
1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

1

Multi-Objective Testing Resource Allocation
under Uncertainty

Roberto Pietrantuono, Pasqualina Potena, Antonio Pecchia, Daniel Rodriguez, Stefano Russo, Luis Fernandez

Abstract—Testing resource allocation is the problem of plan-
ning the assignment of resources to testing activities of software
components so as to achieve a target goal under given constraints.
Existing methods build on Software Reliability Growth Models
(SRGMs), aiming at maximizing reliability given time/cost con-
straints, or at minimizing cost given quality/time constraints. We
formulate it as a multi-objective debug-aware and robust opti-
mization problem under uncertainty of data, advancing the state-
of-the-art in the following ways. Multi-objective optimization
produces a set of solutions, allowing to evaluate alternative trade-
offs among reliability, cost and release time. Debug awareness
relaxes the traditional assumptions of SRGMs – in particular
the very unrealistic immediate repair of detected faults – and
incorporates the bug assignment activity. Robustness provides
solutions valid in spite of a degree of uncertainty on input
parameters. We show results with a real-world case study.

I. INTRODUCTION

A. Motivations
Testing is an essential activity to improve quality of soft-

ware products, impacting their production cost and time-to-
market. Engineers have to judiciously manage testing resour-
ces, finding a trade-off among quality, cost and release time.

The problem of testing resource allocation has been
addressed in the software engineering literature mainly by
formulating optimization models by means of Software
Reliability Growth Models (SRGMs), able to describe the
relation between test effort and reliability [27][35][46][59].
The way the optimization function and constraints are defined
(e.g., cost minimization under reliability constraints, reliability
maximization under cost/time constraints), and the SRGM
modeling choices (e.g., multiple or single SRGM), have led
to many models. While it is known that allocation choices
impact jointly quality, cost and time, few proposals have ad-
dressed the problem in terms of multi-objective optimization
[45][61][63]. Multi-objective models have no unique solution,
and are valuable to generate the best set of alternatives, where
trade-offs among contrasting objectives can be evaluated.

Existing single- and multi-objective models have several
assumptions/limitations that undermine their practical appli-

R. Pietrantuono and A. Pecchia are with the National Interuniversity
Consortium for Informatics (CINI), Via Cinthia, 80126, Naples, Italy. E-mail:
{roberto.pietrantuono, antonio.pecchia}@consorzio-cini.it.

S. Russo is with the Department of Department of Electrical Engineering
and Information Technology, Federico II University of Naples, Via Claudio
21, 80125 Naples, Italy. E-mail: {Stefano.Russo}@unina.it.

P. Potena is with RISE SICS Västerås, Kopparbergsvägen 10, SE-722 13
Västerås, Sweden. E-mail: pasqualina.potena@ri.se.

D. Rodriguez and L. Fernandez are with the Department of Computer
Science, University of Alcalá, 28801 - Alcalá de Henares, Spain. E-mail:
{daniel.rodriguezg, luis.fernandezs}@uah.es.

cation, often causing engineers to opt for easier – though non-
quantitative – approaches. We identify major challenges in:

• Impact of debugging. Most allocation models maxi-
mize fault detection, without accounting for the fault
correction process. The actual quality of a software
product depends on the number of corrected faults: de-
bug unaware optimization can be remarkably misleading
[8]. Real debugging consists of various sub-activities,
which have a severe impact especially for large systems
[7][23][38][41]. Debugging times and bugs’ priorities and
assignment are crucial in allocation decisions;

• Data uncertainty. Models rely on parameters (e.g., ex-
pected number of faults, fault detection rate, fault correc-
tion times) and on testing data (e.g., the operational pro-
file) which are subject to non-negligible uncertainty. The
quality-cost-schedule trade-off analysis may be strongly
distorted by this uncertainty, as demonstrated by some
work for single-objective optimization [28][30]. Even
when testing parameters are estimated based on historical
data, they only approximate real values;

• Unrealistic assumptions. SRGMs rely on several assum-
ptions: independent inter-failure times, no code change
during testing, perfect and immediate repair. Moreover,
many techniques choose a SRGM a priori, regardless
of its suitability to the available data. Testing in real
contexts is likely to generate data that partially violate the
assumptions and may escape an a priori selected model;

• Time-effort non-linearity. The relation between testing
effort and time is generally non-linear [26][29]. This is
considered almost only in single-objective models.

We believe these issues are at the root of the gap between
research results and industry practice in testing resource allo-
cation. We aim to fill it by the following contributions.

B. Contributions
We define a multi-objective, debug-aware, robust and adap-

tive formulation of the testing resource allocation problem.
Multi-objective denotes the ability to jointly consider: (i)

quality – in terms of number of detected and corrected faults;
(ii) cost – as expected cost of testing and faults correction;
(iii) schedule – time to complete the testing activities.

Debug-awareness refers to the inclusion of debugging in
the model. This encompasses the bug fixing time distributions
(removing the assumption of immediate debugging), as well as
the impact of bug assignment. We leverage the bug history to
(i) estimate the ability of debuggers to correct faults, and (ii)
assess the expected fixing time for the software components

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

2

they work on1. Besides testing resources, the model determines
the best way to assign debuggers to functionalities to maximize
the number of corrected faults at minimum time and cost.

Robustness is the ability to produce solutions that are
valid in spite of a given degree of uncertainty in the input
parameters. We use Monte Carlo (MC) simulation to assess the
robustness of a resource allocation solution under uncertainty.
This approach allows eliciting and representing uncertainties
as probability distributions, simulating the impact on the
Pareto front of resource allocation solutions.

Finally, the proposed formulation is independent from any
specific type of SRGM. Adaptivity refers to the selection of
the SRGM best fitting each system component, based on the
analysis of its bug history or of online data [6]. The method
works with any Non-Homogeneous Poisson Process (NHPP)
model. The main contributions are:

• Formulation of a multi-objective multiple-SRGM opti-
mization model that addresses: (i) both the fault detection
and correction processes; (ii) the testing time as function
of the effort by means of testing effort functions (TEFs);
(iii) the cost of testing and debugging. This allows
exploring the trade-offs among typical testing objectives.
Including TEFs in multi-objective formulations signifi-
cantly improves resource allocation;

• The inclusion of the debuggers scheduling problem,
which supports accurate testing resource allocation. This
is especially relevant in large software projects.

• An approach to deal with the uncertainty of testing
and debugging parameters that combines multi-objective
evolutionary algorithms (MOEAs) and MC simulation.
The former are used in a wide spectrum of reliability-
related optimization problems: resource management and
task partition of grid systems, redundancy allocation, and
reliability optimization [63]. MC methods are widely
established for uncertainty analysis: examples are found
in [37][51], where MC is used for handling parameter
uncertainties in software architectures. Their combination
allows reasoning in terms of “ranges” of potential solu-
tions based on the ranges of input parameters;

• The empirical analysis with a real-world industrial case
study. The proposed method is the result of an industry-
academia collaboration in the ICEBERG EU-project2,
investigating novel approaches to improve the under-
standing of software quality and its relation with cost.

C. Organization
The paper is organized as follows: Section II presents

background notions. In Section III we present an overview
of the testing resource allocation framework. Section IV deals
with uncertainty; Section V presents the optimization model at
the core of the approach. Section VI describes the method used
in the empirical study. The results are presented in Section VII.
Section VIII discusses threats to validity. Section IX overviews
related work, while conclusions are presented in Section X.

1Here we refer to a component or module as an independently testable
functionality. The terms are used as synonymous if not differently specified.

2www.iceberg-sqa.eu.

II. BACKGROUND

A. Modeling fault detection and correction through SRGMs

Software Reliability Growth Models (SRGMs) are well-
known mathematical models of how reliability grows as soft-
ware is improved by testing and debugging. They are built by
fitting failure data collected during testing.

We consider the most common class of parametric SRGMs,
modeling the process as a NHPP. They are characterized by the
mean value function (mvf) m(t), which is the expectation of
the cumulative number of defects N(t) detected by testing at
time t: m(t) = E[N(t)]. The mvf is written as m(t) = a·F (t),
where a is the expected total number of faults, and F (t)
is a distribution function whose form depends on the fault
detection process [19]. The variety of SRGMs includes: the
seminal model by Goel and Okumoto in 1979 [18], describing
fault detection by an exponential mvf ; the S-Shaped [60]
and log-logistic [19] models, capturing increasing/decreasing
behavior of the detection rate; the models derived from the
statistical theory of extreme-value, based on the Gompertz
SRGM [42]. Other models are available, accounting for needs
emerged from real-world projects, e.g., non-negligible debug-
ging times, imperfect debugging, multiple release points, non-
linear testing effort-time relation. A recent survey is in [33].

Most SRGMs used in testing resource allocation models
(e.g., [25][26][27][29][35]) consider only the fault detection
process, thus assuming the fault correction (i.e., debugging)
being an immediate action. However, immediate debugging is
very far from reality in today’s software systems: as software
projects grow in size and complexity, the mean time to repair a
fault is often very high, because of the complexity in managing
the debugging workflow timely and correctly [7][23][41].
While many SRGMs refer exclusively to fault detection,
we consider the combined modeling of fault detection and
correction.

In the literature, debug-aware SRGMs represent fault cor-
rection as a process following detection with a time-dependent
behaviour [50][57]. Few proposals capture detection and cor-
rection together, wherein detection models are adjusted to
consider several forms of the time-dependent fault correction
[31], [34]. In this work, we leverage the framework proposed
by Lo and Huang [34], where the correction mvf is derived
from the detection mvf considering the equations of Xie et al.
[57]. The framework is briefly explained hereafter.

