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RELAI testing: a technique to assess and improve
software reliability

Domenico Cotroneo, Member, IEEE, Roberto Pietrantuono, Member, IEEE, Stefano Russo Member, IEEE

Abstract—Testing software for assessing or improving reliabil-
ity presents several practical challenges. Conventional operational
testing is a fundamental strategy that simulates the real usage
of the system in order to expose failures with the highest
occurrence probability. However, practitioners find it unsuitable
for assessing/delivering high reliability levels, and they do not
see the adoption of a “real” usage profile estimate as a sensible
idea, being it a source of non-quantifiable uncertainty. Debug
testing techniques aim to expose as many failures as possible, but
regardless of their impact on runtime reliability. These strategies
are used either to assess or to improve reliability, but cannot
improve and assess reliability in the same testing session.

This article proposes Reliability Assessment and Improvement
(RELAI) testing, a new technique thought to improve the deliv-
ered reliability, by an adaptive testing scheme, while providing,
at the same time, a continuous assessment of reliability attained
through testing and fault removal. The technique also quantifies
the impact of a partial knowledge of the operational profile.
RELAI is positively evaluated on four software applications
compared, in separate experiments, with techniques conceived
either for reliability improvement or for reliability assessment,
demonstrating substantial improvements in both cases.

Index Terms—Software Testing, Reliability, Operational Test-
ing, Random Testing, Sampling, Operational Profile

I. INTRODUCTION

The objective of any software testing technique is to expose
failures. Testers prioritize inputs according to the pursued
quality attribute, e.g., correctness, robustness, reliability, secu-
rity. When high reliability is desired, tester wishes to sample
those failure-causing inputs that have the largest impact on
operational failure probability. This is the trend followed by
those techniques based on the expected operational profile
to derive tests. Operational profile based testing (hereafter
operational testing) selects test cases by looking for high-
occurrence failure-causing inputs, as they mainly impact re-
liability. This is different from conventional debug testing:
the latter refers to techniques whose aim is to expose as
many failures as possible and remove the failure-causing bugs,
regardless of their possible impact on runtime reliability. There
is an inherent difference between them, since the rate of
failure occurrence during actual operation affects reliability.
It may happen that a technique exposes many failures, but
they have low impact on reliability, i.e., their occurrence
frequency is low; and, as opposite, a technique may uncover
few but high-occurrence failures and deliver higher reliability.
Therefore, although both can improve reliability by means of
fault removal, operational testing is considered as the natural
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way to pursue high reliability. Besides reliability improvement,
techniques based on operational profile have been largely used
also for reliability assessment [1], [2], [3], [4]. This makes
operational testing one of the pillars of software reliability
engineering practices [5].

At the same time, operational testing has been strongly
criticized over the years (e.g., in [6]), as it actually presents
issues that limit its wide adoption in the industrial practice.
Researchers and practitioners see two major limitations in
operational testing: i) the unsuitability for systems demanding
high reliability; ii) the assumption of knowing the operational
profile of the software under test.

The reason behind the first issue is that operational testing
aims at exposing failures that will occur in operation with
higher probability, neglecting low-occurrence ones. Therefore,
reliability will achieve a certain stable level that becomes diffi-
cult to improve further if remaining failures are not addressed.
To boost reliability beyond that limit, testing should turn, at a
certain point, to prefer exposing many low-occurrence failures
rather than few high-occurrence ones. The same problem
stands when operational testing is used for reliability assess-
ment of high-quality software, wherein only low-occurrence
failures are likely to be present, thus yielding insufficient
failure data for the estimation. This aspect is emphasized
by the target systems which operational testing is usually
intended for, namely mission- or safety-critical systems with
high reliability requirements.

Operational profile uncertainty is the second big concern. It
is not always possible for practitioners to obtain meaningful
profiles, and the impact of the error they commit on estimating
such profile is not known a priori. Many studies are available
that discuss how this error impacts reliability observed in
operation (e.g., [7], [8], [2], [9], [10]), but none of them can
account for it preventively - namely, by including it in the
formulation of the testing strategy. A tester would discover
too late, only after a long time of operation, that the profile
estimate was wrong, and that reliability achieved/assessed at
the end of testing was biased. This uncertainty causes strong
scepticism that makes testers prefer debug testing techniques
under the assumption that more failures exposed entail higher
reliability, ignoring their operational occurrence frequency.

In addressing these issues, there is a large margin of
improvement for reliability testing. While it is important to
exploit the knowledge of the operational profile to derive
better tests for both reliability improvement and reliability
assessment, a suitable solution is needed to avoid the stall
of operational testing on high-occurrence failures, as well as
to minimize the epistemic uncertainty of results caused by the
inaccurate estimate of the usage profile.
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In this article, we propose a new approach called Reliability
Assessment and Improvement (RELAI) testing. RELAI is an
integrated technique to improve the final delivered reliability
and provide, at the same time, an accurate assessment of
the achieved reliability in the same testing session, while
overcoming both the low-occurrence failures problem and the
inaccurate profile issue. The main contributions of RELAI are
summarized by the following objectives it fulfils:

• Improvement of reliability: RELAI adopts an adaptive
sampling approach, that iteratively learns from test ex-
ecution results as they become available, and, based on
them, allocates test cases to the most reliability-impacting
input regions. The adaptive strategy avoids the “satu-
ration” of the conventional operational testing, yielding
better results, since, once the high-occurrence failures are
removed, RELAI proactively directs the selection toward
the low-occurrence ones.

• Assessment of the achieved reliability: within each input
region with an assigned number of test cases, RELAI
defines a second sampling strategy able to provide the
interval estimate of attained reliability during testing. Re-
liability assessment through operational testing is usually
conducted assuming the code being frozen (i.e., no bugs
are removed during testing) [2], thus entailing a separate
testing session devoted to assess reliability and accept
the software [11]. RELAI removes this assumption; it
addresses the problem of reliability improvement and
assessment in the same testing stage, providing estimates
while removing defects.

• Assessment of the profile uncertainty impact: RELAI
predicts the error on reliability estimate caused by a
tester-specified maximum acceptable error on the profile
estimate. This is an unaddressed challenge so far, and
the proposed solution is a first attempt toward the control
of the uncertainty in the usage of operational profile for
testing purposes.

The output information is useful to implement several testing
policies, as: maximizing reliability given a testing budget,
or minimizing the testing effort to attain a reliability goal,
under a maximum tolerable profile error. Since the algorithm is
iterative, tester can implement dynamic policies; he has always
an updated view of the cost/benefit evolution during testing.

We evaluated RELAI through a controlled experiment on
four software applications under several scenarios through four
separate experiments. Results are compared with 6 techniques,
3 for reliability improvement and 3 for reliability assessment.
They show a relevant gain of RELAI in terms of delivered reli-
ability on already high reliability levels (improving reliability
from 21% up to 90% with respect to the maximum achievable
gain), a mean squared error (MSE) in reliability assessment
ranging from 6E-4 to 2E-4 with 100 test cases up to 8E-6 to
1E-8 with 800 test case, and an ability to confidently predict
the impact of the profile estimation error on reliability estimate
in more than 98% of the cases.

In the following, we first survey the related work and
introduce the basic concepts behind RELAI testing (Section
II and III). In Section IV and V we present the strategy.

Section VI describes the experiment; Section VII presents the
results, followed by conclusive remarks (Section X).

II. RELATED WORK

A. Testing based on operational profile

Testing based on operational profile estimation, known as
operational testing, is historically considered as the natural
approach to test software either for reliability assessment or
for reliability improvement. Its rationale is to select test cases
with the same probabilities as expected in operation1.

Several researchers, since the end of the eighties, worked to
improve this promising approach [15], [16], [12], [13], [17],
[18]. The most important contexts in which operational testing
was used are in the frame of the Cleanroom methodology
[19], [20], [15], and in the process defined by Musa, Software
Reliability Engineering Test (SRET) [11]. In both cases, there
are several examples of positive experience. In the Cleanroom
approach, it is used as a means to assess reliability and
certify the software against a given MTTF [20], [16], [21],
[22]. Operational testing is formulated as reliability improve-
ment technique also in n [23], where an analytical study
is conducted to compare operational against debug testing.
Further empirical evidences in favour of operational testing are
reported in [24] and in [25], where it is used with multimodal
systems.

In [1], [2], an adaptive testing strategy based on operational
profile is used for reliability assessment via feedback-driven
test case selection. The authors formulate software testing as a
feedback and adaptive control problem: they use a controlled
Markov chain to describe the testing process with the goal
of minimizing the variance of reliability estimator. Similarly,
adaptive testing is used in a recent work along with a gradient
descent method [3]. Authors’ results show the superiority of
adaptive testing over uniform random testing and operational
testing. Along the same line, a recent work used confidence
intervals as driving criterion to select test cases adaptively
for reliability assessment purposes [4]. All these works on
adaptive testing are inspired to the area of software cybernetics
[26], to which one of the two sampling schemes used by
RELAI is also related to.

In [27], operational testing is used for reliability improve-
ment by a Bayesian method using online data as feedback.
Authors use test data to estimate the failure rates and select
test cases based on them, assuming that failing test cases
are a very small percentage of total tests. Authors in [28]
adopt robust optimization to distribute test cases across test
modules, also considering the problem of inaccurate opera-
tional profile. Operational testing is also viewed as a special
case of random testing, although this term is wider and refers
to any distribution (not only the operational usage one)2. In
the field of random testing, there is a wide share of work

1The term statistical testing was also used to denote this technique [12],
[13]; however, it is also being used to denote testing to satisfy adequacy
criteria in terms of functional/structural properties, e.g., in [14].

2Indeed, random testing is also often taken to mean “uniform” random
testing, where all points in the input domain are equally likely to be selected.
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focusing on test effectiveness in terms of failure exposure
(hence fault detection) ability. Papers more related to our
idea are the ones using adaptive strategies to improve testing
online. Adaptive random testing (ART) is a family of testing
techniques proposed by Chen et al. [29], [30] [31], [32],
[33]. The intuition is to improve random testing by using test
results online in order to evenly distribute test cases across
the input domain. There are many variants of ART, adopting
different algorithms to select the next test cases given a test
history – see [34] for a detailed survey. However, these are
all intended to improve reliability in the broad meaning of
the term, namely by exposing as many failures as possible
like any debug testing approach. For what said, this is not the
same as improving operational reliability, because the expected
occurrence frequency in operation determines which bugs are
more or less important from reliability perspective (intended
as probability of not failing in operation). It might happen that
such techniques deliver higher reliability than conventional
operational testing, if all the detected and removed bugs
collectively have a larger expected occurrence probability than
the ones removed by operational testing. Therefore, we also
consider ART techniques as counterpart which RELAI will be
compared with.

RELAI is an integrated technique that combines test selec-
tion strategies for reliability improvement and for reliability
assessment. RELAI formulates the reliability improvement
problem as an adaptive iterative sampling problem, whose
aim is to find the distribution of test cases among partition
that maximizes the delivered reliability. This is to overcome
the dualism between operational and debug testing (including
ART), arguing if it is better, from reliability perspective, to
expose few but high-occurrence failures or many failures but
regardless their occurrence probability [6]: RELAI selects, at
each iteration, the input cases that are expected to contribute
more to the operational failure probability reduction in the next
iteration.

Moreover, the usage of operational-profile based testing for
either reliability improvement or assessment in a mutually
exclusive way, led us to integrate a reliability assessment
step within the improvement strategy. In fact, whenever
operational-profile based testings is used for reliability assess-
ment, the code is assumed to not change during testing, i.e.,
detected defects are not removed [2], [3], [4], [35]. Unlike
RELAI, these techniques also assume to use a sampling with
replacement (i.e., the same test case can be selected several
times) and an equal probability of selection within partitions.
RELAI is formulated to remove these assumptions, and to
provide a reliability estimate while also removing detected
defects. This is achieved by a new sampling scheme based
on survey sampling method that admits a sampling without
replacement with unequal selection probabilities [36], leading
to more accurate estimates.

