
Noname manuscript No.
(will be inserted by the editor)

Hybrid is better: Why and how test coverage and software
reliability can benefit each other

Antonia Bertolino · Breno Miranda ·
Roberto Pietrantuono · Stefano Russo

Received: date / Accepted: date

Abstract Functional, structural and operational testing are three broad categories
of software testing methods driven by the product functionalities, the way it is
implemented, and the way it is expected to be used, respectively. A large body of
the software testing literature is devoted to evaluate and compare test techniques
in these categories. Although it appears reasonable to devise hybrid methods to
merge their different strengths - because different techniques may complement
each other by targeting different types of faults and/or using different artifacts -
we still miss clear guidelines on how to best combine them.

We discuss differences and limitations of two popular testing approaches, name-
ly coverage-driven and operational-profile testing, belonging to structural and op-
erational testing, respectively. We show why and how test coverage and operational
profile can cross-fertilize each other, improving the effectiveness of structural test-
ing or, conversely, the product reliability achievable by operational testing.

Keywords Software testing · Reliability · Structural testing · Operational testing

1 Introduction

Testing is an essential part of the software development and maintenance processes.
It consists of the dynamic assessment of software behavior on a finite sample
of executions. To make testing systematic and to measure progress while tests
are executed, some strategy is necessary. It will help testers to keep costs within
reasonable bounds and to identify those test cases deemed the most effective.

Antonia Bertolino
ISTI - CNR, Pisa, Italy
E-mail: antonia.bertolino@isti.cnr.it

Breno Miranda
Federal University of Pernambuco, Recife, Brazil
E-mail: bafm@cin.ufpe.br

Roberto Pietrantuono, Stefano Russo
Università degli Studi di Napoli Federico II, Napoli, Italy
E-mail: {roberto.pietrantuono,stefano.russo}@unina.it

2 Bertolino, Miranda, Pietrantuono, Russo

Fig. 1 Test strategies and their potential relations

Broadly speaking, systematic testing strategies are driven by three major as-
pects of the software under test (SUT): i) what it is expected to do, ii) how it is
implemented, and iii) how it will be used. Such three aspects correspond to three
major categories of software testing techniques, namely functional, structural and
operational testing (Figure 1).

Each category relies on different assumptions and artifacts, and a broad variety
of techniques and tools for each one has been proposed.

Since the early years of software testing discipline, researchers have conducted
analytical and empirical studies to evaluate and compare the effectiveness of the
different test techniques, in search for the most cost-effective approach.

From such studies we have learned that testing techniques may suffer from
saturation effects and from various other limitations, and that there exist no one
technique which best suits all circumstances. Different test techniques target dif-
ferent types of faults and thus may complement each other. For this reason, it is
reasonable to invest resources by properly combining different techniques, rather
than employing all the testing budget in only one selected strategy.

However, there are not many proposals for hybrid techniques merging the re-
spective strengths of functional, structural and operational testing (examples are
[7,8,10]), and no widely accepted guidelines on how different methods could be
combined into one effective strategy are available. Further research is needed to
understand how such strategies could be combined, depending on the testing pur-
pose and the available artifacts.

As a step forward in this direction, we discuss the differences and respective
limitations of two popular testing approaches: techniques driven by code coverage
information, and techniques driven by the operational profile. Traditionally these
two test approaches are adopted to address different purposes: coverage-driven
testing aims at finding as many faults as possible, whereas operational-profile
driven testing aims at improving software reliability. So, apparently, they seem to

Test coverage and software reliability 3

belong to two worlds apart, and in fact there is little overlap between research
progresses. However, we have found that on the one side coverage criteria can be
made more effective if not all entities are considered equal, but software usage in
operation is referred to assign them different weights. On the other side, software
reliability testing can be made more effective as well if coverage information is
considered alongside the operational profile in selecting the test cases.

Our reported results provide only an incomplete vision of several other po-
tential “hybridizations”. For instance, we have not considered yet the usage of
functional strategies where software specifications or models are available. In pre-
senting how coverage criteria and reliability improvement can benefit each other
our contribution is one step towards unleashing the potential of many more useful
combination of techniques.