Let us first distinguish fault detection and correction by
denoting with m

d

(t) and m
c

(t) the two mean value functions,
respectively. The mean number of faults detected in the time
interval (t, t+�t] is assumed to be proportional to the mean
number of residual faults [34][50]. Similarly, the mean number
of faults corrected in (t, t+�t] is assumed to be proportional
to the mean number of detected yet not corrected faults. This
proportionality is expressed by the fault detection and fault
correction rate per fault as functions of time, denoted with
�(t) and µ(t). The following relations hold:

dm
d

(t)

dt
= �(t)(a�m

d

(t)), a > 0 (1)

dm
c

(t)

dt
= µ(t)(m

d

(t)�m
c

(t)) (2)

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

3

where a is the initially estimated number of faults in the
system, (a � m

d

(t)) are the expected residual faults, and
(m

d

(t) � m
c

(t)) are the yet uncorrected faults. In the case
of constant detection rate per fault (�(t) = �), m

d

(t) is the
Goel-Okumoto exponential SRGM, m

d

(t) = a[1� e��t

)].
The function m

c

(t) is modeled in relation to the fault detec-
tion SRGM and the fault correction time. It can be shown that,
using Equations (1) and (2), and defining D(t) =

R
t

0 �(s)ds

and C(t) =
R
t

0 µ(s)ds (i.e., the cumulative detection and cor-
rection rate, respectively), the cumulative number of detected
and corrected faults are [34]:

m
d

(t) = a[1� e�D(t))] (3)

m
c

(t) = e�C(t)
⇣R

t

0 c(s)eC(s)m
d

(s)ds
⌘
=

= e�C(t)
⇣R

t

0 ac(s)eC(s)[1� e�D(s)]ds
⌘ (4)

For instance, if the detection process follows an exponential
SRGM with parameter � (�(t) = �), and the correction time
is exponentially distributed with parameter � (µ(t) = �), then:

m
c

(t) = a

✓
1 +

�

� � �
e��t �

�

� � �
e��t

◆
(5)

In formulating the optimization model, we consider the
so-computed fault correction for each functionality, in order
to account for the real software quality increase occurring
when a fault is actually corrected. The general expression in
Equation (4) allows to avoid deciding a priori the SRGMs to
adopt and/or the shape for the debugging time.

B. Modeling testing effort within SRGMs

The previous framework assumes the effort spent for testing
is proportional to the testing time spent. This is, in general, not
the case as the testing effort does not necessarily vary linearly
with time. In the literature, this has been typically modeled
by so-called Testing Effort Functions (TEFs), which describe
how effort varies with time. When a TEF is considered, the
previous fault detection model (Eq. 1) is adjusted as:

dm
d

(t)

dt
⇥

1

y(t)
= �(t)(a�m

d

(t)), a > 0 (6)

where y(t) is the current testing-effort consumption at time t.
The most common TEF, which was shown to well represent
the usual trend of testing effort, is the logistic TEF [26], [25],
[29] given by the following equation:

Y (t) =
B

h

p
1 +Aexp[�↵ht]

(7)

where B is the total amount of testing effort to be consumed;
↵ is the consumption rate of testing-effort expenditures; A is
a constant; h is a structuring index (a large value models well-
structured software development processes); and y(t) = dY (t)

dt

.
When considering the TEF, m

d

(t) in Eq. (3) – and, corre-
spondingly, in Eq. (4) – is replaced by the solution of Eq. (6),
which depends on the chosen SRGM and TEF. For instance,
considering the exponential SRGM, i.e., �(t) = �, and logistic
TEF of Eq. (7), Equation (6) results in:

m
d

(t) = a(1� exp[�(�(Y (t)� Y (0))]), ↵ > 0 (8)

assuming m
d

(0) = 0. The latter is replaced into Eq. 4 to
obtain the effort-aware fault correction function, m

c

(t). We
use this framework in the optimization model to describe the
increase of quality as testing proceeds for each functionality.

III. OPTIMAL TESTING RESOURCE ALLOCATION

The objectives pursued by the allocation process are:
(i) Fault Correction Objective (FCO), namely the expected
number of corrected faults, to maximize; (ii) Testing Time
Objective (TTO), namely the expected time to complete
testing, to minimize; (iii) Testing/Debugging Cost Objective
(TCO), namely the expected cost of testing and debugging,
to minimize. The solution indicates the testing effort that
must be devoted to each system functionality (or, equivalently,
components), the binary assignment of debuggers to function-
alities, and the hours each debuggers should spend on each
functionalities. The phases of the process are now presented.

A. SRGM Construction

The first phase consists in inferring the functionality-level
SRGMs in order to characterize the progression of testing
activities. We do not assume any SRGM beforehand; the most
suitable SRGM is inferred as follows:

• Data Gathering. Let f denote one in a set of function-
alities F . At the beginning of the optimization process
(t0), there are two possible cases: (i) historical testing
data of f are available (e.g., from another system that
includes f , or also from testing of a previous version
of f); (ii) no previous data exist. In the former case, the
available fault correction times are used to fit SRGMs for
functionality f , by using Equation 4. In the latter case, re-
sources are initially allocated uniformly to functionalities:
once testing starts, the incoming data are progressively
used to fit SRGMs. The former case allows optimization
before testing starts; however, it requires historical data.
The latter case uses data gathered as testing proceeds,
but the optimization can take place only when enough
data are available. Dynamic allocation produces results
more accurate and less sensitive to SRGMs assumptions
violations, but it may be less useful if started late.

• Parameter Estimation. Data gathered for each function-
ality are fitted by means of all the SRGMs the tester
wishes to try3. Fitting of parameters for every SRGM is
done via expectation-maximization (EM) [43].

• SRGM selection. For each functionality, the obtained
SRGMs are compared to select the best fitting one. We
adopt a typical goodness-of-fit measure, i.e., the Akaike
Information Criterion (AIC), already used successfully
for SRGM selection in [42]. The SRGM with the lowest
AIC value is preferred out of the set, denoting that the
fitting incurs into the minimal information loss.

As a result of this SRGM selection, each system functionality
is assigned the best fitting SRGM.

3In our implementation, there are eight models available, namely: exponen-
tial, S-shaped, Weibull, log logistic, log normal, truncated logistic, truncated
extreme-value max and truncated extreme-value min.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

4

Fig. 1: High-level overview of the MOEA model solver.

B. Parameters Specification
In the second phase parameters are divided in deterministic

(e.g., minimum reliability, available testing budget, hourly cost
of a tester) and uncertain (e.g., SRGM parameters, average
fixing time, usage profile), so as to establish the parameters to
address by the proposed uncertainty handling approach. The
specification of the parameters is detailed in Section IV.

C. Robust Optimization
In the third phase the optimization model is processed

by a model solver, which implements a multi-objective
evolutionary algorithm (MOEA). The solver starts with an
initial population of candidate solutions (Figure 1), known
as individuals in the MOEA terminology. At each iteration,
operators, such as crossover and mutation, are used to generate
new individuals. The fitness of an individual is evaluated by
handling uncertain parameters through MC simulation: the
parameters are sampled multiple times, thus generating more
fitness values for each individual (MC loop in Figure 1).
We associate to each individual an interval of fitness values
(rather than a point solution), and we compare individuals
according to interval comparison criteria. The interval solution
reflects the variability of the optimal solution depending on
the variability of uncertain parameters (uncertainty handling
for robust optimization is detailed in Section IV.) The most
promising individuals are selected by the MOEA, producing
a new set of solutions (new population in Figure 1), until the
MOEA stopping criteria are satisfied.

IV. SOLUTION EVALUATION UNDER UNCERTAINTY

Uncertainty is mainly dependent on the estimation of pa-
rameters either inferred from available data or that cannot be
accurately evaluated when not enough information is available.
Given a solution, the three objective functions (i.e., FCO,
TTO, TCO) are evaluated by considering the uncertainty of
parameters. In the following, we detail i) which are the
uncertain parameters, ii) how individuals are compared to get
robust solutions, and iii) the stopping criterion for MC runs.

A. Specification of Uncertain Parameters
The uncertain parameters are categorized as follows:
• Detection-specific parameters. They are related to the

detection process of each functionality f . These are the
parameters of the detection rate per remaining fault

function of the SRGM associated to f . Such parameters
are encompassed by the D(t) function in Equation 4, and
their estimation depends on (past or current) failure data
(so, they are affected by uncertainty).

• Correction-specific parameters, These are (i) the param-
eters of the correction rate per pending fault function,
characterizing the debug-aware SRGM (C(t) parameters
of Equation 4), and (ii) the average number of hours to
fix a bug per functionality. Their estimation also depends
on observed data (correction times).

• Usage profile. The usage profile concerns how users
interact with the system. It roughly expresses how much
each functionality is expected to be used during operation.
A widely adopted approach to express the user profile
is the relative (percentage) frequency of invocation (e.g.,
calls rate) of each functionality, that can obtained by
several approaches [46], [49]. These also are affected by
uncertainty due to lack of knowledge about future usage.

The values of these parameters are treated as samples of either
continuous or discrete probability distributions. Distributions
can be inferred by means of different approaches [51], such
as: (i) using the source of variations, in the cases when the
source of uncertainty is known and can be estimated; (ii)
empirically, when a considerable amount of data regarding
the parameter behaviour are available; (iii) approximation as a
uniform distribution if no information is available, and (iv) as
a discrete distribution, when parameters are discrete-valued.

We use continuous uniform distributions (UD) for SRGM-
related fault detection parameters. Since a SRGM is built
by fitting historical data, the ranges of the uniform distri-
butions are set with the 95% confidence interval bounds of
the parameters estimate. A discrete distribution over the set
of functionalities is used for the usage profile values. Call
rates are estimated by historical data about the usage of each
functionality, if available; otherwise they are specified by a
domain expert, or they are assigned an even probability if no
estimate is available. Finally, in line with the literature, we use
the exponential distribution for the fault correction SRGM
(with the average correction rate as parameter), as it has been
shown to well represent the debugging process [50]. In this
case, the average correction rate µ(t) is constant, and is the
reciprocal of the average number of hours to fix a bug (per
functionality). The latter is estimated by querying data about
bugs correction tracked in the company’s bug repository, as in
[7][64][65], taking the median (or the mean, if the distribution
is not skewed) of bug fixing times. If the information is not
available, it should be assessed by a domain expert.

B. Robust Solution Evaluation
Samples are drawn from the above-mentioned distributions.

They are used in the objective functions and constraints of
the model to assess a candidate solution. The procedure is
iterated N times – an iteration consisting of a MC run – until
the desired accuracy is achieved. The output of a MC run leads
to one possible fitness value of the candidate solution (i.e., the
triple FCO, TTO and TCO).

Given the N fitness values of the candidate solution, the
robust values for the objective functions can be derived by

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

5

using two methods [37]. The former method consists in deriv-
ing a Probability Density Function (PDF) for each objective
function and taking the robust objective as the value at a
given confidence. However, this approach is computationally
expensive; furthermore, prospective probability distributions
need to be specified a priori. The alternative method leverages
non-parametric or distribution-free statistical procedures. For
each candidate solution and each objective, the method as-
sesses descriptive statistics (e.g. percentiles, mean, variance
or confidence bound) from the observed sample (consisting
of the N MC runs). To capture the robustness of a candidate
with different degree of tolerance, appropriate percentiles can
be used as robust objectives. This method does not make any
assumption on the probability distributions.