B. Impact of operational profile estimation

The further problem that operational-profile based testing
suffer from is the estimation of a correct operational profile.
The effectiveness of operational testing, both in assessing

and in improving reliability, has always been seriously un-
dermined by the difficulties in obtaining meaningful profiles.
All the mentioned approaches assume a perfect knowledge
of the runtime usage, which is most likely untrue. A non-
negligible slice of literature proposes solutions to support the
task of obtaining good profiles, e.g., through state models
[37], Markovian or Bayesian models describing the expected
usage [12], [38], or UML documentation [39]. But basically
the accuracy of the profile depends on the accuracy of the
information on how the system will be used [40], which is
difficult to obtain. Empirical analyses have been conducted to
evaluate the impact of the profile estimation error on reliability
estimate. These studies are quite contradictory. The authors
in [7], [8] state a non-negative effect of operational profile
errors on reliability estimate. In [41] reliability estimates are
shown to not be affected by such errors. This issue has been
studied also recently in [2], where authors experimentally
evaluate techniques performance in assessing reliability in
presence of error. Differently from the previous ones, the work
by Chen et al. [9] attests relevant deviations on reliability
estimates caused by the profile error. A more recent analysis
shows that the relation between the profile variation and
reliability depends on the error on the testing effort [10].
Despite these contrasting results, it is important to remark
that the relation between the profile estimation error and
reliability has been studied empirically so far, by observing
the effect of the error on the true reliability assumed to be
known. In a real situation, this impact would be observed only
after a long operational time, when the true reliability can be
assessed faithfully. To our knowledge, there is no technique
to assess, preventively, the impact of a possible profile error
on reliability attained soon after testing, making it hard to
apply operational testing in practice. In our previous work [42],
we started addressing this challenge, analyzing theoretically
the relation between the profile error and the number of
tests. That analysis did not end up with a practical testing
method, but paved the ground to the formulation of the strategy
presented hereafter. Overall, RELAI differs from the cited
works in several aspects: the test selection algorithm accounts
for both reliability improvement and reliability assessment
needs, which are challenges usually addressed separately; both
reliability improvement and assessment are taken in a novel
way, by previously unused sampling schemes (this is important
especially for reliability improvement, where considerably less
research has been conducted); RELAI considers the profile
estimation error in its formulation, allowing accounting for
the impact of such a source of uncertainty before the system
goes in operation.

III. TERMINOLOGY

This Section introduces the terminology adopted in the
following. Testing a program is the process of i) exercising it
with different test cases, selected from the set of all possible
inputs according to a selection criterion, and ii) observing
the output, comparing it with the expected one such that, if
they are discordant, a failure is said to have occurred. Inputs
provoking failures are called failure-causing inputs or failure
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points. When a failure occurs, a change is made to the program
to remove what is believed to be the cause of the failure, or
“fault”. Since there may be several possible changes able to
avoid the failure, the fault related to an observed failure is not
uniquely defined. We thus rely on the notion of failure, rather
than that of fault, and borrow the concept of failure region
of the input space (as in, e.g., [23], [43]). A failure region
is the set of failure points that is eliminated by a program
change aimed at removing the fault. An input point t to a
program under test is characterized by a predicate: yt = 1 if
the execution leads to a failure, namely, it is a failure point;
yt = 0 otherwise.

An operational profile is a quantitative characterization of
how a system will be used. There are several models of
operational profiles [44]. In this work, the Musa’s model
is considered. We build the profile by assigning probability
values to all input cases representing the probability that each
will occur in operation. Thus, it can be thought as a probability
distribution over the set of the input points D. We denote this
distribution with P , that assigns a probability pt to each input
t ∈ D. In operational testing, assuming a perfect estimate of
the operational profile, pt is also the probability that the input
t will be selected during testing. But in the real world, the
profile estimate is affected by an error, and another probability
distribution is actually used to select test cases. We denote
this distribution with P̂ , and its probability values with p̂t.
To account for the profile estimation error, we consider the
differences εt = pt - p̂t, representing the estimation error for
each point of the input domain.

Reliability is the probability of not failing in operation: in
the literature, it is mainly measured either on a continuous-
time or on a discrete-time basis - the two approaches are
related, as explained in [45], [46]. While the former assesses
the failure probability as a function of time (e.g., calendar
time, CPU time), the latter uses the frequency (or probability)
of successful runs, which in many cases is more meaningful
[3]. As for other studies in the software testing field, this
study focuses on the discrete-time definition; reliability is:
R = 1 −

∑
t∈D ptyt, where the summation represents the

probability of selecting at least one failure point in operation.

IV. THE RELAI TESTING STRATEGY

A. Assumptions

To formulate RELAI, we do the following assumptions:
1) Each test case leads the software under test to failure

or success. Given a software program under test (SUT)
and a test case t applied to it, let ωt be the actual output
value of the SUT executed with test case t and ω′t the
expected output value of the SUT under t. Let yt be a
label denoting the outcome of the execution of the SUT
with test case t; then:{

yt = 1 iff ωt 6= ω′t
yt = 0 iff ωt = ω′t

(1)

assuming we are able to know ω′t ∀t. In other words, t
applied to the SUT is either a failure point or not. We
assume we are always able to correctly determine if a

test is successful or not by comparing the actual output
ωt with the known expected output ω′t.

2) The possibility to select a test case at a given time
is independent of previously selected and executed test
cases; namely, all the non-executed test cases are se-
lectable each time. Given the set of all the test cases
T = {t1, . . . , tn}, and the set of executed test cases at
a given time, T ′ = {t1, . . . , tk}, with k < n, any of the
non-executed test cases (T ′′ = T −T ′ = {tk+1 . . . , tn})
can be selected. This affects the way in which a “test
case” is defined, since, if the assumption is not met, a
set of tasks can be grouped together in a single test case,
so that at the end of the test case the system goes back
to the initial state [3].

3) The output of a test case execution is independent of
the history of testing; in other words, a failing test
case is always such, independently from the previously
executed test cases. Note that, even though the possi-
bility to select a test case is not influenced by previous
tests, its outcome can still be influenced. Formally, let
T = {t1, . . . , tn} be the set of all the test cases for a
given program s and N = |T | the number of test cases.
Denote with DK,(N−1) the set of sequences without
repetition (i.e., dispositions) of K over N−1 test cases,
and with dk one of such sequences. Then, given a test
case tj (j ∈ [1, N ]) executed on s after the execution
of K test cases (with ti 6= tj , for i = 1, . . . , i = K), its
output ωj is independent from any previously executed
sequence dk ∈ DK,(N−1) and is always the same
(suppose it being equal to ω∗):

Pr(ωj = ω∗|dk) = 1 ∀dk ∈ DK,(N−1)
k = 1, 2, . . . ,K;
K = 1, 2, . . . , (N − 1)

(2)

4) Let F be the set of q faults present in the program: F =
{f1, f2, . . . , fi, . . . , fq}, and R be the set of the corre-
sponding failure regions: R = {r1, r2, . . . , ri, . . . , rq}.
As defined in Section III, a failure region is a set
of failure points, namely: ri = {t1, t2, . . . , tk, . . . , ts},
with s = |ri|, such that tk activates the fault fi and
cause a failure (ytk = 1). If an executed test case
tj exposes a failure, namely tj ∈ ri, a debugging
action A is performed without introducing new faults
(perfect debugging), and all the failure points of the
corresponding failure region ri are corrected, so that
re-executing any test case of that region (tj ∈ ri) no
longer causes a failure. Formally, after the execution of
the debugging action A, we have that:

|F |A = |F | − 1

|ri|A = 0∑|R|
h=1 6=i |rh|A =

∑|R|
h=16=i |rh| − |ri|

(3)

where |F |A, |ri|A, |rh|A are the cardinalities of faults
and failure regions after the execution of the debugging
action A.
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5) In this study, we assume that the selection of test cases
is without replacement, namely any executed test case
(either successful or not) will be no longer repeated in
the future. Formally, given the set of all the test cases
T = {t1, . . . , tn}, and the set of executed test cases at
a given time, T ′ = {t1, . . . , tk}, with k < n, the next
test case to select, tj , cannot be in T ′: tj /∈ T ′.

6) The input domain D is decomposed into a set of m
subdomains: {D1, D2,. . . , Dm}. The number of sub-
domains and the partitioning criterion are decided by
the tester. In general, there are several ways in which a
tester can partition the test suite, provided that test cases
in a partition have some properties in common (e.g.,
based on functional, structural, or profile criteria). These
are usually dependent on the information available to
test designers and on tester’s objective. The choice does
not affect the proposed strategy, which just assumes the
presence of subdomains, but of course different results
can be obtained according to it. The effect of different
partitioning criteria on results is out of the scope of this
paper and is left to future research.

B. Overview

Reliability Assessment and Improvement Testing (RELAI)
starts as a conventional operational profile based testing. An
estimate of the profile, P̂ , is used as reference distribution to
select test cases, with tester assigning an occurrence proba-
bility p̂t to each input3. For each subdomain, we define the
probability of selecting a failure point from Di as: ϕi =
θi
∑
t∈Di

pt, where
∑
t∈Di

pt is the probability of selecting an
input from Di, and θi is the probability that an input selected
from Di is a failure point. Thus, the true reliability is computed
as:

R = 1− Φ = 1−
m∑
i=1

ϕi (4)

where Φ is the operational failure probability. The objective
of RELAI is to improve the expected delivered reliability
while providing an estimate of the achieved level along with
the offset caused by a possible profile estimation error. The
RELAI algorithm is based on a two-stage sampling, that
we call domain-level and subdomain-level sampling scheme,
respectively. At domain level, sampling is to decide the number
of test cases for each subdomain in order to exercise input
regions mainly impacting Φ. At subdomain level, a different
type of sampling is adopted to select test cases in a way to
enable the estimation of θi, and thus ϕi, values. At the end of
each iteration, the output at subdomain level is used to drive
the algorithm at domain level. The algorithm considers, as
input:

3In [2], [11] and others, a global p̂i value is assigned to an entire subdomain
(i.e.,

∑
t∈Di

p̂t = p̂i); namely, the within-domain distribution is uniform,
with every input having pt = pi/|Di|. Depending on the partitioning strategy,
other choices could be done assigning the same pt values to groups of
inputs (e.g., to boundary values of a functionality with the same expected
occurrence, or to a functionality’s inputs in a subdomain including more
similar functionalities). Here we are considering the more general case of
each input with an assigned probability value.

• T : the total number of test cases available as budget;
• R0: the reliability target (and, optionally, the desired

confidence interval, denoted as CI(R0)=[R0l ;R0u ], at the
specified CR0

% confidence level);
• ε0: the maximum error on the operational profile estimate

that the tester decides to tolerate. It is expressed as ε0
such that εt < |ε0|, with t ∈ D, in at least Cε0% of
cases (e.g., the error is εt < |0.01| for 99% of the input
points). This represents an important input for an accurate
reliability assessment, as it allows RELAI accounting for
the error that tester inevitably commits in estimating the
profile.

Depending on the tester choice, these inputs are used to
implement (at least) the following policies:
Policy 1 - Reliability improvement:
Goal: maximize expected reliability. The algorithm selects test
cases in order to improve the expected delivered reliability.
Input: the budgeted number of test cases T ; the maximum
acceptable profile error 〈ε0, Cε0%〉; optionally, the desired
confidence CR%, determining the output confidence interval.
Output: the interval estimate of the achieved reliability (〈R̂,
CI(R̂)〉 at CR%), and the impact of the specified profile error
on reliability assessment accuracy, let us denote it, for now,
as a generic offset ∆.
Policy 2 - Reduction of the number of test case to execute:
Goal: reducing the number of required test cases to achieve
a reliability target. The algorithm tends to attain the target as
soon as possible, and runs until it is reached.
Input: the reliability target, R0; the desired acceptable er-
ror 〈ε0, Cε0%〉; optionally, the desired confidence interval
CI(R0)=[R0l ;R0u ] at CR0

% confidence level.
Output: the output is the number of executed test cases, the
interval estimate of the achieved reliability, and the possible
offset ∆ under the specified profile error. This information
can be used to stop testing according to several criteria. For
instance, tester can consider the point reliability estimate R̂,
stopping testing when R̂ ≥ R0; the lower bound of the interval
estimate R̂l (which is a more conservative choice, requiring
R̂l ≥ R0 ); or the upper bound R̂u (e.g., to stop testing earlier,
as soon as R̂u ≥ R0, at the expense of less confident results).
The algorithm provides this estimate at each iteration, thus
supporting informed decisions during testing. The high-level
steps to implement these policies are schematized in Figure 1:

1) Choose the policy and provide the corresponding inputs.
2) Decide the number of test cases to execute at the first

iteration, denoted as T (0), and distribute them to each
subdomain Di by the domain-level sampling scheme.
T

(0)
i denotes the number of test cases to draw from Di.

