
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 1

Adaptive Test Case Allocation, Selection and
Generation using Coverage Spectrum and

Operational Profile
Antonia Bertolino, Breno Miranda, Roberto Pietrantuono, Senior Member, IEEE, and

Stefano Russo, Senior Member, IEEE

Abstract—We present an adaptive software testing strategy for test case allocation, selection and generation, based on the combined
use of operational profile and coverage spectrum, aimed at achieving high delivered reliability of the program under test. Operational
profile-based testing is a black-box technique considered well suited when reliability is a major concern, as it selects the test cases
having the largest impact on failure probability in operation. Coverage spectrum is a characterization of a program’s behavior in terms
of the code entities (e.g., branches, statements, functions) that are covered as the program executes. The proposed strategy - named
covrel+ - complements operational profile information with white-box coverage measures, so as to adaptively select/generate the most
effective test cases for improving reliability as testing proceeds. We assess covrel+ through experiments with subjects commonly used
in software testing research, comparing results with traditional operational testing. The results show that exploiting operational and
coverage data in an integrated adaptive way allows generally to outperform operational testing at achieving a given reliability target, or
at detecting faults under the same testing budget, and that covrel+ has greater ability than operational testing in detecting
hard-to-detect faults.

Index Terms—Software testing, Reliability, Operational testing, Random testing, Sampling

F

1 INTRODUCTION

THIS article presents a novel software testing strategy
that integrates black- and white-box testing techniques

for improving the delivered reliability of a software product.
The strategy, named covrel+, builds on two branches of the
software testing literature: operational-profile based testing
and code coverage-based techniques for test case selection
and generation.

Operational-profile based testing – or simply operational
testing, OT - is a black-box technique well suited when
reliability is a major concern, as it selects the test cases
having the largest impact on failure probability in operation.
To this aim, OT selects test cases based on an operational
profile estimate [1]. An operational profile is a quantitative
characterization of how a system will be used [2]. Various
approaches have been proposed to define it [3]; a commonly
used one is to decompose the input domain D of a program
P under test into m partitions Di (i = 1..m), and to describe
the operational profile as a probability distribution over
them. Precisely, the profile is described as a set of values,
pi, denoting the probability that an input is selected from
partition Di and such that

∑m
i=1 pi = 1 [4].

OT is a pillar of software reliability engineering prac-
tices [5]. We assume – in line with [6] - that the reliability
R of P is defined as: R = 1 −

∑
t∈F pt, where F is

• A. Bertolino is with ISTI - CNR, Pisa, Italy. E-mail: anto-
nia.bertolino@isti.cnr.it.

• B. Miranda is with Federal University of Pernambuco, Brazil. E-mail:
bafm@cin.ufpe.br.

• R. Pietrantuono and S. Russo are with Università degli Studi di
Napoli Federico II, Napoli, Italy. E-mail: {roberto.pietrantuono, ste-
fano.russo}@unina.it.

Manuscript received Feb 28, 2019.

the set of inputs leading to failure (or failure points), and
pt is the expected probability of occurrence in operation
of input t. The operational testing strategy we consider
here is the so-called partition-based OT [7]: it first selects a
partition Di randomly according to the generated profile
(i.e., with probability pi); then it generates a test case for
Di by selecting an input within Di according to a uniform
distribution, as, e.g., in [4] and [7].

Coverage-based testing refers to many different white-
box testing techniques that use a signature of a program’s
behavior (spectrum) obtained by tracking the coverage of en-
tities (e.g., statements, branches, functions) in execution [8].
Most coverage-based testing techniques consider hit spectra,
which only list which program entities have been executed
(at least once). Count spectra provide richer information, by
measuring how many times each entity is executed.

Program count spectra have found several applications
beyond their original use in program optimization [9], and
are used extensively in software analysis and testing [10].
Reps et al. [11] proposed to use differences between path
spectra for identifying changes in program behavior. Fol-
lowing this idea, code profiling information has been used
to analyze the executions of different versions of programs,
e.g., in regression testing [12], or to compare traces of failed
and successful runs in fault diagnosis [13] [14].

In covrel+ we also use count spectra, yet differently from
previous approaches, not to differentiate between program
behaviors, but to identify less exercised program entities. We
exploit such information to complement operational testing,
with the ultimate goal of improving the delivered reliabil-
ity [6]. In particular, we aim at counteracting the saturation
effect ([5], Chapter 13), by which the continued application

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 2

of a testing technique eventually loses efficacy. To this aim,
we use the notion of operational coverage introduced in [15],
which clusters entities into different “importance” groups
according to their count spectra, and assigns them different
weights used in operational testing.

Covrel+ supports test cases allocation, selection and
generation for reliability improvement. Given P and D,
the problem of allocation is to divide an available budget
Budget of test cases among a given set of m partitions Di

of D. To this aim, we need to identify the (optimal) number
of test cases |Ti| to allocate to each partition Di (such that∑m
i=1 |Ti| ≤ Budget) in order to test P with respect to

a given testing goal (here, for improving reliability). The
problem of selection is to identify the most effective subset
of test cases TS within an available test suite T , with respect
to a testing objective. Finally, the problem of generation is the
construction of a test suite TG. The idea of combining oper-
ational testing with count spectra for improving reliability
was first presented in [16], with reference to the problem
of test cases selection. Here, we extend this own work by
providing a more detailed definition and analysis of the test
selection strategy, and by presenting its generalization to
also address the problem of test cases generation.

The paper is structured as follows. Section 2 describes
related work. Section 3 presents the proposed covrel+ strat-
egy. Section 4 describes the experiments. Section 5 discusses
the results and their statistical significance, as well as the
threats to validity. Section 6 contains concluding remarks.

2 RELATED WORK

An overview of the broad research fields of test case al-
location for reliability improvement and coverage-based
test selection and generation is beyond reach within one
paper. We refer the reader to the highly referenced and still
relevant Lyu’s handbook [5] for details about OT, and to
references [17], [18] and [19] for test allocation, selection
and generation, respectively. Here we focus on related work
that from different perspectives explores the relationship
between reliability and code coverage.

Many empirical studies, e.g., [20] [21] among the most
recent ones, assess the effectiveness of coverage-based test-
ing. However only a few of them consider test effectiveness
in terms of delivered reliability. Among the earliest studies,
Del Frate and coauthors [22] found a correlation between
increase (decrease) in reliability and increase (decrease) in
at least one code coverage measure. In a later work Frankl
and Deng [23] performed a case study comparing various
approaches and showed that as coverage increases, the
probability to achieve high reliability targets increases as
well. They show also that the probability to reach very high
reliability values would require extremely large test sets,
and it is doubtful whether the improvement is worth the
cost. This is what motivates our work: covrel+ explores the
usage of coverage in combination with traditional operational
testing for reliability improvement.

Several authors have proposed to integrate test cover-
age information into models used to evaluate reliability as
faults are found and removed (a.k.a. Software Reliability
Growth Models or SRGMs). A recent short compendium of
such coverage-integrated SRGMs is given by Alrmuny [24].

Although the basic motivation is the same, i.e., that relia-
bility improvement can be impacted by observed coverage
measures, the usage that we make of such measures is
different. In SRGMs coverage information is used to better
tune reliability estimation, as in [25]; in covrel+ we use
coverage information for driving test selection/generation,
building on the concept that coverage measures can provide
guidance in identifying what parts of a program should be
exercised when augmenting a test suite [26] [27].

A similar concept inspires the so-called “accelerated
testing method” SRAT in [28] that proposed to reduce a re-
liability test suite by weighting and clustering the test cases
according to their achieved coverage. In comparison with
covrel+, the SRAT approach only considered the coverage hit
spectrum, and used this information to reduce the number
of test cases to be executed, considering test cases that
cover already exercised entities as redundant. In contrast,
we exploit coverage information to select or generate test
cases that would most likely cover rarely exercised entities.

A novel aspect of covrel+ is the use of the coverage
count spectrum (instead of the most commonly used hit spec-
trum). Count spectra are typically used for fault localization
(namely, spectrum-based fault localization or SBFL). In [15],
we first introduced the notion of operational coverage based
on count spectra, and in [29] we showed that it can be used
as both an adequacy and a selection criterion for operational
profile based testing. To the best of our knowledge, we
are the first to propose here the usage of count spectra
in combination with operational profile to guide both test
selection and generation for reliability-oriented testing.

Several approaches have been proposed for automated
test case generation driven by coverage requirements. Some
exploit Dynamic Symbolic Execution [30] or Search-based
techniques [31] to derive a set of test cases that would
cover all targeted program entities. In principle such ap-
proaches could be integrated within our adaptive allocation
technique, however they do not target specifically reliability
improvement, but aim at detecting a high number of faults.

As we use coverage information to complement OT, the
closest approaches to covrel+ are those that use variants of
random test generation. In particular, Randoop [32] is a pop-
ular tool for automated feedback-directed test generation: it
uses the results of previous executions (e.g., exceptions or
other errors) to randomly and effectively generate further
bug-finding test cases. For test generation, we also use
feedback from previous executions, but with a different aim
that is catching the test inputs that contribute mostly to
reliability improvement. In adaptive random testing (ART)
[33], test cases are generated randomly, evenly spread across
the input domain: in this sense, ART also embeds a notion
of similarity among test cases, as we do in covrel+ for
test case generation (see Section 3). Differently from us, in
ART the similarity is measured as the distance in the input
domain and not based on coverage. Moreover, ART does
not consider the operational profile and does not explicitly
aim at increasing reliability: it has been mostly evaluated in
terms of test cases needed to detect the first failure.

A further research thread is the statistical structural
testing approach to test generation, initiated by the semi-
nal work of Thévenod-Fosse and Waeselynck [34]. It aims
at determining an input distribution such that random

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 3

sampling test cases from it maximizes the probability to
cover all targeted code elements. Various techniques have
been then proposed to implement such idea. For instance,
Petit and Gotlieb [35] formulated the goal of covering all
paths in a program as a stochastic constraint problem,
thus providing an algorithmic solution naturally preventing
infeasible paths; Poulding and Clark [36] used automated
search, showing that it could provide a general method for
finding a suitable input distribution. Similarly to covrel+,
statistical testing assigns probabilities to test inputs based on
the code elements they cover. However, in statistical testing
coverage is used as a means for increasing the fault finding
effectiveness. The goal of covrel+ is to improve reliability,
hence it assigns input probabilities based on the operational
profile: intuitively, coverage information is used to distin-
guish among test inputs yielding a same usage probability.

Based on our review of current literature, we believe
that covrel+ combines several means (including operation
profile, adaptivity, count spectrum, similarity measure) into
a completely novel and powerful approach.

