
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2019;e1725.
Published online in Wiley Online Library (wileyonlinelibrary.com). https://doi.org/10.1002/stvr.1725

SPECIAL ISSUE PAPER

Testing microservice architectures for operational reliability

Roberto Pietrantuono, Stefano Russo,*,† and Antonio Guerriero

1Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico
II, Naples, Italy

SUMMARY

Microservice architectures (MSA) is an emerging software architectural paradigm for service-oriented appli-
cations, well-suited for dynamic contexts requiring loosely coupled independent services, frequent software
releases and decentralized governance. A key problem in the engineering of MSA applications is the esti-
mate of their reliability, which is difficult to perform prior to release due frequent releases/service upgrades,
dynamic service interactions, and changes in the way customers use the applications. This paper presents an
in vivo testing method, named EMART, to faithfully assess the reliability of an MSA application in oper-
ation. EMART is based on an adaptive sampling strategy, leveraging monitoring data about microservices
usage and failure/success of user demands. We present results of evaluation of estimation accuracy, confi-
dence and efficiency, through a set of controlled experiments with publicly available subjects. © 2019 John
Wiley & Sons, Ltd.

Received 28 February 2019; Revised 1 September 2019; Accepted 28 October 2019

KEY WORDS: in vivo testing; microservice architecture; software reliability

1. INTRODUCTION

Microservice architecture (MSA) is a software architectural style that is gaining popularity in many
companies [1]. Netflix, eBay, Amazon, Twitter, PayPal and many other web-based services have
evolved to this paradigm recently. MSA shifts traditional service-oriented architectures from a
share-as-much-as-you-can philosophy, focused on reuse, to a share-nothing philosophy, emphasiz-
ing strong service decoupling. MSA applications are built by architecting a set of services, each
providing a well-defined and self-contained business capability and high independence from oth-
ers. Combined with technologies such as RESTful protocols and containers and agile development
practices such as DevOps [2], MSA features lightweight communication and independent and rapid
service deployment. These characteristics promote scalability, flexibility, maintainability, prompt
reaction to changes and failures and frequent software releases.

We consider the problem of assessing quantitatively the reliability of an MSA application in use.
This is a great concern for companies migrating towards MSA. While MSA is expected to favour
seamless management of microservices’ failures via fault tolerance means, what finally matters
is the reliability of the overall MSA actually observed during operations (operational reliability).
Operational reliability refers to the probability of a system to perform correctly on user demands; it
is a user-perceived quality that depends not only on how much reliable a single microservice is, but
also on how much it is used. A microservice with low reliability may have small impact on the user
perception if it is rarely stimulated. Conversely, a highly reliable yet frequently invoked microservice

*Correspondence to: Stefano Russo, DIETI - Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples,
Italy.

†E-mail: stefano.russo@unina.it

© 2019 John Wiley & Sons, Ltd.

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1725&domain=pdf&date_stamp=2019-12-16

2 of 23 R. PIETRANTUONO ET AL.

may determine perceivable MSA unreliability, as the likelihood to observe a failure increases with
usage. Decision makers — MSA stakeholders, as well as managers of development, testing and
operations — need to be aware of the operational reliability of the MSA. This would drive strategic
decisions, for example, about effort allocation to maintenance or re-engineering activities.

So far, research has focused more on performance and maintainability issues than on reliability
[1]. As for the latter, the general trend is to exploit microservices’ features like loose coupling to
increase failure detection, fault tolerance or availability in MSAs (e.g., [3–7]). To the best of our
knowledge, the assessment of operational reliability of MSAs is not addressed yet. Traditional soft-
ware reliability assessment techniques, such as operational testing and its derivations (e.g., [8–10]),
have limited applicability to MSAs. Indeed, static attempts to gauge reliability are almost useless,
as the application and the usage profile change over time because of frequent releases, services
upgrades, dynamic service interactions and to how customers use the application.

This article presents Enhanced Microservice Adaptive Reliability Testing (EMART), a method for
assessing the reliability of an MSA in operation. EMART extends the MART strategy introduced in
previous own work, where the idea of using an adaptive testing algorithm to improve the reliability
estimation of MSA applications was first presented [11]. EMART’s ability to achieve better accuracy
and efficiency than operational testing was shown through a case study based on the Netflix MSA
stack. Being based on sampling without replacement (WOR) — that is, each partition of the input
space‡, from which test cases are drawn, can be selected at most once — MART assumes a testing
budget smaller than the number of partitions. In past work, we also defined a family of testing
algorithms that exploits sampling schemes more efficient than WOR sampling [12]. Building upon
this concept, here we present EMART, which generalizes MART by removing the upper bound on
the number of tests to run. This generalization enables the proposed method to be used also when
the tester can afford more tests to the aim of achieving a high level of confidence in the estimate.

EMART implements a testing strategy acting during operations (namely an in vivo testing strat-
egy), triggered upon request by a stakeholder who needs an estimate of the MSA operational
reliability. It achieves unbiasedness, accuracy and efficiency by three key activities:

1. Monitoring: Field data are gathered about the microservices’ usage profile and about fail-
ure/success of demands. This provides updated estimates representing the real reliability at the
time when the assessment is requested.

2. Testing: Using only passive observations (monitoring) is inadequate for estimates with high
accuracy and confidence. Indeed, the application could be not adequately stressed and failures
would need much time to be exposed, leading to overestimation of reliability or, conversely,
to an excessive number of observations for an acceptable confidence. EMART uses a new
testing algorithm based on adaptive statistical sampling, which exploits data gathered during
operations to drive the test generation and accelerate the exposure of failures.

3. Estimation: The EMART testing algorithm identifies the most relevant test cases in few steps,
by forcing a disproportional selection of test cases with respect to the observed usage pro-
file. In principle, such a type of sampling would yield biased estimates. Therefore, a proper
weight-based estimator is adopted at the end of testing in order to counter-balance the selection
strategy, ultimately providing an accurate and unbiased estimate with small variance.

EMART is designed starting form the main features and requirements of MSA, such as frequent
code updates (hence, evolving failure probability), unstable/unknown usage patterns (evolving usage
profile), tight testing budget constraints, loose coupling between services and continuous monitor-
ing. The approach is conceived to cope with these features and to work reasonably well with limited
testing budget, by exploiting field data to provide a quick and accurate assessment robust to such
continuously changing conditions, by leveraging monitoring facilities usually available in an MSA
and by the looser coupling (compared with other architectures) to keep the estimator simple.

‡A partition of the input space, also referred to as a subdomain in the following, is a subset of inputs believed to have
the same chance of exposing a failure. Such a belief can be acquired from requirements specification (e.g., inputs
inside/outside a range of admissible values) as well as from the code (e.g., inputs exercising the same code path).

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 3 of 23

The method is experimented on three open subjects available on Github, showing remarkable
improvements in terms of effectiveness, efficiency and scalability with respect to operational testing,
a technique used as baseline as it is a pillar of the software reliability assessment practice [13].

The rest of the paper is organized as follows. Section 2 surveys the related literature. Section 3
presents EMART. Sections 4 and 5 report the experimental design and results, respectively. Section 6
discusses threats to the validity of results. Section 7 concludes the paper.

2. RELATED WORK

2.1. MSA dependability

A recent study by Di Francesco et al. reports that a considerable number of papers are being
published on MSA since a few years [1]. A relatively high number of them are on the appli-
cation of MSA to several industrial domains, witnessing its strategic importance for companies.
Besides architectural and design issues, research is targeting dependability concerns and how this
new architectural style impacts them. Among the quality attributes of interest, performance and
maintainability are the most investigated ones. Reliability is considered in few studies, often in
a broad meaning encompassing aspects of resiliency, availability, fault tolerance, robustness and
failure/anomaly detection.

Toffetti et al. propose an architecture for resilient self-management of microservices in the Cloud.
It monitors application and infrastructural properties to provide timely reactions to failures and
changing environmental conditions (auto-scaling), minimizing human intervention [14].

Kang et al. present the design, implementation and deployment of a microservice-based con-
tainerized OpenStack instance [2]. The authors describe a recovery mechanism for microservices to
increase availability.

Investigating the adoption of MSA for Internet of Things applications, Butzin et al. propose a fault
management mechanism based on the circuit-breaker pattern, which prevents a failed service from
receiving further requests until its complete recovery, so as to avoid cascading failures [4]. Simi-
larly, the service discovery mechanism proposed by Stubbs et al., based on Serf [15], is equipped
with monitoring and self-healing capabilities [16].