We adopt the non-parametric method. Several options are
available regarding the descriptive statistics. A conservative
solution is to select the lower/upper bound, namely the 5th
or 95th percentiles, depending on whether the objective is
to maximize or minimize, respectively. This approximates the
bounds of 95% confidence interval. Others percentiles could
be selected (e.g., the 50th). For instance, if the objective is to
maximize (such as in the case of FCO), we consider the lower
bound as a robust solution (namely the 5th percentile of ob-
served values); whereas, for TTO and TCO the 95th percentile
is taken as robust solution. In this way, the Pareto-front concept
is enhanced to express the robustness of a solution with
respect to uncertainty of parameters: as a result, the notion
of dominance used by the MOEA is adjusted accordingly.
Given the minimization of a vector function f of a vector
variable x (x

k

, k = 1, . . . ,K), namely, minimization of
f(x) = (f1(x), . . . , fN (x)), subject to inequality and equality
constraints (g

j

(x) � 0, j = 1, . . . , J and h
m

(x) = 0,m =

1, . . . ,M), let us denote with ¯

f(x) = (

¯f1(x), . . . , ¯f
N

(x)) the
upper bound function vector, where ¯f

n

(n 2 {1, . . . , N}) is the
confidence upper bound of f

n

obtained from MC runs. Then, a
solution vector u = {u1, . . . , uK

} dominates a solution vector
v = {v1, . . . , vK}, denoted by u � v if ¯f(u) is partially less
than ¯

f(v), namely: 8n 2 {1, . . . , N}, ¯f
n

(u)  ¯f
n

(v) ^ 9n 2
{1, . . . , N}: ¯f

n

(u) < ¯f
n

(v). On this basis, the output Pareto
front can also account for parameters uncertainty.

C. Stopping Criterion
We address the issue of selecting the number N of MC

runs (i.e., the sample size) that should be performed to have
an accurate estimate for each candidate solution. We use
a dynamic stopping criterion [37][48] to (i) monitor the
accuracy of the value to estimate (e.g., number of faults
corrected) and (ii) automatically stop the MC step when the
number of runs is enough to meet a predefined error threshold.

For instance, let us consider the FCO objective and denote
with f1 the value of the objective after one MC run. Further
runs of the MC simulation will likely provide different values
of the objective, due to the parameters’ values taken at each
run, i.e., F=f1, f2, . . . fN . The goal is to establish the number
of runs N to obtain an estimate of the desired percentile of
the set F , i.e., ˆf

perc

. The procedure is as follows:
• A minimum of k MC runs are performed. After k

repetitions, the desired percentile is estimated on the

collected set (f1, . . . , fk), obtaining the first estimate of
the percentile, ˆf

perc1 .
• As the number of runs increases beyond k, further esti-

mates are obtained, considering the increasing number of
observations, i.e.: ˆf

perc2 from f1, . . . , fk+1; ˆf
perc3 from

f1, . . . , fk+2, and so on. The variation of the estimate is
monitored over a sliding windows of size k. The last k
estimates are considered: { ˆf

perc

j

, ˆf
perc

j+1 , . . .
ˆf
perc

j+k

}.
• The statistical significance for the last k estimates is:

e =
2z(1�↵/2)p

k

r
f̂2
perc

�
⇣
f̂
perc

⌘2

¯̂
f
perc

(9)

where e is the relative error, ˆf
perc

is the average of
last k estimates, ˆf2

perc

is the mean-square of the last k
estimates, z is the normal distribution evaluated at the
desired significance level ↵.

The relative error e is checked against a predefined tolerance
level (set to 0.01 in this study): MC runs are stopped when
the error is below this level, as the desired accuracy is
achieved. MC runs not satisfying some constraint of the model
(e.g., because of values of uncertain parameters causing the
constraint violation) are discarded and not counted as run.

V. OPTIMIZATION MODEL FORMULATION

The formulation aimed at minimizing the three objective
functions (-FCO, TTO, TCO), under reliability and testing
budget constraints, uses the notations listed in Table I.

A. Assumptions
The following assumptions are made, similarly as in related

research [63][30][11][61][26].
• Functionalities are independently testable;
• Usual SRGMs assumptions, namely: fault detection and

removal can be modeled as a NHPP; the mean number
of faults detected in the (t, t+�

t

) is proportional to the
mean number of remaining faults; interfailure times are
independent. SRGMs have been demonstrated to provide
accurate predictions even when these assumptions are
partially violated [1];

• The relation between testing effort and testing time can
be modeled by a TEF [29];

• Debugger manpower is available to independently fix
bugs in system functionalities.

B. Model parameters
The main parameters given as input to the model are:
• The initial time t0: it is the time the tester decides to run

the algorithm. As described in Section III, t0 can denote
the beginning of testing (when historical data are used
to build the SRGMs; t0 = 0), or any time during testing
(when online testing data are used; t0 > 0). In the latter
case, allocation can be run repeatedly during testing (i.e.,
dynamic allocation); we refer to t0 as (re-)iteration time.

• F
d&c

(t0)k is the number of faults detected and corrected
in functionality k at time t0 (F

d&c

(t0)k = 0 if t0 = 0).
• SRGMs for each functionality are characterized by �

k

(t),
and µ

k

(t) (cf. with Equations 1 and 2), i.e., the detection

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

6

TABLE I: Notations adopted in the formulation of the multi-objective optimization
Symbol Description Symbol Description

K Number of system functionalities k System functionality index
a

k

Expected number of initial faults in the functionality k !

k

Probability the functionality k will be invoked
�

k

Average number of hours required for fixing a bug of the functionality k t0 Time at which the resource allocation model is run
R Minimum threshold given to the reliability on demand of the system Y0 Testing effort (measured in man-hours) already spent at time t0

F

d&c

(t0)k Number of faults (of the functionality k) detected and corrected at t0 D Total number of debuggers
x

k

d

Debugger d used/not used to fix bugs of the functionality k (i.e., 1/0) d Debugger index
N

k

d

Time assigned to the debugger d for testing the k-th functionality (hours) t

k

Calendar testing time devoted to test the functionality k (hours)
Y

k

(t) Cumulative testing effort devoted to functionality k in (0, t] (man-hours) �

k

(t) Fault detection rate per undetected fault for the functionality k

B Total amount of testing-effort available for consumption (man-hours) A Constant parameter in the logistic TEF
C

⇤
1 Average cost per man-day to correct a bug during testing C

⇤
2 Average cost per man-day to correct a bug in operational use

↵ Consumption rate of testing-effort expenditures in the logistic TEF �

k

(t) Expected failure intensity function for k at testing time t

�

⇤ Maximum threshold given to failure intensity of the system after test µ

k

(t) Fault correction rate per detected but uncorrected fault for k
�

k

d

Average number of hours in a day that the debugger d can work to fix bugs of the functionality k (# of hours over 24h)
y

k

(t) Instantaneous testing-effort at time t for the functionality k, estimated by a generalized logistic testing-effort function (man-hours)
h Structuring index in the logistic TEF whose value is larger for better structured software development efforts

m

d

k

(t0 + t

k

) Expected cumulative number of faults detected in functionality k at testing time t0 + t

k

m

c

k

(t0 + t

k

) Expected cumulative number of faults corrected in functionality k at testing time t0 + t

k

C

⇤
3 Average cost of testing a functionality per unit testing-effort expenditure, expressed in cost of a man-day

and correction rate per fault. They are related to D(t)
and C(t), and consequently to m

d

(t) and m
c

(t) functions
used in the objective functions.

• The �
k

parameter is the average number of hours required
to fix a bug for functionality k4. Recall that, being the
correction time assumed exponential, the rate µ

k

(t)= µ
k

is estimated as µ
k

= 1/�
k

.
• !

k

is the call rate, namely the probability that the k-th
functionality will be invoked: !

k

� 0, 8k = 1 . . .K, and:PK
k=1 !k

= 1. Note that parameters of �
k

(t), µ
k

(t) and
!
k

, �
k

are the uncertain parameters (Section IV-A).
• ↵, h, B, A are the parameters of the logistic testing

effort function (Equation 7), which is used to explain
how testing effort varies in function of calendar time.
They were discussed in Section II.

• �k

d

is the processing capacity of debugger d with respect
to functionality k. It represents the working rate of the
debugger, expressed as average number of hours per day
that debugger d is allowed to work on functionality k.

• C⇤
1 , C⇤

2 , C⇤
3 are the cost parameters used in the cost-

related objective function (TCO). They are: (i) C⇤
1 , the

cost per man-day to correct a bug during testing; (ii) C⇤
2 ,

the cost per man-day to correct a bug during operational
use (typically C⇤

2 > C⇤
1 [5]); (iii) C⇤

3 , the cost per testing-
effort expenditure unit (e.g., man-hour or man-day) to test
a functionality (i.e., hourly or daily cost of a tester).

Note that SRGM parameters (parameters of �
k

(t), µ
k

(t),
↵, h and A) are estimated by fitting (historical or online)
testing data as discussed in Section III; !

k

and �
k

are estimated
by historical data, design information or expert judgment (cf.
Section IV-A); debuggers capacity �k

d

, cost parameters C⇤
i

and
the budget B are provided as input by the tester.

C. Variables
The decision variables of the model are:
• Y

k

(1kK) variables are used to suggest the amount of
testing effort (in man-hours) to perform on functionality
k; Y

k

depends on the calendar testing time t
k

devoted
to test functionality k. The relationship between testing
effort and time is modeled by the logistic TEF (Equation

4For simplicity, we assume that this time, for a given functionality k (i.e.,
�
k

), is the same for each debugger d working on that functionality.

7): the amount of spent testing time corresponds to t
k

=

F�1
(Y

k

) hours, where F�1 is the inverse of the TEF.
• xk

d

(1dD, kK) and Nk

d

(1dD, 1kK) vari-
ables are used to regulate the assignment of debugger d
to functionality k. Thus, the fault correction process is
modeled as function of available debuggers. Specifically,
xk

d

= 1 if debugger d is scheduled on functionality k,
and 0 otherwise. Nk

d

is the time (in hours) assigned to
debugger d to work on functionality k in (t0,t

k

].
A solution consists of: a vector Y of Y

k

values, with the
optimal testing effort per functionality; a matrix X of xk

d

values, assigning debuggers to functionalities; a matrix N of
Nk

d

values, with number of debuggers’ hours per functionality.

