAMES mail server, the Sun Hotspot
JVM, and the Linux Operating System. Aging trends are estimated by evaluating two well-known
software aging indicators, i.e., throughput loss and memory depletion.

5.1. Experimental Setup

JVMMon has been employed to collect resource usage and system activity data from a workstation
running JAMES mail server on a Sun Hotspot JVM v.1.5.0 09. The workstation was a dual-Xeon
server equipped with 5GB RAM and running Linux OS (kernel v.2.6.16). The JVM was started with
the typical server configuration†† and a maximum heap size of 512MB; it was configured to run
serial, stop-the-world collectors both on the young and on the tenured generation. No other application
was competing for system resources with the JVM: the server workstation was started with just minimal
system services. A mail server has been chosen as the benchmark application for the analysis, since
it represents an important class of long running server applications usually stressed by significant
workloads. The server was stressed by using a load generator, which acts as an email-client, sending
and receiving mails at a constant pace for the whole experiment. The load generator allows to control
the imposed workload by specifying the number of mails per minute and their size. In the experimental
campaign, the number of mails per minute is chosen as the controllable workload parameter, whereas
the size of the e-mails is kept constant among all experiments. Figure 9 depicts a single experiment
scenario. JVMMon collects the greatest part of information required for the analysis. Only data about

††The Sun Hotspot VM has been tuned to maximize peak operating speed. It is intended for long-running server applications,
for which having the fastest operating speed is generally more important than having the fastest start-up time

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 27

Figure 9. Experimental setup for data collection

server’s throughput are extrapolated from logs produced by the load generator.
Moreover, JVMMon has been extensively tested in order to guarantee that it is aging-bug free, thus
ensuring that the monitoring agent does not introduce any aging phenomenon or overdraws existing
ones. In order to choose a proper range for the controllable workload parameter, the capacity of the mail
server has been determined first, by identifying the highest workload (in terms of emails per minute) it
is able to sustain without refusing any connection. The estimated limit has been of about 1550 mails
per minute (i.e., the SMTP server is able to deliver up to 1550 mails/min without errors). A set of 33
experiments has been performed, with the number of mails per minute ranging from 330 mails/min to
1530 mails/min, increasing by 40 mails/min per experiment. From this set, four experiments (namely
the experiment number 1,2, 8 and 9) have been discarded, which yield non-analyzable results, getting
to a final set of 29 experiments (reported in Table IV). These experiments were discarded because
the system failed before the established experimental time for causes not due to aging (i.e., for loss
of power). The lower bound of 330 mails/min is because it has been observed that the experiments
performed under that threshold, no significant work by the garbage collector has been observed, as
well as by the JVM. Hence those experiments were not considered.

Table IV reports a summary of these experiments, including the throughput achieved in the first 4
hours of execution. The throughput is measured by considering the number of (K)Bytes processed by
both the SMTP and POP3 server in each minute. The value reported in Table IV can be assumed as the
throughput achieved by the mail server in “Normal operation” mode, when the throughput loss due to
aging is not yet noticeable. Indeed, aging manifests its effect only after a long period; in the conducted
experiments, it has been observed that in the first 4 hours of execution the throughput loss is not yet
noticeable. Hence the throughput value of the first 4 hours has been assumed as the throughput in a

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

28 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Table IV. Experiment Summary.

Exp WKL EXEC NORMAL OPERATION
(mail/min) TIME SMTP POP3

(min) (KB/min) (KB/min)

3 330 6001,19 11105 11481
4 370 6002,05 12430 12857
5 410 6000,79 13808 14306
6 450 6001,61 14885 15396
7 490 6001,75 15913 16450
10 610 6001,52 19602 20301
11 650 6001,47 20789 21525
12 690 6001,73 21803 22562
13 730 6002,07 24042 24882
14 770 6002,38 24980 25846
15 810 6001,78 26050 26967
16 850 6001,86 27082 28037
17 890 6002,35 28736 29746
18 930 6002,42 29656 30704
19 970 6001,98 30698 31779

Exp WKL EXEC NORMAL OPERATION
(mail/min) TIME SMTP POP3

(min) (KB/min) (KB/min)

20 1010 6002,51 31855 32998
21 1050 6002,72 33086 34258
22 1090 5469,67 33932 35134
23 1130 5467,69 34968 36179
24 1170 5464,97 35702 36998
25 1210 5463,97 36340 37621
26 1250 5460,86 37.231 38522
27 1290 6002,51 36527 37876
28 1330 6002,89 38742 39994
29 1370 6002,52 39334 40718
30 1410 6001,98 39346 40778
31 1450 6003,02 39726 41132
32 1490 6002,97 42658 43949
33 1530 6002,75 40567 42124

Normal operation mode.
Each experiment runs for 6000 minutes (i.e., 100 hours), and one sample is collected each minute.
Fixing the sample collection interval to 1 minute allows capturing dynamics in resource usage and
workload parameters that have a relatively small duration; on the other hand, the chosen interval
is large enough to avoid noise due to transient phenomena like garbage collections, which occur
several times per minute. As for the duration of the experiments, a period of 6000 minutes has been
preliminarily observed as sufficient to reveal aging phenomena manifestation. Clearly, a longer period
would yield even more accurate results, but 6000 minutes is a good trade-off between the ability to
observe significant aging trends and the cost of lab resources usage.

5.2. Workload Characterization

This section discusses the characterization of workload applied to the JVM, by considering the
parameters shown in Table III. Thus, the following subsections present and discuss the relevant trends
observed for workload parameters. As already discussed, such results describe the behavior of the
JVM internal components across the experiments; the trends are then related to the observed aging, in
order to figure out which one is relevant from the aging point of view. A separate characterization is
performed for each JVM component.
Class Loader
Class loader activity is mainly focused in the startup phase of the JVM, in which the greatest part
of classes required by the application is loaded. Since the workload applied for each experiment is
constant and rather static, it is possible to expect little activity in this component. This is confirmed by
the inter-experiment characterization of classloader-related workload parameters. On average, during
100 hours of execution, less than 1 millisecond is spent in classloading activity. In particular, no class

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 29

Figure 10. A - Average number of JIT compilation events per minute for each experiments; B - Average time per minute spent
during JIT compilation for each experiment; C - Average time per JIT compilation for each experiment

loader activity was observed for 17 out of 29 experiments (58,62%). For the remaining 12 experiments,
the null hypothesis of no trend in data cannot be rejected at a significance level of α = 0.01‡‡ and
α = 0.05. Given this scenario, it is possible to argue that the Class Loader has a negligible impact on
aging trends: therefore classloader-related workload parameters will be excluded from the analysis of
relationships between workload and aging phenomena.
Just-In-Time Compiler
In all the experiments, none of the JIT-related workload parameters has shown the presence of
multiple clusters in data. Moreover, none of these parameters has exhibited trends, except for the ones
concerning on-stack replacement compilation (CI OSR COMPILES and CI OSR TIME), which have
experienced a trend at the α = 0.01 significance level.
Figure 10-a shows the average number of JIT-compilation events occurring each minute for each exper-
iment. The high degree of correlation between the counter of JIT-compiler events (CI THR0 EVENTS)