The use of the Serf failure detection ability is also proposed by Kookarinrat and Temtanapat in a
decentralized message bus for communication among services [17]. An anomaly detection service
is foreseen by Bak et al. too, in their MSA for context-based applications [3].

Cardozo et al. propose a framework for software service emergence in pervasive environments,
where the problem of evaluating reliability under changing environment-dependent services is
recognized but left to future work [18].

Testing is a less investigated area for MSAs, with work focusing mainly on resiliency assessment.
Heorhiadi et al. propose the Gremlin framework for testing the failure-handling capabilities of
MSAs by emulating common failures observable in network interactions between microservices [5].
Fault injection is used by Nagarajan et al. at Groupon in their automated Screwdriver tool to assess
resiliency of MSAs [7], and by Meinke et al., who adopt a learning-based testing strategy to evaluate
the robustness of MSAs to injected faults [6]. Schermann proposes a formal model for multiphase
live testing to test changes or new features in the production environment [19].

The general trend of the related work above is to exploit microservices’ features like loose cou-
pling to increase failure detection, fault tolerance or availability in MSAs. Although this impacts
the user-perceived probability of failure on demand (namely the operational reliability), no study,
to the best of our knowledge, dealt with its assessment.

2.2. Operational reliability testing

The problem of providing faithful operational reliability estimates before product release is known
to be a big challenge. We are not aware of techniques for operational reliability estimate tailored for
MSAs, as the one we propose in this work. Nevertheless, existing techniques could be borrowed.

Operational testing (OT) [10] derives tests for a software product from an estimate of its opera-
tional profile, a preliminary characterization of how the system is going to be used [20]. Having a

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

4 of 23 R. PIETRANTUONO ET AL.

faithful profile has always been a big hurdle to OT applicability [21]. This issue is exacerbated in
MSAs, where — for example, due to service upgrades — what is observed in real use is likely to be
much different from what was expected before release, both for the operational profile and for the
failure probability of microservices. Very likely, a pre-release assessment for MSA would be mis-
leading. This suggests to opt for an in vivo technique, so as to assess the actual reliability during
operations. A further problem of OT is that mimicking the expected usage is often insufficient to
expose failures, ending up in inaccurate or highly uncertain estimates. For highly reliable software,
an excessive testing effort would be required to reach an acceptable confidence level [22].

More recent operational testing techniques mitigate this problem trying to expose more failures
by means of (i) the partitioning of the input space into equivalence classes, which enables to select
fewer and more relevant test cases and/or (ii) adaptation, by which the selection of next test cases is
driven by the results of previous tests. Chen et al. defined adaptive random testing [9], which uses
adaptation to distribute the next tests across the input domain so as to reduce the expected number
of test cases required to detect the first failure, for debugging purposes; as such, adaptive random
testing is not meant to estimate reliability. Cai et al. proposed adaptive testing, where the assignment
of the next test to a partition is based on the outcomes of previous tests to reduce the estimate’s
variance [8, 26]. The profile (assumed known) is defined on partitions, and selection within partitions
is done by simple random sampling (SRS) with replacement. Adaptiveness is also exploited in own
previous work on reliability testing (not focused on MSA), where importance sampling is used to
allocate tests towards more failure-prone partitions [23–25].

3. MICROSERVICE ARCHITECTURES RELIABILITY ASSESSMENT METHOD

3.1. Terminology and assumptions

A user accesses an MSA application through a set of edge microservices. User demands are invo-
cations of edge microservices. These have typically a minimal business logic, basically routing
demands to lower layer microservices. Demands may fail, and as we are interested in operational
reliability, we observe the outcome of demands at the edge layer, regardless of the failing entity
within the MSA. The user-oriented metric of interest is the probability of failure on a user demand,
which is a discrete measure of the usual reliability concept.§

The following assumptions are made, as typical in reliability testing studies [8, 25–27]:

1. The microservice architecture contains k edge microservices.
2. A user demand to (an edge microservice of) the MSA leads to either success or failure, and

it is always possible to determine its success or not (perfect oracle). As oracle, we use the
Hypertext Transfer Protocol status code of the response, distinguishing the following two
cases:

a) Successful demand: the status code is consistent with the input submitted, such as

- a 2xx status code (indicating success) for a correct request (correct according
to the documentation), or

- a 4xx status code (indicating a client error) for an incorrect request (e.g., a
numeric input containing alphabetical characters). These responses are correct
replies to incorrect requests, which the API client is required to manage.

b) Failing demand: (i) the application raises an unexpected, unmanaged, exception, sent
to the client, which is reported as 5xx status code (server error) or (ii) the returned
status code and message are inconsistent with the input submitted.

3. The execution of a demand is not constrained by previous ones, and its success is independent
of the history (a failing demand is always such, independently from past ones). Because of the
loosely coupled nature of microservices, this assumption is likely to be easily met in MSAs.

§According to the IEEE Recommended Practice on Software Reliability, ‘software reliability predictions are a measure
of the probability that the software will perform without failure over a specific interval, under specified conditions’ [28].

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 5 of 23

4. The input space DSj of the j th edge microservice can be partitioned into a set of subdo-
mains. The number of subdomains and the partitioning criterion are decided by the tester:
example criteria are functional, structural or usage profile-based. The choice does not affect
the applicability of the proposed strategy.

5. The overall MSA demand space is the union of subdomains of the input spaces of all edge
microservices, D D [kjD1DSj . D represents all demands a user can do. To simplify the
notation, D is regarded merely as a set of partitions, D: ¹D1;D2; : : : ;Dmº, where m is the
sum of the cardinalities of the partitions of all edge microservices.

6. The MSA operational profile P is described as a probability distribution over the demand
space D. Differently from most literature on reliability testing, no assumption is made on
the prior knowledge of P . However, we assume the ability to monitor the demands — a
commonly available facility in MSA. EMART’s adaptive nature makes use of the moni-
toring data to provide an estimate in line with the observed usage profile and failures of
services.

7. While EMART is running to estimate the MSA reliability, microservices are not modified, and
the normal workload needs not to be suspended.

We define the probability of selecting a failing demand from subdomain Di as xi D fi � pi , where
pi is the probability of selecting a demand fromDi and fi is the probability that a demand fromDi
fails. Under the assumption of independent probabilities of failure, R is defined as [26, 27]

R D 1 �

mX
iD1

xi D 1 �

mX
iD1

fi � pi ; (1)

where the summation is the probability of failure on a user demand. EMART executes in vivo tests
to estimate unbiasedly and efficiently the reliability R of an MSA in operation.

3.2. Usage scenarios

EMART is conceived to assess the reliability of an MSA application in two usage scenarios.
In use case UC1, the tester requires an estimate of the current MSA reliability using a constrained

testing budget. Let us consider as upper bound on the number of tests that can be performed in
operation a value as high as the number of subdomains. In this situation, EMART adopts a without-
replacement sampling scheme.¶

Use case UC2 corresponds to the situation where higher accuracy and/or stronger confidence in
the reliability estimate are required. The tester targets them at the cost of a possibly high number of
test cases. In this scenario, without replacement sampling is not applicable, and EMART generalizes
the previously proposed MART method [11], using a with replacement sampling scheme.

3.3. The EMART method

Figure 1 shows the steps of the EMART process. It includes pre-release activities, to be performed
once before release, and in vivo activities, to perform the reliability assessment in operation.

3.3.1. Pre-release activities.

Demand space partitioning The demand space D is partitioned in a set of subdomains. To this
aim, values of the arguments of methods of edge microservices are grouped in equivalence
classes. Any partitioning criterion applies; we adopt specification-based partitioning, where
equivalence classes are defined based on the input arguments in a method’s signature. Consider,
for instance, the method Login(String username, String password): values of

¶Without replacement sampling schemes are generally expected to be more efficient than their with replacement
counterpart, given the same sample size [29].

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

6 of 23 R. PIETRANTUONO ET AL.

Figure 1. Enhanced Microservice Adaptive Reliability Testing operational reliability assessment steps.

the username input can be grouped into five classes according to the string length (in-range,
out-of-range) and content (alphanumeric string, string including special characters, or the empty
string); for password, seven classes are defined, according to the length and content (as for
username), and to the satisfaction of two application-specific requirements (one upper case let-
ter, one special character). The cartesian product yields 35 combinations. Each of them is referred
to as a test frame (corresponding to a subdomain).|| More sophisticated criteria can exploit fur-
ther information on the arguments — category-partition testing, with single, error and property
constraints, is one such partitioning technique [30].