D. Constraints
The most relevant constraints are the following ones:

1.
PD

d=1 N
k

d

� �
k

(m
d

k

(t0 + t
k

)�m
d

k

(t0)) 8k = 1 . . .K

2. Nk

d

 t

k

�

k

d

· xk

d

8k = 1 . . .K, 8d = 1 . . .D

3.

⇢
xk

d

= 1 iff Deb. d to be assigned to k; 8k = 1 . . .K, 8d = 1 . . .D
xk

d

= 0 iff Deb. d not to be assigned to k; 8k = 1 . . .K, 8d = 1 . . .D

4. m
d

k

(t0 + t
k

)�m
d

k

(t0)  a
k

� F
d&c

(t0)
k

8k = 1 . . .K

5.
PK

k=1 Yk

 B 8k = 1 . . .K

6. Y
k

 B(1�
QD

d=1(1� xk

d

)) 8k = 1 . . .K

7.
PK

k=1 !k

· �
k

(t
k

)  �⇤

They are to be interpreted as follows:
• For each functionality k, faults detected in the interval

(t0,t
k

] must be fixed. Equation 1 represents this con-
straint. The total time (in hours) assigned to debuggers on
functionality k must be greater or equal than the expected
time to correct the detected bugs (estimated as mean
fixing time per bug multiplied by the expected number
of bugs that will be detected if functionality k is tested
for a time t

k

).
• The bug correction process is modeled as a function of

(i) the amount of time (in hours) required to fix the bugs
detected and (ii) the working time of debuggers. The
waiting queues are modeled by a constraint on the ca-
pacity of debuggers. Equation 2 represents this constraint.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

7

For each functionality k, the load of debugger d caused
by the assignment of bugs is limited by a function of
the processing capacity of debugger d (i.e., �k

d

). Nk

d

is
greater than 0 only if: i) the debugger d is allocated to
functionality k (xk

d

= 1), ii) a non-zero testing time t
k

is
allocated to functionality k (t

k

> 0), and, from constraint
1, iii) at least one bug is expected to be detected during
the assigned time t

k

(i.e., m
d

k

(t0 + t
k

) > m
d

k

(t0)),
assuming �k

d

> 0 and �
k

> 0.
• Equation 3 represents (possible) constraints, which can

be defined for debuggers that must or cannot be assigned
to functionalities for some reasons, e.g., due to the
debugger’s skill level or expertise area. In these cases, the
corresponding variable xk

d

is forced to be 1 or 0. Note
that, to solve incompatibilities or dependencies among
debuggers and/or functionalities, due, for instance, to
human factors or functionality characteristics, additional
constraints can be added. For example, x1

2  x2
3 means

that if debugger 2 is scheduled on functionality 1, then
debugger 3 must be scheduled on functionality 2.

• Equation 4 states that the expected number of faults
detected in (t0, tk] (where t

k

= F�1
(Y

k

) is the time
devoted to test functionality k) cannot be greater than
the expected number of residual fault of functionality k.

• Equation 5 is a constraint on the maximum effort that
can be allocated. The sum of efforts cannot exceed the
maximum available budget B (expressed in man-hours).

• If there are no available debuggers for functionality
k, then the effort Y

k

allocated to it must be zero (as
detected bugs would not be corrected). In other words, if
functionality k receives a certain amount of testing effort,
one or more debuggers must be assigned to functionality
k. Equation 6 represents this constraint.

• Equation 7 is the constraint on a maximum desired failure
intensity at the end of testing T . Failure intensity �

k

(t
k

)

of a functionality k is estimated through its SRGM as
the derivative of m

d

(t). A maximum failure intensity
threshold �⇤ is given as input. In an average case,
like the one we assume, this constraint is expressed by
Equation 7. In the worst case, all functionalities could
be required to satisfy the failure intensity constraint,
and the constraint would be: max

k=1...K(�k

(t
k

))  �⇤.
Notice that this constraint can be referred to as reliability
constraint, since failure intensity at the end of testing is
related to reliability: R(t|T) = exp[��(T) · t], where T
is the release time [46].

Further system-specific constraints could be introduced based
on specific needs, but at the expense of higher complexity and
less understandability.

E. Multi-Objective Function

1) Fault correction process’ Effectiveness Objective
(FCO). The objective is to maximize the predicted number of
corrected faults at the end of testing. The prediction is carried
out by the debug-aware SRGMs per functionality.

FCO =
KX

k=1

m
c

k

(t0 + t
k

) (10)

where (taking Equation 4 and Y
k

= TEF (t
k

)):

m
c

k

(t0 + t
k

) = e�C

k

(t0+t

k

)

·
⇣R

t0+t

k

t0
a
k

c(s)eC(s)(1� exp[�(D
k

(Y
k

(s))])ds
⌘
.

(11)
The expression can be instantiated for any detection and

correction rates (D(t) and C(t)) and TEF relating t to Y . For
instance, in the case of exponential detection and correction
process (�(t) = �, µ(t) = µ), it becomes:

m
c

k

(t0 + t
k

) = e�µ

k

·(t0+t

k

)

·
⇣R

t0+t

k

t0
a
k

· µ
k

eµk

·s(1� exp[��
k

Y
k

(s)])ds
⌘
.

The expected number of faults detected and corrected depends
on: (i) the fault detection rate, related to the testing effort Y

k

and time t
k

(through the TEF); (ii) the availability of sufficient
debuggers (hours), regulated by Nk

d

and xk

d

variables, for
the correction of detected faults at the rate expressed by C

k

(t).

2) Testing Time Objective (TTO) The relationship between
testing effort and time is typically modeled by the TEF. For a
generic TEF F , we could write: t

k

= F�1
(Y

k

). Assuming the
TEF being modeled by the generalized logistic testing-effort
[29] (Equation 7), testing time for functionality k is:

t
k

=

�

1

↵ ⇤ h
· ln

(B
Y

k

)h � 1

A

!!
(12)

where parameters are as described in Section II.
Since functionalities are assumed to be tested independently,

TTO is the time minimization for testing the K functionalities:

TTO = min
k=1···K

t
k

(13)

3) Testing-effort Cost Objective (TCO) The third objective
concerns with the minimization of cost, which is a measure
related to the effort spent but that goes beyond it. In agreement
with [25], [58], the cost of testing-effort expenditures during
software development and testing, and the cost of correcting
errors before and after release, can be expressed as:

Cost
k

(t) = C⇤
1 · (�

k

/24) ·m
c

k

(t) (14)
+C⇤

2 · (�
k

/24) · (m
d

k

(1)�m
c

k

(t))

+C⇤
3 · (Y

k

/24)

where: (i) C⇤
1 · (�

k

/24) is the cost to correct a bug during
testing; (ii) C⇤

2 · (�
k

/24) is the cost to correct a bug in
operational use (typically C⇤

2 > C⇤
1 [5]); and (iii) C⇤

3 is the
cost of testing per unit testing-effort expenditure, expressed in
cost of a man-day (for a tester). The TCO is the minimization
of total cost over all the functionalities:

TCO =
KX

k=1

Cost
k

(Y
k

) (15)

The three objectives to minimize are thus: min(-FCO, TTO,
TCO), under the specified constraints.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

8

VI. EXPERIMENTATION

We design an empirical study to experiment the method. The
addressed research questions are presented, followed by the
industrial case study description and the experimental setup.

A. Research questions
• RQ1. Multi-objective optimization. A multi-objective

optimization problem is formulated and solved by various
metaheuristics. We formulate these questions to assess the
goodness of proposed solutions:

– RQ1.1. Validation. How does the proposed ap-
proach perform compared to random search? This
is a typical question performed as a preliminary
“sanity check”, since any intelligent search technique
is expected to outperform random search unless there
is something wrong in the formulation [16].

– RQ1.2 Comparison of metaheuristics. Which of
the considered multi-objective evolutionary algo-
rithms (MOEAs) yields the best solution? This ques-
tion focuses on the comparison among common
MOEAs according to performance metrics regarding
the goodness of the provided Pareto solutions.

• RQ2. Uncertainty analysis. The proposed approach
deals with parameter uncertainty: what is the effect of
explicitly considering the uncertainty of parameters? This
question aims at evaluating to what extent embedding the
MC simulations into the search technique provides robust
solutions and at what computational expense.

• RQ3. Sensitivity to debugging. The proposed approach
considers the debugging process: how does the optimal
solution vary when considering debugging in the model?
Differently from existing allocation models, our model is
based on the fault correction process. This question aims
at evaluating solutions computed by considering the bug
assignment activity against solutions not explicitly incor-
porating bug assignment, under various configurations.

• RQ4. Scalability: How does the performance of our
approach change while varying problem size? With the
selected case study, we show to what extent the process
is fast enough to analyze a real testing effort allocation
decision problem whose size and complexity is similar
to those of other published large-scale/industrial testing
effort allocation problems (e.g., [6] and [63]).

B. Case study
We consider a real-world issue tracking system of a Cus-

tomer Relationship Management (CRM) software of a multi-
national company operating in the healthcare sector. Data have
been made available within the ICEBERG European Project by
ASSIOMA.NET, an IT company involved in the development
of the CRM5. The system has a layered architecture, with
a Front-end layer, a Backend layer and a Database, made
interoperable through an Enterprise Application Integration
(EAI) layer. It provides typical CRM functionalities: sales
management, customer folder, agenda, inventory, supplying,

5An anonymized version of the dataset we used in this paper is available
on demand for research purposes.

payments, user profiling, and various reporting tools. Collected
issue records span a period of 2 years and a half, from
September 2012 to January 2014. A total of 612 software
faults collected during testing are considered. Once faults are
detected, they undergo a debugging process: when an issue
is opened, it becomes new and it is enqueued, waiting to
be processed (published state); once an issue starts to be
processed (in study), it is assigned (launched) to a developer
and, once completed, it can be assigned to another developer
for further processing, if needed. Then, the amendment is
tested, delivered, and finally closed. Detection and correction
times are tracked in the issue tracker The Time To Repair
(TTR) a fault is the time to transit from the new state to the
closed state. The TTR distribution is highly skewed in our
data: medians of TTR values in lieu of means are considered
to represent the average TTR per functionality.