‡‡Given a certain α, the percentage of the confidence interval for the estimation is given by 1− α

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

30 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

and the number of compilations performed (CI STD COMPILES) parameter is evident, whereas the
number of native compilations is very small compared with the number of standard and on-stack-
replacement (OSR) compilations. Moreover, while the average number of standard JIT-compilations
tends to decrease with higher workloads, the number of OSR-JIT-compilation increases with higher
workloads (recall that workload is increased linearly across experiments). From the aging’s point of
view, this means that if aging also increases with higher workload, the usage of the OSR compilation
feature may be related to aging. However, this will be confirmed or rejected only in the last step of
the analysis, when i) the inter-correlations among variables are removed by the PCA, ii) the aging
is observed against the workload increase, and iii) a multiple regression analysis identifies the most
relevant variables related to aging.
Figure 10-b shows the average time spent during JIT-compilation. While the time spent in OSR
compilation (CI OSR TIME) clearly shows an increasing trend (thus showing a strong correlation
with the number of OSR compilations, CI OSR COMPILES), it is not possible to detect a trend for
the time spent during standard JIT compilations (CI STD TIME). This is mainly due to the behavior
of the parameter describing the time spent for each JIT-compilation (CI TIME PER COMP, in Figure
10-c), which increases as the applied workload increases, thus showing a dependence between applied
workload and the time required to perform a single JIT compilation. It is therefore possible to expect a
certain impact of JIT compilation workload parameters on aging dynamics inside the JVM. In order to
remove intercorrelation among these parameters, the PCA is applied, obtaining 4 principal components,
reported in Table V-a. These 4 principal components account for 80.05% of variance in the original
sample set.

Table V.

(a) Principal components for JIT-compiler Workload Parameters
CI PC 1 CI PC 2 CI PC 3 CI PC 4
40,78% 15,91% 14,80% 8,56%

CI THR0 EVENTS AVG -0,131 0,161 0,208 0,226
CI THR0 TIME AVG 0,023 0,036 0,249 -0,223
CI NATIVE COMPILES AVG -0,076 0,260 -0,290 0,203
CI NATIVE TIME AVG -0,022 0,325 -0,280 0,171
CI OSR COMPILES AVG 0,105 0,136 0,230 0,272
CI OSR COMPILES TREND 0,132 0,227 0,080 0,005
CI OSR TIME AVG 0,153 0,086 -0,047 0,119
CI OSR TIME TREND 0,152 0,141 -0,093 -0,033
CI STD COMPILES AVG -0,157 0,101 0,134 0,124
CI STD COMPILES TREND 0,105 0,096 -0,074 -0,422
CI STD TIME AVG 0,000 0,258 0,339 0,012
CI STD TIME TREND 0,100 -0,099 -0,039 0,335
CI TIME PER COMP AVG 0,159 0,004 0,066 0,036
CI TIME PER COMP TREND 0,070 -0,237 0,027 0,517

(b) Principal components for Execution Unit
and Threading Workload Parameters

EXEC PC 1 EXEC PC 2
82,64% 11,19%

MET INV AVG 0,145 0,260
MET INV TREND -0,137 -0,183
OBJ ALL AVG 0,148 0,201
OBJ ALL TREND -0,138 0,334
ARR ALL AVG 0,147 0,213
ARR ALL TREND -0,139 0,230
TE AVG 0,145 0,214
TE TREND -0,091 0,849

Execution Unit and Thread Management Unit
Figure 11-a highlights a direct relationship between the number of mails per minute and workload
parameters such as method invocation rate (MET INV), object allocation rate (OBJ ALL), and array
allocation rate (ARR ALL). Also the average number of threading events (TE) follows the same
pattern, indicating a direct relationship between method execution and synchronization events. All
these parameters show a decreasing trend (which even becomes negative) as the applied workload

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 31

Figure 11. A - Average number of execution related events per minute for each experiment; B - Trends detected
for execution related parameters for each experiment; normalized data are reported due to significant differences

in data order of magnitude.

increases, as it is shown in Figure 11-b. This indicates a loss of throughput during experiment execution
that is proportional to the workload applied to the mail server. Synthetic parameters about threads
waiting on monitors and condition variables (WM,WV,NWM,NWV parameters) are instead negligible,
and they are excluded from the analysis of the impact of workload on aging trends. Figure 11 also
shows a high degree of correlation among these parameters: only 2 principal components, reported in
Table V-b (namely, EXEC PC 1 and EXEC PC 2), account for 93.82% of variance in data (82.64%
for the first component). The high degree of correlation of these workload parameters is shown by the
small differences in coefficients for the first principal component (EXEC PC1).
Memory Management Unit
These parameters deal with the activity of Garbage Collectors. Unlike previously discussed parameters,
memory-related parameters exhibited the presence of clusters. Cluster analysis revealed that garbage
collector activity can be divided into two main clusters, defining two well-distinct workload states: the
Normal Collection state and the Low Collection state. 25 experiments out of 29 visited both states,
whereas 4 experiments exhibited only the normal collection state.
A similar behavior has been observed in the remaining experiments visiting both states: Table VI

Table VI. Garbage Collection Workload Parameters
NORMAL COLLECTION LOW COLLECTION

AVG ST.DEV MIN MAX AVG ST.DEV MIN MAX
COLLECTOR0 INV 83,686 18,928 42,333 104,549 10,286 3,449 4,701 18,062
COLLECTOR1 INV 0,650 0,185 0,272 0,860 0,028 0,015 0,008 0,062
COLLECTOR0 TIME 226,309 58,259 109,188 290,785 91,812 31,363 40,238 167,666
COLLECTOR1 TIME 83,492 26,900 31,892 116,330 3,657 2,037 0,917 9,334
SAFEPOINTS 92,187 20,854 46,612 115,180 11,787 3,833 5,530 20,157
COLL0 TIME PER INV 2,732 0,147 2,491 3,043 11,118 0,494 9,823 12,452
COLL1 TIME PER INV 128,058 6,769 114,564 139,000 127,627 7,910 117,182 147,661