3) At each iteration k, with k ≥ 0:
a) Select and run test cases by the subdomain-level

sampling scheme, drawing T
(k)
i test cases from

each subdomain. From the observed results, com-
pute: ϕ̂(k)

i , namely the estimates of ϕi at itera-
tion k; the interval estimate of reliability, 〈R̂(k),
CI(R̂(k))〉; the offset ∆.

b) For policy 1, evaluate if the number of test cases
executed so far is not less than T ; if yes, stop the
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Fig. 1: Block scheme of RELAI

testing, providing results of 3.(a) as final output;
otherwise, go to to step 3.(d).

c) For policy 2, evaluate if the current estimate satis-
fies the target 〈R0, CI(R0)〉. If yes, stop the testing,
provide the number of run test cases and results of
3.(a) as output; otherwise, go to step 3.(d).

d) By using the ϕ(k)
i estimates and the domain-level

sampling scheme, compute the number of test cases
for each subdomain for the next iteration, assigning
more tests to subdomains more likely to improve
reliability. Skip to the next iteration.

In the following, we detail the main steps of the algorithm,
considering first the case of no profile estimation error (εt = 0,
∀t ∈ D), and then the case of profile estimate affected by error.

C. Initial test case assignment - step 2

This step is accomplished by the domain-level sampling
scheme, which is based on the Importance Sampling (IS)
approach. Importance sampling is a Monte Carlo method
that has been used successfully in many domains [47]. It
is an inference method to approximate the computation of
the true distribution of variables of interest, which in many
practical tasks is intractable. The method samples from the
true (unknown) distribution, and thus represents the beliefs
(i.e., hypotheses) about the state of the system by sets of
samples. Each sample is associated with a probability that
the belief is true, and at each iteration: (1) the hypotheses
are modified to account for changes in the system, (2) the
probability of each hypothesis is updated by examining some
samples of that hypothesis; and (3) a larger number of samples
are drawn from hypotheses with a larger (relative) probability,
to be analyzed in the next iteration [48]. The goal is to

converge, in few iterations, to the true probability distribution
over the set of hypotheses, identifying the ones more likely to
be true. We also used this procedure in [49] for the problem
of selecting testing techniques adaptively. Referring to RELAI,
we formulate the problem as follows: samples are the selected
test cases in each iteration; the hypotheses are the tester’s
belief about which subdomain Di is more likely to improve
reliability if test cases are selected from it; the true unknown
distribution to approximate is the optimal number of test cases
for each subdomain that maximizes reliability.

As first step, importance sampling requires a relatively small
initial set of samples. The number of test cases at the first
iteration (T (0)) is only required to be much smaller than
the total number of test cases [48], as it is needed only
to start the algorithm. If no information is available about
the likelihood that some subdomain will contribute more to
reliability improvement, the number of test cases may be
distributed uniformly among the m subdomains: T (0)

i = T (0)

m .
In this case, the initial probabilities are π

(0)
i = 1

m . An
alternative criterion is to distribute T (0) proportionally to the
subdomain size. In the following, we opt for this choice and
distribute test cases as follows:

T
(0)
i = T (0) · |Di|

|D|
(5)

with initial probabilities being π(0)
i = |Di|

|D|

D. Reliability assessment - step 3.(a)

The output of step 2 is the number of test cases to run per
subdomain, T (0)

i . Step 3.(d) provides such values for the k-th
iteration, with k > 0. These values (T (k)

i ) are the inputs of
step 3.(a). The goal of the subdomain-level sampling scheme
adopted here is to select, for each subdomain, T (k)

i test cases
in such a way to get unbiased estimates of the ϕ(k)

i values.
These are used both for reliability assessment (Eq. 4), and for
the next reliability improvement step (step 3.(d)).

Let us formulate the estimation problem. The parameter of
interest for each subdomain is ϕi = θi

∑
t∈Di

pt, representing
the probability of selecting an input from Di and that such
input is a failure point. At this stage, we assume a correct
profile estimate, hence: p̂t = pt, ∀t ∈ D. While pt values
are given for each input, an unbiased estimator of θi is the
proportion of residual failure points over |Di| after the test
iteration run. The proportion is the probability that an input
selected from Di will fail: Pr(yt=1), with yt being realizations
of a Bernoulli distribution. Therefore, as |Di| is given, we
estimate the total number of residual failure points, namely the
initial failure points minus the removed ones. Let us recall that,
differently from most studies on reliability assessment, we
see the test case selection as a sampling without replacement
problem, with selection probability regulated by the testing
profile distribution P̂ – thus with unequal selection probability
– and the sample unit being the input t (either a failure or a
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correct point) with its own probability of selection pt4.
There is however a peculiarity in our problem, as the pop-

ulation characteristics change during testing: when a failure is
exposed, failure points are removed from future selection, but
the corresponding failure region becomes a set of correct input
points that are still available for future selection. Therefore, at
the end of the test iteration, we have not the same situation
we had at the beginning; we have: i) a number of undetected
failure regions, each with an unknown number of failure points
(this is what we want to estimate, let us denote it as YR - i.e.,
“Residual”), and ii) a number of failure regions that have been
detected by selecting exactly one failure point and have been
soon eliminated (namely, all its failure points are converted
into correct points) - we denote the exposing failure points
(exactly one per region) as YD, i.e., “Detected”.

In this problem, the actual estimate we get is not the total
number of initial failure points, but the (smaller) sum: Ŷ =
ŶR+ YD. It represents the total initial number of failure points
in an ideal situation where we have (one or) many failure
points for the undetected regions but exactly one failure point
for each detected failure region. It resembles to the situation
at the end of the iteration and is even finer for our purpose,
as we are interested in ŶR. The latter is obtained as: ŶR = Ŷ
- YD. Since YD is known, the problem reduces to estimate Ŷ .

Let us set up an unbiased estimator for this problem. We
denote with Ni the population size for the subdomain Di;
T

(k)
i is the sample size from which we get the estimate; Yi

is the population total to estimate. For this sampling without
replacement with unequal probability of selection scheme, it
would be relatively simple to adopt an unbiased estimator
(e.g., the Horvitz and Thompson estimator [50]) only when the
sample is of little size (≤ 2). However, when the sample size
is greater than 2, we need methods acting also on the sampling
scheme itself (and thus on the test case selection strategy). We
use the Rao, Hartley and Cochran (RHC) scheme [36], which
is a popular sampling method adopted in numerous contexts
for its simplicity and practicability. The method steps follow:

1) Suppose we have to execute T
(k)
i test cases for the

subdomain Di at iteration k. Each input of the subdo-
main is associated with a rescaled selection probability
p̂′t = p̂t/

∑
t∈Di

p̂t, so that
∑
t∈Di

p̂′t = 1. On this
population, referred to one subdomain Di, with Niunits
in the population and a sample of size to select of T (k)

i

test cases, we can apply the RHC strategy (steps 2, 3,
and 4).

2) First of all, divide randomly the Ni units of the popu-
lation into g = T

(k)
i groups, by selecting G1 units with

a simple random sampling without replacement for the

4Studies on reliability assessment assume a sampling with replacement and
an equal probability of selection among partitions, which are relatively easy
to manage. Choosing sampling without replacement with unequal probability
of selection is known to be theoretically more efficient than sampling with
replacement, at the expense of more complex mathematics. This choice, other
than more efficient, reflects more the actual practice whenever the defects are
removed during testing, because in reality, test cases should not be repeated
[31], once, of course, verified that the defect has been really removed. This
applies to our case because the actions that we take on the code are only
bug removal actions and, due to assumption 4, the bug removal process is
assumed to be perfect.

first group, then G2 units out of the remaining (Ni−G1)
for the second, and so on. This will lead to g groups of
sizes G1, G2, . . . , Gg with

∑g
r=1Gr = Ni. The group

size is arbitrary, but selecting G1 = G2 = · · · = Gg
reduces the variance [36].

3) One test case is then drawn from each of these g groups
independently and with a “probability proportional to
size” (PPS) method - in our case, according to p̂′t values.

4) Denote with p̂′t,r the probability associated with the t-
th unit in the r-th group, and with qr =

∑
t∈Gr

p̂′t,r
the sum of probabilities in the r-th group. An unbiased
estimator of the population total for Di is [36]:

Ŷi =

g∑
r=1

yr
p̂′r/qr

(6)

where the suffixes 1, 2, . . . , r denote the g units selected
from the g groups separately, yr = 1 if the test case
led to failure, 0 otherwise. Since p̂t = pt (i.e., correct
profile estimate), the estimate is unbiased, E[Ŷi]=Yi, as
showed in [36].

5) The residual failure points at the end of the iteration are
given by Ŷi subtracted by the detected (and removed)
failure points, that we denote as YDi

=
∑
r∈Di

yr. This
leads to: θ̂(k)i = (Ŷi−YDi)/Ni, which is the proportion
of residual failure points. It follows that:

ϕ̂
(k)
i = θ̂

(k)
i

∑
t∈Di

p̂t = θ̂
(k)
i · p̂i. (7)

with ϕ̂
(k)
i representing the probability estimate of se-

lecting an input from Di and that such input is a failure
point.

6) In accordance with Equation 4, reliability at iteration k
is assessed as:

R̂(k) = 1− Φ̂(k) = 1−
m∑
i=1

ϕ̂
(k)
i = 1−

m∑
i=1

p̂i · θ̂
(k)
i (8)

and, in this case, being p̂t = pt, the estimate is unbiased:

E[R̂(k)] = 1− E[Φ̂(k)] = 1−
m∑
i=1

piθi = R (9)

7) We are also interested in the variance and confidence
interval of the estimator. The variance computation of
the estimate Ŷi is provided by the RHC method itself
[36], and looks as follows:

V (Ŷi) =

∑
r
G2
r −Ni

Ni(Ni − 1)

(
Ni∑
t=1

y2
t

p̂t
− Y 2

i

)
(10)

with
∑
r denoting the sum over the g groups; its

unbiased estimator is also provided:

V̂ (Ŷi) =

∑
r
G2
r −Ni

N2
i −
∑

r
G2
r

(
g∑
r=1

qr
y2
r

p̂2
r

− Ŷ 2
i

)
. (11)

8) Based on them, and assuming independence among θ̂(k)i ,
we can compute the variance for R̂(k) as:
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V (R̂(k)) = V (1− Φ̂(k)) = V (Φ̂(k)) =
∑m

i=1
p̂2
i V (θ̂

(k)
i )

=
∑m

i=1

p̂2i
N2

i

V (Ŷ
(k)
i − Y (k)

Di
) =
∑m

i=1

p̂2i
N2

i

V (Ŷ
(k)
i )

(12)
and:

V̂ (R̂(k)) = V̂ (Φ̂) =
∑m

i=1

p̂2i
N2

i

V̂ (Ŷ
(k)
i ) (13)

The corresponding confidence interval at CR%=100(1-α)% is:

CI(R̂(k)) = R̂(k) ± tα/2
√
V̂ (R̂(k)) (14)

Expectedly, the variance decreases as more test cases are
devoted to the subdomain, and the confidence interval is
tighter. The interval estimates of reliability at each iteration are
used either for steps 3.(b) or 3.(c), depending on the selected
policy. Then, the improvement step takes place.

E. Reliability improvement: probability update - step 3.(d)

The next steps at the end of an iteration is to allocate
test cases to subdomain for the next iteration. This is carried
out at domain-level by the introduced Bayesian approach, the
importance sampling (IS) method. With respect to the other
mentioned strategies for allocating test cases to subdomains
[4] [3] [2], we do not assume the code being frozen, since
detected defects are removed during testing – thus the code
changes, and so does the failure rate of each subdomain,
making those approaches not applicable in this case. With a
problem similar to ours, the approach taken in [27] also uses
the Bayesian inference, taking test data to estimate the failure
rates and selecting test cases based on them, but assuming
a prior knowledge on failure rates (assumed to following a
Beta distribution), assuming failing test cases to be a very
small percentage of total tests, and assuming one failure
point removed with one defect removal. To overcome these
problems, we decided to follow a sampling-based approach
to infer the real distribution of the optimal allocation of test
cases, that learns and adapts the selection of samples online
and rely exclusively on observed data.