C. Experiment settings

1) Setting for MOEAs Evaluation: We experiment four
metaheuristics to obtain an allocation solution, namely:
NSGA-II [12], IBEA [66], MOCELL [39], PAES [32]. To
measure performance, we use two well-known indicators: the
inverted generational distance (IGD) [53], and the spread [12],
which reflect the two goals of a MOEA: 1) convergence to a
Pareto-optimal set and 2) maintenance of diversity in solutions
of the Pareto-optimal set. The IGD is computed as the average
Euclidean distance between the set of solutions S, and the
reference front RF [53] (the smaller its value the better the
solution set). The latter is computed by considering the union
of reference fronts of the approaches compared. The spread
measures the extent of spread achieved among solutions:
it is computed as a ratio accounting for the consecutive
distances among solutions (and their error from the average)
at numerator, related to the case where all solutions would lie
on one point at denominator [12].

As evolutionary algorithms have a stochastic nature, we
perform 30 independent runs for each algorithm. For each of
them, IGD and spread are computed and compared by means
of non-parametric test, since data are non-normal and het-
eroschedastic6. We use the Friedman test for non-parametric
ANOVA, since it does not make assumptions on normality
of observations, homoschedasticty of variances, independence
of data among compared samples, and it works well under
balanced designs as ours. Then, to detect which algorithms
are different, we use the Nemenyi test as post hoc, which is a
test for pairwise comparisons after a non-parametric ANOVA
particularly suitable when all groups are compared to each
other (rather than comparing groups against a control group)
[13], as in our case7.

6The Shapiro-Wilk test rejected the normality hypothesis at p< .0001 in
both cases, and the Levene’s test, used because less sensitive to normality,
rejected Homoschedaticity hypothesis at p=0.0074 and p< .0001 for spread
and IGD, respectively

7The test uses the “critical difference” (CD): two levels are significantly
different if their average ranks differ by at least CD = q

↵

p
k(k + 1)/6N ,

where q
↵

is based on the Studentized range statistic divided by
p
2, and

adjusted according to the number of comparisons; k is the number of levels;
N is the sample size. As the family-wise error rate is controlled by considering
q
↵

, no other multiple comparison protection procedure is needed

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

9

TABLE II: MOEA parameters setting

NSGA IBEA MOCELL PAES
Generations 2,500 2,500 2,500 2,500
Population Size 100 100 100 -
Operators setting
Selection Binary Binary Binary -

Tournament Tournament Tournament -
Crossover op. SBX SBX SBX -
(prob.) (0.9) (0.9) (0.9) -
Mutation op. Polynomial Polynomial Polynomial Polyn.
(prob.) (1/L*) (1/L*) (1/L*) -
Archive size - 100 100 100
*L: number of variables

We measure the “effect size” to assess whether the dif-
ference among MOAEs is worthy of interest. We adopt the
Vargha and Delaney test [52], as suggested in [3], using the
ˆA12(x,y) statistic. The latter can be interpreted as probability

that the performance metric’s value of technique x will be
greater than y – namely, the probability that a randomly se-
lected observation from one sample is bigger than a randomly
selected observation from the other sample [20]. Before esti-
mating the effect size, there could be the need to transform the
data, if the data being compared do not faithfully represent the
“right” meaning of the comparison (e.g., because of unstated
assumptions, as: “algorithms response times lower than 100
ms are imperceptible and should be considered equally good”
[40]). However, this is not the case of IGD and spread, for
which we do not detect this kind of assumptions.

Algorithms implementation and experimental settings are
performed with jMetal, an object-oriented Java framework
to develop and experiment MOEAs8. Parameters of each
algorithm are set as reported in Table II, assuring the same
maximum number of fitness evaluations for all the algorithms
(25,000) and default values as provided by jMetal.

2) Specification of certain/uncertain parameters: As for
parameters taken without uncertainty, the following values
are set as input for the experimentation, after consulting the
company domain expert. They refer to the allowed processing
capacity of each debugger (�k

d

); the cost parameters (C⇤
1 , C⇤

2 ,
C⇤

3); the parameters of the logistic TEF (↵, h, the structuring
index; A, B). Values are: �k

d

= 1/24 hours per day; C⇤
1 = 60

e; C⇤
2= 80 e; C⇤

3 = 60 e; ↵ = 0.5 man-hours per hour;
h=0.05; A = 0.8; B = 2500 man-hours. As for uncertain
parameters, data from the bug repository about fault detection
and correction times in the previous version are used as his-
torical basis to assess SRGMs and debugging parameters for
each functionality (see Section IV-A). The detection rate �

k

is
sampled via a uniform distribution with ranges set to the 95%
confidence interval of its SRGM estimate9; the correction rate
is sampled via an exponential distribution whose parameter,
µ
k

, is obtained as µ
k

= 1/�
k

, with �
k

being the TTR median
of each functionality available from the bug tracker. Finally,
the usage profile values (the last uncertain parameter, !

k

) are
specified by domain experts as values of a discrete distribution
over the set of functionalities. All these values are in Table III.

8jMetal is available at http://jmetal.sourceforge.net/.
9For the purpose of experimentation, a single-parameter exponential SRGM

is used, i.e., �
k

(t) = �
k

.

TABLE III: Uncertain parameters. U (a,b): Uniform; E(µ): Exponential

Func. Parameters
ID �

k

Distribution �

k

Distribution w

k

Values
1 �1 U (0.02475, 0.02676) �1 E(2) !1 0.2
2 �2 U (0.0211, 0.02166) �2 E(2) !2 0.2
3 �3 U (0.01535, 0.01656) �3 E(2) !3 0.1
4 �4 U (0.02871, 0.03288) �4 E(2) !4 0.1
5 �5 U (0.05665, 0.07159) �5 E(1) !5 0.1
6 �6 U (0.01971, 0.02311) �6 E(1) !6 0.1
7 �7 U (0.01828, 0.02511) �7 E(2) !7 0.1
8 �8 U (0.02178, 0.02661) �8 E(1) !8 0.1

VII. RESULTS

A. Results for RQ1 (Validation and MOEA Comparison)
The first part of RQ1 establishes if the proposed strategy

is worth with respect to a random search. The random search
model just picks up solutions that satisfy the constraints, by
a pseudorandom number generator, as implemented by the
jMetal framework. With all 4 MOEAs the random search has
been statistically worse than any MOEA algorithm for both
quality indicators10, with a confidence greater than 99%. We
do no longer consider it in the next research questions.

RQ1.2 is about MOEAs comparison. Figure 2 shows the
notched box plots for both indicators (IGD and Spread). The
Friedman test yielded a p-value = 3.42 E-6 for IGD and p-
value = 1.08 E-6 for spread, rejecting the null hypothesis that
all the MEOAs are statistically equivalent, for both indicators.
Table IV reports the results of the Nemenyi test.

(a) IGD (b) SPREAD

Fig. 2: Boxplots of the quality indicator

TABLE IV: Comparison (P: PAES; N:NSGA-II; M: MOCELL; I: IBEA).
Each cell contains a p-value (bold values indicate that the difference is
significant at  0.05) and a Â1,2(row, column) effect size measurement (for
both IGD and spread, the smaller the better – e.g., for IGD, Â

P,N

= 0.785
means P is bigger than N in terms of IGD, so it is worse).

(a) IGD Indicator

Pairwise Comparison: p-values
N M I

P .005/.78 .749/.61 .228/.36
I <.001/.86 .019/.75 -
M .098/0.71 - -

(b) SPREAD Indicator

Pairwise Comparison: p-values
N M I

P .136/.68 .001/.77 <.001/.82
I .022/.23 .876/.41 -
M .151/.25 - -

NSGA-II provides the best solutions in terms of conver-
gence to the reference front, as the difference with respect to
PAES and IBEA is significant at more than 99%; the difference
with MOCELL at about 90%; the effect size is always greater
than 0.7 (namely, it has lower IGD with probability >0.7). The
diversity of solutions in terms of spread is bigger than IBEA
(meaning less diversity) with statistical significance, while it

10Since, in this case, we compare all the algorithms against one control
algorithm (the Random Search), we adopt the Bonferroni-Dunn test as post-
hoc, which is more powerful than the Neminyi test in such a case [13].

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

10

(a) FCO (#Faults) accuracy and time (b) TTO (hours) accuracy and time (c) TCO (C) accuracy and time

Fig. 3: Impact of the MC runs on the accuracy and mean computational time

is statistically equivalent to PAES and MOCELL (although,
in terms of effect size, it is better than PAES and worse than
MOCELL). Since all MOEAs are around 1 (meaning not a
good diversity), and given the remarkable difference of IGD
between IBEA and NSGA-II, we keep NSGA-II as reference
scheme for the other research questions.

B. Results for RQ2 (Uncertainty analysis)
To assess the effectiveness of considering uncertainty, we

evaluate: i) the impact of the number of Monte Carlo runs on
accuracy and computational time; ii) the accuracy of the dy-
namic stopping criterion. To this end, we perform a sensitivity
analysis. For each experiment, the reliability threshold is set
to 0.9, while the other parameters are as in Section VI-C.

Impact of the Monte Carlo runs. We run a set of experi-
ments without using the dynamic stopping criterion to deter-
mine how many runs to perform, keeping the number of MC
runs in each experiment fixed. To measure the accuracy, we
use the Root Mean Square Error (RMSE), considering 10,000
as reasonable large number of MC runs to get an accurate
value against which to compare. We use the 95th percentile
for comparison, to be conservative under the minimization
objectives (-FCO, TTO, TCO), as explained in Section IV-B.

Given an objective function, we first run the experiment
under 10,000 MC runs per each solution evaluation. On each
solution, the 95th percentile of the fitness value distribution
is computed, and kept as fitness value of that solution used
for comparison against other solutions. At the end of the
experiment, a set of Pareto solutions is provided; we select the
best one according to the criterion we are testing (e.g., when
we compute the RMSE for the FCO function, the solution with
the maximum FCO is selected), let us denote it as Sol

ro

i

, i.e.,
robust. The experiment is repeated 30 times, obtaining Sol

ro

,
which is the average of Sol

ro

i

across repetitions.
Then, the same procedure is applied for each experiment

where a different number of MC runs is considered (e.g.,
10 runs for the first experiment), obtaining the 30 solutions
(Sol

i

) to compare against Sol
ro

. The RMSE, computed for
each objective function, is given by:

RMSE =

sP30
i=1(Solro � Sol

i

)2

30
(16)

Figure 3 shows the results. Computational time is the mean
across the 30 repetitions, which is the same in the three

cases, since the three fitness values are output of the same
experiment. The RMSE decreases with the number of MC runs
while the mean computational time increases up to 585s. Good
tradeoffs between RMSE and time are approximately at 200
MC runs (e.g., in the case of TTO and TCO, beyond 200 MC
runs the accuracy improves a little, while the computational
time still keeps on increasing linearly).