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

32 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 12. Trends for time spent during garbage collection during normal collection periods (A), and during low
collection periods (B)

reports the average values over all the experiments of each memory-related parameter, in both clusters
(the difference in the averages also indicates the distinction between clusters).
The Low collection state is characterized by low garbage collector invocation rates (especially for
the tenured generation collector) and long young generation collection times, whereas the Normal
collection state is characterized by high collection invocation rates and short young generation
collection times. Safepoints reached by the JVM are strongly correlated with young generation
collections. Instead, no noticeable variation has been observed for the time spent for each tenured
generation collection (COLL1 TIME PER INV) between normal and low collection periods. Since
in Low collection state no significant variation in object and array allocation rates is observed, this
state represents a potential source of memory depletion of the JVM: objects are allocated with the
same frequency, but collections occur less frequently. Furthermore, although the time spent to reclaim
unreachable objects, i.e., the time to reclaim memory occupied by objects that can no longer be
referenced by the program (hence no longer in use), during normal collection periods is about 3 times
higher than the time spent during low collection periods, no throughput increase was observed during
visits into the low collection state.
Figure 12 shows the trend exhibited by parameters describing the time spent during young and
tenured collections (COLLECTOR0 TIME and COLLECTOR1 TIME); the remaining parameters show
similar trends, except the ones related to the duration of each collection (COLL0 TIME PER INV
and COLL1 TIME PER INV), for which none of the experiments showed a trend. During normal
collection periods, there are impressive trends for both collectors when the applied workload is small;
the trend then decreases, becoming negligible for experiments with high workloads. Instead, during
low collection periods, there are no noticeable trends for the tenured generation collector (the null
hypothesis cannot be rejected), whereas the young generation collector trend increases as the applied
workload increases.
Moreover, if the average time spent in garbage collection in both Normal and Low collection state

is considered, the different behaviour in both states becomes clear. In particular, Figure 13 shows

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 33

Table VII. Principal Components for Garbage Collection Parameters
NORM COLL PC 1 NORM COLL PC 2 LOW COLL PC1 LOW COLL PC2 LOW COLL PC3
85,25% 6,46% 61,92% 15,53% 13,34%

COLLECTOR0 INV AVG 0,092 0,398 0,127 0,032 -0,113
COLLECTOR0 INV TREND -0,094 0,066 0,120 -0,145 0,121
COLLECTOR0 TIME AVG 0,095 0,175 0,122 -0,088 0,012
COLLECTOR0 TIME TREND -0,095 0,077 0,115 -0,207 0,111
COLLECTOR1 INV AVG 0,091 0,330 0,111 0,186 -0,218
COLLECTOR1 INV TREND -0,092 0,209 0,058 0,361 0,371
COLLECTOR1 TIME AVG 0,092 0,211 0,116 0,148 -0,231
COLLECTOR1 TIME TREND -0,092 0,209 0,060 0,372 0,347
SAFEPOINTS AVG 0,092 0,398 0,127 0,031 -0,111
SAFEPOINTS TREND -0,094 0,065 0,120 -0,144 0,116
COLL0 TIME PER INV AVG 0,071 -0,749 0,011 -0,311 0,437
COLL1 TIME PER INV AVG 0,080 -0,354 0,112 -0,143 -0,092

Figure 13. Average Time Spent in Garbage Collection for (A) Young Generation, and for (B) Tenured Generation

that the average time spent in garbage collection in the state LOW is much shorter than the time
spent during the NORMAL collection period, for both collectors (young and tenured). This leads
the semispaces of the young collector to be always full, and the space of the tenured generation to
dramatically increase during the LOW collection period. This causes the observed aging dynamics in
the LOW collection state, since while the space occupied by collectors increases, the object allocation
rate remains approximately the same (in fact, no presence of clusters was revealed in the execution
unit analysis). This behavior is confirmed also by observing the graphs of the average number of
invocations of collectors, which is much lower in the LOW state than in the NORMAL state, while the
object allocation rate is the same. Figure 14 shows the average number of invocations of both collectors
in both states, highlighting this difference in the two states.
Summarizing, the analysis of these workload parameters tells that i) trend for memory depletion should
be determined for both normal and low collection workload states, and ii) there is a high degree
of correlation among the remaining parameters. Therefore, a principal component analysis on these
parameters in both normal and low collection states was performed, whose results are shown in Table

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

34 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 14. Average Number of Garbage Collector Invocations per Minute in both States, for (A) Young Generation
Collector, and for (B) Tenured Generation Collector

VII. Due to the high degree of correlation, only 2 principal components are able to explain 91.71% of
the original variance in the Normal Collection state, whereas 3 principal components explain 90.79%
of the original variance in the Low Collection state.

5.3. Throughput Loss analysis

In the following two sections the aging analysis step takes place. They deal with i) detection
and estimation of aging trends by considering the two adopted indicators, i.e., the throughput loss
(presented in this section) and the memory depletion (in the next section), and with ii) the analysis of
relationships between the workload parameters and the aging trends.
Dots in Figure 15 represent the trend of the loss of bytes per minute observed in each experiment, i.e.,
each point is the trend along one experiment. In one experiment, samples are collected each minute,
hence the loss of bytes observed in one sample refers to that time interval (1 minute), in which the
number of mails that are processed depends on the experiment (for instance, in the experiment number
3, it is 330 mails per minute, meaning that the loss of bytes of one sample refers to 330 mails).
Performed experiments report an evident loss of throughput, which is not affected by periods of
Normal and Low Collection. For instance, experiments #10, #20 and #30 experienced a throughput
loss trend for the SMTP server of 0.76KB/min, 1.56KB/min, and 1.96KB/min, respectively. Results
reported in Figure 15 highlight the presence of a linear relationship between the throughput loss and the
application-level load. Table VIII reports results of a linear regression analysis applied to throughput
loss trends (shown in Figure 15). The first row of this Table reports the value of the student’s t statistic;
the probability reported in the second row indicates at which confidence level the null hypothesis can
be rejected. The third row reports the estimated slope, referred, respectively, to i) the throughput loss
trend as linear function of the number of mails per minute (specifically, how much the throughput
loss increases for an increment of 100 mails per minute), and to ii) the throughput loss trend as

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 35

Figure 15. Throughput loss trends for SMTP and POP3 servers among different experiments

function of the Normal Operation throughput (i.e., how much the throughput loss trend increases as the
Normal Operation throughput increases by 1MB per minute; cf. Section 5.1 for a definition of “Normal
Operation”). The fourth row reports 95% confidence intervals.
Increasing the workload by 100 mails per minute causes an increment of about 175 bytes per minute
in the throughput loss for the SMTP server and of about 185 bytes per minute for the POP3 server.
This means that, for instance, if the Normal Operation throughput is about 30MB per minute, it is
possible to expect the throughput to be halved in about 8 days and 13 hours. In order to obtain useful
insights into the relationships between throughput loss and JVM workload parameters, the multiple
regression step of the software aging analysis was carried out, presented in section 4.3. Results of this
analysis are reported in Table IX, which highlights the significance of principal components. From