Initialization. Each test frame is associated with the probabilities pi and fi of selection and of fail-
ure of a demand fromDi , respectively. Their true value is of course unknown; EMART addresses
the estimates Opi and Ofi of the true values. In case the tester has no prior knowledge about
expected usage and failure proneness of microservices in operation, all Opi and Ofi are initialized
by uniform distributions. EMART then refines the estimates dynamically as more information
becomes available from monitoring, using the probabilities update formulas described later. In
real cases, the tester may however have some prior knowledge, for example, because of past
evidence or as his/her own belief. The partitioning criterion is itself an example of belief of
the tester, who judges some classes as more prone to failure than others (e.g., in-boundary and
out-of-boundary classes in equivalence classes partitioning). If available, such a belief can be
used to assign initial values to pi and fi differently from a uniform distribution, to expedite the
assessment.

Graph construction. An undirected graph model of the test cases space is constructed, whose
nodes represent test frames, and an arc between two nodes represents a dependency between the
failure probabilities of the corresponding test frames.

For every pair .i; j / of test frames of a method of an edge microservice, we define a distance d
as the number of differing input classes. For instance, the distance between Login(username1,
password3) and Login(username2, password3) is d D 1. The distance between two frames
is assumed to be proportional to the potential differences observed in the control flow paths exe-
cution, since different input classes intend, by definition, to capture heterogeneous program’s
behaviour: the greater the distance (i.e., a bigger number of different input classes), the big-
ger the chance for two demands taken from the two corresponding frames to execute different
control flow paths within the method’s code. A weight wi;j is associated with the arc .i; j / to
capture the belief about the joint failure probability of test frames i and j . Indeed, as demands

||For each method with no input, we count one test frame, so as to include it in the assessment.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 7 of 23

Table I. Equivalence classes for the example service.

Input Input class Description Short name

username u0 Alphanumerical string in bound (5 chars) In bound
u1 Alphanumerical string out of bound Out of bound
u2 String with special characters (SC) SC
u3 Empty input Empty

password p0 Alphanumerical string in bound (10 chars) In bound
p1 Alphanumerical string out of bound Out of bound
p2 String with special characters SC
p3 String with one upper case character Upper Case

Table II. Test frames, example of test cases and usage and failure probability.

Test frames Test cases Probabilities

ID Input Class 1 Input Class 2 Input 1 Input 2 Opi Ofi
0 u0 p0 foo password1 0:06 0
1 u0 p1 foo password100 0:06 1
2 u0 p2 foo passwor*1 0:06 0
3 u0 p3 foo Password1 0:06 0
4 u1 p0 foobar password1 0:06 0
5 u1 p1 foobar password100 0:06 1
6 u1 p2 foobar passwor*1 0:06 0
7 u1 p3 foobar Password1 0:06 0
8 u2 p0 f?o* password1 0:06 0
9 u2 p1 f?o* password100 0:06 1
10 u2 p2 f?o* passwor*1 0:06 0
11 u2 p3 f?o* Password1 0:06 0
12 u3 p0 null password1 0:06 0
13 u3 p1 null password100 0:06 1
14 u3 p2 null passwor*1 0:06 0
15 u3 p3 null Password1 0:06 0

drawn from two test frames of a method are likely to execute some common code, the failure
probability assigned to a test frame affects the belief about the failure probability of another
frame, depending on their distance. The weight wi;j expresses the joint probability of failure:
P.i \ j / D P.i jj / � P.j /. The conditional failure probability P.i jj / is the probability for test
frame i to fail, conditioned on the fact that a failure is observed for frame j . P.i jj / is inversely
proportional to the distance: the smaller the distance, the more similar the two frames, and the
bigger the conditional probability of failure. We represent this relation by P.i jj / D P.i/ � 1

d
(d > 0, as at least one input class differs between two test frames). Weights are computed as:
wi;j D Ofi �

1
d
� Ofj .

Example. An example of equivalence classes for the method Login(String username, String pass-
word) is reported in Table I. The 16 test frames — derived as the cartesian product of the four
equivalence classes devised for each input — are listed in Table II, which shows also the ini-
tial usage and failure probabilities assigned to frames, and a sample test case drawn from a test
frame. As for the usage probability, Opi , we assume, in this example, ignorance of the profile,
drawing probabilities from a uniform distribution in [0;1], normalized to sum up to 1. As for the
failure probability, Ofi , we assume the tester has some belief about which test frame is expected
to fail, and, specifically, (s)he assigns a failure probability 1 whenever the input class of the argu-
ment password is out of bound (namely, class p1). The resulting graph is shown in Figure 2.
Because these failing test frames have distance d D 1 (i.e., they differ by only one input class),
the weights are wi;j D 1 if i and j are two failing test frames (linked by an arc) and 0 otherwise
– so weights are omitted in the graph.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

8 of 23 R. PIETRANTUONO ET AL.

Figure 2. Example of graph. The numbers are the ID of the test frame listed in Table II.

3.3.2. Run-time monitoring and update.

Monitoring. The in vivo activities in Figure 1 require run-time data about the usage and failure
probability of test frames, to compute an estimate aligned with the current reliability in opera-
tion. To this aim, a monitoring facility traces the requests to each microservice’s method (name
of the method and input values, so as to map the demand to a test frame), and their outcome (suc-
cess/fail, so as to count the failed requests per test frame). Many monitoring tools are available
to gather such data, for example, Amazon CloudWatch [31] and Nagios [32]. Note that a rough
reliability estimate could be computed directly by the gathered data, but the demand space is not
guaranteed to be explored adequately by normal workload. EMART’s goal is to provide faith-
ful estimates by actively spotting (through the generated tests) those demands more informative
about the current reliability.

Probabilities update. The unknown usage and failure probabilities pi and fi are modelled as ran-
dom variables, whose estimate is updated as more evidences (monitoring data) become available.
The length of the history of observations to consider should to be defined so as to promptly react
to changes of the usage profile and failure probabilities. EMART adopts a sliding window of
lengthW on the history of the demands issued to edge microservices. The update rule for Opi and
Ofi are

Opui D Op
u�1
i �

�
H C .1 �H/ �

�
1 �

R

W

��
C Oopui � .1 �H/ �

�
R

W

�
; (2)

Of ui D
Of u�1i �

�
H C .1 �H/ �

�
1 �

R

W

��
C Oof

u

i � .1 �H/ �

�
R

W

�
; (3)

where

� Opu�1i is the previous occurrence probability of the i th test frame;
� Of u�1i is the previous failure probability of the i th test frame;
� R is the number of executed demands (R � W);
� Oopui is the occurrence probability for test frame i at the current step, estimated as the ratio

between the number of failed demands to the i th test frame and R;
� Oof

u

i is the failure probability for test frame i at the current step, estimated as the ratio
between the number of failed demands to the i th test frame and number of total demands to
it;
� H is a value between 0 and 1, which weighs the history considered in the update (set to 0.5

in the experiments).

These rules allow changes of the operational profile and of the failure probability to be detected
more promptly than it would be by considering the whole history.

3.3.3. Test generation algorithm. Figure 3 details the test cases generation and execution phase of
EMART. It consists of an iterative algorithm navigating the graph built as in Section 3.3.1. Assum-
ing n test cases to spend, the algorithm generates and executes one test case per step. The first test
frame is selected by simple random sampling, namely all test frames have equal probability of being
selected initially. In an iteration, a test case is generated and executed for the selected test frame
by drawing a demand for it (i.e., taking values from the corresponding inputs classes), according

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 9 of 23

Figure 3. Enhanced Microservice Adaptive Reliability Testing tests generation and execution phase. SRS,
simple random sampling.

to a uniform distribution. Then, one of two sampling schemes is used to select the next test frame:
weight-based sampling (WBS) and SRS.** The former is chosen with probability r and follows the
arcs between graph nodes (i.e., failure dependency between test frames), so as to explore possi-
ble clusters of failing demands; this feature is useful when failure points are clustered, as it often
happens in software testing. This depth exploration is balanced by SRS, chosen with probability
1 � r , for a breadth exploration of the test frame space, useful to escape from unproductive cluster
searches. The steps are repeated until the testing budget n is over.