Accuracy of the dynamic stopping criteria. To check the
accuracy of the stop criterion, we let the number of MC runs
increase in each experiment (with default settings of Section
VI-C). Specifically, in each of the 30 repetition, we compute
the error as in Section IV-B by Equation 9, with a threshold
of 0.01 under 95% of confidence, and on a sliding sample
window of 10. We stop the experiment when the maximum
number of MC runs needed to satisfy the error threshold in all
the three objective functions is reached. The average of such
values over 30 repetitions turned out to be 207. This number
provides also a good trade-off between solution accuracy and
computational time, as in the previous paragraph (at 207
MC runs, the RMSE of FCO is about 7 faults, 6.5 hours
and almost 460 EUR for a computational overhead of about
220 seconds). In general, the number of MC runs should be
chosen by looking at trade-offs between the error threshold,
the computational time and solution accuracy it entails.

C. Results for RQ3 (Sensitivity to debugging)
We analyze the impact of considering debugging on the

solution. We compare the behavior of our debug-aware testing
allocation model against a debug-unaware model, where the
assumption of immediate repair is done. Specifically, the
debug-unaware model considers m

c

(t) = m
d

(t) (i.e., cor-
rection times are the same as detection times), and ignores
parameters related to debuggers assignment to functionality
(e.g., �, �, Nk

d

, xk

d

), but it still considers uncertainty.
The comparison is to figure out the difference in estimating

the corrected faults, testing time and testing/debugging cost if
the debugging process is neglected with respect to considering
debugging in the formulation. The comparison is done again
on sets of 30 solutions. Solutions are selected from the Pareto
front by four criteria: assuming that tester is interested only
in i) maximizing the number of corrected faults, regardless
the testing time and testing/debugging cost (i.e., take the
solution with the maximum FCO); ii) minimizing the testing
time, regardless the other objectives (i.e., the solution with

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

11

Fig. 4: Solutions according to the four different criteria, for each objective. Reliability constraint set at 0.9

minimum TTO); iii) minimizing the cost, regardless FCO
and TCO; iv) assuming that tester wishes to optimize a
balanced tradeoff between the three objectives. As for the
latter, let us denote the set of the 3 fitness values of a given
allocation solution X as Y(X) = {y1,x, y2,x, y3,x}, denoting,
respectively, the FCO, TTO and TCO values of that solution.
We normalize these values in [0,1] over the entire Pareto
front: y0

i,x

=

y

i,x

�min

x

(y
i,x

)
max

x

(y
i,x

)�min

x

(y
i,x

) , with i=1, 2, 3. The chosen
solution X⇤ is the one with the minimum loss function value:
L(Y0(X)) =

P3
i=1 wi

·y0
i,x

, with w
i

being the weights assigned
to each objective. For a balanced tradeoff, we select these
weights: -0.33 for FCO; 0.33 for TTO and TCO. Results are in
Figure 4. The boxplots report the 30 solutions selected for each
combination. The models provide comparable expected num-
bers of corrected faults, with little differences: however, the
debug-unaware model gives estimates of testing time and cost
considerably lower than the debug-aware model (especially
cost estimates). The immediate debugging assumption makes
the debug-unaware model heavily underestimate the time and
cost. In reality, the correction of those faults has a non-zero
time and cost; the debug-aware model accounts for this, and

yields much higher estimates. The experiment is repeated by
setting a minimum reliability constraint at 0.94 and 0.97 (set at
0.9 in Figure 4), observing that difference of faults and testing
time seem slightly lower under more stringent constraints at
0.94 and 0.97, while the cost difference is still very high.
With respect to the four criteria to select solutions , there are
slight improvements in one objective at the expense of the
others, when considering the corresponding single-objective
criteria, but the relative difference among debug-aware and
debug-unaware case is roughly invariant. Table V summarizes
all results, reporting the absolute and percentage relative
difference between the means in the two cases. In terms of
expected number of corrected faults (first part of the Table), the
worst difference is 4.07% (23 faults) in the solution minimizing
cost. The worst difference in terms of testing time (second part
of the Table) is observed again under cost-minimizing solution,
and is 5.54% (4.25 hours) under a reliability constraint of
0.90. Differences of cost estimates (third part) are very high
(always around 50%); the wort case is 59.95% (3,968 EUR)
under time-minimizing solution with reliability constraint at
0.90. In the latter case, the difference between the estimates

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

12

TABLE V: Absolute and Relative Error of the debug-unaware
model with respect to the debug-aware model

Error on Expected Number of Corrected Faults
Solution Maximizing Solution Minimizing Solution Minimizing Tradeoff Solution
Faults Cost Time

Min Abs. Error %Relative Abs. Error %Relative Abs. Error %Relative Abs. Error %Relative
Reliability (#Faults) Error (#Faults) Error (#Faults) Error (#Faults) Error
0.90 -0.6080 -0.1034 1.2767 0.2204 0.5298 0.0907 0.4477 0.0763
0.94 -0.7034 -0.1171 4.1545 0.7025 10.5268 1.7913 3.3931 0.5694
0.97 -0.5416 -0.0889 23.7318 4.0725 21.5679 3.6818 17.5572 2.9722
Error on Estimated Calendar Testing Time

Solution Maximizing Solution Minimizing Solution Minimizing Tradeoff Solution
Faults Cost Time

Min Abs. Error %Relative Abs. Error %Relative Abs. Error %Relative Absolute %Relative
Reliability (h) Error (h) Error (h) Error (#Faults) Error
0.90 -3.7684 -5.0326 -4.2502 -5.5407 -2.8680 -3.8988 -3.6135 -4.8347
0.94 -1.7689 -2.3111 -0.9792 -1.2677 -0.2463 -0.3319 -0.7269 -0.9693
0.97 -4.1064 -5.1214 -1.7225 -2.1794 -0.7391 -0.9679 -0.7271 -0.9470
Error on Estimated Cost

Solution Maximizing Solution Minimizing Solution Minimizing Tradeoff Solution
Faults Cost Time

Min Abs. Error %Relative Abs. Error %Relative Abs. Error %Relative Abs. Error %Relative
Reliability (Euros) Error (Euros) Error (Euros) Error (Euros) Error
0.90 -3505.5955 -57.4119 -3199.7842 -56.9820 -3968.8867 -59.95455 -3342.46380 -56.5913
0.94 -3459.4547 -52.7405 -3120.5806 -52.1211 -3648.5908 -53.5052 -3144.3341 -50.6906
0.97 -3555.4831 -49.6730 -2993.74298 -46.774363 -3477.4068 -48.4546 -3157.2208 -47.08612

Fig. 5: Execution time

of corrected faults is negligible (0.09%), and 3.89% (2.86 h)
in terms of testing time: by adopting the solution suggested by
the debug-unaware model, the corrected faults is not expected
to vary, but the actual calendar testing time is expected to be
2.86 hours longer and the testing/debugging cost 3,968 EUR
more than the estimated ones. Accounting for debugging will
thus help taking better-informed decisions.

D. Results for RQ4 (Scalability)
We run a set of experiments varying the problem size.

Starting from parameters of Section VI-C, we generate three
problem instances with number of functionalities 14, 19,
and 25. Parameters of the added functionalities (e.g., SRGM
parameters) are generated by random perturbations of 10% of
existing functionalities’ parameters. For each configuration, we
run the model for a number of debuggers spanning from 8 to
24, to further increase the size of the problem.

Figure 5 illustrates the performance depending on the
functionality and debuggers set size. For a given number
of debuggers, the model execution time increases with the
increase of the number of functionalities, at approximately
a linear pace in all the cases. The slope increases with the
number of debuggers too. Thus, the algorithm is still able of
managing the search space under these configurations, which
are compatible with our industrial case study.

VIII. THREATS TO VALIDITY

Construct validity. The approach uses as input the fault
detection and correction times (typically stored in bug re-
ports) for SRGM fitting and for time-to-bug-fix estimation.

This implicitly assumes that historical information about bug
reports is correct: namely, reporters can distinguish a bug from
a feature request, correctly identify duplicate bug reports, and
the average correction time can be faithfully approximated as
bug closing (i.e., fault correction time) minus bug opening (i.e.,
fault detection time). These assumptions strongly depend on
the quality of bug reports: many works are available discussing
on this threat and how it can be mitigated (e.g., [21][22]). The
cost parameters are provided by tester. They are assumed to
be known within the company: this information is not always
easily accessible, and more or less complex models could be
needed to estimate it (e.g., COCOMO II [9]). This can be done
without essentially changing the model structure, but with the
side effect of increasing its complexity.

Internal Validity. As mentioned, the approach is subject
to common SRGMs (with TEF) assumptions, which can bias
the allocation accuracy. The impact of potentially different
testing techniques on detected faults (hence on SRGMs) can
also affect results [10]. Differently from previous work (e.g.,
[25][26][27][29][35]), our model mitigates them by enabling
selection from multiple SRGMs with online data, accounting
for the effect of such assumptions’ violations [6]. Additionally,
accounting for uncertainty in SRGM parameters is exactly a
way to counteract such a threat. As further threat, changing the
MOEA strategies and their parameters can change the result.
To limit it, we selected four MOEAs among commonly used
ones in the literature with their default settings.

External Validity. Although the steps of the process are
easily applicable to other contexts, we cannot claim that results
are statistically generalizable. Nonetheless, since analyses on
proprietary industrial systems are rare in the related litera-
ture, we believe that reported results provide an important
contribution toward the practicability of such kind of models
in industry. Indeed, the method formulation leveraged from
useful feedbacks by our industrial partner, which allowed to
tailor the testing allocation process on real industrial needs.

Conclusion Validity. We achieved statistically reliable re-
sults by randomly repeating runs 30 times and by using
non-parametric statistical testing. Moreover, conclusions were
enforced by running experiments under various configurations
of the main parameters of interest.