Table VIII. Throughput loss trend as a linear function of the number of emails/min and of the Normal Operation throughput
SMTP Server POP3 Server

Mail/min Normal Operation Mail/min Normal Operation
Throughput Throughput

Student’s t -31,29 -46,35 -31,09 -45,41

Pr > |t| <0,0001 <0,0001 <0,0001 <0,0001

Estimated Slope -0,174 KB/100 mail/min -0,067 KB/MB/min -0,18 KB/100 mail/min -0,067 KB/MB/min

95% Confidence [-0,186 KB/100 mail/min; [-0,07 KB/MB/min; [-0,192 KB/100 mail/min; [-0,07 KB/MB/min;
Interval -0,163 KB/100 mail/min] -0,064 KB/MB/min] -0,169 KB/100 mail/min] -0,064 KB/MB/min]

these, only the principal components that have a real influence on aging trends are selected, i.e., the
principal components showing a probability of being in the tail of t distribution lower than 5%. They
are EXEC PC 1 and NORM COLL PC2. For each of these PCs, original variables mostly contributing
to its composition have to be selected for estimating relationship between original workload parameters

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

36 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Table IX. Results for multiple regression analysis of throughput loss against principal components
SMTP Server POP3 Server

Student’s t Pr > |t| Student’s t Pr > |t|
CI PC1 -1,69 0,119 -1,68 0,104
CI PC2 0,65 0,525 0,67 0,508
CI PC3 -0,23 0,818 -0,17 0,866
CI PC4 1,55 0,136 -1,56 0,130
EXEC PC1 -6,19 0,000 -6,25 0,000
EXEC PC2 -2,01 0,054 -2,03 0,052
NORM COLL PC1 -1,61 0,123 -1,62 0,116
NORM COLL PC2 -2,42 0,025 -2,52 0,018
LOW COLL PC1 -1,22 0,233 -1,27 0,233
LOW COLL PC2 -0,84 0,408 -0,91 0,371
LOW COLL PC3 -0,44 0,663 -0,45 0,656

and aging trend, according to the procedure defined in Section 4.3.
Note that it may happen, as in the case of EXEC PC1, that all, or almost all, of the original variables
contribute approximately equally to the PC. In such a case, it is reasonable to not consider all the
variables, for two reasons: i) it would be redundant and pretty useless, since the original variables are
often strongly correlated to each other (e.g., for SAFEPOINTS AVG and COLLECTOR0 INV AVG,
the JVM creates a “safepoint” whenever the young collector is invoked; hence, almost the same results
would be obtained by analyzing one of the twos); ii) it would be expensive, with respect to the benefits
obtained (because of redundancy). Rather, in these cases only the most relevant variables could be
considered, e.g., the ones whose events occurrence during execution is significantly more frequent
than others.
In the case of the two selected PCs, it is possible to notice, recalling their composition, that while the
main contribution to the NORM COLL PC2 principal component is mainly due to the duration of each
young generation collection (described by the workload parameter COLL0 TIME PER INV, whose
weight is -0.749), all the execution-related workload parameters, except TE TREND, contributed to the
EXEC PC1 principal component.
Thus, for NORM COLL PC2, the parameter COLL0 TIME PER INV has been selected. Whereas,
for EXEC PC 1, among the six contributing parameters (namely, MET INV AVG and TREND,
OBJ ALL AVG and TREND, ARR ALL AVG and TREND), MET INV AVG and OBJ ALL AVG have
been considered. Indeed, their occurrence frequency is orders of magnitude greater than the one of
ARR ALL AVG; hence, they are much more relevant. Moreover, ARR ALL AVG is strongly correlated
with OBJ ALL AVG, its analysis would provide similar results.
Then, the impact of the 3 above mentioned workload parameters on throughput loss has been evaluated,
obtaining results shown in Table X. This impact has been estimated by linear regression methods,
identifying the ideal slope between the throughput loss and each of the selected workload parameters.
Values of the Student’s t confirm that it is possible to reject the no trend null hypothesis. However, the
COLL0 TIME PER INV parameter exhibits a larger confidence interval (95%), thus suggesting that
this is less confident than MET INV AVG and OBJ ALL AVG parameters. Results of linear regression
analysis tells that it is possible to expect an increase of 0.0047KB (about 5 bytes) in throughput loss for
an increment of 1 million in method invocation rate, or an increase of 0.055KB (about 55 bytes) for an
increment of 100K in object allocation rate. These results are not surprising, since the average method
invocation rate of the performed experiments is about 3 × 108 methods per minute and the average

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 37

object allocation rate is of about 3× 106 objects per minute.
Execution-related workload parameters are therefore the most relevant for throughput loss, which

Table X. Throughput loss as a linear function of most relevant JVM workload parameters.
POP3 Server

OBJ ALL AVG MET INV AVG COLLECTOR0
TIME PER INV

Student’s t -35,84 -25,4 -5,17

Pr > |t| <0,0001 <0,0001 <0,0001

Estimated Slope -0.055 KB/100KAll ** -0.0047 KB/Minv * -3.002 KB/ms

95% Confidence Interval [-0.058; -0.052] [-0.005; -0.0043] [-4.195; -1.81]

POP3 Server
OBJ ALL AVG MET INV AVG COLLECTOR0

TIME PER INV

Student’s t -35,91 -25,46 -5,15

Pr > |t| <0,0001 <0,0001 <0,0001

Estimated Slope -0.057 KB/100KAll ** -0.0048 KB/Minv * -3.177 KB/ms

95% Confidence Interval [-0.06; -0.054] [-0.0052; -0.0044] [-4.34; -1.866]
* Millions of method invocations per minute
** Number of object allocation per minute * 100.000

increases linearly with their values. However, although regression analysis highlighted a relationship
between throughput loss and the time required for a single collection, it is not possible to claim that
the garbage collectors have a real impact on throughput loss, since collection times are higher because
there are more objects in the heap area. Based on these results, relationships between JVM workload
parameters and throughput loss can be excluded; as a consequence, being the application layer aging-
free, the observed throughput loss is attributable to the OS abstraction layer and to its interaction
with the operating system. This is also supported by the I/O-bound nature of the workload, since the
JVM forwards any I/O operation to the underlying operating system through the OS abstraction layer.
However, further investigations are needed to confirm this hypothesis.