The test generation algorithm varies depending on the usage scenario (Section 3.2). In use case
UC1, without replacement WBS and SRS schemes are used, in which a test frame can be selected
only once. Clearly, this implies that the number of tests must not exceed the number of test frames.
This EMART variant is useful when just ‘few’ tests can be executed in operation; it is a mere best
effort approach within an upper bounded sample size (i.e., number of tests). In this scenario, a test
frame is selected at step k by a distribution according to equation:

qk;i D r �

P
j2sk

wi;jP
h…sk ;j2sk

wh;j
C .1 � r/ �

1

m � nsk
; (4)

with:

� qk;i is the probability to select test frame i at step k;
� m is the total number of test frames;
� sk is the current sample, namely the set of all test frames selected up to step k;
� nsk is the size of the current sample sk ;
� wi;j is the weight of arc from node (test frame) j in the current sample sk to node (test frame)
i ;
� wh;j is the weight of arc from node j in the current sample sk to node h not in sk ;
� r is the probability of using WBS (hence, probability of using SRS: 1 � r).

In the Scenario UC2 (with an unconstrained number of tests), with replacement sampling is
adopted, where a test frame can be selected more times. In this case, Equation (4) becomes

qk;i D r �

P
j2sk

wi;jP
hD1;:::m;j2sk

wh;j
C .1 � r/ �

1

m
: (5)

The first addendum in Equations (4) and (5) account for the contribution proportional to the
weights of the graph (WBS in Figure 3), which capture the failure dependence between test frames.

**If there is no arc outgoing from the current set of selected test frames (thus, no failure dependency between the current
sample and any other test frame), the SRS scheme is used.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

10 of 23 R. PIETRANTUONO ET AL.

The second addendum in Equations (4) and (5) account, respectively, for the selection probability of
not-yet-selected test frames in SRS without replacement and the selection probability in SRS with
replacement. The algorithm is adaptive as the q values change depending on which test frame is in
the current sample.

3.3.4. Estimation. The testing algorithm is fed with information from monitoring, namely Opi and
Ofi of each test frame. Testing is expected to improve Ofi by spotting more failing test frames, yet

it cannot tell anything about the usage probability Opi . Therefore, the Opi values remain unchanged
during testing and are used only at the end to compute the estimate. The Ofi values are updated at
each step considering the 0/1 (success/failure) outcome of tests. We denote by yi;t the observed
outcome of a test case t taken from test frame i , yi;t D 0=1.

In Scenario UC2, the estimate of Ofi is the updated ratio of the number of failing over executed

demands with inputs taken from test frame i : Of
0

i =
Ofi �niC

Pmi
tD0

yi;t
niCmi

, where ni is the number of
demands with an input from test frame i observed during operation andmi is the number of demands
taken from test frame i during testing (i.e., test cases).

In Scenario UC1, where mi � 1, Ofi is unchanged if mi D 0; if mi = 1, it is given by: Of
0

i =
Ofi �niCyi;t
niC1

.
The monitoring data and the results of testing are used to compute the estimate of the failure

probability ˆ D
P
i pi � fi . The estimate is updated at step k accounting for the change of the

selection probability for each test frame (qk;i) and of the failure probability Of
0

i . The estimator prop-
erly accounts for the disproportional selection (with respect to the operational profile) made through
Equation (4) so as to preserve unbiasedness, by using weights equal to 1=qk;i (values selected with
high probability will contribute less to the estimation, and vice versa), as detailed hereafter.

In Scenario UC1, the estimator at step k D 1 (the first observation taken by the SRS) is ´1 D
N � Opi � Of

0

1;i , where N is the total number of test frames, Opi is the probability of selecting the ith test

frame (that does not depend on the step) and Of
0

1;i is the failure probability of the selected test frame
i at Step 1. At step k > 1, the estimator is the one by Hansen–Hurwitz [33]:

´k D
1

n

nX
kD1

Opi � Of
0

k;i

qk;i
; (6)

where n is the number of executed tests.
In Scenario UC2, the initial estimator ´1 is the same as before, while at step k > 1 it becomes

´k D
X
h2sk

Opi � Of
0

h;i C
Opi � Of

0

k;i

qk;i
: (7)

In both use cases, the final estimator is the average of the values obtained at each step:

Ô D
1

n

N � Opi � Of

0

1;i C

nX
kD2

´k

!
(8)

representing the expected probability to experience a failure on a random demand to the MSA.
The overall MSA reliability is then computed as

R D 1 � Ô : (9)

4. EXPERIMENTATION

4.1. Research questions

The performance of EMART in the envisaged Scenarios UC1 and UC2 are the target of research
questions RQ1 and RQ2, respectively. An additional research question concerns the speed of con-
vergence of the estimate to a stable value as the number of test cases increases, so as to figure out a
trade-off between a desired quality of the estimate and the effort required (number of tests generated
and run). The three research questions are stated as follows.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 11 of 23

RQ1 - How does EMART perform with a constrained testing budget (UC1)?

� RQ 1.1 - What is the accuracy of the reliability estimate?
� RQ 1.2 - What is its confidence?

RQ2 - How does EMART perform with an unconstrained testing budget (UC2)?

� RQ 2.1 - What is the accuracy of the reliability estimate?
� RQ 2.2 - What is its confidence?

RQ3 - What is the efficiency of EMART?

� RQ 3.1 - How much does accuracy improve as the number of test cases increases?
� RQ 3.2 - How much does confidence improve as the number of test cases increases?

4.2. Subjects

An empirical study would demand for a large set of experimental subjects. However, as pointed
out by Arcuri, ‘finding the right MSA projects that do not require complex installations . . . is not a
trivial task’ [34]. We chose to run controlled yet repeatable experiments with three subjects, pub-
licly available from Github; they are listed in Table III. These, although simple, are good examples
of MSA applications, as each implemented MS provides a fine-grain (high-cohesive) functional-
ity, loosely coupled with the others, using the (lightweight) REST paradigm for communication,
and stressing the independent and rapid deployment (using Docker for containerization in the first
two cases (AWS and NLP) and the Spring Boot development framework in the third case (feature
service) particularly suited for rapid deployment.

The first subject, here called AWS, is a demo program for deploying microservices on the Amazon
Web Service Cloud with various configuration options. It manages information about users stored in
an XML database, and it consists of three edge microservices, with 62,546 lines of code in several
languages (mainly JavaScript, JSON, and YAML). Two microservices take one input, the user id
(uid); the third one takes no input. Table IV lists the seven test frames for each of the former two
microservices; because there is only one input, test frames correspond to the seven equivalence
classes devised for user id. The total number of frames for AWS is (7 classes) � (2 methods) + 1 =
15, where the method taking no input is counted as one test frame, as noted in Section 3.3.1.

The second subject, called NLP building blocks (here simply: BB), is a natural language process-
ing engine; it offers eight services, for 1,980 lines of code (mostly in Java) for language detection,
sentence extraction, etc.; we defined for it 44 test frames.

The last subject, features service (here: FS), is a REST microservice for managing products fea-
ture models (compact representations of the features of products in a software product line); it has
seven methods, for 1,712 lines of code mostly in the Java and SQL languages; we devised for it 163
test frames.

4.3. Test infrastructure

The test infrastructure for the experiments, shown in Figure 4, consists of the following components:

Table III. Experimental subjects (MSA applications available on Github).

Subject �services LOC Frames

AWS demo 3 62,546 15
URL: https://github.com/aws-samples/aws-microservices-deploy-options
NLP building blocks 8 1,980 44
URL: https://github.com/mtnfog/nlp-building-blocks
SPL features service 7 1,712 163
URL: https://github.com/JavierMF/features-service

Abbreviations: AWS, Amazon Web Service; LOC, lines of code; MSA, microservice architectures; NLP,
natural language processing; SPL, software product line.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

https://github.com/aws-samples/aws-microservices-deploy-options
https://github.com/mtnfog/nlp-building-blocks
https://github.com/JavierMF/features-service

12 of 23 R. PIETRANTUONO ET AL.

Table IV. Test frames for each of the two microservices of the Amazon Web Service
subject with one input (user id).