3 THE Covrel+ STRATEGY

3.1 Assumptions
Covrel+ shares the following assumptions with OT:

a) The input domain D can be decomposed into m
partitions D1, . . . , Dm. These are obtained accord-
ing to some partitioning criterion (e.g., functional or
structural), usually depending on the information
available to test designers, and on testing objectives.

b) The operational profile can be described as a prob-
ability distribution pi over the partitions (with∑m
i=1 pi = 1). Inputs within a partition have the

same probability of runtime occurrence.
c) A test case leads to failure or success, and we are

able to determine what is the case (perfect oracle).
d) Test case runs are independent, i.e., the execution of

a test is not constrained by that of previous tests.
This assumption merely affects the way test cases
are defined, since when test cases are sequences of
tasks that are not independent, they can be grouped
to form a single test case, so that after the test the
system goes back to the initial state [4].

e) The output of a test case is independent of the
history of testing: a failing test case is always such,
independently of the previously run test cases.

Assumptions a) and b) are for the applicability of covrel+,
since it works on partitions of the input space and requires
an operational profile defined on them. Assumptions c), d)
and e) are not necessary for covrel+ applicability, but their vi-
olation is expected to negatively impact its performance. An
imperfect oracle (assumption c)), as well as the dependence
of test case runs and/or of their output (assumptions d) and
e)), can make the output of a test in repeated executions
unpredictable. In such situations, the allocation of test cases
to partitions would be affected by tests marked as failing but
not due to actual faults in the code (or, conversely, by tests
marked as correct in some executions and failing in others).
Hence, violations of assumptions from c) to e) could make
covrel+ behave differently from one execution to another.

Clearly, covrel+ assumes additionally that coverage infor-
mation of test cases is available or it can be obtained.

3.2 Strategy overview
The objective of covrel+ is to improve delivered reliability
efficiently by means of a focused test case derivation strat-
egy: we use here the generic term derivation to mean either
selection or generation. In fact covrel+ applies the same
underlying idea to solve two problems in software testing,
namely test case selection and test case generation. In both
cases the strategy proceeds iteratively and adaptively: the
shared idea is to gain knowledge as testing proceeds so
as to dynamically adapt to i) which regions of the input
space, and then ii) which test cases within each region,
are expected to contribute more to reliability improvement
at the next iteration. Covrel+ searches for those test cases
with potentially the highest contribution to reliability, by
combining their ability of revealing high-occurrence failures
with the ability of finding still undetected faults. To do so it
uses learning and adaptation to dynamically characterize the
input domain partitions and derive test cases within them.

The covrel+ strategy is sketched in Figure 1. It exploits it-
eratively the results of test executions per partition (namely,
number of exposed failures and current coverage), in or-
der to drive test allocation and selection/generation at the
subsequent iteration. More precisely, each iteration foresees
two main phases: (i) the derivation of test cases within each
partition: if a test suite is available, the most effective test
cases are chosen (selection); otherwise new test cases have
to be generated, which we do by applying a similarity-
driven random approach (generation); (ii) the allocation of
test cases to partitions (i.e., how many test cases should be
within each partition at the next iteration).

Selection and generation are both informed by the cumu-
lative count spectrum, which counts, at each iteration, how
many times the program entities have been exercised. Test
case generation also uses partition count spectrum, which
characterizes how many times the program entities are
exercised by the test cases associated to partitions.

Program entities are ordered according to their count
in the spectrum, and then classified into importance groups.

Fo
r$e

ac
h$
pa

r*
*o

n$

Yes$

Ini$al'OP*based'
alloca$on'of'test'cases'

Count&spectrum-based&
test'cases'deriva$on&

Stop'Tes$ng'
Budget'
exceeded'

No$

Next'adap1ve'alloca$on'

Tests'execu$on'
and'learning&

Fig. 1. The covrel+ strategy

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 4

This is because the last phase allocates test cases adaptively
through an algorithm based on the Importance Sampling (IS)
method [37] (used in previous own work [38]). Covrel+
then uses group membership differently for selection and
generation. This is explained in the following subsections.

3.3 Allocation of test cases to partitions
Covrel+ allocates test cases adaptively depending on where
more tests are actually needed. This is accomplished by
means of the Importance Sampling method, which is an
inference method to approximate the true unknown dis-
tribution of a variable of interest. Here, the distribution
of interest is the number of test cases for each partition
that would maximize the delivered reliability. The algorithm
represents the beliefs (hypotheses) about this distribution by
means of sets of “samples”. Each sample is associated with
a probability that the belief is true: these probabilities are
updated iteratively by examining some new samples of the
hypotheses, and a larger number of samples are drawn from
hypotheses with a larger probability. The goal is to converge,
in few iterations, to the “true” best distribution of test cases.

An update rule establishes how the probability of each
hypothesis is modified based on new collected samples. The
number of test cases per partition is determined accordingly.
The IS-based algorithm exploits information about the fail-
ing tests observed in previous iterations; in addition, for
test case generation the algorithm exploits the similarity
between the partition and the set of least covered entities.
Test case selection does not exploit similarity because there
is a priori knowledge of which test cases cover which en-
tities, and that information, combined with the cumulative
count spectrum, suffices to select the best cases based on
their contribution for covering the rarely exercised entities.
(Clearly, the knowledge about how test cases cover the
program is not available in generation beforehand.)

In test case selection, to smoothly direct testing towards
the partitions with a high expected (un)reliability contribu-
tion in the next iteration, the IS-based algorithm uses the
observed failure rates ϕi, defined as number of failing tests
over number of executed tests by the operational profile
values pi. We denote with θi = piϕi the weighted failure
rate (normalized so that

∑m
i=1 θi = 1).

In test case generation, the IS-based algorithm uses:

• The similarity score (denoted with σi), defined as the
Jaccard similarity between the set of least covered
entities from the cumulative count spectrum and the
partition count spectrum.1 We use the similarity co-
efficients between the cumulative and partition spec-
tra as predictors of which partition(s) would have
higher probability of generating test cases that would
exercise the least covered entities. The rationale is
that if partition Di has a high Jaccard similarity
with the set of “low” entities from the cumulative
count spectrum, then Di covers many “low” entities.
Hence, with more test cases for Di, we may increase
the coverage of the so far rarely exercised entities.

• The similarity and failure rate balance factor, whose
value at current iteration is βi. It determines the

1. The Jaccard similarity coefficient of two sets A and B is defined as
JS(A,B) = |A ∩B| / |A ∪B|.

weight (in [0,1]) to be assigned to failure rate (weight
= βi) and to similarities (weight = 1− βi) in assess-
ing the importance of that partition. The expectation
is that the failure rate will decrease over iterations;
hence, as testing time goes on, test cases are more
and more generated using the similarity score. The
value β′i to be used in the next iteration is computed
as β′i = βi · φ, where φ is a discount factor that
progressively reduces the impact of the failure rate
information on determining the importance of that
partition, increasing the impact of similarity.

More formally, let us denote with π the probability
vector at current iteration, whose i-th element πi represents
the likelihood that testing from partition i contributes to
improve reliability. The probability vector π′ to be used at
next iteration for test allocation is computed according the
following update rule:

π′i = γπi + (1− γ)[θiβi + σi(1− βi)]. (1)

This assignment tends to explore the input domain by
progressively moving tests to partitions where unreliability
contribution was still small; this allows detecting hard-to-
detect faults after easier ones. The βi factor regulates the
impact of failure rate and similarity in determining π′i.
The smoothness of the adaptation is determined by the
parameter γ ∈ [0, 1], regulating how the algorithm considers
past iterations’ results with respect to current ones. The πi
values are then normalized so as to sum up to 1. Starting
from π′i, |T ′i | tests are allocated to partition Di at the next
iteration by a simple procedure to assign, proportionally,
more tests to domains with higher πi values [38], so as:
|T ′i | ≈ |T ′|π′i, where |T ′| is the number of test cases to
be derived in the next iteration, until the testing budget is
exhausted. Hence, at each iteration a vector AL is obtained:
AL = {|T ′1|, |T ′2|, . . . |T ′m|}. The best |T ′| is computed by
an adaptive implementation of Importance Sampling [39].
Based on desired error and confidence, this IS variant pro-
gressively reduces the number of required samples as more
information becomes available, using the formula:

|T ′| = 1
2ξχ

2
ρ−1,1−δ ≈

ρ−1
2ξ {1−

2
9(ρ−1) +

√
2

9(ρ−1)z1−δ}
3

(2)
where:

ξ error we want to tolerate between the sampling-
based estimate and the true distribution;

1− δ desired confidence in this approximation;
ρ number of partitions from which at least one test

case has been drawn in the previous iteration;
χ2 chi-square distribution with ρ − 1 degrees of

freedom evaluated with significance level δ;
z1−δ normal distribution evaluated with significance

level δ.

The algorithm is triggered by an initial static allocation
of a small number of tests to start up the algorithm [40].
Several strategies can be chosen, depending on the initial
knowledge about failure likelihood of partitions (e.g., via
expert judgment about partition criticality). Assuming no
such initial knowledge, tests can be allocated following the
traditional OT, i.e., proportionally to the expected usage of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 5

the partition – giving more tests to partitions whose inputs
are expected to be more exercised; this is the choice in our
experiments. In general, the bigger the initial number of test
cases, the better the initial learning can be, but the later the
adaptation will start. In the experiments, we opted for a
number of initial test cases equal to the number of partitions.

Summarizing, the output of the allocation step is the
computation of the best number of test cases |T ′| to run
and their distribution to partitions, AL. Next, we detail how
tests are selected or generated within partitions.

3.4 Selection of test cases within a partition
The selection step cares about picking the test cases for par-
titions among those not yet executed (without-replacement
selection). Algorithm 1 sketches covrel+ procedure for alloca-
tion plus selection. TS denotes the list of test cases selected
from the suite T . TSi is the sublist selected from partition
Di and |TSi| = |T ′i | as suggested by the allocation step.

In the first iteration the selection within each partitionDi

is random as test cases are equally ranked (line 4). Within
the loop on partitions (line 7-11), the highest ranked test
cases for Di are selected to compose the current TSi subset.

The learning phase takes place during execution of tests
for partitions (procedure RunTests, called at line 9), updating
the failure rate based on observed results (line 18) and the
cumulative count spectrum (CCS) derived while tests are
executed (line 19). After tests execution and learning, covrel+
evaluates the remaining test cases and re-ranks them accord-
ing to how they cover the program entities using the count
spectrum and coverage information (line 12). Then, the next
allocation vector AL is computed using the updated failure
rate (FR, line 13), suggesting how many tests should be
selected in the next step: AL = {|TS1|, |TS2|, . . . |TSm|}.