IS has been used also for testing purposes, in order to
prioritize mutation operators in mutation testing [48]. We
also used it to prioritize the testing technique among a set
of techniques. Here, IS is used to prioritize subdomains.
The approach foresees to update a probability vector, π(k),
whose elements represent the probability that an hypothesis
is true: in this case, an element represents the probability
that selecting tests from a given subdomain has the greatest
impact on delivered reliability. Therefore, such values are
made proportional to to ϕ̂i, i.e., to the expected runtime
failure probability associated with the Di, which was estimated
previously. The update rule is as follows:

π
(k)
i = γπ

(k−1)
i + (1− γ) · (1− π(k−1)

i ) · ϕ(k)
i

(15)

The rule tends to penalize those subdomains whose ex-
pected impact on failure probability (assessed by ϕ values)
is lower. Larger values will be assigned to those subdomains
with higher ϕ. Moreover, given the same ϕ, the increase
is larger for subdomains that had fewer resources at the

previous iteration. γ ∈ [0, 1] is a learning factor, which
regulates the extent to which the algorithm considers past
iterations’ results with respect to the current one5. The values
of π(k)

i are finally normalized, since they are probabilities:
π
(k)
i = (π

(k)
i )/(

∑
i∈D π

(k)
i ). These probabilities represent

the estimate at iteration k of the relative importance of the
subdomain Di. Starting from π

(k)
i , the number of test cases per

subdomain is determined by the IS procedure, reported below,
modified to target our specific problem. We consider the KLD
variant [51] that adapts the number of sample in each iteration
to the desired error and confidence. The scheme tends to
progressively reduce the number of required samples as more
information becomes available, in order to approximate the
sought distribution earlier. The number of samples to generate
at iteration k in this variant is given by [51]:

η(k+1) = 1
2ξ
χ2
ρ−1,1−δ ≈ ρ−1

2ξ
{1− 2

9(ρ−1)
+
√

2
9(ρ−1)

z1−δ}3

(16)
where: ξ represents the error between the sampling-based
estimate and the true distribution that we want to tolerate;
1 − δ is the confidence that we have in this approximation;
ρ is the number of subdomains from which at least one
test case has been drawn in the k-th iteration; z1−δ is
the normal distribution evaluated with significance level
δ; the result, ηk+1, is the output number of test cases to
execute in the (k+1)-th iteration. Considering this number and
the probability vector of Eq. 15, the IS procedure is as follows.

IS Procedure
The importance sampling procedure. Inputs: Di, π

(k)
i : i ∈ [1,m]

//sort such that πki ≥ π
(k)
i+1

b1 = π
(k)
1 ; //Initialize Cumulative Distribution

for i=1 to m
T

(k+1)
i =0; //initialization

end for
for i=2 to m

bi = bi−1 + π
(k)
i ; //Compute Cumulative Distribution

end for
//Compute η(k+1) according to Eq. 16
r1 ∼ U [0, 1

η(k+1) ] //Draw sample from uniform distribution
//Distribute test cases to each criterion
i = 1;
for j = 1 to η(k+1)

while rj > bi do //Find the bucket to fill
i = i+ 1;

end while
T

(k+1)
i =T (k+1)

i + 1; //Fill the bucket
rj+1= rj +

1

η(k+1)

end for
//Return re-ordered {T (k+1)

i } : i ∈ [1,m]

The algorithm first computes the cumulative probability distri-
bution of the subdomains, with probabilities set in descending
order. Then, it computes the number of test cases for the
next iteration (η(k+1) according to Eq. 16), and distributes,
in the last for loop, test cases to subdomains proportionally to

5At the extremes, if γ = 1, then the online results are not considered and
probabilities are fixed at the initial value; if it is 0, results of current iteration
are fully considered to update the probabilities; any intermediate value makes
sense.
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their relative importance (that is represented by the cumulative
distribution bi over subdomains Di). It is executed until the
number of available test cases for that iteration, η(k+1), ends.
At the end of this step, a new iteration of RELAI starts
from step 3.(a), and the assigned test cases are run, for
each subdomain Di, according to the RHC scheme illustrated
above.

Summarizing, step 3.(a) for reliability assessment is carried
out by the subdomain-level scheme through RHC procedure,
whereas steps 2, and then 3.(d) for reliability improvement are
run at domain-level with the IS method. Next, we include the
impact of the uncertain profile knowledge on these results.

V. INCLUDING THE IMPACT OF THE ERROR

In the above algorithm, we assumed a correct operational
profile as assessed by tester. In practice, having an exact
estimate of the profile is unlikely. In this Section, we account
for the impact of the profile estimate error on results. Let us
define the total error variable ε =

∑
t∈D εt, with εt = p̂t−pt,

representing the deviation of the real operational profile P
from the estimated one P̂ . Let us first consider how the error
impacts the estimate of Yi, and consequently of ϕi. The RHC
estimator for Yi is, in this case, biased, namely: E[Ŷ ′i ] 6= Yi.
In fact, if pt 6= p̂t, Equation 6 becomes:

E[Ŷ ′i ] =
∑g

r=1
E[ yr

p̂r/qr
]

=
∑g

r=1

∑Gr

t=1
(pt/qr)(

yt
p̂t/qr

)

=
∑Ni

t=1
yt
pt
p̂t

=
∑Ni

t=1
yt(1− εt

p̂t
)

(17)

where we developed the expectation within the summation,
and then considered that Ni =

∑g
r=1Gr. Having a real

selection probability pt different form the estimated one p̂t
leads the estimation to be biased. Specifically, the bias is:

BYi [Ŷ
′
i ] = E[Ŷ ′i ]− Yi

=
∑Ni

t=1
yt(1− εt

p̂t
)−
∑Ni

t=1
yt

= −
∑Ni

t=1
yt
εt
p̂t

(18)

When pt = p̂t, then εt = 0 and the bias is 0.
As consequence, by knowing the bias of Ŷ ′i , we can

compute the bias of reliability estimate as:

BR[R̂
′] = E[R̂′]−R

= (1− E[Φ̂′])− (1− Φ) = Φ− E[Φ̂′]

=
∑m

i=1
piθi −

∑m

i=1
p̂iE[θ̂′i]

(19)

Thus, the bias depends on p̂i = (pi + εi), and on E[θ̂′i].
Recalling that θ̂i is computed, in Section IV-D, as
θ̂
(k)
i = (Ŷi − YDi

)/Ni, its expected value is:

E[Ŷ ′i ]− YDi

Ni
=
BYi(Ŷ

′
i ) + Yi − YDi

Ni
(20)

Putting together Equation 19 and 20, the bias of reliability
estimate, under the error of ε, is:

BR[R̂
′] =

m∑
i=1

(piθi − (pi + εi)
BYi(Ŷ

′
i ) + Yi − YDi

Ni
) (21)

The variance of the reliability estimate and its estimator,
as well as confidence interval, expressed, respectively, in
Equations 12, 13, and 14, are modified, in this case of profile
affected by error, by just replacing Ŷi with Ŷ ′i , and setting p̂i
= (pi + εi).

By these equations, the tester can specify the tolerable error
for each input t, εt, imposing constraints like “the maximum
error for input t = 1 is εt = 0.01, for t = 2 is εt = 0.05”, and
so on, in order to obtain the reliability estimate R̂′ under this
error. Although this is fine for cases in which the granularity of
the input t with assigned a probability value pt is coarse (e.g.,
we have the same pt for an entire partition or a functionality),
it can be too expensive if we have one pt value for each
single input. Thus, we hereafter specify properties of the error
at global level in order to allow tester synthesizing just one
constraint on the error. In particular, tester can express the
desired maximum error as a triple 〈ε0, εµ, Cε0%〉, meaning
that he wants the error to be: εµ−ε0 ≤ εt ≤ εµ+ε0 in at least
Cε0% of cases (e.g., for 99% of inputs). From the Chebichev
inequality, it follows that:

Pr(εµ − ε0 ≤ εt ≤ εµ + ε0) ≥ 1− 1
(ε0/σ0)2

= Cε0%

⇒ σ0 = ε0
√

1− Cε0%.
(22)

Eq. 22 tells that the requirement expressed by a tester as
desired triple 〈ε0, εµ, Cε0%〉, can be satisfied by any error
distribution with standard deviation σ0. Without any specific
knowledge on the error, ε can be supposed to be normally dis-
tributed with zero mean (i.e., the tester commits an error either
underestimating or overestimating pt, with equal probability).
Zero mean, εµ = 0, allows tester to specify, in a more concise
way, the desired error as a pair 〈ε0, Cε0%〉. Note, however,
that this assumption is not strictly necessary, as the Chebichev
inequality is independent from the distribution. The procedure
explained hereafter works also with non-normal distributions
and with non-zero mean6. Expressing the maximum tolerable
error in such a way, we implement the following steps to
consider its potential impact:

1) Start from the estimated profile P̂ and generate K
ideally correct profiles, Ph, with h = 1, . . . ,K, so that
pt = p̂t + εt, ∀ t ∈ D, and εt has the characteristic
required, namely εt ≤ |ε0| in at least Cε0% of the cases.
Ph is generated in the following way:

a) for each t, add an error εt to p̂t, obtaining pt = p̂t+
εt, drawing it from a normal distribution, with zero
mean and standard deviation σ0. This guarantees
that εt ≤ |ε0| in Cε0% of cases.

b) Rescale the distribution so that 0 ≤ pt ≤ 1 ∀t ∈
D and

∑
t pt = 1; thus p′t = 0 if pt ≤ 0 and

then p′t = pt/
∑
t pt ∀t ∈ D. We call Ph the new

distribution made up of p′t probability values.
2) The new profile Ph represents an ideally correct profile,

deviating from P̂ by the required error 〈ε0, Cε0%〉. With
this, we assess reliability R̂h assuming Ph as the correct

6Tester might want to specify a non-normal distribution or an error biased
by a value εµ 6= 0, e.g., if he has some knowledge on the characteristics
of the error committed in the past. Zero-mean normal error is assumed for
simplicity and for its suitability to represent a non-systematic random error.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2015.2491931

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

profile (again, by Eq. VII-B), and the offset of the real
estimation from it: ∆(R̂h,R̂) = R̂h - R̂. It represents
the impact on reliability estimate accuracy of the profile
error random variable in one specific realization.

Repeating this procedure for h = 1, . . . ,K provides us
with a distribution of ∆(R̂h,R̂) over the K possible ways of
deviating from a correct profile. Tester selects the expected
value of this distribution: ∆̄(R̂h,R̂)= E[∆(R̂h,R̂)], using it
as offset deviation prediction. The number of repetitions K
determines the accuracy of such prediction. We compute K by
the bootstrap method, in order to be independent from the dis-
tribution selected to generate the profile. It works as follows:
given a set of repeated measures, they are randomly sampled
M times with replacement; the measure is computed for each
sample to obtain an estimate of its statistical distribution and
of its C% confidence interval. The number of repetitions K
is considered sufficient if the error margin of the estimated
measure (i.e., the half-width of the confidence interval) is
less than r%. We adopt common values, i.e.: C%=99%, r%
= 5%. In our experiment, K=50 was far sufficient to satisfy
the criterion. Note that creating the modified profile is a fully
automatic operation requiring the generation of |D| random
numbers to add to the pt values, with a negligible cost in
terms of execution time, increasing linearly with K.

Summarizing, the output of this procedure is: under a
maximum acceptable profile error as threshold, the estimate of
reliability (〈R̂, CI(R̂)〉 computed as in Section IV) is affected
by a deviation ∆̄(R̂h,R̂) lying within the confidence interval
CI(∆̄(R̂h,R̂)) in 99% of cases. Thus, tester has an indication
of the extent to which the operational profile error impacts
the reliability assessment accuracy. The offset can be used
to adjust the reliability estimate, or, in general, to take more
informed decisions (e.g., understanding the level of trust we
can place on reliability assessment, thus deciding if keeping on
testing or not; understanding the severity of the profile error,
if it is really acceptable or we should improve it). The offset
estimate is seamlessly used in both stopping policies of the
algorithm illustrated above.