Input Test frame Description

uid GET http://127.0.0.1:8080/{uid0} integer in range Œ0I 6�
uid GET http://127.0.0.1:8080/{uid1} integer in �min.int32/I 0Œ
uid GET http://127.0.0.1:8080/{uid2} integer in �6Imax.int32/Œ
uid GET http://127.0.0.1:8080/{uid3} max.int32/
uid GET http://127.0.0.1:8080/{uid4} min.int32/
uid GET http://127.0.0.1:8080/{uid5} special char
uid GET http://127.0.0.1:8080/{uid6} empty
- GET http://127.0.0.1:8081/resources/greeting service with no input

uid GET http://127.0.0.1:8082/resources/names/{uid0} integer in range Œ0I 6�
uid GET http://127.0.0.1:8082/resources/names/{uid1} integer in �min.int32/I 0Œ
uid GET http://127.0.0.1:8082/resources/names/{uid2} integer in �6Imax.int32/Œ
uid GET http://127.0.0.1:8082/resources/names/{uid3} max.int32/
uid GET http://127.0.0.1:8082/resources/names/{uid4} min.int32/
uid GET http://127.0.0.1:8082/resources/names/{uid5} special char
uid GET http://127.0.0.1:8082/resources/names/{uid6} empty

Figure 4. Experimental test infrastructure. EMART, Enhanced Microservice Adaptive Reliability Testing;
MSA, microservice architectures.

� Workload generator: This component emulates MSA clients, issuing demands according to the
true profile. Requests are generated according to the operational profile, namely selecting a
given test frame with probability Opi , and randomly choosing an input from the selected test
frame. To emulate a variable profile, for example, due to an upgrade of a service, the profile and
the failure probabilities are changed after a number of requests (set to 5,000 in the experiments);
� Monitor: It performs MSA monitoring, feeding the EMART engine. To this aim, we use the

MetroFunnel monitoring tool tailored for microservices, developed in our research group.††

The tool is in charge of monitoring the request/response pairs (possibly from multiple clients)
so as to figure out what partition is being invoked and if it failed or not; such results are used
to update the probabilities estimates Opi and Ofi used for test generation.
� EMART engine: Its three subcomponents perform the EMART in vivo tasks of Figure 1:

ı Probabilities updater: It parses monitoring data to extract the number of correct/failing
demands (coming from both the workload and the generated tests); then, usage and failure
probabilities are updated, according to what has been described in Section 3.3.2;
ı Test generator: It implements the algorithm described in Section 3.3.3, generating and

running tests based on the current usage profile and failure probabilities;
ı Reliability estimator: It computes the final reliability estimate in use cases UC1 and UC2, as

described in Section 3.3.4.

††MetroFunnel is available at: https://github.com/dessertlab/MetroFunnel.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

http://127.0.0.1:8080/\protect \T1\textbraceleft uid0\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid1\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid2\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid3\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid4\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid5\protect \T1\textbraceright
http://127.0.0.1:8080/\protect \T1\textbraceleft uid6\protect \T1\textbraceright
http://127.0.0.1:8081/resources/greeting
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid0\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid1\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid2\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid3\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid4\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid5\protect \T1\textbraceright
http://127.0.0.1:8082/resources/names/\protect \T1\textbraceleft uid6\protect \T1\textbraceright
https://github.com/dessertlab/MetroFunnel

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 13 of 23

4.4. Parameters initialization

To simulate some knowledge of the tester about the failure proneness and occurrence probability
of test frames (see Section 3.3.1), we performed an initial characterization of test frames, comput-
ing the initial probabilities Ofi and Opi as follows. We ran 30 random test cases for each frame. The
proportion of failures is used as an ‘equivalent’ prior knowledge about failure probability, as sug-
gested by the seminal work by Miller et al. [35]. We recall that a failure in this context is either a
server error (5xx HyperText Transfer Protocol code) or a reply inconsistent with the input request
(cf. with Section 3.1). Faults causing these failures are real (not injected). We envisaged three cat-
egories of test frames based on failure proneness and assigned an initial failure probability to each.
The categories are the following:

� No-failure frames: It encompasses frames for which all 30 tests exhibited no failure. The ini-
tial failure probability to these test frames is set to Ofi D � D 0:01. The small yet not null
assignment of � > 0 represents the uncertainty due to the limited number of observations;
� All-failures frames: It includes test frames whose test cases failed at any of the 30 executions.

The initial failure probability for these test frames is set to Ofi D 1 � � D 0:99;
� Sporadic-failures frames: It comprises frames that failed in some of the 30 executions. The

initial failure probability for them is the ratio between failed requests and executed requests.

For all three subjects, we observed only no-failure and all-failure frames: the 30 test cases for
every frame failed either never or always.‡‡

As for the Opi values (i.e., the estimated profile), instead of taking a uniform profile (i.e., assuming
ignorance) or any arbitrary distribution, we opted for deriving them by deviating a true profile by
a given percentage, so as to simulate the incorrect knowledge of the tester about the true profile
and assess how much it impacts on results. To this aim, we first derived the true profile as follows.
We fix a target true reliability RE (0.90, 0.95, 0.99) and then assign occurrence probabilities pi to
failing or nonfailing partitions so as to attain the desired value. Specifically, considering the above-
mentioned categories of frames, we assign the same occurrence probability to all frames in the first
category, computing it as RE divided by the number of frames in that category. Each frame in the
second category is assigned a probability computed as .1 � RE / divided by the number of frames
in that category. For instance, for the AWS subject, 11 out of the 15 test frames belong to the first
category (no-failure) and four to the second category (all-failure): for a desired reliability RE=0.9,
the no-failure test frames are assigned an occurrence probability equal to 0:9

11
D 0:081; the all-failure

test frames are assigned a probability equal to .1�0:9/
4
D 0:025. For instance, assuming that the first

11 rows of Table IV are the no-failure test frames, each of them will be selected with probability
0:081, and a test case (namely, a GET request as those listed in the first 11 rows of the Table) will
be issued to the service. In the same way, assuming that the last four rows of the Table correspond
to the all-failure partition, each of them will be selected with probability 0.025 for generating the
test case. This process gives a true reliability approximately equal to 0.9 — the approximation is
because of the usage of Ofi values in lieu of the unknown fi ones, obtained on a limited number
of 30 runs.

We finally deviated the true profile by a desired percentage, measured as the sum of absolute
differences of the estimated versus the true occurrence probability of each test frame:

e D

jTF jX
iD0

j Opi � pi j ; (10)

where jTF j is the number of test frames; Opi and pi are the estimated and the true occurrence
probability of test frame i , respectively.

‡‡This happened to be different, for instance, from what experimented in the case study of previous MART method [11].

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

14 of 23 R. PIETRANTUONO ET AL.

4.5. Experimental factors

For every subject, three experiments are set up, one per RQ. Each experiment foresees a number
of scenarios, depending on a number of independent variables potentially affecting the reliability
estimate, called experimental factors [36].

The first factor is the true operational profile. For construction validity, all the experiments are
repeated for three true profiles, emulating workloads of clients’ requests yielding different expected
reliability RE values, namely 0.90 (True Profile 1), 0.95 (True Profile 2) and 0.99 (True Profile 3).

The second experiment design factor is the error on the initial estimate of the profile. Two
estimated profiles are considered, deviating by 10% and 90% from the true one, respectively.

The third design factor is the testing budget, that is, the number of test cases generated and
run; this serves to study the improvement in accuracy and confidence of the reliability estimate as
the number of tests increases (RQ3). To this aim, we run EMART in five configurations, namely
generating a number of tests corresponding to 0.25�, 0.50�, 0.75�, 5� and 10� times the number
of test frames. Rather than performing a sensitivity analysis to find the best value of r for every
specific application under test, we prefer to set the value of r to 0.5 for all testing sessions, so as to
have a balanced sampling between WBS and SRS.

The fourth design factor is the number of times that EMART is run to provide a reliability estimate
in a single scenario execution. This allows assessing to what extent its performance improves thanks
to learning from monitoring data. First, we run EMART without the emulated clients’ workload,
yielding a first reliability estimate when no field data is observed yet; we call this Step 1. Then, we
run EMART two more times, as if it were in the MSA operational phase — after 5,000 demands
(Step 2) and after 10,000 demands (Step 3) — in order to evaluate the improvements brought by
exploiting the knowledge gained from monitoring the clients’ demands and their success/failure.

The stability of the profile is the fifth factor. In real settings, it is unlikely that the usage profile
of an MSA remains unchanged over time. To study how EMART reacts to a variable operational
profile, we consider an additional experimental scenario with six assessment steps, where the true
profile changes after three steps.