To increase the chances to find “difficult” failure points,
the aim is to select test cases that cover entities so far rarely

Algorithm 1: covrel+ test case selection
Input : T , the test suite from which test cases can be selected;

CT , coverage information of the existing test cases;
OP , operational profile;
Budget, maximum number of test cases;

Output: TS, the list of test cases selected

1 TS ← EmptyList()
2 FR← FailureRate(∅) .FR is the vector of ϕi

3 CCS ← CumulativeCountSpectrum(∅)
4 AL← IS-basedAllocation(OP) . First alloc. based on OP
5 RTC ← T
6 while |TS| < Budget do
7 foreach (Di) do
8 TSi ← Select(RTC, ALi) . select test cases for Di

9 RunTests(TSi) . execute and learn
10 TS ← TS ∪ TSi . add selected to the output list
11 T ← T − TSi . remove (if select w/o replacement)

12 RTC ← RankTestCases(T , CCS, CT) . re-ranking
13 AL← IS-basedAllocation(OP , FR) . next allocation

14 return TS

15 procedure RunTests(TSi)
16 foreach (tc ∈ TSi) do
17 result, trace← RunTestCase(tc)
18 FR← UpdateFailureRates(FR, result)
19 CCS ← UpdateCumulativeCountSpectrum(CCS,

trace)

exercised. The test case rank is computed accordingly, by
assigning weights to the importance groups. For the three
groups high, medium and low used in the experiments in
Section 4, the chosen criterion is to assign weights so that the
high and the medium groups are one order of magnitude less
important than the medium and the low group, respectively.
When multiple test cases achieve the same rank, one of them
is randomly selected.

Selection walk-through: The following example
shows how covrel+ selects test cases. Assume that iteration
n received the allocation AL = {P1 : 0;P2 : 4;P3 : 0}, and
resulting failure rates are FR = {P1 : 0.1;P2 : 0.75;P3 :
0.45}. At iteration n+1 the IS-based procedure (Algorithm 1,
line 4) defines the allocation AL = {P1 : 1;P2 : 9;P3 : 6},
i.e., 1 test case to partition P1, 9 test cases to partition P2,
and 6 to P3. Then, based on the cumulative count spectrum
computed at iteration n, entities are assigned to different
importance groups: precisely, e2, e5, and e8 are considered
to belong to the low importance group, e4, e7, and e9 to the
medium one, and e1, e3, and e6 to the high one. To select 1
test case for partition P1, the algorithm (line 8) considers
the ranks of the remaining test cases from the test suite
T that belong to partition P1. Assume these test cases are
TC1, TC2, and TC3, and their respective entities coverage
is as displayed in Table 1. To calculate the rank of a test
case (TCR) the algorithm computes the weighted sum of
covered entities, assigning the weights 1, 10, and 100 to
entities in the high, medium, and low group, respectively:

TCR = (100 · nl) + (10 · nm) + (1 · nh), (3)

where nl, nm and nh are the number of covered entities
belonging to groups low, medium and high, respectively.
Thus TC2, which covers 3 entities from the low importance
group, 1 from the medium, and 1 from the high, is given the
rank 311(= 3∗100+1∗10+1∗1); as this is the highest rank,
TC2 is the test case selected to be run for partition P1. After
TC2 is run (line 17), the failure rates vector FR and the
cumulative count spectrum are updated accordingly (lines
18 and 19). These steps are then repeated for partitions P2

and P3, concluding iteration n+ 1.

TABLE 1
Computation of ranks for test cases in partition P1 at iteration n+ 1.

Entity CCS Importance
Group TC1 TC2 TC3

e1 206 high x x x
e2 6 low x x
e3 221 high x x
e4 109 medium x
e5 22 low x x
e6 209 high x
e7 114 medium x
e8 4 low x
e9 178 medium x

Test Case Rank: 123 311 102

3.5 Generation of test cases within a partition
The procedure followed in test case allocation and genera-
tion is sketched in Algorithm 2. TG denotes the list of gen-
erated test cases. TGi is the sublist generated from partition
Di and |TGi| = |T ′i | as suggested by the allocation step.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 6

Algorithm 2: covrel+ test case generation
Input : OP , the operational profile;

Budget, maximum number of test cases;

Output: TG, the list of test cases generated

1 TG← EmptyList()
2 FR← FailureRate(∅) .FR is the vector of ϕi

3 CCS ← CumulativeCountSpectrum(∅)
4 PCS ← PartitionCountSpectrum(∅)
5 SIM ← Similarity(PCS, CCS) .SIM is the vector of σi
6 AL← IS-basedAllocation(OP) . First alloc. based on OP
7 while |TG| < Budget do
8 foreach (Di) do
9 TGi ← GenerateTests(ALi) . generate cases for Di

10 RunTests(TGi) . execute and learn
11 TG← TG ∪ TGi . add generated to the output list

12 SIM ← UpdateSimilarity(PCS, CCS)
13 AL← IS-basedAllocation(OP , FR, SIM)

14 return TG

15 procedure RunTests(TGi)
16 foreach (tc ∈ TGi) do
17 result, trace← RunTestCase(tc)
18 FR← UpdateFailureRates(FR, result)
19 CCS ← UpdateCumulativeCountSpectrum(CCS,

trace)
20 PCS ← UpdatePartitionCountSpectrum(PCS,

trace)

Initially, covrel+ allocates test cases to partitions according
to OT (line 6). The generation of test cases for Di (line 9),
is done by interfacing covrel+ with a test generation engine
(the one we used is explained in Section 4.3.4). The amount
of test cases to be generated is defined by the IS-based
procedure in the allocation step (line 13). Notice that covrel+
is not meant as an original test case generation strategy
and, in principle, any existing test case generation tool or
strategy can be used (e.g., Randoop [32], Dynamic Symbolic
Execution [41], Evosuite [31]), as long as it can be guided
towards generating test cases from a specified partition. The
budget to partitions for the next iteration is computed by the
adaptive allocation procedure (line 13) by combining the OT
information with data about i) the failure rates in previous
iterations, and ii) the similarity score.

The computation of the similarities (line 12) consists of:

• computation of a cumulative count spectrum of code
coverage for all tests executed in previous iterations;

• identification of the set of least covered entities
(“low” entities) from the cumulative count spectrum;

• characterization of each partition with a partition
count spectrum (PCS), which collects the spectra of
test cases already executed for the partition;

• measurement of the similarities between the spec-
trum of “low” entities and the count spectrum of Di.

Generation walk-through: Let us assume that itera-
tion n received allocation AL = {P1 : 4, P2 : 6, P3 : 5} and,
at the end of it, the failure rates were FR = {P1 : 0, P2 :
0, P3 : 1}. Table 2 displays the cumulative count spectrum as
well as the partition count spectra for partitions P1, P2, and
P3 after iteration n. According to the CCS, three entities
are considered to belong to the low group: e2, e5, and e8.
Based on the PCS for partition P1, we can tell that the set
of test cases that belong to that partition have covered all

of the three low entities, which yields a similarity of 100%
when compared with the set of low entities from the CCS.
The PCS for partition P2 did not cover any low entity and
it is assigned a 0% similarity with the CCS. Finally, the
PCS for partition P3 has covered one out of three low
entities, yielding a similarity of 33% with the CCS. The
similarity vector (Algorithm 2, line 12) is thus defined as
SIM = {P1 : 1.0, P2 : 0, P3 : 0.33}; it is used by the IS-
based procedure (line 13) to define the allocation AL for the
iteration n + 1. Let us now assume that the allocation for
iteration n+ 1 is defined as AL = {P1 : 26, P2 : 2, P3 : 18}.
When the GenerateTests procedure is called (line 9), it
interfaces with the test generation engine to provide exactly
the number of test cases allocated for each partition, i.e., 26
test cases for partition P1, 2 for P2, and 18 for P3.

TABLE 2
Cumulative count spectrum and partition count spectra (PCS) for

partitions P1, P2, and P3 after iteration n.

Entity
Cumulative

Count
Spectrum

Importance
Group

PCS
(P1)

PCS
(P2)

PCS
(P3)

e1 206 high 21 157 28
e2 6 low 6 - -
e3 221 high 18 118 85
e4 109 medium 14 28 67
e5 22 low 22 - -
e6 209 high 43 85 81
e7 114 medium 28 72 14
e8 4 low 1 - 3
e9 178 medium 85 5 88

Similarity: 100% 0% 33%

3.6 Overhead analysis

We analyze the factors determining the overhead (in terms
of CPU time) of the covrel+ strategy. Both variants of cov-
rel+ use an instrumented version of the program to col-
lect coverage information, which entails an execution time
overhead like any coverage-based technique. The latter is
known to vary between 10% and 30%, depending on the
instrumentation tool, the language, the coverage criterion
and the subject under test [42], [43].

Besides this, the overhead factors specific to our ap-
proach include: i) the importance sampling time, which
is computed both for test selection and test generation;
ii) the time for similarity computation (only for the test
generation). Both functions take arrays of data whose size
is exclusively dependent on the number of partitions and
they have no other dependency on the specific subject under
test. Therefore, in the following we assess the time needed
for both algorithms under a varying number of partitions.

3.6.1 Importance Sampling overhead

We ran the IS algorithm on a number of partitions ranging
from a minimum of 2 to a maximum of 100. Each run is
repeated 100 times, and basic statistics are collected (mean,
median, standard deviation, semi-interquartile range). Fig-
ures 2 and 3 plot the results; we can see that: i) the overall
average time for one execution of the IS algorithm is less
than a millisecond (8.60E-5 seconds); ii) the time does not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 7

Fig. 2. Importance Sampling time: average and standard deviation

Fig. 3. Importance Sampling time: median and SIQR

increase with the number of partitions; iii) the standard de-
viation in most cases is small too (in the average, it is 4.78E-
5 seconds, hence the coefficient of variation is about 55%);
iv) the median and semi interquartile range (SIQR), which
are more stable indicators with respect to outliers, confirm
the trends, giving smaller values than the average/standard
deviation pair (the mean of medians is 6.91E-5 seconds and
the mean of SIQR is 5.65E-6 seconds).

The IS algorithm is invoked at each iteration in a run.
The algorithm is expected to converge in few iterations, the
exact number depending on the desired error between the
approximated and true distribution and on the confidence
in the approximation (namely, on ξ and δ in Equation 2). For
instance, in a setting with error ξ=0.1, confidence δ=0.05 and
5 partitions, we had between 4 and 5 iterations.