5.4. Memory Depletion Analysis

In this Section, results of aging analysis referred to the memory depletion aging indicator are reported.
Memory depletion has been measured as the amount of physical memory available in a given time,
queried by means of the Linux free utility, plus the page cache size. The page cache contains a copy
of recently accessed files in kernel memory, and can get all the free memory not allocated by the
kernel or by user processes; since the page cache is preemptable if needed, it has to be considered as
available memory, and added to the actual free physical memory. The value of the available memory
is periodically sampled and stored in a trace. Moreover, for memory depletion, unlike for throughput
loss, it has been possible to split the contribution at the application layer from the contribution at
JVM layer. In particular, the developed monitoring tool, i.e., JVMMon, is able to distinguish, by
using the JVM Tool Interface facilities (events, callbacks, functions; cf. Section 3.3) and Bytecode
Instrumentation, the amount of memory committed to the application (by intercepting application’s
objects allocation/deallocation), from the space actually allocated into the heap of the JVM, thus
allowing to obtain resource usage information both at the application and at the JVM layer.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

38 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

Figure 16. Throughput loss as a linear function of most relevant JVM workload parameters. The Figure reports, as an example,
the most relevant relationship, i.e., the one with the highest slope

Figure 17. Memory depletion trends during (A) Normal and (B) Low collection periods

For throughput, it is not easy to make this distinction, since throughput is the number of bytes processed
by the pair server-JVM when the application sends or receives emails; this contribution (i.e., bytes per
minute processed) cannot be easily split between the two.
Memory depletion trends for the application and the JVM are reported in Figure 17. In the Normal
Collection state, the conducted analysis, which focused on workload-correlated aging, revealed no
memory depletion, i.e., aging trend seems to be independent of the load imposed on the mail server;
whereas, in the Low Collection state, the memory depletion trend generally increases as the workload
increases. As regards memory depletion trends in Normal Collection state at the application layer, no
aging trend was found for the greatest part of experiments, thus proving that the benchmark application
layer does not suffer from memory depletion. Moreover, trends measured at the JVM layer are always
higher than trends measured at the application layer, thus suggesting a contribution of the JVM to

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 39

memory depletion. The estimated Time-To-Exhaustion (TTE) in the Low Collection state ranges from
22 days and 4 hours (-13.96 KB/min) to 6 days and 11 hours (-48.89 KB/min), whereas JVM-level
memory depletion trends exhibited in the Normal Collection state are less concerning, given that the
corresponding TTE is equal to about 105 days in the worst case (-3.06 KB/min). It is therefore possible
to claim that, although memory depletion has to be considered in both the workload states, it becomes
a serious threat during low collection periods. During the experiments, the average duration of visits in
the Low Collection state was 590 minutes, with a peak of 2234 minutes.

Table XI. Regression analysis of memory depletion at application and JVM layer vs. principal components

NORMAL COLLECTION STATE LOW COLLECTION STATE
JVM APP DIFF JVM APP DIFF

t Pr > |t| t Pr > |t| t Pr > |t| t Pr > |t| t Pr > |t| t Pr > |t|
CI PC1 -2,48 0,02 0,44 0,66 2,96 0,01 -0,27 0,79 -0,24 0,81 0,17 0,87
CI PC2 -1,25 0,23 -0,67 0,51 0,98 0,34 -0,03 0,98 -0,02 0,98 0,05 0,96
CI PC3 -4,21 0,00 -0,51 0,62 4,00 0,00 0,27 0,79 0,56 0,58 2,19 0,05
CI PC4 -1,49 0,15 0,43 0,67 1,88 0,08 1,66 0,12 1,58 0,14 0,94 0,36
EXEC PC1 1,88 0,08 -0,51 0,62 -1,35 0,19 -1,30 0,22 -1,27 0,23 0,14 0,89
EXEC PC2 0,85 0,41 -0,13 0,90 -1,00 0,33 -0,61 0,55 -0,65 0,55 0,31 0,76
NORM COLL PC1 -0,82 0,42 0,79 0,44 1,35 0,19 -0,19 0,85 -0,16 0,87 0,22 0,83
NORM COLL PC2 1,07 0,30 -1,61 0,12 0,08 0,94 0,30 0,77 0,26 0,80 -0,27 0,79
LOW COLL PC1 -0,39 0,70 -0,41 0,69 -0,04 0,97 -5,20 0,00 -4,81 0,00 -0,53 0,61
LOW COLL PC2 0,07 0,94 0,03 0,98 0,01 0,99 3,11 0,01 2,77 0,02 1,71 0,11
LOW COLL PC3 -0,16 0,87 -0,04 0,97 -0,02 0,98 -1,69 0,10 -1,43 0,18 0,04 0,97

Table XI reports results of the regression analysis, for both Normal and Low collection state; the
first column reports partial regression results for trends at the JVM layer, the second one refers to
the application layer, and the third one reports the difference between the two previous trends. These
results reveal the following insights:
i) No workload parameter gives information for investigating memory depletion at the application layer
in the Normal Collection state, since the value of the t statistic is always under its critical value; indeed,
in this state memory depletion at the application layer has been noticed.
ii) Memory depletion trends at the JVM layer in the normal workload state are due to the CI PC1 and
CI PC3 principal components; therefore JIT compiler can be addressed as the main source of software
aging in this workload state. Indeed, each time a Java method is JIT-compiled, generated native code is
stored in a reserved area in the Java Heap, the Native Method Cache. The size of this area progressively
increases during experiment duration.
iii) In the Low Collection state, memory depletion trends, both at the application and JVM layers,
are due to the activity of the garbage collector. The most relevant principal components are
LOW COLL PC1 and LOW COLL PC2, which reported significant scores for the t statistic. This
confirms that, in the Low Collection state, memory depletion is mainly due to the downfall of garbage
collector activity.
iv) The difference between memory depletion trends at the application and JVM layer can be explained
taking into account JIT Compiler activity in both collection states. The CI PC3 principal component
has a relevant impact on the trend difference between application and JVM layers. Recalling Table V,
the time spent per minute in standard JIT compilation (CI STD TIME AVG) gives the most significant
contribution to this principal component.
Given the results of partial regression analysis, 4 JIT-related parameters are chosen to estimate

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

40 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

workload-aging relationship in the Normal Collection state, and 3 GC-related parameters in the
Low Collection state. Results of linear regression analysis applied to these parameters are reported
in Table XII. Among the 4 selected JIT-compiler parameters, only the time spent in standard

Table XII. Memory depletion in Java Heap as a linear function of most relevant JVM workload parameters
NORMAL COLLECTION STATE-JVM FREE