VI. EVALUATION

A. Experiments Design

The objectives of the experiments are to evaluate the
following three benefits that RELAI is expected to bring:
i) delivering higher reliability than other techniques, given
the same testing budget (Policy 1) or achieving a predefined
reliability target with less test cases (Policy 2); ii) providing,
at the same time, an accurate estimate of delivered reliability;
iii) assessing the impact of the error committed in estimating
the profile on the reliability estimate accuracy. The evaluation
is designed on a set of subject programs considered under
several different scenarios. We consider the following factors:
the subject program, the number of test cases to run (Policy
1), or, conversely, the reliability target to achieve (Policy
2), the operational profile, and the testing technique. Based
on factors’ levels defined hereafter, a full design is planned
according to a Design of Experiment approach. Each treatment
over a program is a testing scenario with a given number of

test cases, an operational profile, and a testing technique. Since
RELAI has the unique feature of pursuing the double-objective
of improving and assessing reliability in the same testing
session, we cannot compare it, in one single experiment, with
any existing technique, whose goal is either to improve or
to assess reliability. Also, the third objective (assessing the
impact of profile error) requires an additional experiment.
Thus, we consider, in total, four separate experiments (named
Experiment 1, 2, 3 and 4): experiments 1 and 2 to evaluate
the trade-off between the improvement of delivered reliabil-
ity and the number of executed test cases (under Policy 1
and 2), where RELAI is compared against other “reliability
improvement” techniques (namely, techniques that detect and
remove defects during testing); experiment 3 is to evaluate
the reliability assessment accuracy, where RELAI is compared
against techniques conceived for “reliability assessment” (i.e.,
acting on frozen code); experiment 4 runs only RELAI with
operational profiles simulated as “erroneous” profiles to evalu-
ate the ability of predicting the impact of the inaccurate profile.
After that, we also run a sensitivity analysis on parameters of
the algorithm.

B. Factors: Testing Scenarios

Subject Programs
Techniques are applied to four programs, taken from the SIR
repository [52]: Make, SIENA,Grep, and NanoXML, whose
characteristics are in Table I. The programs have different
applicative targets and characteristics - there are two C pro-
grams and two Java program, with size ranging from 6K
to 35K LoC. Make is the well-known Unix build utility;
the version used is 3.79. SIENA (Scalable Internet Event
Notification Architecture) is an framework for constructing
event notification services; the version used is 1.15. Grep is
the command-line utility to search for lines matching a regular
expression; the version used is 2.4. NanoXML is a simple XML
parser for Java; the version used is 2.2.

The programs have the availability of a limited number of
test cases generated by the category-partition method [53]
via TSL (Test Specification Language). The provided test
suites have been, in any case, enlarged, by generating test
cases by means of the available TSL specifications. Test cases
are generated by removing constraints (e.g., “single” and
“error” constraints) and adding choices to the existing ones
(e.g., environment choices), according to the category-partition
method [53]. The final number of test cases is in Table I.

Programs are available with faults seeded inside; however,
since faults from the SIR repository are conceived for regres-
sion testing purpose, they might be placed only in specific
locations identifying the changes from one version to another.
Thus, we ignored those faults and injected faults according
to the G-SWFIT technique [54], [55], a source-code level
approach that we also adopted in our previous work [56].
G-SWFIT technique exploits a set of fault operators derived
from the well-known Orthogonal Defect Classification (ODC)
[57]. We considered the same distribution as the one actually
observed in field studies about the presence of ODC fault
types into programs [55]. An automatic injection tool based on
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G-SWFIT is used (SAFE - SoftwAre Fault Emulation) [58],
developed by our research group, which, parsing the code,
automatically identifying suitable locations where each type
of fault can be injected [54]. The number of faults injected
per program is given in Table I. With such numbers of faults
and test suite sizes, the starting reliability in each program
are approximately 0.84 for Make, 0.88 for NanoXML, 0.92
for Grep, 0.96 for SIENA (the exact value will depend on the
operational profile).

Program Lang. LoC Vers. Initial N. of Final N. of N. of
Test cases Test cases Faults

Make C 35545 3.79 1043 9238 24
Siena Java 6035 1.15 567 6846 6
Grep C 10068 2.4 809 7041 12

NanoXML Java 7646 2.2 237 7077 18

TABLE I: Overview of the considered programs.

Number of test cases and reliability levels
The number of total available test cases per program is
in Table I, and represents the space from which test cases
can be selected. To evaluate techniques performance under
different values of the available testing budget (Policy
1), we consider 15 points ranging from T = 100 to T =
800 test cases (T = 100, T = 150, T = 200, . . . , T =
800). Similarly, we consider 10 levels of reliability target
to achieve (Policy 2), ranging from 0.981 to 0.995 (R =
0.981, R = 0.981, . . . , R = 0.995). Each treatment is run,
in either Policy 1 or Policy 2, with a fixed value of such levels.

Operational Profile
For evaluation purposes, we do not focus on any specific
operational profile; rather, profiles are generated randomly.
Specifically, in Experiment 1, 2, and 3 (namely, reliability
improvement and reliability assessment) we use three
randomly generated operational profiles denoted as P1, P2,
and P3, supposed to be correct, true, profiles (i.e., no error in
the profile estimate by the tester). In particular, to generate
a profile, we assign a value between 0 and 1 to each input
test case, representing the probability with which it would
actually occur in operation. Each value is obtained by a
uniform random number generation in [0; 1], then normalized
over the sum of all values to add up to 1. Experiment 4
concerns with the impact of incorrect profiles: in this case,
we generate one profile supposed to be the correct one,
denoted as PC , Then, we generate three random profiles that
meet the required condition on ε, with a maximum tolerable
error set to ε0 = 0.01, εµ = 0, and Cε0 = 99%. Specifically,
we repeatedly generate profiles and compute the error ε with
respect to PC (by taking the sum over the single εt = p̂t− pt
values), and discard the profile until the required condition
on ε is not met. The three profiles generated in this way are
named P̂1, P̂2, P̂3, to be distinguished from the previous ones.

Testing Techniques
As mentioned, we compared RELAI against different
techniques in different experiments, depending on the
objective. Techniques are all black-box techniques suitable for

system and acceptance testing purposes. RELAI performance
regarding reliability improvement (Experiment 1 and 2) is
compared against:
Fixed Size Candidate Set - Adaptive Random Testing (FSCS-
ART) [31]: this is one of the best variants of adaptive random
testing (introduced in Section II), that uses a distance-based
selection criterion to evaluate a fixed set of randomly
generated test case candidates each time. This has been
empirically showed to be one of the most effective ART
criteria [59].
Evolutionary Adaptive Random Testing (EAR) [33]: this is
an evolution of ART that uses a genetic algorithm to select
the best test case in terms of maximum input-based distance
from all the previous test cases.
Operational testing for reliability improvement (OPv1):
in operational testing, inputs are selected according to the
estimated operational profile; this technique can be used
for either improving delivered reliability [23], [11] (by
detecting and removing faults during testing) or for reliability
assessment [60], [1], [2] (by detecting but not removing
defects). In Experiment 1 and 2, we use the reliability
improvement version, and call it OP variant 1 (OPv1).

RELAI performance regarding reliability assessment accu-
racy is compared with:
Adaptive Testing-Gradient Descent (AT-GD) [3]: this is a
state-of-the-art technique, evolving from conventional adaptive
testing [60], [1], [2] which selects the next test case in a way
to maximize the reduction of the reliability estimator variance,
based on the negative of the gradient of reliability estimator
variance at a given state.
Operational testing for reliability assessment (OPv2): as men-
tioned, each input is selected according to the estimated oper-
ational profile; we use the variant of operational testing acting
on frozen code, similarly to previous works on reliability
assessment (e.g., [2], [3], [4]).
Uniform random testing (Random): it is the conventional
technique in which test cases are selected randomly according
to a uniform distribution from the input space [61]. Again, we
use it to detect but not remove defects for reliability assessment
purposes, as in [2]. For this technique, a uniform operational
profile distribution is used (i.e., all inputs the same probability)
instead of P1, P2, or P3.
As for RELAI, we set γ = 0.5 and ξ = 0.1. A sensitivity
analysis is then performed (Section VIII) on such parameters.

RELAI and AT-GD make use of partitions7. We partition
the domain into 4, 5, and 6 classes when we use, respectively,
Profile P1, P2, and P3. Without loss of generality (see as-
sumption 5 in Section IV-A), we use, as partitioning strategy,
an approach based on the expected occurrence probability,
thus dividing the test suite considering the potential impact
of test cases on delivered reliability. Specifically, the range of
expected occurrence probabilities [pmin; pmax] is divided into

7We used the generalized versions of OP and Random testing, since we
use profiles specifying a probability value for each input – taking the sum of
probabilities over partitions, we fall in the more specific case of specifying
a profile specifying a global probability value for each partition (cf. with
footnote 3)
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intervals of equal size (4, 5, or 6); the inputs are assigned to
classes based on their pt value (therefore, classes contain a
different number of inputs). This implies that each time the
profile is generated, the partitions will change too, allowing to
evaluate the approach under various partitioning.

C. Procedure

The j-th testing scenario, Sj , includes these steps:
1) Select the subject program.
2) Select the total number of test cases T ∗ as budget for

Experiment 1, 3, and 4; select the reliability level R∗ to
achieve for Experiment 2;

3) Select the operational profile (uniform profile for ran-
dom testing).

4) Select one of the techniques under comparison (except
for Experiment 4, which tests only RELAI).

5) Submit the test case to the program, selected according
to the chosen strategy.

6) Observe if it generates a failure or not.
7) If a failure has occurred, the action depends on the

technique: for RELAI, EAR, FCFS, OPv1, remove the
fault8; for AT, OPv2, and Random testing just record its
occurrence.

8) Repeat from step 5 until T ∗ test cases are executed (Ex-
periment 1, 3, and 4) or until R∗ is achieved (Experiment
2).

9) At the end of the session, compute the reliability metrics,
presented hereafter, useful for evaluation.

D. Evaluation criteria

Given the above scenario, we have: 15 points for number
of test cases × 4 programs × 3 profiles × 4 techniques ×
3 Experiments = 2160 treatments, plus further 180 treatments
in Experiment 4 regarding just RELAI, these are 2340 treat-
ments. Since testing selection criteria are probabilistic, running
the same testing scenario twice does not necessarily yield
the same result. To draw statistically valid conclusions, we
replicate each treatment 100 times9. The following metrics
are computed depending on the experiment:

1) Delivered reliability improvement. As for Experiment 1,
at the end of each run, we compute the actual delivered
reliability after testing as: R = 1−

∑
i∈Z pi where Z is

the set of failure points of the residual faults, and pi is
their probability of occurrence in operation, according
to the selected profile. Failure points correspondence
with faults are known by preliminarily running all the
test suite against faulty program versions (i.e., by faults

8Note that for one failure, it might be happen that there are more faults
that can be removed (failure regions are not actually disjoint); in our case we
choose to remove one of them randomly (by a uniform distribution between
1 and the number of faults corresponding to the activated failure regions). As
shown later, we repeat the execution of a testing session several times to have
statistical significance; thus the bias of removing one fault instead of another,
if there were such a case, is minimized by random selection as the number
of repetitions increases.