3.6.2 Similarity computation overhead

Like the IS case, we ran the similarity computation algo-
rithm on a number of partitions ranging from 2 to 100, each
repeated 100 times. Figures 4 and 5 plot the results. We can
see that: i) the similarity computation time varies linearly
with the number of partitions, ii) the time varies from
2.78E-4 seconds with 2 partitions to 1.24E-2 seconds with
100 partitions; iii) the standard deviation in most cases is
relatively small (2.74E-4 seconds in the average) and slightly
increasing with the number of partitions (from 5.72E-5 to
7.07E-4 seconds), but always keeping a small coefficient of
variation, between 2.5% and 21.24%; iv) the median and
SIQR confirm the trend, giving smaller values than the aver-
age/standard deviation pair (the medians going from 2.51E-
4 to 1.22E-2 seconds and the mean of SIQR being 8.16E-5
seconds). Similarity is also computed at each iteration.

Fig. 4. Similarity computation time: average and standard deviation

Fig. 5. Similarity computation time: median and SIQR

3.6.3 Trade-off analysis

The temporal overhead in a testing session caused by the IS
algorithm and the similarity computation time are worth to
be incurred depending on the gain yielded by covrel+.

Let us denote the average test case execution time for a
single test as t, the IS time as tIS , and the similarity com-
putation time as tSC . To compare covrel+ against a generic
coverage-based technique (using the same instrumentation
technique/tool) in a testing session, we use the following
Equation to express the points in which the additional over-
head of covrel+ and its gain with respect to the competing
technique are equal:

(tIS + tSC) ·K = Q · t (4)

where K is the number of iterations, Q is the number of
test cases saved by applying covrel+, and Q · t the total
time saving. The first term is the total additional overhead;
the second term is the gain. Under this Equation, applying
covrel+ is better if the gain is bigger than the overhead.

For instance, fixing the test case execution time t, covrel+
is advantageous if the number of saved test cases is at least:
Q > (tIS+tSC)·K

t . Similarly, if we solve it with respect to t,
we have the minimum average test case execution time that
makes covrel+ advantageous: t > (tIS+tSC)·K

Q .
If we compare our approach with a technique not based

on coverage information, then we need to include the in-
strumentation overhead too. For instance, let us assume
the instrumentation entails an overhead equal to 10%. The
previous equation becomes: (tIS + tSC) · K + 0.1 · N · t =
Q · t, with N being the number of executed test cases. In
this case, covrel+ is better than the alternative technique if:
Q > (tIS+tSC)·K

t + 0.1 ·N (or if t > (tIS+tSC)·K
Q−0.1·N).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 8

4 EVALUATION

4.1 Objective
We assess the performance of covrel+ against OT considering
both the test selection and test generation settings. We choose
OT as a baseline because it is a well-known and intuitive
strategy, which like covrel+ aims at improving reliability.
However, it has to be considered that as covrel+ exploits ad-
ditional information, it also exhibits higher costs (discussed
in subsections 3.6.1 and 3.6.2). Hence, the comparison of
covrel+ performance against OT should be interpreted also
in the light of the above presented trade-off analysis (sub-
section 3.6.3).

The following research questions are targeted:

• RQ1. Is covrel+ more efficient than OT (in terms of num-
ber of tests required) at achieving a target reliability value?

• RQ2. Does covrel+ detect more faults than OT under the
same testing budget?

It is known that as testing proceeds, the number of faults
detected per effort unit progressively decreases: testing
uncovers typically many faults initially, and the detection
of residual faults becomes harder and harder. Hence to
characterize the ability of our strategy to detect hard-to-
detect faults, we formulate the third research question:

• RQ3. How does covrel+ perform compared to OT as
testing proceeds?

4.2 Subjects
Past studies on testing techniques based on operational pro-
file have used for experimentation three types of relatively
small subjects: i) programs from business-/mission-critical
domains, such as telecommunication, space and nuclear
systems (used in [1], [5] and [44]), respectively); ii) example
programs with faults and test suites already available, such
as the space program by ESA (used in [22], [45], [7]), and
the similar orecolo and autopilot programs (used in
[25]); iii) subjects available from the SIR repository2, such
as gzip and GCC (used in [4]). More recently, operational
testing has been applied also to Web applications, with
failure data inferred in various ways (e.g., from log data)
[46], [47], [48].

Experimenting with covrel+ requires the availability of
source code, faults and operational profile. Subjects includ-
ing all such features (e.g., industrial systems) are not freely
available and artificially constructing them (e.g., on large
open source applications) in a representative way would be
hard. For these reasons, in the present study we opted for
repeatability and verifiability of controlled experiments on
subjects widely used in software engineering research, as in
case iii) above. We considered the following programs from
SIR: grep, gzip, flex, and sed. Grep is a command-line utility
for searching lines matching a given regular expression in
the provided file(s); gzip is an application used for file
compression and decompression; flex is used for generating
scanners that are able to recognize lexical patterns in text;
sed is a stream editor that performs text transformations

2. SIR is the Software-artifact Infrastructure Repository, widely used
for controlled experimentation about testing and program analysis,
available at: http://sir.unl.edu/portal/index.html.

TABLE 3
Study subjects selected from the SIR repository

Subject LoC SIR
test suite

Seeded
faults

Detectable
faults

gzip v1 4,594 214 16 7
gzip v2 5,083 214 7 3
gzip v4 5,233 214 12 3
gzip v5 5,745 214 14 5
flex v1 9,558 567 19 16
flex v2 10,274 670 20 13
flex v3 10,296 670 17 9
flex v4 11,447 670 16 11
grep v1 9,463 809 18 5
grep v2 9,987 809 8 4
grep v3 10,124 809 18 8
grep v4 10,143 809 12 3
sed v2 9,867 360 5 5
sed v3 7,146 360 6 6
sed v5 13,398 370 4 4
sed v6 13,413 370 6 6

Total: 145,771 8,129 198 108

on an input stream. The first three of these programs are
available in five versions containing seeded faults, whereas
sed contains seven versions. All of them have test suites de-
rived through the category-partition method [49], available
as tsl (test specification language) files. These are used for
evaluating test selection, where test cases are selected from
the test suites.

After a preliminary analysis we excluded from the study
the versions whose test suite could not identify any of the
seeded faults available for them. This happened for grep v5,
gzip v3, and sed v1. We also excluded version 5 of flex due
to its anomalous characteristics: 3 faults could be revealed
by more than 80% of the test cases, and 2 others could be
revealed by ≈99% of tests; the vast majority of the test cases
available in the test suite would be able to reveal 100% of
the seeded faults – so all faults would be detected after few
tests. After these exclusions, 18 versions remained. During
the execution of the test generation study, no faults could be
revealed for sed v4 and v7 by all the test cases generated.
Hence we do not report results for these two versions.

The final remaining 16 study subjects and the related de-
tails are listed in Table 3. Column “LoC” shows the number
of lines of code of each subject.3 The column “Detectable
faults” contains the number of faults, from the set of seeded
faults, that could be detected by the SIR test suite.

Both OT and covrel+ distribute test cases to different
partitions. The partitioning criterion for these subjects is
based on functionalities. We inspected the tsl (test specifi-
cation language) file made available with the subject (which
specifies the function units and their input space features
in terms of parameters, categories and choices, according
to category-partition testing terminology) along with the
user manual, in order to infer the main functionalities. Each
functionality is associated with a partition; we ended up
with 4 partitions for grep, 5 for gzip, 3 for sed, and 6 for
flex. On these subjects, a fault matrix – i.e., a mapping of
which faults can be revealed by which test cases of the test
suite - is built for evaluating the approach in the test selection
setting. In particular, for each subject and version, we run
the available test suite and, with the support of SIR tools,

3. Collected using the CLOC utility (http://cloc.sourceforge.net).

http://sir.unl.edu/portal/index.html
http://cloc.sourceforge.net

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 9

extracted the fault matrix. This does not apply for the test
generation case, since the test suite from SIR is not used.

4.3 Experimental methodology

4.3.1 Compared techniques

We compare three variants of covrel+ against the partition-
based OT strategy described in the Introduction. The vari-
ants of covrel+ are based on three different coverage criteria,
namely: branch, function and statement coverage.

4.3.2 Metrics

We evaluate the techniques using the following metrics.
The efficiency in achieving a desired reliability level

(RQ1) is measured in terms of number of executed test cases
to detect a given amount of faults. In particular:

• For test selection, we count the number of test cases
required to reveal all the faults detectable by that test
suite (see column Detectable faults in Table 3). We
denote withNcovrel+ andNOT the number of test cases
required by covrel+ and the OT baseline, respectively.

• For test generation, we count the number of test cases
required to reveal a same amount of faults by the generated
test cases. Since the full set of seeded faults (column
Seeded faults in Table 3) might be detected in unac-
ceptable (and unpredictable) long time, the amount
of faults to be detected is determined as the number
of faults detected by a fixed number of first 1,000 test
cases. Namely, 1,000 test cases are first executed for
each technique: then, the technique that detects more
faults stops its execution, while the other technique
keeps executing until it detects the same amount of
faults. The cost incurred by the latter technique (i.e.,
the looser) is the additional number of test cases required
to detect the same amount of faults. The cost of the
former one (i.e, the winner) is zero.

To answer RQ2 and RQ3, we count the number F of faults de-
tected by the same number T of executed test cases. In particular:

• For test selection, we adopt the following criterion to
fix the number of test cases: given the number of test
cases to detect all detectable faults by covrel+ and by
OT (Ncovrel+ and NOT), we take the minimum TTotal
between the two, and consider percentages of them
(e.g., 10%, 20%, . . . , 100%). Thus, T = x% · TTotal,
with x ∈ [1, 100]. This allows computing the failure
intensity as testing proceeds (for RQ3) and when it
stops, i.e., when x= 100% (for RQ2).

• For test generation, we adopt the following criterion
to fix the number of test cases: covrel+ is executed
first, and testing ends when either all the seeded
faults have been detected or a maximum number
of test cases (set to Tmax=1,000) has been executed.
OT testing is then run with the same amount of
tests TTotal as covrel+. Similarly to the previous case,
T = x% · TTotal, with x ∈ [1, 100], and when x=
100%, the final failure rate is obtained.

4.3.3 Experiments
Three controlled experiments have been designed to address
the research questions. The first experiment evaluates cov-
rel+ against OT for the test selection problem. In this case,
testing ends when all faults detectable by the available test
suite have been detected (these are generally not all the
seeded faults). This experiment suffices for test selection,
since the number of test cases required to compute the
metrics for answering RQ2 and RQ3 (TTotal) is derived from
Ncovrel+ and NOT , which are the metrics to answer RQ1.