CI STD TIME AVG CI STD COMPILES AVG CI OSR TIME AVG CI TIMEPERCOMP AVG

Student’s t -3,11 -1,3 -0,86 -1,99

Pr > |t| 0,0045 0,2063 0,3977 0,0572

Estimated Slope -0.097 KB/ms -2.384 KB/comp * -0.02 KB/ms -0.0014 KB/ms

95% Confidence [-0.167; -0.027] [-6.167; 1.39] [-0.067; 0.027] [-0.002; -0.0007]
Interval

LOW COLLECTION STATE-JVM FREE
COLLECTOR0 INV AVG COLLECTOR1 TIME AVG COLLECTOR1 TIME TREND

Student’s t -7,66 -5,95 -0,71

Pr > |t| <0,0001 <0,0001 0,4876

Estimated Slope -2.41 KB/inv ** -3.74 KB/ms -0.347 KB/(ms/min)

95% Conf. Int. [-3.05; -1.76] [- 5.16; -2.44] [-1.36; 0.67]

LOW COLLECTION STATE-APP FREE
COLLECTOR0 INV AVG COLLECTOR1 TIME AVG COLLECTOR1 TIME TREND

Student’s t 7,29 -5,85 -0,54

Pr > |t| <0,0001 <0,0001 0,5926

Estimated Slope -2.35 KB/inv ** -3.68 KB/ms -0.265 KB/(ms/min)

95% Conf. Int. [-3.01; -1.68] [- 4.99; -2.38] [-1.27; 0.747]

compilation (CI STD TIME AVG) shows a strong linear relationship with memory depletion in
the Normal Collection state. The null hypothesis (no linear relationship) cannot be rejected for the
remaining parameters, which altogether account for 33.86% of the information contained in the
CI PC1 principal component. Among the 3 selected GC parameters, the average number of young
collector invocations (COLLECTOR0 INV AVG) and the average time spent during tenured generation
collection (COLLECTOR1 TIME AVG) are linearly correlated with memory depletion both at the JVM
and at the Application layer, whereas the null hypothesis cannot be rejected for the trend exhibited by
the tenured generation collector. It is therefore possible to claim that: i) there is no noticeable memory
depletion trend at the application layer in Normal Collection state, and the trend observed at the JVM
layer is due to the growth of the native method cache size; ii) memory depletion is much higher in
the Low Collection state, and it is due to the downfall of garbage collector invocations (and phases of
normal collection do not even out the loss), and iii) the differences between the trends observed at the
application and JVM layer are due to the activity of JIT compiler.

5.5. Key Findings

The conducted campaign revealed that the JVM is affected by software aging, which manifested both
as throughput loss and memory depletion. In particular, the analysis of collected data proved that:
i) Regarding memory depletion, in both normal and low collection states, there is a slow drift whose
source is located in the JIT compiler. This drift is mainly due to data stored in the Native Code Cache.
However, these depletion dynamics cannot be regarded as a serious threat for the JVM, since the

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 41

estimated TTE is considerably high.
ii) Sudden downfalls in Garbage Collector activity shift the JVM from the normal to the low collection
state, causing free memory to decrease at a high rate.
iii) The interface between the JVM and the operating system seems to be critical from a throughput
loss perspective. Results showed that, under stressing workload, throughput is cut down by half after
about 1 week of execution. In different scenarios, with higher and more stressful workloads, TTE could
be consistently lower, thus becoming a serious problem. However, further investigations are required
to assess if these aging phenomena are really located in the interface between the JVM and the OS.
Summarizing, the experimental campaign highlighted the presence of three distinct aging dynamics.

Table XIII. Time to exhaustion estimation for detected aging phenomena
Related Workload Parameters TTE

Parameter Slope U.M. Best Case Worst Case

Throughput Loss OBJ ALL AVG -0,055 KB/105Alloc. 36 days 5 days

MET INV AVG -0,0047 KB/106Inv. 10 hours 23 hours

“Slow” Memory Depletion Drift CI STD TIME AVG -0,097 KB/ms 342 days 104 days

CI OSR TIME AVG -0,02 KB/ms 11 hours 22 hours

“Fast” Memory Depletion Drift COLLECTOR0 INV AVG -2,41 KB/inv 48 days 13 days

COLLECTOR1 TIME AVG -3,74 KB/ms 21 hours 23 hours

Table XIII reports, for each of these dynamics, the related workload parameters, the estimate of the
relationships between the workload parameter and the aging trend, and the estimated TTE. As regards
throughput loss, TTE has been calculated assuming the system failed when the throughput is halved. In
particular, Table XIII reports TTEs estimated both in the worst and in the best case. The most relevant
aging dynamic is the one related to throughput loss. This dynamic gets worse when the activity of the
execution unit increases. For instance, if the method invocation rate increases by 10 millions per minute
(keep in mind that in the conducted experiments an average method invocation rate ranging from 170
to 650 millions of method per minute was observed), it is possible to expect an increase in throughput
loss of 0.5 KBytes per minute.
On the other hand, two distinct dynamics are responsible for memory depletion in the JVM. The fast
drift is associated with a very low TTE (about 14 days in the worst case). However, since low collection
periods do not usually last for a long period of time, this aging dynamic does not usually cause a
failure of the JVM. Moreover, since low collection periods may be detected by monitoring Garbage
Collection workload parameters, it is possible to bring the JVM out of this workload state by forcing
garbage collections. This task may be accomplished through monitoring and management tools, such
as JConsole (JConsole is a GUI tool compliant with the Java Management Extensions). The slow
drift, instead, exhibits very high TTEs (about 105 days in the worst case, and about 1 year int the
best case). However, unlike the fast drift, this dynamic is present in both collection states. Therefore,
even if TTEs estimated during experiments do not represent a significant threat to JVM dependability,
this dynamic may become a serious source of JVM failure whenever the JIT compilation activity
significantly increases. Results discussed in this paper may be useful for both JVM designers and final
users; in particular they may allow: i) designers to identify internal JVM components mainly causing
aging dynamics (e.g., the garbage collector, and the JIT-compiler); this drives the investigation of aging
sources and corrections inside such components; ii) users to plan effective rejuvenation strategies based