9The 100 repetitions for each treatment were sufficient to satisfy the
criterion of the error margin of 5% (cf. with Section V).

matrices). Given the jth treatment, we evaluate the mean
delivered reliability and its sample variance:

Mean(Rj) = 1
100

∑100

r=1
Rr,j

V ar(Rj) = 1
100−1

∑100

r=1
(Rr,j −Mean(Rj))

2

(23)

where Rr,j is the true reliability for the r-th run of the
j-th treatment. To compare techniques with respect to
reliability improvement, the absolute difference between
mean reliability values is insufficient to indicate the
actual gain: if a certain absolute improvement is obtained
over a low reliability value, the gain is marginal; whereas
if the same difference is observed on a very high
reliability, it represents a high gain. To account for
this, we compute the metric G representing the gain of
technique a over b (supposing that reliability delivered
by a is the greatest one) with respect to the maximum
potential gain that could be attained:

G(a, b)% =
Rel(a)−Rel(b)

1−Rel(b)
· 100 (24)

where denominator is the maximum gain achievable by
b. Given the same absolute difference, the higher the b’s
reliability, the higher the gain. G is evaluated on both
reliability means (Gµ) and medians (GMdn).
In order to test Policy 2 (Experiment 2), we consider
the mean and variance of the number of test cases to be
executed in order to achieve a given reliability level in
a treatment j (for a given program, profile, and testing
technique):

Mean(Tj) = 1
100

∑100

r=1
Tr,j

V ar(Tj) = 1
100−1

∑100

r=1
(Tr,j −Mean(Tj))

2

(25)

where Tr,j is the number of required test cases in the
r-th run of the j-th treatment. endequation

2) Accuracy of reliability estimate. As for Experiment 3,
at the end of each run r, we compute the reliability
estimate given by the technique under test, R̂r,j . Then,
the mean value over runs, its sample variance, and
the mean squared error (MSE) are computed, the latter
giving the accuracy of the estimate with respect to the
true reliability10:

Mean(R̂j) = 1
100

∑100

r=1
R̂r,j

V ar(R̂j) = 1
100−1

∑100

r=1
(R̂r,j −Mean(R̂j))

2

MSE(R̂j) = 1
100

∑100

r=1
(R̂r,j −Rr,j)2

(26)

3) Accuracy of profile estimation error impact by RELAI.
Experiment 4 is run considering a profile assumed to be
correct (PC) and three incorrect profiles, P̂1, P̂2, P̂3. For

10Note that, since for reliability assessment techniques (all but RELAI)
the code is frozen, the failure points (hence the true reliability) in this case
are known from the beginning, they do not change during testing; the true
reliability is the same across runs of each treatment:R100,j = Rj ). This is not
true for RELAI: the latter, as discussed, assesses reliability while improving
it, foreseeing the removal of detected faults during testing – hence the final
reliability will be, in general, different in each run. In both cases, the metric of
interest is the difference of the estimated reliability with the true one (whatever
the true reliability value is), namely the MSE.
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each run of RELAI, we compute again the true delivered
reliability and the offset, denoted as ∆(R̂,R)r,j

= R̂r,j−
Rr,j . It represents the reliability estimation accuracy in
presence of profile error.
We need to evaluate the RELAI ability to predict the
impact of the profile error on the accuracy. In fact,
for profiles P̂1, P̂2, P̂3, the offset will depend on the
estimator’s error plus the profile error impact. RELAI
aims to predict this impact by the ∆̄(R̂h,R̂) value as
computed in Section V, representing the potential de-
viation of the assessment due to profile error; we wish
to evaluate how much accurate this prediction is. To
this aim, we first consider the difference between offsets
obtained under the correct profile (∆′ = ∆(R̂,R)[P=PC ]

)
and offsets (for the same program and test size) under
inaccurate profiles (∆′′ = ∆(R̂,R)[P=P̂1,2,3]

). This differ-

ence ∆′ − ∆′′ assesses the impact due to P̂i (i.e., the
share of the offset caused by the profile error); this is the
value the procedure aims to predict. Then, we compute
the predictions (∆̄(R̂h,R̂)) as foreseen by the presented
procedure, and count how many times their confidence
interval contains the actual difference ∆′ − ∆′′. The
metrics computed for a given treatment are:

Mean(∆̄(R̂h,R̂)j
) = 1

100

∑100

r=1
∆̄(R̂h,R̂)r,j

hit∆r,j =

{
1 if (∆′ −∆′′) ∈ CI(Mean(∆̄(R̂h,R̂)j

))

0 otherwise

hit∆j% =
hit∆r,j

100
· 100

(27)
where Mean(∆̄(R̂h,R̂)j

) is the mean of predictions, and
hit∆j% is the percentage of times in which the actual
difference is within the predicted difference confidence
interval.

VII. RESULT

A. Comparison in terms of delivered reliability vs test cases
trade-off

This Section targets the first evaluation criterion, comparing
the three considered techniques in terms of delivered reliabil-
ity, given a fixed number of tests (policy 1), and of test cases
required to get a fixed reliability target (policy 2).

1) Experiment 1. Delivered reliability with a fixed test bud-
get: Table II reports information about profiles and partitions
for this experiment, showing, for each profile and program,
the range [pmin; pmax], the number of test cases per partition,
and the sum of occurrence probability values over a partition
Di (pi =

∑
t∈Di

pt), denoting the probability that an input
will be selected from that partition.

Results are in Figure 2a-2l, depicting the sample mean
of reliability achieved by each technique in each of the 12
program/profile pair scenarios, with respect to an increas-
ing number of executed test cases. Performance of RELAI
is significantly higher than the other techniques in all the
experimented scenarios. The greatest differences are with 100
test cases, wherein RELAI is able to deliver a high reliability
soon, while the other techniques need, in almost any case, the

double of test cases to achieve the same reliability level. The
absolute difference between reliability delivered by RELAI and
the other techniques ranges from a minimum (with 800 test
cases) of 3.60E-4 (profile P2, Grep, with respect to EAR) to a
maximum of 0.0367 (profile P3, Make, with respect to OPv1)
with 100 test cases. In terms of Gain index, the difference
ranges from Gµ = 21.76% (profile P1, Grep, 100 test cases,
with respect to EAR), to Gµ = 90.48% (profile P3, Grep, 800
test cases, with respect to OPv1). It is interesting to note that,
in the average, the gain Gµ obtained in scenarios with 100
test case are 44.22%, 49.28%, and 50.46%, while the gain
obtained in scenarios with 800 test cases is 70.17%, 80.63%,
79.52%: this means that, although the absolute differences
are higher in scenarios with 100 test cases, the gain with
respect to the maximum achievable improvement is more
relevant on the highest reliability values (800 test cases).
The ability of improving already high reliability is important
especially for highly critical systems. Mean gain values for
each program/profile pair are reported in Figure 3. The bar
graph displays the mean gain over the number of run test
cases in each scenario, with error bars denoting the minimum
and the maximum gain achieved in the treatments of a pair
program/profile. The mean gains Gµ of RELAI over all scenar-

Fig. 3: Mean gain index per scenario (and min-max range).
The maximum gain of RELAI is over OPv1 in the P3-Grep
case with 800 test cases: 90.48%

ios are: 66.98%, 74.96%, and 74.10% with respect to EAR,
OPv1, and FSCS, respectively. Considering medians instead
of means, the gains GMdn are: 69.58%, 77.18%, 76.09% in
the three cases. Looking at the other techniques, EAR behaves
better than OPv1 and FSCS, while the latter two are roughly
equivalent in terms of delivered reliability.

Figure 4 reports synthetically the sample variances of all
the treatments over the 100 repetitions, with mean sample
variances and the minimum-maximum range in each pro-
gram/profile scenario. Except few cases (SIENA scenarios)
where variances are very similar, the other scenarios highlight
that results provided by RELAI are more stable than the others.
In particular, sample variances of RELAI are confirmed to be
considerably lower than the other techniques, with an average,
over the 12 scenarios, of 9.93E-6, against 3.24E-5, 3.07E-5,
and 3.03E-5 of EAR, OPv1 and FSCS, respectively.
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Profile 1 Profile 2 Profile 3

Make
[pmin; pmax] [1.56E-8 ; 2.19E-4] [4.83E-8 ; 2.17E-4] [1.80E-8 ; 2.18E-4]
Test cases per partition 2406; 2289; 2292; 2251 1865; 1866; 1839; 1832; 1836 1552; 1536; 1622; 1544; 1481; 1503∑

t
pt per partition 6.66E-2; 1.88E-1; 3.13E-1; 4.31E-1 4.04E-2; 1.21E-1; 2.00E-1; 2.78E-1; 3.59E-1 2.81E-2; 8.37E-2; 1.47E-1; 1.97E-1; 2.42E-1; 3.01E-1

SIENA
[pmin; pmax] [1.49E-8 ; 2.94E-4] [1.27E-8 ; 2.90E-4] [1.19E-8 ; 2.91E-4]
Test cases per partition 1741; 1728; 1726; 1651 1336; 1412; 1344; 1344; 1410 1163; 1131; 1169; 1053; 1136; 1194∑

t
pt per partition 6.38E-2; 1.90E-1; 3.17E-1; 4.27E-1 3.875E-2; 1.23E-1; 1.95E-1; 2.72E-1; 3.69E-1 2.78E-2; 8.14E-2; 1.42E-1; 1.79E-1; 2.49E-1; 3.18E-1

Grep
[pmin; pmax] [2.69E-8; 2.85E-4] [3.05E-10 ; 2.82E-4] [4.41E-8 ; 2.81E-4]
Test cases per partition 1744; 1806; 1775; 1716 1367; 1456; 1378; 1437; 1403 1154; 1160; 1193; 1171; 1138; 1225∑

t
pt per partition 6.13E-2; 1.93E-1; 3.16E-1; 4.28E-1 3.83E-2; 1.23E-1; 1.95E-1; 2.85E-1; 3.57E-1 2.70E-2; 8.28E-2; 1.39E-1; 1.93E-1 ; 2.40E-1; 3.16E-1

Nano
[pmin; pmax] [3.35E-8 ; 2.81E-4] [3.38E-8 ; 2.86E-4] [1.12E-8 ; 2.84E-4]
Test cases per partition 1753; 1753 ; 1790; 1781 1432; 1455; 1449; 1370; 1371 1205; 1195; 1157; 1189; 1147; 1184∑

t
pt per partition 6.30E-2; 1.84E-1; 3.14E-1; 4.37E-1 4.12E-2; 1.25E-1; 2.06E-1; 2.74E-1; 3.52E-1 2.84E-2; 8.52E-2; 1.36E-1; 1.96E-1; 2.44E-1; 3.08E-1

TABLE II: Operational profiles for Experiment 1

Fig. 4: Mean sample variance per scenario of delivered reli-
ability (and min-max range). Minimum variance is RELAI in
SIENA-P3 under 800 test cases: 5.50 E-08

For statistical significance, one-way analysis of variance
(ANOVA) test is conducted (significance level 0.01). We test
the null hypothesis that delivered reliability by two techniques
do not differ. If the hypothesis is rejected, a post hoc analysis
follows to detect the techniques that differ significantly. We
first test the properties of data, namely the normality of
residuals and homoscedasticity of variances, in order to deter-
mine the type of ANOVA to apply. The Kolmogorov-Smirnov-
Lillefors (KSL) test is run to verify normality of residuals;
the null hypothesis of data coming from a normal distribution
is rejected at p-value < 0.001. Homoscedasticity is verified
by the Levene’s test, being it less sensitive to non normality.
The null hypothesis of variances being homogeneous is also
rejected at p-value < 0.001. Thus, we adopt the Friedman’s
test, a non-parametric test for repeated-measures data robust
to non-normality and heteroscedasticity, to detect if at least
one difference among reliabilities delivered by techniques. The
hypothesis of no difference among techniques is rejected at p-
value < 0.001.

To figure out the differences among compared techniques,
we run a post hoc analysis, by using the Nemenyi test [62], a
powerful test for pairwise comparisons after a non-parametric
ANOVA [63]. The test uses the critical difference (CD): two
levels are significantly different if the corresponding average
ranks differ by at least CD = qα

√
k(k + 1)/6N , where qα

values are based on the Studentized range statistic divided by

Pairwise Comparison: p-values
RELAI EAR OPv1 FSCS

RELAI - 9.14 E-20 2.84E-33 1.41E-31
EAR - - 0.0436 0.0939
OPv1 - - - 0.9915

TABLE III: Comparison for delivered reliability. Text in boldface
indicates that the difference is significant at least at 0.01. The ranking
is: RELAI, EAR, FSCS, OPv1

√
2, and adjusted according to the number of comparisons11,

k is the number of levels compared, N is the sample size.
Table III lists the results:

Results tell that the reported differences between RELAI and
the others is by far significant; the difference between EAR (the
second best technique) and OPv1 is significant only at 95% of
confidence, while EAR-FSCS is significant only at 90%; OPv1
and FSCS are statistically equivalent to each other.

As final remark, it is worth noting that, while EAR, FSCS,
and OPv1 are not able to provide an estimate of the achieved
reliability, RELAI is also able to estimate the reliability
delivered at the end of testing. In order to evaluate the
characteristic, we have run a further experiment (Experiment
3) to compare RELAI with techniques conceived exclusively
for reliability assessment. Results of this experiment are in
Section VII-B.