The second and third experiments evaluate covrel+
against OT for the test generation problem. In this case, one
experiment does not suffice to address all research ques-
tions, as we do not know if and when the undetectable faults
(namely, Seeded minus Detectable faults) will be detected by
the generated test cases. Hence:

• One experiment is executed by fixing a number of
faults to detect (between 0 and the number of seeded
faults – for each subject, shown in Table 3) and
running tests until that number of faults is detected.
This will allow answering RQ1;

• One more experiment is executed by fixing the num-
ber of test cases and looking at how many faults are
detected. This will allow answering RQ2 and RQ3.

In each experiment, both covrel+ and OT are run on all
the subjects. Specifically, the three variants of covrel+ (based
on statement, function and line coverage) are executed for
each subject. For any subject/variant pair, the execution
is repeated 50 times for test selection and 30 times for
test generation (because of the greater cost required by
the two test generation experiments compared to the test
selection experiment) with a new random profile generated
for each of such repetitions. After each repetition of covrel+,
operational testing is run using exactly the same profile used
by covrel+ so as to have a fair comparison. We call testing
session the experimental run of a single repetition. Thus, the
total number of test scenarios is: 3 experiments x 2 techniques
x 3 variants x 16 subjects = 288 (96 for the test selection
experiment, 192 for the two test generation experiments).
The total number of testing sessions is 96 scenarios x 50
repetitions plus 192 scenarios x 30 repetitions, namely: 4,800
+ 5,760 = 10,560 testing sessions.

4.3.4 Experimental procedure and parameter values
The automated procedure followed in a testing session
consists of these steps:

1) Generate the operational profile;
2) Repeat:

a) Select/generate the next test case for the
technique under evaluation (covrel+ or OT);

b) Execute the test case and observe if it exposes
a failure or not;

c) If a failure occurs, remove the fault(s);4

until T tests are executed (T chosen depending on
the research question, as explained in Section 4.3.2);

3) Compute the metrics presented above.

4. Note that for each failure the tester could remove more faults; we
choose to remove all the faults, hence the repetition of the test case does
no longer lead to failure.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 10

As for allocation, the values for the parameters of the
Importance Sampling method (Equations 1 and 2) are set
as follows: learning factor γ = 0.5; confidence (1 − δ) =
0.99; desired maximum error ξ = 0.1; discount factor for
similarity and failure rate balance φ = 0.5.

For selection, based on the criterion defined in Section
3.4, the weights of the three importance groups are set as
follows: Whigh = 10−1, Wmedium = 100, and Wlow = 101.

For generating test cases, we developed a script to enable
covrel+ with the ability of requesting an arbitrary number of
test cases for any given partition (the script generates input
values for our study subjects rather than test code). First
we identified all the possible input parameters and environ-
ment flags that could influence the behavior of our study
subjects (e.g., for gzip, the -S and --suffix flags can be
used to define the suffix to be used for compressed files; the
--fast and --best flags can be used to regulate the speed
of compression; and so on). We then investigated which
input data, if any, was required by the subject (e.g., gzip can
receive a file to be compressed, decompressed, or tested)
and created the necessary support files (for gzip we created
directories containing multiple files to be compressed; mul-
tiple compressed files to be tested or decompressed; etc).
Finally, once we identify which flags and parameters belong
to which partition, our script can generate random test cases
by choosing the necessary input variables and combining
them with arbitrary input data to be used by the subject
(e.g., if gzip has a partition dedicated to the decompression
of files, all test cases generated for such partition should
always contain either the -d or the --decompress flag).

We assess the statistical significance of results by means
of appropriate tests. To determine if there is a significant
difference between techniques and to separate out the effect
of subjects we use the Friedman test. This is a non-parametric
test for repeated (hence dependent) data measures; it does
not assume normality of observations, homoscedasticity of
variances, independence of data among compared samples,
and it works well under balanced designs as ours.

To measure the “effect size” we assess the magnitude of
the difference adopting the Vargha and Delaney test [50], as
suggested in [51], using the Â12(x, y) statistic. The latter rep-
resents the probability that the metric’s value for technique
x is greater than for technique y – namely, the probability
that a randomly selected observation from one sample is
bigger than one randomly selected from the other sample.

5 RESULTS

We now report and discuss the results of the experiments.
With the aim of supporting the independent verification
and replication, we make available the artifacts produced
as part of this work.5 The replication package includes the
implementation of the algorithms, input data, raw data used
for the statistical analyses, and additional results.

5.1 RQ1: Testing efficiency
5.1.1 Test Selection
Figure 6 shows, for each scenario, how many times covrel+
required less test cases than OT to detect all the faults

5. http://labsedc.isti.cnr.it/covrel/.

detectable by the provided test suite (last column in Table 3)
– i.e., covrel+ “wins” the comparison; how many times OT
required less test cases (OT wins), and how many times they
required the same amount of tests (ties). In the majority of
cases (38 out of 48 scenarios), covrel+ wins more often than
OT. However, this information is not enough, because OT
could win less often than covrel+ but with a great number
of saved test cases at each win – meaning that it could be
advantageous in some specific scenarios. Therefore, we also
report in Table 4 the average, over the repetitions in each
scenario, of the number of test cases required by a technique
to detect all detectable faults.

The results show that covrel+ requires generally less test
cases than OT (the covrel+ average values are lower than
OT ones in 40 out of 48 cases). Looking at columns’ means
and medians, this is true for all the three variants of covrel+,
with branch, function and statement coverage. The differences
are remarkable: OT required, in the average, 76 more test
cases than covrel+ for the branch criterion case, 45 more test
cases for function and 76 more test cases for statement. Hence,
branch and statement coverage allow saving more tests.

TABLE 4
Test Selection: Average number of executed test cases to detect all

detectable faults

Subject Branch Function Statement
covrel+ OT covrel+ OT covrel+ OT

gzip v1 118.40 143.20 137.70 177.50 123.74 144.12
gzip v2 28.22 13.42 10.66 25.48 28.64 14.46
gzip v4 25.62 153.38 25.18 153.92 24.70 150.88
gzip v5 66.16 129.50 62.42 127.14 60.20 134.76
flex v1 15.86 25.14 17.56 28.16 18.12 24.32
flex v2 354.32 501.84 275.78 487.12 314.30 474.28
flex v3 611.38 399.26 542.34 489.10 621.82 437.26
flex v4 227.62 314.28 95.88 351.16 256.52 303.72
grep v1 129.72 602.16 303.46 626.68 112.78 575.54
grep v2 321.34 195.32 622.46 169.80 357.56 190.58
grep v3 156.36 179.32 72.0 159.6 96.74 171.08
grep v4 99.70 509.72 610.68 461.86 107.70 483.54
sed v2 113.50 185.98 84.18 223.76 72.06 154.42
sed v3 43.90 104.20 61.62 97.40 42.20 114.14
sed v5 10.80 23.26 10.58 20.50 10.20 22.02
sed v6 47.32 112.72 70.20 127.12 60.10 132.18
Mean 148.14 224.54 187.67 232.89 144.21 220.46
Median 106.6 166.35 78.09 164.7 84.4 152.65

Figure 7 shows the results by subject, averaged over the
three criteria, highlighting the percent relative differences
between covrel+ and OT (labeled with the absolute values).
Covrel+ is more costly than OT in 3 out of 16 cases. These
are grep v2, flex v3 and gzip v2. In all the other cases (13 out
of 16), covrel+ is better. In 10 of these 13 cases, the percentage
of test cases required by covrel+ over the sum of test cases
(covrel+ and OP) ranges from 30% to 40%.

It is worth investigating the three cases where OT turned
out to be more effective than covrel+. Inspecting results,
we conjecture that the combination of the following causes
make OT to behave better than covrel+ for those subjects: i)
the tuning of the IS algorithm parameters of covrel+ (namely,
desired error and confidence), which determine the speed
at which the “focus” (in terms of number of allocated test
cases) is shifted towards more failure-prone regions, cou-
pled with ii) a highly skewed distribution of faults in those
subject, with a concordant operational profile. The three

http://labsedc.isti.cnr.it/covrel/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 11

Fig. 6. Test Selection: number of wins of covrel+ and OT

Fig. 7. Test Selection: Additional test cases by subject

subjects have all faults concentrated in one or few partitions
and, at the same time, the profile has high selection prob-
ability for that partition; this is the best scenario for OT. In
such cases, the IS procedure (which tries to give chances also
to other partitions so as to gauge their failure rate) allocates
some more tests before identifying the critical partition(s),
depending on the tuning of its parameters. These should be
tailored for the subject under test.

Table 5 reports the results of the Friedman test (the p-
value) and the effect size (the Â1,2 statistic). The difference
between covrel+ and OT is statistically significant by a
large extent; the effect size shows that the probability for
a randomly selected value from the covrel+ sample to be
greater than a value from OT sample is 0.2324 – in this case,
the lower the better for covrel+.

5.1.2 Test Generation
Similarly to test selection, Figure 8 shows, for each scenario,
how many times covrel+ required less test cases than OT

TABLE 5
Test Selection: Hypothesis test. Number of test cases required to

detect all detectable faults

Pairwise Comparison
covrel+ OT

Mean 160.01 225.96
Median 90.03 157.01
p-value 3.01 E-93 -
Effect size 0.2324 -

to detect the same amount of faults, how many times OT
required less test cases, and how many they required the
same amount of tests. Even if still outperformed by covrel+,
OT improves compared to the test selection experiment, as
in 17 of 48 scenarios it wins more often than covrel+.

Table 6 reports the additional number of test cases (with
respect to 1,000, see Section 4.3.2) spent by a technique to
detect the same amount of faults as the other technique.
Average values are lower for covrel+ than for OT in 36 out
of 48 cases. From mean and median values, it is evident that
covrel+ requires generally less test cases than OT for a given
quality objective (amount of faults to detect). This is true
for all the three variants of covrel+, and the differences are
remarkable: OT required, on average, 236 more test cases
than covrel+ with the branch coverage criterion, 123 more
with function and 145 more with statement.

Figure 9 shows the results by subject, averaged over the
three criteria, highlighting the relative difference (in per-
centage) between covrel+ and OT (labeled with the absolute
values). Covrel+ is less costly than OT in 12 out of 16 cases.
In 2 cases (gzip v1 and v5) OT requires, on average, many
test cases less; in the remaining 2 cases (gzip v2 and sed v6)
OT is better by a small margin. The worst cases for covrel+
are explained by the same reasons we discussed for the test
selection experiment. While some subjects are the same as
in the test selection experiment, other are different (e.g., sed
instead of flex): this is due to the difference in the test suite,
being test cases generated from scratch in this experiment.