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

42 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

on the TTE predictions (i.e., rejuvenate the system just before the TTE expires, saving additional
rejuvenations in the time interval [0, TTE]), or to prolong the TTE by applying proactive actions
(for instance, bringing the JVM out of the low collection state by forcing the garbage collections).
Moreover, the methodology can be applied to other VMs and layered systems, in order to isolate aging
contribution of each layer, and to monitor their activities at runtime, or to correct them against aging-
related bugs. The empirical analysis presented in this study can be extended to address the following
limitations and threats to its validity:
i) this study analyzed the relationship between software aging and workload parameters in the
JVM layer, while varying one application-level workload parameter. Although the interest is on
“uncontrollable” workload parameters of a layer (in this case the JVM), considering more than on
application-level parameters could improve results by highlighting further aging sources not currently
identified.
ii) The conducted analysis has identified sources of aging in the JVM with a given application-
level workload type; however it is not exhaustive. Further experiments with different workload could
enhance the achieved findings, by identifying additional sources of aging that have not been stressed
by the current type of workload.
iii) Experiments have been conducted on one JVM implementation; different JVM implementations
can yield different results. Thus, the methodology defined in this paper could be applied also to other
JVM implementations, in order to draw more general conclusions about the aging of the JVM.
iv) As in the previous point, experiments could be extended to different JVM / Operating System pairs,
since the behavior may differ also in this case.
For these issues, further experiments are required, which, applying the same methodology, could lead
to the identification of additional aging sources, other than those identified by the conducted analysis.

6. Conclusions

In this paper, a methodology aimed at evaluating the software aging phenomenon in Java-based systems
has been presented. It allows discovering aging phenomena, evaluating their relationship with the
workload, and locating those components that suffer from aging. The methodology has been applied
to a Java software system composed by an Apache JAMES mail server at the application layer, the
Sun Hotspot JVM, at intermediate layer, and a Linux OS at lowest layer. An experimental campaign
consisting of a series of 29 experiments with synthetic workload, accounting for about 3000 hours of
execution, has been performed; during this campaign, data about resource usage and workload were
collected by means of an ad-hoc monitoring tool, named JVMMon. The analysis of data revealed the
presence of several distinct aging dynamics, which manifested as throughput loss; and as memory
depletion, mainly attributable to activities performed by the JIT-compiler. With regard to throughput
loss, a consistent aging trend, ranging from 0.08 KBytes per minute to 2.48 KBytes per minute has
been found, mainly dependent on execution unit activity: indeed, it has been found that such trend
is strongly correlated with workload parameters, such as method invocation frequency and object
allocation frequency. On the other hand, memory depletion phenomena involved two distinct aging
dynamics. The first one manifested itself as a slow, but constant, drift and is mainly due to the activity
of the JIT-compiler. The second one was due to sudden down-falls in garbage collector activity and
manifested itself as a fast drift. These aging trends may be treated as follows: regarding the slow drift,

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

A WORKLOAD-DEPENDENT METHODOLOGY 43

the JVM may be properly configured in order to avoid excessive JIT compilation (in particular, it has
been found that On-Stack-Replacement compilations are the most expensive ones in terms of required
memory); regarding the fast drift, radical changes in Garbage Collector activity may be easily detected
by monitoring invocations of the Young Generator Collector. Whenever a downfall in garbage collector
frequency is detected, it is possible to force Garbage Collector invocations in order to limit memory
depletion. The obtained results were quite unexpected, since the JVM has been designed to reduce
effects of aging phenomena. Suffice it to recall that the garbage collector, which is designed to free
developers from manually handling memory management, is the most important source of aging due
to memory leaking or bloating.
Although these specific results are valid only for the Sun Hotspot JVM implementation (and different
implementations of the JVM may exhibit different aging dynamics), the methodology adopted in this
paper is general and may be applied to different JVM implementations, and to different Java-based
software systems. Indeed, different Java applications can stress the underlying JVM components in
different ways, thus causing aging to evolve in various ways. By applying the outlined methodology,
it is possible to isolate the JVM components’ contribution to software aging when stressed by some
applicative workload parameters, thus allowing an in-depth analysis of aging dynamics.

REFERENCES

1. Grottke M, Matias R, Trivedi KS. The Fundamentals of Software Aging. Proceedings of the 1st International Workshop
on Software Aging and Rejuvenation/19th IEEE International Symposium on Software Reliability Engineering, November
2008, 1–6. DOI: 10.1109/ISSREW.2008.5355512.

2. Marshall E. Fatal Error: How Patriot Overlooked a Scud. Science 1992, 255 (5050):1347. DOI: 10.1126/sci-
ence.255.5050.1347

3. Hartman F, Maxwell S. Driving the Mars Rover. Linux Journal 2004; 125: 68–70.
4. Java Community Process (JCP). JSR-302: Safety Critical Java Technology, 2006.
5. Georges A, Buytaert D, Eeckout L, De Bosschere K. How Java Programs Interact with Virtual Machines at the

Microarchitectural Level. Proceedings of the ACM conference on Object-Oriented Programming, Systems, Languages
and Applications, October 2003; 169–186. DOI: 10.1145/949305.949321.

6. Georges A, Buytaer D, Eeckhout L, De Bosschere K. Method-Level Phase Behavior in Java Workloads. Proceedings
of the ACM conference on Object-Oriented Programming, Systems, Languages and Applications, 2004; 270–287. DOI:
10.1145/1028976.1028999.

7. Sweeney PF, Hauswirth M, Cahoon B, Cheng P, Diwan A, Grove D, Hind M. Using Hardware Performance Monitors to
Understand the Behavior of Java Applications. Proceedings of the third Usenix Virtual Machine Research and Technology
Symposium, 2004; 5–5.

8. Napper J, Alvisi L, Vin H. A Fault-Tolerant Java Virtual Machine, Proceedings of the 2003 International Conference on
Dependable Systems and Networks, June 2003; 425–434. DOI: 10.1.1.13.7072.

9. Friedman R, Kama A. Transparent fault-tolerant java virtual machine, Proceedings of the 22st Symposium on Reliable
Distributed Systems, October 2003; 319–328. DOI: 10.1109/RELDIS.2003.1238083.

10. Silva L, Madeira H, Silva JG, Software aging and rejuvenation in a soap-based server. Proceedings of the 5th International
Symposium on Network Computing and Applications, July 2006; 56–65. DOI: 10.1109/NCA.2006.51.

11. Vaidyanathan K, Trivedi KS. A measurement-based model for estimation of resource exhaustion in operational software
systems. Proceedings of the 10th International Symposium on Software Reliability Engineering, November 1999; 84–93.
DOI: 10.1109/ISSRE.1999.809299.