IX. RELATED WORK

Testing resource allocation. Several papers with SRGM-
based testing resource allocation [25][26][27][29][30][35][63].
Yamada et al. [59] formulated two variants of the problem
of optimal effort allocation in module testing, assuming the
same SRGM for all the involved modules. Lyu et al. [35][27]
target the same problem, proposing an optimization model
with cost function based on well-known SRGMs, including
the use of a coverage factor for each component to account
for fault tolerance. Cost, along with testing effort function, is
considered also in later work by the same authors [25]. The
authors in [24] allocate optimal testing times to components
using the Hyper-Geometric (S-shaped) SRGM. The work in
[30] uses a flexible SRGM with a testing effort model able to
describe either exponential or S-shaped failure patterns. In our
previous work [46], and later in [61], SRGM-based allocation

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

13

is merged with a software architectural model, expressed
through a discrete-time Markov chain to explicitly account
for components’ usage. In several of these papers, SRGMs
include the TEF [25][26][29]. Most approaches are based
on single-objective optimization. The few papers focusing on
multi-objective optimization, e.g., maximizing reliability while
minimizing testing cost and time [11][61][63], do not consider
various aspects accounted for in our model: the debuggers
assignment task, the uncertainty of parameters, the dynamic
selection of multiple SRGMs.

Test case minimization, selection, prioritization. Search
based techniques are used to support testing minimization [17],
selection [47] and prioritization [54] (the paper [62] surveys
each of the mentioned areas). It is worth noting that the
approach proposed by our paper can be applied independently
of the order tests are executed: in this respect, our resource
allocation approach under uncertainty can support regression
testing practices.

Bug assignment. Bug assignment has gained attention in
recent years. In large software projects, it requires considerable
contextual information about bugs and developers, and it is a
time-consuming and tiresome process [23]. Research in the
field of mining software repositories proposed: (i) developers’
expertise models based on previous bug reports [2] or source
code contributions [36]; (ii) machine learning techniques to
learn the kinds of reports each developer resolves [2]; (iii)
preference elicitation methods to determine developer’s prefer-
ences for fixing certain types of bugs [4]; (iv) an auction-based
multi-agent mechanism allowing developers to require bugs
to triage, to then make decisions based on their preferences
and expertise [23]. The application of search techniques to
implement an efficient bug repair policy is largely unex-
plored. In [56], a genetic algorithm is designed for scheduling
developers and testers to bug-fixing tasks considering both
human properties (skill set, skill level and availability) and
bug characteristics (severity and priority).

Uncertainty of parameters. Although software testing is
fraught with a not negligible uncertainty, this topic, in practice,
is not commonly addressed. Research efforts have been spent
to evaluate the quality attributes (e.g., reliability [55] and
performance [51]) of software architectures under uncertain
parameters, adopting, for example, a robust optimization ap-
proach [37], or a bayesian approach [14]. The robustness of
an architectural model despite uncertainty via Monte Carlo
method is used, e.g., in [51] and [37]. Also, fuzzy methods
are adopted to represent uncertain parameters (e.g., [15]) of
an alternative architecture. The fuzzy paradigm is also used in
[44], wherein uncertainty in estimated parameters of SRGM
is addressed in imperfect debugging environment.

The proposed process provides several novelties with re-
spect to the state-of-the-art: (i) robust-to-uncertainty allocation
solutions, (ii) multi-objective optimization addressing qual-
ity/cost/time, and (iii) encompassing the debugging process
in the solution. Furthermore, most previous studies validate
models through numerical examples, while we experimented
the method within an industrial context. It is our opinion that
the lack of case studies is one of the causes of the scarce
adoption of quantitative test planning methods.

X. CONCLUSIONS

We presented a framework for optimal software testing
resource allocation under uncertainty. It has been experimented
on an industrial case study in the domain of health care sys-
tems. Various MOEAs have been compared, and a sensitivity
analysis has been conducted to figure out the tradeoffs between
accuracy of solution under uncertainty and computational
time. The debugging process is taken into account, providing
test managers with a more trustworthy prediction of faults
expected to be removed, of needed testing time, and especially
of required cost, enabling a more accurate decision-making.
Assessed properties (solution optimality, robustness to uncer-
tainty, estimates accuracy and scalability) are essential for
practitioners who deal with testing of large software systems.

ACKNOWLEDGMENT

This work has been supported by the EU FP7 Marie S.
Curie IAPP Project ICEBERG (Grant no. 324356).

REFERENCES

[1] V. Almering, M. V. Genuchten, G. Cloudt, and P. Sonnemans. Using
software reliability growth models in practice. IEEE Software, 24(6):82–
88, 2007.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who Should Fix This Bug?
In Proc. 28th Int. Conference on Software Engineering (ICSE), pages
361–370. ACM, 2006.

[3] A. Arcuri and L. Briand. A Hitchhiker’s Guide to Statistical Tests for
Assessing Randomized Algorithms in Software Engineering. Software
Testing Verification and Reliability, 24(3):219–250, 2014.

[4] O. Baysal, M. Godfrey, and R. Cohen. A bug you like: A framework
for automated assignment of bugs. In Proc. 17th IEEE Int. Conference
on Program Comprehension (ICPC), pages 297–298. IEEE, 2009.

[5] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR,
1st edition, 1981.

[6] G. Carrozza, R. Pietrantuono, and S. Russo. Dynamic test planning: a
study in an industrial context. International Journal on Software Tools
for Technology Transfer, 16(5):593–607, 2014.

[7] G. Carrozza, R. Pietrantuono, and S. Russo. Defect analysis in mission-
critical software systems: a detailed investigation. Journal of Software:
Evolution and Process, 27(1):22–49, 2015.

[8] M. Cinque, C. Gaiani, D. De Stradis, A. Pecchia, R. Pietrantuono, and
S. Russo. On the impact of debugging on software reliability growth
analysis: A case study. In Computational Science and Its Applications
(ICCSA 2014), volume 8583 of LNCS, pages 461–475. Springer, 2014.

[9] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena. Quantifying the
influence of failure repair/mitigation costs on service-based systems. In
Proc. 24th Int. Symposium on Software Reliability Engineering (ISSRE),
pages 90–99. IEEE, 2013.

[10] D. Cotroneo, R. Pietrantuono, and S. Russo. Testing techniques selection
based on ODC fault types and software metrics. Journal of Systems and
Software, 86(6):1613–1637, 2013.

[11] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang. Optimal Testing-resource
Allocation with Genetic Algorithm for Modular Software Systems.
Journal of Systems and Software, 66(1):47–55, 2003.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[13] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data
Sets. Journal of Machine Learning Research, 7:1–30, 2006.

[14] D. Doran, M. Tran, L. Fiondella, and S. S. Gokhale. Architecture-
based Reliability Analysis With Uncertain Parameters. In Proc. 23rd
Int. Conference on Software Engineering and Knowledge Engineering
(SEKE), pages 629–634. ACM, 2011.

[15] N. Esfahani, K. Razavi, and S. Malek. Dealing with Uncertainty in
Early Software Architecture. In Proc. ACM SIGSOFT 20th Int. Symp.
on the Foundations of Software Engineering (FSE), pages 21:1–21:4.
ACM, 2012.

[16] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not going to take this
anymore: Multi-objective overtime planning for software engineering
projects. In Proc. 35th Int. Conference on Software Engineering (ICSE),
pages 462–471. IEEE, 2013.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

14

[17] J. Geng, Z. Li, R. Zhao, and J. Guo. Search Based Test Suite
Minimization for Fault Detection and Localization: A Co-driven Method.
In Proceedings of the 8th International Symposium on Search Based
Software Engineering (SSBSE), pages 34–48, 2016.

[18] A. L. Goel and K. Okumoto. Time-dependent error-detection rate
model for software reliability and other performance measures. IEEE
Transactions on Reliability, R-28(3):206–211, 1979.

[19] S. Gokhale and K. Trivedi. Log-logistic software reliability growth
model. In Proc. 3rd Int. High-Assurance Systems Engineering Sym-
posium (HASE), pages 34–41, 1998.

[20] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon.
Comparing white-box and black-box test prioritization. In Proceedings
of the 38th International Conference on Software Engineering, ICSE
’16, pages 523–534, New York, NY, USA, 2016. ACM.

[21] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: How
misclassification impacts bug prediction. In Proc. 35th Int. Conference
on Software Engineering (ICSE), pages 392–401. IEEE, 2013.

[22] P. Hooimeijer and W. Weimer. Modeling Bug Report Quality. In Proc.
22nd IEEE/ACM Int. Conference on Automated Software Engineering,
ASE ’07, pages 34–43. ACM, 2007.

[23] H. Hosseini, R. Nguyen, and M. W. Godfrey. A Market-Based Bug
Allocation Mechanism Using Predictive Bug Lifetimes. In 16th Euro-
pean Conference on Software Maintenance and Reengineering (CSMR),
pages 149–158. IEEE, 2012.

[24] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang. Efficient allocation of testing
resources for software module testing based on the hyper-geometric dis-
tribution software reliability growth model. In Proc. 7th Int. Symposium
on Software Reliability Engineering (ISSRE), pages 289–298, 1996.

[25] C. Huang and J. Lo. Optimal resource allocation for cost and reliability
of modular software systems in the testing phase. Journal of Systems
and Software, 79(5):653–664, 2006.

[26] C.-Y. Huang, S.-Y. Kuo, and M. R. Lyu. An Assessment of Testing-
Effort Dependent Software Reliability Growth Models. IEEE Transac-
tions on Reliability, 56(2):198–211, 2007.

[27] C.-Y. Huang, J.-H. Lo, S.-Y. Kuo, and M. R. Lyu. Optimal allocation of
testing resources for modular software systems. In Proc. 13th Int. Symp.
on Software Reliability Engineering (ISSRE), pages 129–138, 2002.

[28] C.-Y. Huang and M. Lyu. Optimal testing resource allocation, and
sensitivity analysis in software development. IEEE Transactions on
Reliability, 54(4):592–603, 2005.

[29] C.-Y. Huang and M. R. Lyu. Optimal release time for software systems
considering cost, testing-effort, and test efficiency. IEEE Transactions
on Reliability, 54(4):583–591, 2005.

[30] P. C. Jha, D. Gupta, B. Yang, and P. K. Kapur. Optimal testing
resource allocation during module testing considering cost, testing effort
and reliability. Computers & Industrial Engineering, 57(3):1122–1130,
2009.

[31] P. K. Kapur, H. Pham, S. Anand, and K. Yadav. A unified approach
for developing software reliability growth models in the presence of
imperfect debugging and error generation. IEEE Transactions on
Reliability, 60(1):331–340, 2011.

[32] J. Knowles and D. Corne. The pareto archived evolution strategy:
a new baseline algorithm for pareto multiobjective optimisation. In
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 1, page 105 Vol. 1, 1999.