2) Experiment 2. Number of required test cases under
fixed reliability levels: This experiment is specular to the
previous one, and tests the RELAI performance in reducing
the number of required test cases to attain the fixed reliability
level. In particular, 10 reliability targets and running, for each
treatment, the technique under evaluation until the target is
not achieved. The output performance metric is the average
number of necessary test cases to attain the target. Operational
profiles features for this experiment are in Table IV

Figure 5a-5l show the results in each of the 12 pro-
gram/profile pair scenarios. Performance of Experiment 1 are
confirmed; form these graphs, it is more evident the gain of
RELAI on high reliability values, in which the gap with the
other techniques becomes larger and larger – a behavior in
line with the Gain index. Figure 6 reports again the mean
sample variances over the scenarios, and the corresponding
min-max range. Sample variances of RELAI are confirmed to

11As the family-wise error rate is already controlled by considering qα, no
other multiple comparison protection procedure is needed.
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(a) Make Profile 1 (b) Make Profile 2 (c) Make Profile 3

(d) SIENA Profile 1 (e) SIENA Profile 2 (f) SIENA Profile 3

(g) Grep Profile 1 (h) Grep Profile 2 (i) Grep Profile 3

(j) NanoXML Profile 1 (k) NanoXML Profile 2 (l) NanoXML Profile 3

Fig. 2: Sample mean of delivered reliability vs number of test cases

be lower than the other techniques, with an average, over the
12 scenarios, of 1.05E-5, against 3.27E-5, 3.08E-5, 3.12E-5
of EAR, OPv1 and FSCS, respectively.

The same statistical tests as the former are adopted in
this case (data are non-normal and heteroscedastic at p-
value < 0.001 for both KSL and Leven’s test); the Friedman
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Profile 1 Profile 2 Profile 3

Make
[pmin; pmax] [1.47E-8 ; 2.13E-4] [1.61E-8 ; 2.18E-4] [2.34E-9 ; 2.18E-4]
Test cases per partition 2223; 2269; 2347; 2399; 1903; 1845; 1834; 1844; 1812 1524; 1579; 1573; 1543; 1500; 1519∑

t
pt per partition 5.9E-2; 1.83E-1; 3.13E-1; 4.46E-1 4.07E-2; 1.22E-1; 2E-1; 2.82E-1; 3.56E-1 2.78E-2; 8.58E-2; 1.43E-1; 1.96E-1; 2.45E-1; 3.03E-1

SIENA
[pmin; pmax] [1.38E-9 ; 2.93E-4] [1.34E-7 ; 2.91E-4] [1.22E-8 ; 2.91E-4]
Test cases per partition 1728; 1671; 1741; 1706 1362; 1362; 1393; 1320; 1409 1156; 1094; 1147; 1152; 1174; 1123∑

t
pt per partition 6.18E-2; 1.83E-1; 3.18E-1; 4.36E-1 4.01E-2; 1.2E-1; 2.03E-1; 2.69E-1; 3.69E-1 2.85E-2; 8.06E-2; 1.39E-1; 1.96E-1; 2.56E-1; 3E-1

Grep
[pmin; pmax] [3.92E-8 ; 2.81E-4] [6.06E-8 ; 2.86E-4] [1.78E-8 ; 2.83E-4]
Test cases per partition 1699; 1763; 1773; 1806 1445; 1450; 1348; 1385; 1413 1173; 1168; 1177; 1135; 1186; 1202∑

t
pt per partition 5.87E-2; 1.88E-1; 3.1E-1; 4.43E-1 4.22E-2; 1.24E-1; 1.93E-1; 2.77E-1; 3.63E-1 2.74E-2; 8.25E-2; 1.38E-1; 1.87E-1; 2.52E-1; 3.13E-1

Nano
[pmin; pmax] [4.7E-8 ; 2.84E-4] [2.46E-8 ; 2.81E-4] [3.14E-8 ; 2.79E-4]
Test cases per partition 1789; 1783; 1746; 1759 1404; 1426; 1371; 1431; 1445 1090; 1163; 1217; 1227; 1213; 1167∑

t
pt per partition 6.27E-2; 1.91E-1; 3.09E-1; 4.37E-1 4E-2; 1.2E-1; 1.92E-1; 2.82E-1; 3.66E-1 2.52E-2; 8.13E-2; 1.41E-1; 1.99E-1; 2.54E-1; 2.99E-1

TABLE IV: Operational profiles for Experiment 2

Fig. 6: Mean sample variance per scenario of required number
of test cases (and min-max range). Minimum variance is
RELAI in SIENA-P3 under 800 test cases: 2.06E-08

Pairwise Comparison: p-values
RELAI EAR OPv1 FSCS

RELAI - 2.96E-22 2.70E-106 1.56E-61
EAR - - 4.42E-31 8.40E-10
OPv1 - - - 3.65-06

TABLE V: Comparison for number of test cases. Text in boldface
indicates that the factor is significant at least at 0.01. The ranking is:
RELAI, EAR, FSCS, OPv1

test provides again a p-value < 0.001, namely the tech-
nique has a significant impact on the number of test cases
needed to achieve a given reliability level. Table V reports the
pairwise difference p-values. In this case, all the differences
turned to be significant. The ranking of the best techniques
is again: RELAI, EAR, FSCS, OPv1. Since these treatments
are characterized, in the average, by lower reliability values
than Experiment 1 and few test cases, it turns out that the
improvement of RELAI over the others, of EAR over the
others, and of FSCS over OPv1 is, in such cases, more
significant.

B. Experiment 3. Reliability estimate accuracy

Experiment 3 is to evaluate the ability of RELAI to accu-
rately assess the achieved reliability. We consider the case of
no error in the profile (i.e., assuming that the three generated
profiles are correct). Operational profiles are in Table VI.

Figures 7a-7l report, for each treatment, the estimates ac-
curacy in terms of MSE.

In all the cases, RELAI provides a relevantly lower MSE
than the other techniques. The second best technique is the AT-
GD method, whereas OP and Random testing behave similarly.
Each figure reports the best MSE achieved by RELAI, with
800 test cases: values range from 1.25E-08 to 8.05E-6. The
best values, for all the techniques, are achieved with those
programs where the (starting) reliability to estimate was higher
(i.e,. SIENA, with a reliability of approximately 0.96 in the
three profiles). Taking the average MSE in the best scenarios,
namely the treatments with 800 test cases, we have: 1.91E-06,
8.19.E-5, 1.09E-04, 1.17E-4, for, respectively, RELAI, AT-GD,
OPv2, and Random. The overall average MSEs are: 8.20E-5,
2.42E-4, 2.92E-4, 3.007E-4.

It is important to recall that RELAI is a technique that
contemporary improves and assess the improved reliability:
therefore, while for AT-GD, OPv2, and Random the code is
frozen, and the reliability does not change during testing,
RELAI is able to improve the delivered reliability while still
providing an accurate estimate. Figure 8 reports the delivered
reliability by RELAI in this experiment: considering the reli-
abilities before testing (of approximately 0.84, 0.88, 0.92 and
0.96 for Make, NanoXML, Grep and SIENA, respectively –
the exact value depending on the profile), there is a significant
gain in all the cases in achieved reliability after testing, besides
the accurate MSE given as estimate. Of course, this does not
apply for the other compared techniques, for which the final
reliability is the same as the starting one.

Fig. 8: Reliability achieved by RELAI in Experiment 3

Figure 9 reports synthetically the sample variances of all
the treatments, with again the RELAI case with a variance
lower than the others of an order of magnitude. The average of
variances over all the scenarios are: 1.83E-5, 1.82E-4, 2.73E-4,
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(a) Make Profile 1 (b) Make Profile 2 (c) Make Profile 3

(d) SIENA Profile 1 (e) SIENA Profile 2 (f) SIENA Profile 3

(g) Grep Profile 1 (h) Grep Profile 2 (i) Grep Profile 3

(j) NanoXML Profile 1 (k) NanoXML Profile 2 (l) NanoXML Profile 3

Fig. 5: Sample mean of required number of test cases vs reliability targets

2.77E-4, for, respectively, RELAI, AT-GD, OPv2, and Random.

The Friedman test rejects the null hypothesis of equal MSEs
with a p-value = 7.66E-97. Table VII reports the pairwise
difference p-values. There is a highly significant difference in
all the pairwise comparisons, except the OPv2-Random case,

which turned out to be statistically equivalent.

C. Experiment 4: Impact of the profile error on estimation
accuracy

Experiment 4 tests the RELAI ability to predict the profile
error impact. Since we opted for a zero mean error on the
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Profile 1 Profile 2 Profile 3

Make
[pmin; pmax] [2.73E-8 ; 2.17E-4] [ 3.06E-8 ; 2.19E-4] [ 4.83E-8 ; 2.17E-4]
Test cases per partition 2323; 2250; 2367; 2298 1943; 1809; 1823; 1860; 1803 1572; 1567; 1509; 1536; 1524; 1530∑

t
pt per partition 6.2E-2; 1.82E-1; 3.2E-1; 4.35E-1 4.22E-2; 1.19E-1; 1.99E-1; 2.85E-1; 3.55E-1 2.87E-2; 8.59E-2; 1.37E-1; 1.95E-1; 2.48E-1; 3.05E-1

SIENA
[pmin; pmax] [1.92E-9 ; 2.9E-4] [9.08E-8 ; 2.93E-4] [9.08E-8 ; 2.93E-4]
Test cases per partition 1681; 1702; 1753; 1710 1364; 1381; 1381; 1319; 1401 1120; 1174; 1145; 1139; 1098; 1170∑

t
pt per partition 6.12E-2; 1.86E-1; 3.18E-1; 4.35E-1 3.99E-2; 1.21E-1; 2.01E-1; 2.7E-1; 3.69E-1 2.67E-2; 8.54E-2; 1.39E-1; 1.94E-1; 2.41E-1; 3.14E-1

Grep
[pmin; pmax] [1.82E-8 ; 2.84E-4] [2.96E-8 ; 2.84E-4] [1.25E-8 ; 2.8E-4]
Test cases per partition 1742; 1737; 1800; 1762 1413; 1375; 1381; 1502; 1370 1130; 1116; 1223; 1163; 1212; 1197∑

t
pt per partition 6.03E-2; 1.84E-1; 3.19E-1; 4.37E-1 4E-2; 1.16E-1; 1.96E-1; 2.98E-1; 3.49E-1 2.64E-2; 7.85E-2; 1.43E-1; 1.9E-1; 2.55E-1

Nano
[pmin; pmax] [5.44E-8 ; 2.86E-4] [2.77E-10 ; 2.84E-4] [2.04E-7 ; 2.85E-4]
Test cases per partition 1813; 1777; 1747; 1740 1422; 1430; 1457; 1364; 1404 1149; 1255; 1197; 1168; 1159; 1149∑

t
pt per partition 6.42E-2; 1.89E-1; 3.12E-1; 4.35E-1 3.97E-2; 1.22E-1; 2.07E-1; 2.72E-1; 3.59E-1 2.77E-2; 8.93E-2; 1.42E-1; 1.94E-1; 2.47E-1; 3E-1

TABLE VI: Operational profiles for Experiment 3

Profile 1 Profile 2 Profile 3

Make
[pmin; pmax] [5.03E-8 ; 2.18E-4] [3.76E-8 ; 2.15E-4] [3.78E-8 ; 2.18E-4]
Test cases per partition 2377; 2242; 2354; 2265 1797; 1840; 1861; 1880; 1860 1521; 1595; 1514; 1584; 1508; 1516∑

t
pt per partition 6.53E-2; 1.83E-1; 3.2E-1; 4.32E-1 3.77E-2; 1.19E-1; 2E-1; 2.83E-1; 3.6E-1 2.73E-2; 8.7E-2; 1.38E-1; 2E-1; 2.46E-1; 3.02E-1

SIENA
[pmin; pmax] [2.79E-8 ; 2.93E-4] [1.59E-8 ; 2.95E-4] [7.71E-8 ; 2.91E-4]
Test cases per partition 1706; 1721; 1751; 1668 1422; 1396; 1367; 1304; 1357 1160; 1086; 1141; 1125; 1144; 1190∑

t
pt per partition 6.29E-2; 1.89E-1; 3.2E-1; 4.28E-1 4.26E-2; 1.24E-1; 2.03E-1; 2.69E-1; 3.61E-1 2.77E-2; 7.81E-2; 1.38E-1; 1.91E-1; 2.49E-1; 3.16E-1