12. Cassidy KJ, Gross KC, Malekpour A. Advanced pattern recognition for detection of complex software aging phenomena in
online transaction processing servers. Proceedings of the International Conference on Dependable Systems and Networks,
June 2002; 478–482. DOI: 10.1109/DSN.2002.1028933

13. Garg S, Van Moorsel A, Vaidyanathan K, Trivedi KS. A methodology for detection and estimation of software aging.
Proceedings of the 9th International Symposium on Software Reliability Engineering, November 1998; 283. DOI:
10.1109/ISSRE.1998.730892

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

44 D.COTRONEO, S.ORLANDO, R.PIETRANTUONO, S.RUSSO

14. Bao Y, Sun X, and Trivedi KS. A workload-based analysis of software aging, and rejuvenation. IEEE Transactions on
Reliability 2005; 54 (3): 541–548. DOI: 10.1109/TR.2005.853442

15. Garg S, Puliafito A, Telek M, Trivedi KS. Analysis of Preventive Maintenance in Transactions Based Software Systems.
IEEE Transactions on Computers 1998; 47 (1); 96–107. DOI: 10.1109/12.656092.

16. Matias R, Filho PJF. An experimental study on software aging and rejuvenation in web servers. 30th Annual International
Computer Software and Applications Conference, September 2006; 189–196. DOI: 10.1109/COMPSAC.2006.25.

17. Hoffmann GA, Trivedi KS, Malek M. A best practice guide to resources forecasting for the apache webserver. IEEE
Transactions on Reliability 2007, 56 (4): 615–628. DOI: 10.1109/TR.2007.909764.

18. Grottke M, Trivedi KS. Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate. IEEE Computer 2007; 40 (2): 107-109.
DOI: 10.1109/MC.2007.55.

19. Balakrishnan M, Puliafito A, Trivedi KS, Viniotis Y. Buffer losses vs. deadline violations for ABR traffic in an ATM switch:
A computational approach. Telecommunication Systems 1997; 7 (1-3): 105–123. DOI: 10.1.1.44.1321

20. Grottke M, Li L, Vaidyanathan K, Trivedi KS. Analysis of software aging in a web server. IEEE Transactions on Reliability,
2006; 55 (3): 411–420. DOI: 10.1109/TR.2006.879609.

21. Cotroneo D, Natella R, Pietrantuono R, Russo S. Software Aging Analysis of the Linux Operating System.
Proceedings of the 21st International Symposium on Software Reliability Engineering, November 2010; 71–80. DOI:
10.1109/ISSRE.2010.24

22. Huang Y, Kintala CMR, Kolettis N, Fulton ND. Software rejuvenation: Analysis, module and applications. Proceedings of
the 25th International Symposium on Fault-Tolerant Computing, June 1995; 381–390. DOI: 10.1109/FTCS.1995.466961.

23. Garg S, Huang Y, Kintala C, Trivedi KS. Minimizing completion time of a program by checkpointing and rejuvenation.
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, May 1996; 252–261. DOI:
10.1145/233013.233050

24. Garg S, Puliafito A, Telek A, and Trivedi KS. Analysis of software rejuvenation using markov regenerative stochastic petri
nets. Proceedings of the 6th International Symposium on Software Reliability Engineering, October 1995; 24–27. DOI:
10.1109/ISSRE.1995.497656.

25. Pfening A, Garg S, Puliafito A, Telek M, Trivedi KS. Optimal Software Rejuvenation for Tolerating Soft Failures.
Performance Evauation 1996; 27-28 (4): 491–506. DOI: 10.1016/S0166-5316(96)90042-5

26. Andrzejak A, Silva L. Deterministic Models of Software Aging and Optimal Rejuvenation Schedules. Proceeding of
the10th IFIP/IEEE International Symposium Integrated Network Management, May 2007. DOI: 10.1.1.150.3409

27. Wang D, Xie W, Trivedi KS. Performability analysis of clustered systems with rejuvenation under varying workload.
Performance Evaluation 2007; 64 (3): 247–265. DOI: 10.1016/j.peva.2006.04.002.

28. Salfner A, Wolter K. Analysis of Service Availability for Time-triggered Rejuvenation Policies. The Journal of Systems &
Software 2010; 9(83): 1579–1590. DOI: 10.1016/j.jss.2010.05.022.

29. Vaidyanathan K, Trivedi KS. A comprehensive model for Software Rejuvenation. IEEE Transactions on Dependable and
Secure Computing 2005; 2 (2): 124–137. DOI: 10.1109/TDSC.2005.15.

30. Hong Y, Chen D, Li L, Trivedi KS. Closed loop design for Software Rejuvenation. Proceedings of SHAMAN Workskop
“Security for mobile systems beyond 3G”, June 2002.

31. Li L, Vaidyanathan K, Trivedi KS. An approach for estimation of software aging in a web server. Proceedings of the
International Symposium on Empirical Software Engineering October 2002; 91–102. DOI: 10.1109/ISESE.2002.1166929.

32. Lindholm T, Yellin F, The Java (TM) Virtual Machine Specification, 2nd ed, Sun Microsystems Press, 1999.
33. Gosling J, Joy B, Steele G, Bracha G. The java language specification, 3rd ed.. Sun Microsystems Press, 2005.
34. Cotroneo D, Orlando S, Russo S, Failure classification and analysis of the java virtual machine. Proceedings of the 26th

IEEE International Conference on Distributed Computing Systems, July 2006; 17. DOI: 10.1109/ICDCS.2006.37
35. Cotroneo D, Orlando S, Russo S, Characterizing Aging Phenomena of the Java Virtual Machine, Proceedings of the 26th

IEEE International Symposium on Reliable Distributed Systems, October 2007; 127–136. DOI: 10.1109/SRDS.2007.22
36. Java Community Process (JCP). JSR-163: Java Platform Profiling Architecture (JPPA), 2004.
37. Jolliffe IT. Principal Component Analysis, second ed.. Springer-Verlag: New York, 2002.
38. Trivedi KS. Probability and Statistics with Reliability, Queuing and Computer Science Applications, second ed.. John

Wiley and Sons Inc., 2002.
39. Montgomery DC. Design and Analysis of Experiments, fifth ed.. John Wiley and Sons Inc., 2001.
40. Xu R, Wunsch DC. Clustering. John Wiley and Sons Inc., 2009.
41. Ross Sheldom M. Introduction to Probability and Statistics for Engineers and Scientists, Third Edition. Elsevier Academic

Press, 2004.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls

	1 Introduction
	2 Research on Software Aging
	3 Aging in the JVM
	3.1 The Architecture of the JVM
	3.2 Is the JVM affected by Software Aging?
	3.3 JVM Monitoring

	4 Aging Analysis Steps
	4.1 Design of Experiments
	4.2 Workload Characterization
	4.3 Software Aging Analysis

	5 Case Study
	5.1 Experimental Setup
	5.2 Workload Characterization
	5.3 Throughput Loss analysis
	5.4 Memory Depletion Analysis
	5.5 Key Findings

	6 Conclusions