[33] A. Kumar. Software Reliability Growth Models, Tools and Data Sets -
A Review. In Proc. 9th India Software Engineering Conference (ISEC),
pages 80–88. ACM, 2016.

[34] J.-H. Lo and C.-Y. Huang. An integration of fault detection and
correction processes in software reliability analysis. Journal of Systems
and Software, 79(9):1312–1323, 2006.

[35] M. Lyu, S. Rangarajan, and A. V. Moorsel. Optimal allocation of
test resources for software reliability growth modeling in software
development. IEEE Transactions on Reliability, 51(2):336–347, 2002.

[36] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports using
a vocabulary-based expertise model of developers. In Proc. 6th Int.
Working Conference on Mining Software Repositories (MSR), pages
131–140. IEEE, 2009.

[37] I. Meedeniya, A. Aleti, and L. Grunske. Architecture-driven reliability
optimization with uncertain model parameters. Journal of Systems and
Software, 85(10):2340–2355, 2012.

[38] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodolology, 11(3):309–346, 2002.

[39] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design
Issues in a Multiobjective Cellular Genetic Algorithm. In Evolutionary
Multi-Criterion Optimization, volume 4403 of LNCS, pages 126–140.
Springer, 2007.

[40] G. Neumann, M. Harman, and S. Poulding. Transformed Vargha-
Delaney Effect Size, pages 318–324. Springer International Publishing,
Cham, 2015.

[41] T. T. Nguyen, T. Nguyen, E. Duesterwald, T. Klinger, and P. Santhanam.
Inferring developer expertise through defect analysis. In Proc. 34th Int.
Conference on Software Engineering (ICSE), pages 1297–1300, 2012.

[42] K. Ohishi, H. Okamura, and T. Dohi. Gompertz software reliability
model: Estimation algorithm and empirical validation. Journal of
Systems and Software, 82(3):535–543, 2009.

[43] H. Okamura, Y. Watanabe, and T. Dohi. An Iterative Scheme for
Maximum Likelihood Estimation in Software Reliability Modeling. In
Proc. 14th Int. Symposium on Software Reliability Engineering (ISSRE),
pages 246–256. IEEE, 2003.

[44] B. Pachauri, A. Kumar, and J. Dhar. Modeling optimal release policy
under fuzzy paradigm in imperfect debugging environment. Information
and Software Technology, 55(11):1974–1980, 2013.

[45] J.-Y. W. Peng-Yeng Yin. Optimal multiple-objective resource alloca-
tion using hybrid particle swarm optimization and adaptive resource
bounds technique. Journal of Computational and Applied Mathematic,
216(1):73–86, 2008.

[46] R. Pietrantuono, S. Russo, and K. Trivedi. Software reliability and test-
ing time allocation: An architecture-based approach. IEEE Transactions
on Software Engineering, 36(3):323–337, May 2010.

[47] D. Pradhan, S. Wang, S. Ali, and T. Yue. Search-Based Cost-Effective
Test Case Selection within a Time Budget: An Empirical Study. In
Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, pages 1085–1092, 2016.

[48] D. P. K. Reuven Y. Rubinstein. Simulation and the Monte Carlo Method,
2th edition. Wiley-interscience, 2008.

[49] R. Roshandel, N. Medvidovic, and L. Golubchik. Software Architectures,
Components, and Applications, volume 4880 of LNCS, chapter A
Bayesian Model for Predicting Reliability of Software Systems at the
Architectural Level, pages 108–126. Springer, 2007.

[50] N. F. Schneidewind. Modelling the fault correction process. In Proc.
12th Int. Symposium on Software Reliability Engineering (ISSRE), pages
185–190. IEEE, 2001.

[51] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske.
Model-based performance analysis of software architectures under un-
certainty. In QoSA’13 - Proc. 9th Int. ACM Sigsoft conference on Quality
of software architectures, pages 69–78. ACM, 2013.

[52] A. Vargha and H. Delaney. A critique and improvement of the cl
common language effect size statistics of mcgraw and wong. Journal
of Educational and Behavioral Statistics, 25(2):101–132, 6 2000.

[53] D. A. V. Veldhuizen and G. B. Lamont. Multiobjective evolutionary
algorithm research: A history and analysis. Technical Report TR-98-03,
Air Force Institute of Technology, WrightPatterson AFB, OH, 1998.

[54] S. Wang, S. Ali, T. Yue, Ø. Bakkeli, and M. Liaaen. Enhancing test case
prioritization in an industrial setting with resource awareness and multi-
objective search. In Proceedings of the 38th International Conference
on Software Engineering (ICSE), pages 182–191, 2016.

[55] N. Wattanapongskorn and D. W. Coit. Fault-tolerant embedded system
design and optimization considering reliability estimation uncertainty.
Reliability Engineering & System Safety, 92(4):395 – 407, 2007.

[56] J. Xiao and W. Afzal. Search-based resource scheduling for bug
fixing tasks. In Proc. 2nd Int. Symposium on Search Based Software
Engineering (SSBSE), pages 133–142. IEEE, 2010.

[57] M. Xie and M. Zhao. The Schneidewind software reliability model
revisited. In Proc. 3rd Int. Symp. on Software Reliability Engineering
(ISSRE), pages 184–192, 1992.

[58] S. Yamada, J. Hishitani, and S. Osaki. Software-reliability growth with
a Weibull test-effort: a model and application. IEEE Transactions on
Reliability, 42(1):100–106, 1993.

[59] S. Yamada, T. Ichimori, and M. Nishiwaki. Optimal allocation policies
for testing-resource based on a software reliability growth model.
Mathematical and Computer Modeling, 22(10-12):295–301, 1995.

[60] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability growth modeling
for software error detection. IEEE Transactions on Reliability, R-
32(5):475–484, 1983.

[61] B. Yang, Y. Hu, and C.-Y. Huang. An architecture-based multi-objective
optimization approach to testing resource allocation. IEEE Transactions
on Reliability, 64(1):497–515, 2015.

[62] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing Verification and Reliability,
22(2):67–120, 2012.

[63] Zai, K. Tang, and X. Yao. Multi-Objective Approaches to Optimal
Testing Resource Allocation in Modular Software Systems. IEEE
Transactions on Reliability, 59(3):563–575, 2010.

[64] F. Zhang, F. Khomh, Y. Zou, and A. Hassan. An empirical study on
factors impacting bug fixing time. In Proc. 19th Working Conference
on Reverse Engineering (WCRE), 2012.

[65] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an
empirical study of commercial software projects. In Proc. 35th Int.
Conference on Software Engineering (ICSE), pages 1042–1051, 2013.

[66] E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjective
Search, pages 832–842. Springer Berlin Heidelberg, 2004.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2691060, IEEE
Transactions on Evolutionary Computation

15

Roberto Pietrantuono , Ph.D., IEEE Senior Mem-
ber, received the MS degrees in computer en-
gineering in 2006, the PhD degree in computer
and automation engineering in 2009 from?the Fed-
erico II University of Naples, Italy. In 2011,
he co-founder of the Critiware spin-off company
(www.critiware.com), an innovative startup active
in the field of quality assurance of critical soft-
ware systems. He is currently research fellow at
CINI, the inter-university consortium for infor-
matics, collaborating on national and European

projects (main projects were: ICEBERG - http://www.iceberg-sqa.eu/; SVE-
VIA - http://www.dieti.unina.it/index.php/it/didattica/progetti-di-formazione-
pon/244-svevia ; TENACE -www.dis.uniroma1.it/ tenace/). The main interests
are in the area of software quality, software dependability modelling and
evaluation, and software V&V for large-scale critical systems. He published
several articles in international top-level journals.

Pasqualina Potena is Senior Researcher at RISE
SICS Västerås, Sweden. She received the degree in
Computer Science from the University of L’Aquila
and the Ph.D. degree in Sciences from the Univer-
sity “G. D’Annunzio” Chieti e Pescara (Italy). She
was research fellow at the University of L’Aquila,
Politecnico di Milano, and University of Bergamo.
She also was Experienced Researcher at University
of Alcalá (Spain) in the ICEBERG project funded by
EU under Industry-Academia Partnerships and Path-
ways (IAPP) Marie Curie Program (grant 324356).

She carries out research in the areas of Quality of Architectures, Architecture-
based self-adaptation, and Software Testing of large scale industrial software
systems. Her research interests include: non-functional properties (reliability,
availability, performance, cost, ...), self-adaptive systems with uncertainties,
optimization models, and Search Based Software Engineering (SBSE).

Antonio Pecchia received the B.S. (2005), M.S.
(2008) and Ph.D. (2011) in Computer Engineering
from the Federico II University of Naples, where
he is lecturer in Advanced Computer Programming.
He is a post-doc at CINI in European projects,
and co-founder of the Critiware spin-off company
(www.critiware.com). His research interests include
data analytics, log-based failure analysis, dependable
and secure distributed systems. He is a member of
the IEEE.

Daniel Rodriguez , IEEE member, is currently
an associate professor (tenured) at the Computer
Science Department of the University of Alcalá,
Madrid, Spain. In the past, he has been a lecturer at
the University of Reading (2001-2006). He earned
his degree in Computer Science at the University of
the Basque Country (UPV/EHU) and PhD degree at
the University of Reading, UK in 2003. His research
interest include software engineering in general and
the application of data mining and optimisation
techniques to software engineering problems in par-

ticular. He is a member of IEEE and ACM associations.

Stefano Russo is Professor of Computer Engineer-
ing at the Federico II University of Naples, where
he teaches Software Engineering and Distributed
Systems, and leads the DEpendable Systems and
Software Engineering Research Team (DESSERT,
www.dessert.unina.it). He co-authored over 160 pa-
pers in the areas of software engineering, middle-
ware technologies, mobile computing. He is Senior
Member of IEEE.

Luis Fernández-Sanz is an associate professor at
Dept. of Computer Science of Universidad de Alcalá
(UAH). He earned a degree in Computing in 1989 at
Universidad Politecnica de Madrid (UPM) and his
Ph.D. in Computing with a special award at Uni-
versity of the Basque Country in 1997. With more
than 20 years of research and teaching experience (at
UPM, Universidad Europea de Madrid and UAH) ,
he has also been engaged in the management of the
main Spanish Computing Professionals association
(ATI: www.ati.es) as vice-president and he has also

served in the Board of Directors of CEPIS (Council of European Professional
Informatics Societies: www.cepis.org) from 2011 to 2013 and again from
2016. His general research interests are software quality and engineering,
ICT accessibility and IT professionalism and education.