Grep
[pmin; pmax] [4.21E-8 ; 2.84E-4] [1.58E-8 ; 2.85E-4] [1.01E-8 ; 2.87E-4]
Test cases per partition 1776; 1738; 1749; 1778 1442; 1391; 1398; 1382; 1428 1222; 1183; 1169; 1155; 1159; 1153∑

t
pt per partition 6.22E-2; 1.86E-1; 3.1E-1; 4.41E-1 4.16E-2; 1.19E-1; 1.99E-1; 2.75E-1; 3.66E-1 2.9E-2; 8.53E-2; 1.4E-1; 1.93E-1; 2.5E-1; 3.03E-1

Nano
[pmin; pmax] [5.78E-8 ; 2.84E-4] [8.55E-9 ; 2.8E-4] [5.75E-8 ; 2.8E-4]
Test cases per partition 1765; 1810; 1743; 1759 1425; 1418; 1323; 1414; 1497 1147; 1171; 1175; 1213; 1173; 1198∑

t
pt per partition 6.18E-2; 1.92E-1; 3.1E-1; 4.37E-1 4E-2; 1.2E-1; 1.85E-1; 2.78E-1; 3.77E-1 2.72E-2; 8.2E-2; 1.38E-1; 1.99E-1; 2.46E-1; 3.08E-1

TABLE VIII: Operational profiles for Experiment 4

Fig. 9: Mean sample variance per scenario of reliability
estimate (and min-max range). Minimum variance is RELAI
in SIENA-P1: 7.21 E-09

Pairwise Comparison: p-values
RELAI AT-GD OPv2 Random

RELAI - 8.17E-15 2.91E-65 3.58E-73
AT-GD - - 7.39E-18 4.49E-22
OPv2 - - - 0.7912

TABLE VII: Comparison for MSE. Text in boldface indicates that
the factor is significant at least at 0.01. The ranking is: RELAI, AT-
GD, OPv2, Random

profile, the accuracy in presence of error in the operational
profile is only slightly worse than the case of correct profile.
Thus, the impact of the profile error on the assessment accu-
racy deviation is small. Profiles features for this experiment are
in Table VIII. Nonetheless, the procedure in Section V is able
to detect such a deviation and closely predict its value. Figure
10 shows, for each program/profile scenario, the sample mean

(over the 15 treatments with different number of test cases)
of ∆̄(R̂h,R̂) values, which is the prediction of the share of
reliability estimate offset caused by the profile error (namely,
the predicted offset), and of the value ∆′ −∆′′, which is the
actual offset caused by the profile error (offset under PC minus
offset under P̂1,2,3). In all the scenarios, the two values are
very close, with differences in the order of 1.00 E-4.

Fig. 10: Actual vs Predicted Profile Impact

Results are confirmed by the hit∆% metric: values for each
program/profile pair are reported in Figure 11. In the average,
the performance of the offset deviation’s prediction procedure
tell that in 98.22% of the cases, the actual offset share due
to the profile error is within the confidence interval of the
predicted one, CI(Mean(∆̄(R̂h,R̂))).

This result can be used to adjust the reliability estimate,
purging it from the impact of the profile estimation error:
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(a) Make Profile 1. Best MSE: 1.42 E-06 (b) Make Profile 2. Best MSE: 1.67 E-06 (c) Make Profile 3. Best MSE: 2.12 E-06

(d) SIENA Profile 1. Best MSE: 1.25 E-08 (e) SIENA Profile 2. Best MSE: 8.65 E-08 (f) SIENA Profile 3. Best MSE: 1.86 E-08

(g) Grep Profile 1. Best MSE: 9.37 E-07 (h) Grep Profile 2. Best MSE: 1.62 E-06 (i) Grep Profile 3. Best MSE: 2.49 E-06

(j) NanoXML Prof. 1. Best MSE: 8.05 E-06 (k) NanoXML Prof. 2. Best MSE: 1.87 E-06 (l) NanoXML Prof. 3. Best MSE: 2.54 E-06

Fig. 7: MSE of reliability estimate

R̂′= R̂ - ∆̄(R̂h,R̂), under the hypothesis that the true profile
respects the initial condition imposed on the error, 〈ε0, Cε0%〉.
Such an outcome reflects the ability of taking the error into

account preventively, as the tester can implement more or less
conservative stopping policies based on the predicted impact
of the profile error on the reliability estimate. Moreover, the
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Fig. 11: Mean hit∆% value per scenario

tester can adjust (hence get more accurate) reliability estimate,
reducing considerably the uncertainty about the impact of this
error. Increasing the number of repetitions for predicting the
offset error can provide even more faithful R̂′ values.

VIII. SENSITIVITY ANALYSIS

We hereafter report the sensitivity analysis carried out with
respect to two relevant parameters of RELAI, both set at
domain-level sampling, where the number of test cases to
devote to each subdomain is decided. The former parameter is
the desired error ξ between the unknown true distribution of
the optimal number of test cases to allocate to each subdomain
and the estimate based on samples. This parameter regulates
how many test cases should be run at each iteration: the
smaller the desired error, the higher the number of test cases
required in a given iteration, the fewer the iterations for a
fixed budget of available tests. This is important because
few iterations with more test cases is likely to improve the
assessment accuracy at the expense of a worse adaption ability
with respect to the best distribution of test cases among
partitions (hence, a potentially worse reliability improvement).
The second analyzed factor is γ, namely the learning factor
used in Equation 15, which tells how much the next allocation
should depend on the previous one.

To conduct this analysis, we consider four scenarios, one per
program, with the maximum number of test cases (T = 800)
and a new random profile P under 5 partitions generated in
the same way as for the previous experiments. Figure 12a-
12d report the variation of the delivered reliability as ξ and
γ vary, whereas Figure 13a-13d show the MSE variation.
Regarding delivered reliability, it is clear, from all the cases,
that a learning factor at the extremes (γ ≤ 0.1 and γ ≥ 0.7)
penalizes the final results. On the other hand, results are quire
invariably with respect to ξ, with slightly worse performance
when ξ reaches 0.5. Regarding MSE, ξ has a significant impact.
Whenever ξ is bigger than 0.1 or 0.2, the MSE increases, and
exhibits a great sensitivity with respect to γ values. Under
0.1, the MSE is very small and approximately constant with
respect to γ variation. Given these values, a good configuration
is to keep ξ ≤ 0.1 and 0.1 ≤ γ ≤ 0.7 able to assure high
delivered reliability and a small MSE. Other configurations
can make sense if one is interested in only one objective, e.g.,
either improving or assessing reliability.

(a) Make

(b) SIENA

(c) Grep

(d) NanoXML

Fig. 12: Sensitivity analysis of delivered reliability
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(a) Make

(b) SIENA

(c) Grep

(d) NanoXML

Fig. 13: Sensitivity analysis of MSE

IX. THREATS TO THE VALIDITY AND OPEN ISSUES

Practitioners adopting RELAI based on the presented con-
clusions should be aware of potential threats to results validity.
Choices made for setting up and executing the experiment limit
the generality of obtained results:
Test suite: we have generated test cases from the TSL speci-
fications available with the programs. While we have applied
the same test generation method (i.e., category-partition) for
all the program under study, there is a subjective application
of the method that may differ from program to program. The
application of the method by the same authors to all the four
programs limits this internal validity threat.
Seeded faults: program in the SIR repository were available
with a set of seeded faults. However, their representativeness
is undermined by the intention of seeding faults in the change
among versions. We therefore adopted the G-SWFIT tech-
nique to inject faults by means of an automatic tool whose
specific aim is to increases the representativeness [54] by
spotting possible locations for each different type of fault,
and considering commonly observed percentages of faults of
different types. Despite this reduces the bias of artificial fault
seeding (and a more representative faults than SIR’s faults),
real faults, of course, might still be present in a different way
(type distribution and/or location).
A further internal validity threat includes the correctness of
the implementation of all the experiment techniques, as well
as of scripts for data collection and analysis, carried out by
authors.
Results are also subject to external validity threats, as any
empirical study, due to the following choices:
Subject programs: the experiment is performed on a set
of programs selected from a publicly available repository;
thus, care must be taken in extending conclusions to other
programs. This is mitigated by selecting four different subjects,
with diverse features in terms of: lines of code, complexity,
implementation language, applicative target. Treatments are
replicated on diverse programs in order to improve their
generality.
Profiles: profiles are generated randomly as described in-
Section VI. Although we re-generate three profiles in each
experiment and use randomization, the adopted profiles can
never represent all the possible profiles, and thus results with
other profiles could, in principle, differ.
Replicating 100 times on four programs, in a full design
configuration with 2340 treatments, mitigates the impact of
these threats, but the described possible bias should be taken
into account before extending conclusions.

Besides these threats, we left to future research the sensitiv-
ity analysis of RELAI with respect to the following choices
made for carrying out the experiment: i) partitioning criterion:
this is decided by the tester and, as explained, the choice does
not affect the implementation of the strategy, but different
results can be obtained depending on it. The effect of different
partitioning criteria and how these can improve the approach
need further investigation; ii) profile inaccuracy sensitivity: we
experimented the approach under an error of 〈0.01, 99%〉 and
with a zero mean; a theoretical and experimental evaluation
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of RELAI under several error profiles will provide us with
further insights about the properties of the reliability estimator.
We expect that under larger errors the difference between the
estimates biased by the profile error and the unbiased ones are
bigger, and the benefit of RELAI is thus more impactful.

X. CONCLUSION AND FUTURE WORK

RELAI is a new strategy oriented toward reliability im-
provement and assessment. Its underlying idea is to improve
the delivered reliability and, at the same time, provide an
estimate of the achieved level by: i) actively looking for
failure regions most impacting the expected failure probability,
not just waiting for them to come out in a “simulated” real
usage, and ii) selecting test cases by a sampling scheme
enabling the assessment during the fault removal, unlike
current reliability assessment techniques. This is implemented
through an adaptive scheme, which learns from the current
state to drive future selection of test cases. A key feature
of RELAI is the inclusion of the uncertainty on the real
operational profile in the strategy definition. This allows tester
to specify a constraint on this uncertainty, obtaining faithful
estimates of reliability and predicting the share of inaccuracy
caused by the specified profile error. It enables to control the
error that a tester inevitably commits in deriving the profile,
as RELAI assesses its impact before deploying the system.
Results confirm the good performance of RELAI in terms of
improvement, assessment, and mitigation of the profile error
problem.

We believe RELAI’s characteristics can pave the ground to
new attractive scenarios in the field of reliability testing, where
debug and operational testing research areas can fruitfully
benefit from each other’s peculiarities. In particular, besides
the mentioned sensitivity analyses, future studies could address
these challenges: i) developing further on the relation between
the uncertainty associated with the operational profile and the
resulting uncertainty in the reliability estimation (e.g., devel-
oping mathematical model of uncertainty propagation with no
or little burden on the tester, who should be unaware of details
to adjust the estimation, and conceiving simpler approaches for
the user, with respect to the current ones, to describe the profile
with an associated confidence); ii) investigating new sampling
strategies at domain level (namely, for reliability improvement)
while keeping the feature of assessing at sub-domain level
(e.g., investigating other Montecarlo-based inference methods
to approximate the distribution of the “best” subdomains via
stochastic sampling, or trying new probability update formulas
in the adopted IS method); iii) similarly, investigating other
survey sampling techniques (namely, for reliability assess-
ment), e.g., adopting stratified sampling in combination with
the RHC method; iv) using confidence intervals derived form
the RHC-based method to devise new techniques based on
maximizing the confidence in the estimate (e.g., similar to [4]);
v) comparing the assessment ability with software reliability
growth models, which take a different approach, or combine
them for a better assessment; vi) removing the assumptions of
perfect debugging, envisioning strategies that contemplates the
possibility to introduce new bugs during fault removal (e.g.,

considering an imperfect debugging factor like in the literature
on software reliability growth models [64], [65], [43]), vii)
and removing the assumption of perfect oracle knowledge
(e.g., borrowing methods of survey sampling under “random
responses” to integrate with the RHC scheme, or by bootstrap-
based methods). These challenges are the starting point of our
next research to the improvements and best tuning of RELAI
testing.
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