Table 7 reports the results of the Friedman test and the
effect size for test generation, which are similar to those of
Table 5 for the problem of test selection.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 12

Fig. 8. Test Generation: number of wins of covrel+ and OT

TABLE 6
Test Generation: Additional average number of executed test cases to

detect a same amount of faults

Subject Branch Function Statement
covrel+ OT covrel+ OT covrel+ OT

gzip v1 973.83 911.43 1217.27 441.87 976.40 198.43
gzip v2 8.00 3.33 5.60 7.53 4.43 5.50
gzip v4 37.40 904.1 40.57 739.23 27.40 1416.20
gzip v5 55.50 38.29 81.47 56.17 84.27 56.70
flex v1 22.90 35.57 19.13 34.17 28.30 32.77
flex v2 50.40 769.23 27.47 1047.30 32.13 533.20
flex v3 34.90 400.47 33.40 565.66 65.97 110.23
flex v4 9.27 12.30 8.63 21.73 17.47 11.30
grep v1 52.50 222.60 41.50 243.60 39.72 215.63
grep v2 2.29 2.43 2.23 1.83 2.23 2.87
grep v3 20.63 32.43 19.89 22.63 17.77 19.20
grep v4 23.67 40.70 29.83 46.10 18.80 42.80
sed v2 398.60 1158.67 488.70 1129.30 371.40 1122.59
sed v3 6.77 12.90 9.07 6.70 8.03 8.23
sed v5 723.17 1654.70 1372.30 993.37 790.93 1039.37
sed v6 13.53 14.67 8.27 16.40 24.73 11.43
Mean 152.08 388.36 212.85 335.85 156.875 301.65
Median 29.28 39.5 28.65 51.13 27.85 49.75

TABLE 7
Test Generation: Hypothesis test. Number of additional required test

cases to detect the same amount of faults

Pairwise Comparison
covrel+ OT

Mean 173.93 341.95
Median 27.88 44.45
p-value 6.81 E-14 -
Effect size 0.2652 -

5.1.3 Answering RQ1

Based on the results achieved in our studies, we can posi-
tively answer RQ1 for both test selection and generation:
Covrel+ is significantly more efficient than OT as in the greatest
majority of cases it required a lower number of (selected or gen-
erated) test cases to find the same number of faults. In particular
covrel+ outperformed OT in 13 subjects for test selection, and in
12 subjects for test generation out of the 16 considered ones.

Fig. 9. Test Generation: Additional test cases by subject

5.2 RQ2: Fault detection

5.2.1 Test Selection
Table 8 reports the number of faults detected by an amount
of test cases determined as T = min(Ncovrel+, NOT), ob-
tained by the first experiment (the same experiment as RQ1
for test selection). The mean and median values confirm that
covrel+ detects more faults than OT with a same number of
test cases. This is true for all the three variants of covrel+.
Unlike RQ1, in which the branch criterion has the highest
gain, in this case the highest gain over OT is attained by the
statement criterion, followed by the branch criterion.

The results by subject in Figure 10 show that covrel+ is
more effective than OT at detecting faults in 12 out of 16
cases. In one case (flex v1), the performance are the same; in
the remaining 3 cases (grep v2, flex v3, gzip v2, the same as
for RQ1) covrel+ detected less faults in the average.

Table 9 reports the overall average and the results of the
Friedman test and the effect size. Note that in this case (RQ2)
the greater the effect size value, the better for covrel+.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 13

TABLE 8
Test Selection: Average number of faults detected with a same amount

of test cases (T = min(Ncovrel+, NOT))

Subject Branch Function Statement
covrel+ OT covrel+ OT covrel+ OT

gzip v1 6.52 6.06 6.20 6.46 6.46 6.34
gzip v2 0.82 0.94 0.54 0.74 0.68 0.86
gzip v4 2.34 1.40 2.60 1.56 2.42 1.48
gzip v5 4.70 4.24 4.62 3.96 4.78 4.10
flex v1 3.12 3.18 3.24 3.18 3.28 3.28
flex v2 7.44 6.74 7.58 6.18 7.36 6.44
flex v3 5.50 6.60 5.62 6.26 5.52 6.60
flex v4 3.88 3.74 3.78 3.86 3.84 3.82
grep v1 5.32 2.44 5.22 3.30 5.18 2.50
grep v2 2.96 3.34 2.96 3.34 3.16 3.30
grep v3 4.62 4.64 5.06 4.72 4.82 4.16
grep v4 3.98 2.68 3.66 3.72 3.98 2.68
sed v2 4.10 3.76 4.24 3.28 4.20 3.78
sed v3 5.44 4.70 4.98 4.90 5.06 4.90
sed v5 1.84 1.54 2.06 1.80 1.96 1.64
sed v6 3.62 3.06 3.78 3.50 3.94 2.80

Mean 4.14 3.69 4.13 3.79 4.16 3.66
Median 4.04 3.54 4.01 3.61 4.09 3.54

Fig. 10. Test Selection: Percentage and number of faults by subject

TABLE 9
Test Selection: Hypothesis test. Number of faults detected by the same

amount of tests

Pairwise Comparison
covrel+ OT

Mean 4.15 3.72
Median 4.03 3.47
p-value 1.44 E-41 -
Effect size 0.6018 -

5.2.2 Test Generation
Table 10 reports the results in terms of number of detected
faults by the same amount of test cases (T=1,000), obtained
by the third experiment (which is the second experiment
for test generation evaluation). Also in this case, mean and
median values of faults detected by covrel+ are bigger than
OT under a fixed budget. This is true for all the three
variants of covrel+ – with branch, function and statement
coverage, with again a better performance of the statement
configuration followed by branch and function.

TABLE 10
Test Generation: Average number of faults detected with the same

amount of test cases (T=1,000)

Subject Branch Function Statement
covrel+ OT covrel+ OT covrel+ OT

gzip v1 5.97 5.13 6.00 4.83 6.00 5.00
gzip v2 3.00 1.83 3.00 1.77 3.00 1.73
gzip v4 5.00 4.70 5.00 4.59 5.00 4.67
gzip v5 5.00 3.53 5.00 3.17 5.00 3.33
flex v1 16.00 11.70 15.90 12.13 16.00 11.20
flex v2 14.97 13.93 15.00 13.90 14.97 13.67
flex v3 9.00 7.23 8.93 7.27 8.97 6.40
flex v4 10.97 6.63 11.00 5.90 10.90 7.13
grep v1 3.00 2.37 3.00 2.33 3.00 2.29
grep v2 1.00 1.00 1.00 0.90 1.00 0.80
grep v3 5.00 1.70 4.97 1.43 5.00 1.37
grep v4 2.00 0.97 2.00 1.12 2.00 0.73
sed v2 5.00 4.43 5.00 4.17 5.00 4.23
sed v3 2.00 0.50 2.00 0.50 2.00 0.67
sed v5 4.00 3.13 3.90 3.00 3.93 3.07
sed v6 6.00 3.23 5.97 3.70 6.00 3.87

Mean 6.12 4.50 6.10 4.42 6.11 4.39
Median 5.00 3.38 5.00 3.44 5.00 3.60

Fig. 11. Test Generation: Percentage and number of faults by subject

TABLE 11
Test Generation: Hypothesis test. Number of faults detected by the

same amount of tests

Pairwise Comparison
covrel+ OT

Mean 6.11 4.43
Median 5.00 3.43
p-value < 1.0 E-324 -
Effect size 0.6478 -

The results by subject in Figure 11 show that covrel+ is
more effective than OT at detecting faults in all the cases.
This is statistically confirmed by hypothesis testing: results
of the Friedman test and the effect size are in Table 11.

5.2.3 Answering RQ2
We can positively answer RQ2 for both test selection and
generation:
Covrel+ is significantly more effective than OT as by executing a
same number of (selected or generated) test cases, in the greatest

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 14

Fig. 12. Test Selection: Faults vs test cases (percentages)

majority of cases it detected a higher number of faults. In particu-
lar covrel+ outperformed OT in 12 subjects for test selection, and
in all subjects for test generation out of the 16 considered ones.

5.3 RQ3: Fault-detection evolution
5.3.1 Test Selection
Figure 12 shows the percentage of faults detected over those
detectable by the test suite after the execution of a given
percentage of test cases with respect to T . Similarly to RQ2,
T is taken, at each repetition of a given test scenario, as T =
min(Ncovrel+, NOT), namely as the minimum between the
number of test cases to detect all detectable faults by covrel+
and by OT, so as to have the same amount of tests for both
approaches. The Figure represents the evolution of the fault
detection ability by the two techniques in the test selection
experiment.6 On average, covrel+ performs better after about
20% of test cases – the total number of test cases being the
minimum betweenNcovrel+ andNOT . The difference between
the two approaches increases with the number of executed
test cases, getting to about 70% vs. 60% of detected faults
over the detectable ones.

We emphasize the following three cases, which relate to
the general trend in different ways:
• Case A (Figure 13a, flex v2). This case highlights that

covrel+ can be better since the beginning, not only
in later stages. The behavior is observed more often
in the flex cases (8 out of 12 pairs <subjects, coverage
criterion>) test scenarios (8 out of 12 scenarios), while
for the other subjects it is more rare – overall it
happens in 15 out of 48 test scenarios. A possible
explanation is that most faults in the flex subject
escape traditional operational testing, namely they
are more easily detectable if coverage information is
exploited. The common trend is OT being better at
the beginning and being overcome later.

• Case B (Figure 13b, grep v2). This is an example
of OT being better than covrel+. It, in general, hap-
pened for 9 out of 48 cases (pairs <subjects, coverage
criterion>), in 3 subjects – see Figure 10. In such
cases, covrel+ “wastes” test cases looking for scarcely
covered entities, but the plausible explanation for the

6. Note that, since T refers, in a given repetition, to either covrel+ or
to OT (depending on who wins the comparison), we have that when T
refers to covrel+, the number of detected faults by covrel+ is 100% and
detected faults by OT are less than 100%; when T refers to OT, the
opposite happens. Figure 12 reports the average over repetitions, thus
the percentage of detected faults is never 100%, because none of the
two approaches wins all the comparisons for a given scenario.

(a) Case A – flex v2

(b) Case B – grep v2

(c) Case C – sed v3

Fig. 13. Test Selection: Faults vs test cases (percentages) for subjects:
(a) flex v2, (b) grep v2, (c) sed v3

better performance of OT is that most faults are in
code snippets highly covered by most test cases –
namely there are not hard-to-detect faults.