4.6. Evaluation metrics

As proxies for EMART accuracy and confidence, we compute, respectively, the mean squared error
MSE and sample variance S of multiple EMART runs with respect to the true reliability. The
smaller the MSE, the more accurate the estimate; the smaller the variance S , the more efficient the
estimator, hence the stronger the confidence. To have a true reliability, we fix a profile (whatever it
is), deemed as the ‘true’ profile in operation — in our experimental setting, it is derived as described
in Section 4.4, but any other profile is fine for comparison purpose — and then we issue requests
according to that profile. The true reliability according to the conventional Nelson model is

RT D lim
T!1

.1 � F=T /; (11)

where F is the number of observed failures over the T executions. The Nelson estimator is simply

R D 1 � F=T (12)

provided that the T requests are issued according to the true profile. This, of course, is closer to the
true value as T tends to infinite. In our experiment, we set T D 10; 000 to have a good approxima-
tion of the true reliability, being 10,000 two orders of magnitude bigger than the test budget used by
EMART. Thus, R is our best-effort approximation of the true reliability RT .

Since the true profile is, in practice, unknown, EMART (as any operational testing technique)
needs to use an estimate of the operational profile, refined over time, to provide its estimate of
reliability. The accuracy and confidence metrics are computed with reference to the estimate of
reliability obtained by EMART under the estimated profile, denoted as OR, and the ‘true’ reliability
estimate obtained under the true profile, denoted as R in Equation (12). In particular, the mean

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 15 of 23

value M , the variance S and the MSE of the reliability estimate OR over NR D 30 repetitions are
computed as

lM. OR/ D
1

NR

XNR

iD1
ORi ;

MSE. OR/ D
1

NR

XNR

iD1
. ORi �R//

2;

S. OR/ D
1

NR � 1

XNR

iD1
. ORi �M. OR//

2:

(13)

As baseline for comparison, we consider OT; clearly, OT is used just to compare the performance
of the EMART test generation algorithm with a competing one without the clients’ workload (before
it starts to learn from field data).

4.7. Experiments

RQ1 (Scenario UC1). In the experiment to answer RQ1 the number of tests generated is set to 25%
of the number of test frames (i.e., 0.25�), so as to simulate a scarce testing budget. We consider
the two extreme cases for the estimate error, that is, an error of 10% and 90%, for each of the three
profiles. This leads for every subject to six scenarios (3 true profiles � 2 error values) in which
the true operational profile is stable, that is, it is not subject to significant variations. In a seventh
scenario accounting for the variable profile, the initial deviation is set to e D 0:5. As anticipated
in Section 4.6, the performance figures of EMART are computed after Nr D 30 repetitions. For
RQ1 we performed 3 subjects � (3 stable profiles � 2 errors � 3 steps C 1 variable profile � 1
error � 6 steps) � 1 testing budget = 72 testing sessions, each with 30 repetitions.

RQ2 (Scenario UC2). The experiment targeting RQ2 foresees seven scenarios per subject, simi-
larly as for UC1; the number of tests is set to ten times the number of test frames (i.e., 10x), so
as to simulate a large testing budget and evaluate the gain in accuracy and confidence. For RQ2
we performed 72 testing sessions, as for RQ1.

RQ3 (performance vs test budget). In the experiment to target RQ3, we vary the factor testing
budget. For each session, we generate a number of tests corresponding to 0.25�, 0.50�, 0.75�,
5� and 10� times the number of test frames. For what stated in Section 3.2, WOR sampling
is used in the former three cases, and with replacement sampling in the 5� and 10� cases. For
answering RQ3, we performed further 72 testing sessions for each of the test budgets 0.50�,
0.75� and 5�.

Overall, we performed 360 testing sessions — each with 30 repetitions — of which 270 ses-
sions for the stable profiles and 90 for the variable profile. Supplemental material, including the
EMART engine source code and all the obtained results, is available at: https://zenodo.org/badge/
latestdoi/205180385.

5. RESULTS

5.1. RQ1 (constrained testing budget)

Figures 5 and 6 show, respectively, the MSE (for RQ1.1) and the variance (for RQ1.2) for the three
experimental subjects with a stable profile. They show results for the two values of the estimated
profile error, namely 10% and 90%, under the True Profile 3, for which the true reliability is 0.99.
Figure 7 shows MSE and variance with a variable profile over six assessment steps, for the AWS
subject.§§ EMART is compared with OT as baseline technique under the same conditions (Step 1 in
the Figures, when EMART does not exploit field data yet). We recall that these results are obtained
running a number of tests as low as 25% of test frames. They show that

§§Results for the other profiles and subjects are essentially the same; they are not reported for brevity and are available
at https://github.com/dessertlab/EMART.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

https://zenodo.org/badge/latestdoi/205180385
https://zenodo.org/badge/latestdoi/205180385
https://github.com/dessertlab/EMART

16 of 23 R. PIETRANTUONO ET AL.

Figure 5. RQ1, stable profile: accuracy (MSE) of the estimate for subjects AWS, BB and FS. Testing budget
equal to 25% of test frames number. Starting profile with 10% error (yellow), and with 90% error (grey).
AWS, Amazon Web Service; BB, building blocks; FS, features service, MSE, mean squared error; OT,

operational testing.

Figure 6. RQ1, stable profile: confidence (variance) of the estimate for subjects AWS, BB and FS. Testing
budget equal to 25% of test frames number. Starting profile with 10% error (red), with 90% error (blue).

AWS, Amazon Web Service; BB, building blocks; FS, features service, OT, operational testing.

Figure 7. RQ1, variable profile: (a) MSE and (b) variance for subject AWS. Testing budget equal to 25% of
test frames number. AWS, Amazon Web Service; MSE, mean squared error; OT, operational testing.

� For all subjects, the order of magnitude of both MSE and variance is as low as 1.0E-3 with an
initial profile error of 10%, and as low as 1.0E-2 with an initial profile error of 90%;
� At Step 1, EMART exhibits lower MSE and variance than OT. This means that the sampling

algorithm improves the estimate accuracy and efficiency with respect to OT even when field
data are not exploited yet. Considering the 18 test sessions with stable profiles (three subjects,
three true profiles, two estimated profiles) and the three experiments with variable profile, this
happens in 18 out of 21 cases for MSE and in 20 out of 21 cases for variance;
� Both MSE and variance decrease, expectedly, as field data about the (stable) usage profile and

failure probability of test frames become available;
� In the case of variable profile (Figure 7), it can be noted how, upon the change of the true

profile, the MSE suddenly increases (while variance is not greatly affected), and then at Steps

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 17 of 23

5 and 6 it decreases as the new profile is ‘learnt’ from the field. This highlights the ability of
EMART to detect the profile change and to correct the estimate.

5.2. RQ2 (unconstrained testing budget)

Figures 8 and 9 show, respectively, the MSE (RQ2.1) and the variance (RQ2.2) for the three subjects,
with a stable profile. Figure 10 is for the variable profile. We observe that

� As for accuracy, the comparison with OT (Figure 8, Step 1) highlights a lower MSE difference
with respect to Scenario UC1; with an unconstrained testing budget, EMART performs better
in half of the cases (11 out of 21 test sessions), and absolute differences are very small. This
happens because of the high number of test cases, which compensate the inaccuracy of OT due
to low-occurrence faults detection ability;
� As for confidence (Figure 9, Step 1), EMART outperforms OT in 17 out of 21 test sessions,

and further improves at subsequent steps; the estimate tends to become stable. As expected,
when EMART exploits monitoring data (Steps 2 and 3), it outperforms OT in both the stable
and variable profile experiments, in accuracy (Figure 8) as well as in confidence (Figure 9);
� Like for RQ1, both MSE and variance expectedly decrease as field data about the (stable) usage

profile and failure probability of test frames become available.
� In the case of variable profile (Figure 10), EMART promptly reacts to the profile change, as in

Scenario UC1.

Figure 8. RQ2, stable profile: accuracy (MSE) of the estimate for subjects AWS, BB and FS. Testing budget
equal to 10x the test frames number. Starting profile with 10% error (yellow), with 90% error (grey). AWS,
Amazon Web Service; BB, building blocks; FS, features service, MSE, mean squared error; OT, operational

testing.