• Case C (Figure 13c, sed v3). This example high-
lights the gain of covrel+ when almost all faults are
detected, i.e., in later stages. The marginal gain is
higher, confirming that covrel+ performs better when
few residual faults are left in the code.

5.3.2 Test Generation
Figure 14 shows the percentage of faults detected over all
the seeded faults after the execution of a given percentage of
test cases. It represents the evolution of the detection ability
by the two techniques. The pattern is similar to the one
observed for selection, confirming the better performance
of covrel+ in later stages of testing where few residual hard-
to-detect faults remain in the code. However, in this case
covrel+ overcomes OT after about the 70% of test cases – the
total number of test cases being 1,000 in this experiment.
These test cases make the approaches to reveal about 50%
of seeded faults; from the trend in Figure 14 and the results
of RQ1 (where more than 1,000 test cases are generally exe-
cuted), it is clear that the fault detection ability would still

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 15

Fig. 14. Test Generation: Faults vs test cases (percentages)

increase in favor of covrel+ with more test cases, basically
because of its capability to detect harder faults. This is a
feature observed also in our previous study [16], where the
performance of covrel on subsets of hard-to-detect faults was
studied for the test selection problem.

Similarly to the test selection experiments, the following
cases are highlighted:

• Case A (Figure 15a, sed v6). The example shows a
case where covrel+ is better since the beginning. It
happens only in two other cases with flex (like in
the test selection case) but always by a very small
margin. In particular, in the flex cases, results of the
two approaches are comparable and the differences
are always small since the beginning, because of the
characteristics of seeded faults which make the effort
of looking for hard to reach code less gainful.

• Case B (Figure 15b, flex v1). It is the case of OT
being comparable or even slightly better than covrel+.
This happens for 2 out of 48 cases (<subjects, coverage
criterion> pair) for the test generation case and by a
very small margin. The average of results over the
three coverage criteria per subject in Figure 11 shows
that OT never overcomes covrel+.

• Case C (Figure 15c, grep v1). This case confirms the
relevant gain that covrel+ can achieve in the last 20%
of test cases also in the test generation case, which is
almost 15% in the plotted case.

5.3.3 Answering RQ3
Concerning RQ3, the results generally confirm our expecta-
tion that covrel+ improvement in effectiveness over OT tends
to increase for more mature stages of testing.
As testing proceeds and faults are removed, the improvement
in the fault detection effectiveness of covrel+ over OT tends to
increase. In particular using covrel+ for test selection the marginal
difference becomes about 10% when executing the last 10% of the
selected test cases. Using covrel+ for test generation, OT performs
better until 70% of the test suite, and covrel+ performs better
afterwards with increasing gain.

5.4 Threats to validity
Beyond our efforts in the accurate design and execution of
experiments, results might still suffer from validity threats.

Threats to internal validity concern aspects of the study
settings that could bias the observed results. Both the
selection and generation of tests by covrel+ and by the
baseline OT technique include some random steps, and

(a) Case A – sed v6

(b) Case B – flex v1

(c) Case C – grep v1

Fig. 15. Test Generation: Faults vs test cases (percentages) for subjects:
(a) sed v6, (b) flex v1, (c) grep v1

thus without proper controlling the experiment settings,
an observed difference in the outcomes might be due to
random variability and not to actual differences in efficiency
or effectiveness. To prevent this, for each configuration we
repeated the experiment 50 and 30 times for selection and
generation, respectively, and in Section 5 we reported the
average outcomes.

For the considered subjects, we manually identified the
domain partitions used to derive the operational profiles
that in our experiments are used as proxy for true profiles.
If our partitioning is not appropriate, the observed results
might not be related to the actual reliability. Using averaged
data over multiple repetitions corresponding to as many
profiles helps to mitigate this risk, but further experiments
with true profiles may be needed to fully neutralize it.

Concerning test case selection, another threat to internal
validity might derive from the usage of the test suites
available in the SIR repository, which: i) do not achieve full
coverage, and ii) do not detect all faults in the repository.
We might have observed outcomes that are impacted by
such characteristics of the test suites, rather than by the
“treatment” under study. To mitigate this risk, we could
have manipulated the test suite, e.g., by adding more test
cases. However, the SIR repository data represent a “golden

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 16

standard” for benchmarking purposes and are used in sev-
eral similar studies. Thus, to make the study more objective
and repeatable, we preferred to undergo this potential threat
and use each subject as it is provided with all of its artifacts.

As described in Section 4.3.4, to apply covrel+ we had
to assign values to some parameters that certainly affect its
results. Although we chose the assigned values after some
tuning, we did not perform a rigorous study and other
values could have produced different results for covrel+.
Parameters of the IS algorithm, together with characteristics
of the faults distribution of subjects under test, are also
conjectured as possible cause of some results in favor of OT.
However, in order to make definitive conclusions on such
specific worst cases for covrel+, further empirical analyses
are needed. Indeed, with more accurate calibration we could
have improved our approach without affecting OT results.

Threats to construct validity concern confounding as-
pects by which what we observed is not truly due to the
supposed cause. To compare the efficiency of techniques
(RQ1), we had to establish a target reliability value. In test
selection we considered it as finding all detectable faults.
In test generation we set it as either again all detectable
faults or otherwise as the number of faults detected after
1,000 test cases by the most efficient technique. Such targets
would not be meaningful in real practice, because obviously
we do not know a priori how many faults exist. Other
criteria to compare the “treatment” (covrel+) against the
baseline might produce different outcomes. A true confir-
mation could only be achieved through comparing actual
reliability improvements either in production or under a real
operational profile: in the context of the present study we
could not perform either, but the experimentation of covrel+
within an industrial context is planned as future work.

Finally, threats to external validity concern aspects of
the study that may impact the generalizability of results.
These may suffer from low representativeness of the used
subjects and faults. As for the latter, we considered seeded
faults, and subjects with real faults might yield different
results; control for this threat can be achieved only by
conducting additional studies using subjects with real faults.
As for subjects’ representativeness, the study covered in
total 16 versions of four C programs. Even though they
belong to four subjects only, it is well known that for
those four subjects from SIR differences among versions
are quite significant, so that they could be considered as
different programs. However, generalizability demands for
additional studies with a range of diversified subjects. In
particular, the subjects we employed do not properly match
neither the size nor the type of applications for which OT is
typically performed, e.g., large-scale enterprise or web sys-
tems. Even though we made our best effort to reproduce an
operational-profile based testing environment, it remains to
be established how well covrel+ would scale on such larger
applications. As mentioned in Section 4.2, experimenting
with covrel+ requires the availability of source code, faults
and operational profile. While large subjects are available as
open source software, the main obstacle for us to evaluate
covrel+ on them has been the unavailability of faults and pro-
files. Although a realistic profile could be devised for a large
system with a huge manual effort, nevertheless its actual
representativeness would be a threat to external validity.

In the present study, we opted for the repeatability and
verifiability of controlled experiments on subjects widely
used in software engineering research, leaving experiments
with large programs to future empirical studies that we
hope to conduct with industrial partners.

6 CONCLUSIONS

When targeting product reliability, software testing is often
based on the operational profile. This is because operational
testing exploits information on typical product usage so
as to expose failures (and then remove the causing bugs)
that will occur in operation with higher probability, thus
contributing more to the delivered (un)reliability. However,
operational testing pays by its nature little attention to
failures with low probability of occurrence, thus as testing
proceeds, the reliability tends to achieve some stable level
that becomes difficult to improve further.

To overcome this limitation, we have presented covrel+,
a hybrid testing strategy that integrates white-box coverage
measures based on count spectra into black-box operational
testing. Covrel+ can be used in two problems in software
testing, namely the selection of test cases (if a test suite is
available) or the generation of test cases (if not). It works
iteratively by allocating a test budget (number of test cases)
to operational profile-based partitions of the input domain
of the program under test, and then selecting or gener-
ating test cases within partitions exploiting count spectra.
This way, as more and more failures are exposed and the
causing faults removed, the strategy progressively biases
the remaining budget toward exposing failures with lower
occurrence probability, ultimately improving reliability.

We have evaluated covrel+ through experiments with
subjects taken from a repository widely used for bench-
marking testing techniques. The results show that covrel+
generally outperforms operational testing at achieving a
given reliability target, or at achieving a higher reliability
level under the same testing budget, thanks to its greater
ability to detect hard-to-detect faults as testing proceeds.

The application of the proposed strategy requires practi-
tioners to find a trade-off between the benefits over opera-
tional testing and the additional cost for collecting coverage
information. Covrel+ is meant to be employed when the
use of count spectra (and the associated overhead) may
overcompensate the cost of executing a high number of
tests, inherent in traditional operational testing to improve
reliability beyond the saturation point.

In future we plan to assess covrel+ feasibility within a
real world industrial process. This may well reveal possible
obstacles to its adoption or also some hidden costs that we
might have overlooked. We hope that the potential gains
we observed on the assessed benchmarks will be confirmed
and that practitioners expert guidance will help to further
improve covrel+ usefulness and performance.

ACKNOWLEDGMENTS

This work has been supported by the PRIN 2015 project
“GAUSS” funded by MIUR. B. Miranda wishes to thank the
postdoctoral fellowship jointly sponsored by CAPES and
FACEPE (APQ-0826-1.03/16; BCT-0204-1.03/17). We thank
the editor and the anonymous reviewers for comments
which greatly helped to improve the paper.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 17

REFERENCES

[1] J. Musa, “Software reliability-engineered testing,” Computer,
vol. 29, no. 11, pp. 61–68, 1996.

[2] ——, “Operational profiles in software-reliability engineering,”
IEEE Softw., vol. 10, no. 2, pp. 14–32, 1993.

[3] C. Smidts, C. Mutha, M. Rodrı́guez, and M. J. Gerber, “Software
testing with an operational profile: OP definition,” ACM Comput-
ing Surveys, vol. 46, no. 3, p. 39, 2014.

[4] J. Lv, B.-B. Yin, and K.-Y. Cai, “On the asymptotic behavior of
adaptive testing strategy for software reliability assessment,” IEEE
Trans. Softw. Eng., vol. 40, no. 4, pp. 396–412, 2014.

[5] M. Lyu, Ed., Handbook of Software Reliability Engineering. Hight-
stown, NJ, USA: McGraw-Hill, 1996.

[6] P. Frankl, R. Hamlet, B. Littlewood, and L. Strigini, “Evaluating
testing methods by delivered reliability,” IEEE Trans. Softw. Eng.,
vol. 24, no. 8, pp. 586–601, 1998.