Figure 9. RQ2, stable profile: confidence (variance) of the estimate for subjects AWS, BB and FS. Testing
budget equal to 10� the test frames number. Starting profile with 10% error (red), with 90% error (blue).

AWS, Amazon Web Service; BB, building blocks; FS, features service, OT, operational testing.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

18 of 23 R. PIETRANTUONO ET AL.

Figure 10. RQ2, variable profile: (a) MSE and (b) variance for subject AWS. Testing budget equal to 10x the
test frames number. Variable profile. AWS, Amazon Web Service; MSE, mean squared error; OT, operational

testing.

Figure 11. RQ3: (a) Estimate’s accuracy (MSE) and (b) gain versus number of tests for subject AWS. AWS,
Amazon Web Service; MSE, mean squared error.

5.3. RQ3 (performance vs testing budget)

MSE and variance of EMART are assessed with respect to a varying number of test cases enabling
a cost-benefit analysis. The five configurations defined in Section 4.7 (test budget equal to 0.25�,
0.50�, 0.75�, 5� and 10� times the number of test frames) are labelled from 1 to 5, respectively.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 19 of 23

We evaluate cost in terms of percent increase of required test cases (TC), and the benefit in terms of
percentage decrease of MSE and variance.

In Figure 11(a) the blue line (left y-axis) plots the percentage MSE with respect to the first con-
figuration (assumed as baseline), namely �MSE D

MSEi�MSE1
MSE1

%, where MSEi and MSE1 are
the MSE values obtained under the i th configuration and under the first configuration. Figure 12(a)
plots similar percentages in blue for the variance. In both figures, the red line (right y-axis) plots
the percent increase in the number of executed test cases: it just transposes the x-axis with the five
configurations (from 0.25� to 10�) in order to have a clearer view of the cost-benefit trade-off. We
denote the percentage increase as �TC .

Figures 11(a) and 12(a) refer to one out of the 72 testing sessions, for the FS subject under Profile
1 and error value 10%, at assessment Step 3. We see how MSE decreases with the increase of test
cases. To figure out the best trade-off, we consider the incremental ratio computed as j�MSE j

j�TC j
%

(similarly for variance). This represents the actual percentage gain: a ratio higher than 100% means
that the benefit in terms of percentage reduction of MSE (or variance) overcomes the cost in terms of
percent increase of number of test cases. For instance, Figures 11(b) and 12(b) plot the incremental
ratios for the mentioned FS case: the without replacement variant working with a number of tests
half of the test frames (0.50�) is the best choice, as it yields a high gain with respect to the 0.25�
configuration, with relatively few more test cases.

To compare configurations, we counted how many times each configuration outperforms the oth-
ers in terms of incremental ratio over all three subjects. The results are shown in Figure 13(a). The
best configuration turned out to be the without replacement variant working with a number of test
cases 0.5 times the number of frames. This is the best configuration 36 out of 72 times, followed by
the 0.25� configuration (27/72), then by the 0.75� (6/72). The results for the variance are shown in
Figure 13(b) (70/72 wins for the 0.50� configuration, and 2/72 for the 0.75� configuration).

As for the percentage gain, we conclude that EMART is particularly suited when a scarce testing
budget can be spent (Scenario UC1), as its performance allows obtaining an estimate of the MSA
reliability with considerable accuracy (low MSE) and confidence (low variance) with a number of
test cases just as high as 25% of the number of test frames; the best results, in terms of percentage
gain, are achieved with a number of tests as high as 50% of test frames. On the other hand, if a tester

Figure 12. RQ3: (a) Estimate’s confidence (variance) and (b) gain versus number of tests for subject AWS.
AWS, Amazon Web Service.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

20 of 23 R. PIETRANTUONO ET AL.

Figure 13. Number of wins per test budget over all subjects: (a) accuracy (mean squared error); (b)
confidence (variance).

needs accuracy or confidence higher than those obtained with 50% or 25% of the tests, regardless
of the number of tests needed (namely, the accuracy and/or confidence of the assessment is deemed
relatively more important than the cost of the assessment), then the with replacement configuration
(Scenario UC2) is needed: the gain will be lower, but the configuration achieves the goal of a better
assessment, which the without replacement configuration cannot accommodate.

6. THREATS TO VALIDITY

We discuss threats that may affect the validity of the results beyond our best efforts in the design
and execution of experiments.

6.1. Internal validity

In the experiments, we derived test frames by a functional partitioning criterion, in which equiv-
alence classes are defined based on the input arguments in a method’s signature. While any
partitioning criterion can be applied, different criteria may lead to different results, depending on the
overlap of equivalence classes. Exploring the sensitivity of results to alternative partitionings (e.g.,
structural) was out of the scope of this paper and is left to future research.

The true profile of an application under test is generally unknown before release; the procedure
we used to derive a true profile for experiments foresees to fix a target reliability value, and to assign
occurrence probabilities to failing/nonfailing partitions so as to attain the desired value. This could
not be representative of a true profile; however, any profile generation procedure would be subject to
the same threat. It is important to notice that the experiments were mainly focused on the difference
between the estimated profile (representing the belief of a tester about the true profile) and the true
one, and on whether EMART is able to converge both in case of a small and a large difference.

Other experimental settings may affect the results; the update cycle between two reliability assess-
ment requests is set to W = 5,000 demands, and the history parameter of the monitoring framework
is set to H = 0.5. Different values are likely to change the speed of convergence, hence the reader
should be aware that these parameters need to be tuned before applying the method.

Additional threats to internal validity include the correctness of scripts for data collection process
and of implementation of the experimental test bed performed by the authors.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 21 of 23

6.2. Construct validity

The estimate of reliability is based on the modelR D 1�
P
i pi �fi . This model is widely used in the

literature of software testing, but it assumes that partitions (in our case, test frames) are independent.
Violation of this assumption can affect the results. However, compared with other studies based
on this model (e.g., [8, 25–27, 37]), the assumption is more likely satisfied in MSA applications,
because of the loose coupling that this kind of architecture enforces.

6.3. External validity

The experiment is performed on three microservice applications selected from Github. Thus, care
must be taken in extending conclusions to other programs. A high number of testing sessions con-
sidering several factors has been performed in order to mitigate this threat (360 testing session,
each repeated 30 times, under various true and estimated profiles, including stable and variable pro-
file, under several testing budgets and number of estimate requests). Beside MSA, we left to future
research extending the experiment to different types of applications for which the in vivo assessment
is deemed important (e.g., self-adaptive systems).

7. CONCLUSIONS

The microservice architecture style has currently great momentum in the engineering of modern
scalable web-based or cloud-based service-oriented applications. Traditional techniques for soft-
ware reliability assessment, based on testing with respect to an expected operational profile, can
hardly be applied to MSAs, because of their highly dynamic nature — with frequent updates — and
to the uncertainty about their actual usage profile with respect to what can be statically foreseen at
design time.

This paper has presented the EMART in vivo testing method for the estimate of the reliability of
microservice architectures. EMART allows to estimate the reliability of a MSA application during
the operational phase, featuring accuracy and confidence. These are obtained through (i) the adap-
tivity to the real observed usage profile and failing behaviour (thanks to monitoring data) and to (ii)
the adaptivity of the statistical sampling-based test cases generation algorithm, which allows to spot
failures with relatively few tests while preserving the estimate unbiasedness.

EMART has been evaluated experimentally with various controlled experiments with three pub-
licly available subjects. The results show how EMART adapts to the real usage profile of the
microservice application, as well as to its changes over time, yielding estimates with good accu-
racy (mean squared error), high confidence (small variance) and good efficiency (low number of
tests). These advantages come to the cost of gathering run-time data about number of requests
and failures for each microservice, which dynamically feed the EMART statistical algorithm. Such
data are typically captured by monitoring tools usually in place in service-oriented execution
environments.

EMART deals with providing a high-confidence estimate of operational reliability. However,
beside the estimate, the results of testing are also a very good starting point to improve reliability
in the next releases, because failed tests reveal the presence of defects. To this aim, the informa-
tion provided by EMART can greatly help (i) pinpoint the partitions of the input of a service that
leads to a failure and (ii) figure out if the partition exhibiting the failure is a much used one or not.
This information can be useful for the prioritization of fixing actions, by preferring to fix the more
used functionalities, which contribute more to improve reliability and/or for balancing the load in a
different way to prevent some services to be stressed much more than others.

ACKNOWLEDGEMENTS

This work has been supported by the PRIN 2015 project ‘GAUSS’ funded by MIUR.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

22 of 23 R. PIETRANTUONO ET AL.

REFERENCES

1. Di Francesco P, Malavolta I, Lago P. Research on architecting microservices: Trends, focus, and potential for
industrial adoption. Int. Conf. on Software Architecture (ICSA): IEEE: Gothenburg, Sweden, 2017; 21–30.

2. Kang H, Le M, Tao S. Container and microservice driven design for cloud infrastructure DevOps. Int. Conf. on Cloud
Engineering (IC2E): IEEE: Berlin, Germany, 2016; 202–211.

3. Bak P, Melamed R, Moshkovich D, Nardi Y, Ship H, Yaeli A. Location and context-based microservices for mobile
and internet of things workloads. Int. Conf. on Mobile Services (MS): IEEE: New York, NY, USA, 2015.

4. Butzin B, Golatowski F, Timmermann D. Microservices approach for the internet of things. 21st Int. Conf. on
Emerging Technologies and Factory Automation (ETFA): IEEE: Berlin, Germany, 2016.

5. Heorhiadi V, Rajagopalan S, Jamjoom H, Reiter MK, Sekar V. Gremlin: Systematic resilience testing of microser-
vices. 36th Int. Conf. on Distributed Computing Systems (ICDCS): IEEE: Nara, Japan, 2016; 57–66.

6. Meinke K, Nycander P. Learning-based testing of distributed microservice architectures: correctness and fault
injection. In Software Engineering and Formal Methods, vol. 9509, LNCS. Springer: Heidelberg, 2015; 3–10.

7. Nagarajan A, Vaddadi A. Automated fault-tolerance testing. 9th Int. Conf. on Software Testing, Verification and
Validation Workshops (ICSTW): IEEE: Chicago, IL, USA, 2016; 275–276.

8. Cai K-Y, Li Y-C, Liu K. Optimal and adaptive testing for software reliability assessment. Information and Software
Technology 2004; 46(15):989–1000.

9. Chen TY, Leung H, Mak IK. Adaptive random testing. In Advances in Computer Science - ASIAN 2004. Higher-Level
Decision Making, vol. 3321, Maher MJ (ed.), LNCS. Springer: USA, 2005; 320–329.

10. Musa JD. Software reliability-engineered testing. Computer 1996; 29(11):61–68.
11. Pietrantuono R, Russo S, Guerriero A. Run-time reliability estimation of microservice architectures. 29th Int. Symp.

on Software Reliability Engineering (ISSRE), IEEE: Memphis, TN, USA, 2018; 25–35.
12. Pietrantuono R, Russo S. On adaptive sampling-based testing for software reliability assessment. 27th Int. Symp. on

Software Reliability Engineering (ISSRE): IEEE: Ottawa, ON, Canada, 2016.
13. Lyu MR (ed..) Handbook of Software Reliability Engineering. McGraw-Hill, Inc.: Hightstown, NJ, USA, 1996.
14. Toffetti G, Brunner S, Blöchlinger M, Dudouet F, Edmonds A. An architecture for self-managing microservices. 1st

Int. Workshop on Automated Incident Management in Cloud: ACM: Bordeaux, France, 2015; 19–24.
15. HashiCorp. The Serf tool - decentralized cluster membership, failure detection, and orchestration. [Online].

Available: http://www.serfdom.io (Last checked: 2019-7-12).
16. Stubbs J, Moreira W, Dooley R. Distributed systems of microservices using docker and serfnode. 7th Int. Workshop

on Science Gateways (IWSG): IEEE: Budapest, Hungary, 2015; 34–39.
17. Kookarinrat P, Temtanapat Y. Design and implementation of a decentralized message bus for microservices. Int.

Joint Conf. on Computer Science and Software Engineering (JCSSE): IEEE: Khon Kaen, Thailand, 2016.
18. Cardozo N. Emergent software services. Onward! 2016 - ACM Int. Symp. on New Ideas, New Paradigms, and

Reflections on Programming and Software: ACM, 2016; 15–28.
19. Schermann G, Schöni D, Leitner P, Gall HC. Bifrost: Supporting continuous deployment with automated enactment

of multi-phase live testing strategies. 17th Int. Middleware Conf: ACM: Trento, Italy, 2016; 12:1–12:14.
20. Musa JD. Operational profiles in software-reliability engineering. IEEE Software 1993; 10(2):14–32.
21. Chen M-H, Mathur AP, Rego V. A case study to investigate sensitivity of reliability estimates to errors in operational

profile. 5th IEEE Int. Symp. on Software Reliability Engineering (ISSRE): Monterey, CA, USA, 1994; 276–281.
22. Littlewood B, Strigini L. Validation of ultrahigh dependability for software-based systems. Communications of the

ACM 1993; 36(11):69–80.
23. Cotroneo D, Pietrantuono R, Russo S. A learning-based method for combining testing techniques. 35th Int. Conf. on

Software Engineering (ICSE): IEEE: San Francisco, CA, USA, 2013; 142–151.
24. Bertolino A, Miranda B, Pietrantuono R, Russo S. Adaptive coverage and operational profile-based testing

for reliability improvement. 39th Int. Conf. on Software Engineering (ICSE): IEEE: Buenos Aires, Argentina,
2017; 541–551.

25. Cotroneo D, Pietrantuono R, Russo S. RELAI testing: A technique to assess and improve software reliability. IEEE
Transactions on Software Engineering 2016; 42(5):452–475.

26. Lv J, Yin B-B, Cai K-Y. Estimating confidence interval of software reliability with adaptive testing strategy. Journal
of Systems and Software 2014; 97:192–206.

27. Lv J, Yin B-B, Cai K-Y. On the asymptotic behavior of adaptive testing strategy for software reliability assessment.
IEEE Transactions on Software Engineering 2014; 40(4):396–412.

28. IEEE. IEEE Recommended Practice on Software Reliability, 2017. IEEE Std 1633-2016.
29. Lohr SL. Sampling Design and Analysis, 2nd edn. Duxbury Press: Boston, USA, 2009.
30. Ostrand TJ, Balcer MJ. The category-partition method for specifying and generating fuctional tests. Communications

of the ACM 1988; 31(6):676–686.
31. Amazon. Cloudwatch. http://aws.amazon.com/cloudwatch(Lastchecked2019/07/12),.
32. Nagios Enterprises. Nagios Monitoring Solutions. www.nagios.org (Last checked 2019/07/12).
33. Hansen MH, Hurwitz WN. On the theory of sampling from finite populations. The Annals of Mathematical Statistics

1943; 14(4):333–362.
34. Arcuri A. RESTful API automated test case generation. Int. Conf. on Software Quality, Reliability and Security

(QRS): IEEE: Prague, Czech Republic, 2017; 9–20.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

http://www.serfdom.io
http://aws.amazon.com/cloudwatch (Last checked 2019/07/12)
www.nagios.org

TESTING MICROSERVICE ARCHITECTURES FOR OPERATIONAL RELIABILITY 23 of 23

35. Miller KW, Morell LJ, Noonan RE, Park SK, Nicol DM, Murrill BW, Voas M. Estimating the probability of failure
when testing reveals no failures. IEEE Transactions on Software Engineering 1992; 18(1):33–43.

36. Montgomery DC. Design and Analysis of Experiments. John Wiley & Sons: USA, 2006.
37. Pietrantuono R, Russo S. Probabilistic sampling-based testing for accelerated reliability assessment. IEEE Int. Conf.

on Software Quality, Reliability and Security (QRS): IEEE: Lisbon, Portugal, 2018; 35–46.

© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2019;e1725.
DOI: 10.1002/stvr

	Testing microservice architectures for operational reliability
	Summary
	Introduction
	Related Work
	MSA dependability
	Operational reliability testing

	Microservice Architectures Reliability Assessment Method
	Terminology and assumptions
	Usage scenarios
	The EMART method
	Pre-release activities
	Run-time monitoring and update
	Test generation algorithm
	Estimation

	Experimentation
	Research questions
	Subjects
	Test infrastructure
	Parameters initialization
	Experimental factors
	Evaluation metrics
	Experiments

	Results
	RQ1 (constrained testing budget)
	RQ2 (unconstrained testing budget)
	RQ3 (performance vs testing budget)

	Threats to Validity
	Internal validity
	Construct validity
	External validity

	Conclusions
	Acknowledgements
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