[7] K.-Y. Cai, C.-H. Jiang, H. Hu, and C.-G. Bai, “An experimental
study of adaptive testing for software reliability assessment,” J.
Syst. Softw., vol. 81, no. 8, pp. 1406–1429, 2008.

[8] M. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” ACM SIGPLAN Notices, vol. 33,
no. 7, pp. 83–90, 1998.

[9] T. Ball, P. Mataga, and M. Sagiv, “Edge profiling versus path
profiling: The showdown,” in Proc. 25th ACM Symp. on Principles
of Programming Languages. ACM, 1998, pp. 134–148.

[10] T. Ball and J. R. Larus, “Using paths to measure, explain, and
enhance program behavior,” Computer, vol. 33, no. 7, pp. 57–65,
2000.

[11] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profi-
ling for software maintenance with applications to the year 2000
problem,” ACM SIGSOFT Softw. Eng. Notes, vol. 22, no. 6, pp. 432–
449, 1997.

[12] T. Xie and D. Notkin, “Checking inside the black box: regression
testing by comparing value spectra,” IEEE Trans. Softw. Eng.,
vol. 31, no. 10, pp. 869–883, 2005.

[13] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780–1792, 2009.

[14] W. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, 2016.

[15] B. Miranda and A. Bertolino, “Does code coverage provide a good
stopping rule for operational profile based testing?” in Proc. 11th
Int. Workshop Automation of Software Test. ACM, 2016, pp. 22–28.

[16] A. Bertolino, B. Miranda, R. Pietrantuono, and S. Russo, “Adap-
tive coverage and operational profile-based testing for reliability
improvement,” in Proc. 39th Int. Conf. Softw. Eng. IEEE, 2017, pp.
541–551.

[17] L. Fiondella and S. Gokhale, “Optimal allocation of testing effort
considering software architecture,” IEEE Trans. Rel., vol. 61, no. 2,
pp. 580–589, 2012.

[18] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: a survey,” Softw. Testing, Verification Rel.,
vol. 22, no. 2, pp. 67–120, 2012.

[19] S. Anand et al.; A. Bertolino, J. Li, and H. Zhu (Orchestrators and
Editors), “An orchestrated survey on automated software test case
generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, 2013.

[20] L. Inozemtseva and R. Holmes, “Coverage is not strongly corre-
lated with test suite effectiveness,” in Proc. 36th Int. Conf. Softw.
Eng. ACM, 2014, pp. 435–445.

[21] P. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite
effectiveness: Empirical study with real bugs in large systems,” in
Proc. 22nd Int. Conf. Software Analysis, Evolution and Reengineering.
IEEE, 2015, pp. 560–564.

[22] F. Del Frate, P. Garg, A. Mathur, and A. Pasquini, “On the correla-
tion between code coverage and software reliability,” in Proc. 6th
Int. Symp. Softw. Rel. Eng. IEEE, 1995, pp. 124–132.

[23] P. Frankl and Y. Deng, “Comparison of delivered reliability of
branch, data flow and operational testing: A case study,” ACM
SIGSOFT Softw. Eng. Notes, vol. 25, no. 5, pp. 124–134, 2000.

[24] D. Alrmuny, “A comparative study of test coverage-based soft-
ware reliability growth models,” in Proc. 11th Int. Conf. on Informa-
tion Technology: New Generations. IEEE, 2014, pp. 255–259.

[25] M.-H. Chen, M. Lyu, and W. Wong, “Effect of code coverage on
software reliability measurement,” IEEE Trans. Rel., vol. 50, no. 2,
pp. 165–170, 2001.

[26] D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test
cases,” in Proc. 14th Int. Symp. Softw. Rel. Eng. IEEE, 2003, pp.
442–453.

[27] B. Miranda and A. Bertolino, “Scope-aided test prioritization,
selection and minimization for software reuse,” J. Syst. Softw., vol.
131, pp. 528–549, 2017.

[28] S. Wang, Y. Wu, M. Lu, and H. Li, “Software reliability accelerated
testing method based on test coverage,” in Proc. Annual Reliability
and Maintainability Symp., 2011, pp. 1–7.

[29] B. Miranda and A. Bertolino, “An assessment of operational cov-
erage as both an adequacy and a selection criterion for operational
profile based testing,” Software Quality Journal, 2017.

[30] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. Operating Systems Design and
Implementation. USENIX Association, 2008, pp. 209–224.

[31] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite gener-
ation for object-oriented software,” in Proc. 19th ACM SIGSOFT
Symp. and 13th European Conf. on Foundations of Softw. Eng. ACM,
2011, pp. 416–419.

[32] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proc. 29th Int. Conf. Softw.
Eng. IEEE, 2007, pp. 75–84.

[33] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
pp. 60–66, 2010.

[34] P. Thévenod-Fosse and H. Waeselynck, “An investigation of statis-
tical software testing,” Softw. Testing, Verification Rel., vol. 1, no. 2,
pp. 5–26, 1991.

[35] M. Petit and A. Gotlieb, “Uniform selection of feasible paths as
a stochastic constraint problem,” in Proc. 7th Int. Conf. on Quality
Software. IEEE, 2007, pp. 280–285.

[36] S. Poulding and J. A. Clark, “Efficient software verification: Sta-
tistical testing using automated search,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, pp. 763–777, 2010.

[37] C. Bishop, Pattern Recognition and Machine Learning, ser. Informa-
tion Science and Statistics. New York, NY, USA: Springer, 2006.

[38] D. Cotroneo, R. Pietrantuono, and S. Russo, “RELAI testing: a
technique to assess and improve software reliability,” IEEE Trans.
Softw. Eng., vol. 42, no. 5, pp. 452–475, 2016.

[39] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” Int. J. Robotics Res., vol. 22, no. 12, pp. 985–1003, 2003.

[40] M. Sridharan and A. Namin, “Prioritizing mutation operators
based on importance sampling,” in Proc. 21st Int. Symp. Softw. Rel.
Eng. IEEE, 2010, pp. 378–387.

[41] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based
test suite generation with dynamic symbolic execution,” in Proc.
24th Int. Symp. Softw. Rel. Eng. IEEE, 2013, pp. 360–369.

[42] M. L. Soffa, K. R. Walcott, and J. Mars, “Exploiting hardware
advances for software testing and debugging (NIER track),” in
Proc. 33rd Int. Conf. Softw. Eng. ACM, 2011, pp. 888–891.

[43] K. Herzig, “Testing and Continuous Integration at Scale: Limits,
Costs, and Expectations,” in Proc. 11th Int. Workshop on Search-
Based Software Testing. ACM, 2018, pp. 38–38.

[44] L. Strigini and B. Littlewood, “Guidelines for statistical testing,”
ESA/ESTEC, Tech. Rep. PASCON/WO6-CCN2/TN12, 1997.

[45] A. Pasquini, A. Crespo, and P. Matrella, “Sensitivity of reliability-
growth models to operational profile errors vs. testing accuracy,”
IEEE Trans. Rel., vol. 45, no. 4, pp. 531–540, 1996.

[46] C. Kallepalli and J. Tian, “Measuring and modeling usage and
reliability for statistical Web testing,” IEEE Trans. Softw. Eng.,
vol. 27, no. 11, pp. 1023–1036, 2001.

[47] P. Tonella and F. Ricca, “Statistical Testing of Web Applications,” J.
Softw. Maint. Evol., vol. 16, no. 1-2, pp. 103–127, 2004.

[48] J. Hao and E. Mendes, “Usage-based Statistical Testing of Web
Applications,” in Proc. 6th Int. Conf. on Web Engineering. ACM,
2006, pp. 17–24.

[49] T. J. Ostrand and M. J. Balcer, “The category-partition method
for specifying and generating functional tests,” Commun. ACM,
vol. 31, no. 6, pp. 676–686, 1988.

[50] A. Vargha and H. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw and Wong,”
J. Educational Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[51] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Testing, Verification Rel., vol. 24, no. 3, pp. 219–250, 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 18

Antonia Bertolino is Research Director of the
National Research Council at ISTI, Pisa, Italy.
Her research covers software engineering and
dependability, with particular interest in software
testing methods and tools. She serves as an
area editor for the Elsevier Journal of Systems
and Software, and as an associate editor of ACM
Trans. on Software Engineering and Methodol-
ogy, Springer Empirical Software Engineering
Journal, and Wiley Journal of Software: Evolu-
tion and Process. She served as the General

Chair of the ACM/IEEE Conference ICSE2015 in Florence, Italy.

Breno Miranda is postdoctoral researcher at the
Federal University of Pernambuco, Brazil, where
he earned the Master degree in Computer Sci-
ence in 2011. He received the PhD in Computer
Science from University of Pisa in 2016. Cur-
rently, he collaborates with the Software Engi-
neering and Dependable Computing laboratory
at the Italian National Research Council (CNR)
in Pisa. His research interests include software
testing, recommender systems, and mining soft-
ware repositories.

Roberto Pietrantuono is Assistant Professor at
Federico II University of Naples, Italy, where he
got his PhD degree in Computer and Automation
Engineering in 2009. His research interests are
in the area of software reliability engineering,
particularly in the software verification of critical
systems, software testing, and software reliabil-
ity analysis. He is Senior Member of the IEEE.

Stefano Russo is Professor of Computer Engi-
neering at Federico II University of Naples, Italy,
where he teaches Software Engineering and
Distributed Systems, and leads the Dependable
Systems and Software Engineering Research
Team (DESSERT). He co-authored over 160 pa-
pers in the areas of software testing, software
aging, middleware technologies, mobile comput-
ing. He is Associate Editor of IEEE Trans. on
Services Computing, and Senior Member of the
IEEE.

	Introduction
	Related Work
	The Covrel+ Strategy
	Assumptions
	Strategy overview
	Allocation of test cases to partitions
	Selection of test cases within a partition
	Generation of test cases within a partition
	Overhead analysis
	Importance Sampling overhead
	Similarity computation overhead
	Trade-off analysis

	Evaluation
	Objective
	Subjects
	Experimental methodology
	Compared techniques
	Metrics
	Experiments
	Experimental procedure and parameter values

	Results
	RQ1: Testing efficiency
	Test Selection
	Test Generation
	Answering RQ1

	RQ2: Fault detection
	Test Selection
	Test Generation
	Answering RQ2

	RQ3: Fault-detection evolution
	Test Selection
	Test Generation
	Answering RQ3

	Threats to validity

	Conclusions
	References
	Biographies
	Antonia Bertolino
	Breno Miranda
	Roberto Pietrantuono
	Stefano Russo