The chapter is structured as follows. Section 2 describes the main concepts of
test coverage and related measures in debug testing. Section 3 presents the rationale
behind software reliability testing techniques. Section 4 discusses the relationship
between coverage and reliability, and how these can benefit each other. Section 5
describes related work on combining white-box and operational testing. Section 6
concludes the chapter.

2 On test coverage measures

Software testing can pursue different goals. Along the development process, testing
may aim at detecting as many faults as possible so that these can be removed before
the software goes in production. For this reason, this type of testing is referred to
in the literature as debug testing [16].

Measures of effectiveness of debug testing techniques are related with its faults
finding capability. For example, a test technique would be evaluated more effective
than another if it detects the first fault by executing a lower number of test cases,
or otherwise if by executing an equal number of test cases the former finds a higher
number of faults than the latter.

Along such line of reasoning, measuring the coverage of which and how many
program elements are exercised during test execution is seen by many as an ap-
pealing proxy for assessing fault finding effectiveness. The intuition is that if a
fault resides in a part of code that is never tested, such fault would never be ac-
tivated and hence would survive testing, probably remaining undetected until the
final user will eventually trigger it. In his seminal and highly-referenced book on
“Software Testing Techniques” [3], Beizer defined leaving parts of code untested
as “stupid, shortsighted and irresponsible”.

Depending on which elements of code are targeted, in the years a broad variety
of test coverage criteria have been proposed [17,47]. All of them basically share the
following scheme: an element of the program source code is identified as the type
of entity to be covered. This element can be as basic as every statement or every
branch of the program control flow, or become more sophisticated, such as for
example every association between the definition of a variable and all its potential
usages, for every variable in the program (all definition-use associations [17]). Then
the source code of the SUT is parsed and instrumented, so that the coverage of
the targeted elements can be monitored during testing. While test proceeds, a
quantitative assessment of the thoroughness of testing is provided by the ratio

4 Bertolino, Miranda, Pietrantuono, Russo

between the number of entities that have been already covered and the cardinality
of the whole set of entities, expressed by the percentage:

Test coverage =
of covered entities

of available entities
· 100(%). (1)

The underlying idea of coverage criteria is that until there remain entities that
have not been exercised, the testing cannot be deemed complete, and more test
cases have to be executed that can increase the above ratio. Therefore, coverage
measures provide both a practical stopping rule (when a satisfying coverage is
achieved), and a guide for the selection of additional test cases (i.e., those covering
yet uncovered entities).

There exist no proven direct relation, for any of the existing criteria, that
when complete test coverage is achieved, then the SUT can be guaranteed to be
defect-free. Since testing is essentially a sampling from a practically infinite set of
executions [4], it is obvious to everyone that no finite test campaign can ensure
correctness. Indeed, the most famous quotation about software testing is probably
Dijkstra’s aphorism that software testing can only show the presence of bugs, but

never their absence [13]. In search for more effective testing strategies, the realistic
goal is not to remove all faults, but rather to maximize the likelihood of revealing
potential failures.

Coverage criteria can be considered as belonging to partition testing strategies
that divide the input domain into equivalence classes (even though they generally
create overlapping subdomains and not true partitions), and ensure to pick repre-
sentative test cases (at least one) from each class. Theoretical analyses of partition
testing strategies [44] have early shown that their effectiveness depends on how
and where the failure-causing inputs are located, which is of course beyond testers’
control and knowledge. The root of the problem is what Roper called the “missing

link”: we still cannot (will we ever be able to?) establish a logical or practical
“link between the adequacy criteria and attributes of the program under test such as

its reliability or number of faults” [37]. Thus, the only way to establish whether a
relation exists between coverage of some entity type and fault finding effectiveness
is through empirical studies, and in fact a series of such studies has been and
continues to be undertaken by several researchers, e.g., [43,23], but no definitive
answers are available yet.

More properly, we must understand that what coverage measures provide us is
an assessment of a test suite thoroughness. At the same time, some researchers have
raised concerns against misusing coverage as the main goal of testing [18,27]. In
such light, additional test cases that do not contribute to increase coverage would
be considered “redundant” and not useful, however such test cases could indeed
be able to catch still undetected faults. We should also never forget the cost in
terms of time consumed in monitoring coverage, which makes white-box testing
impractical on large scales [20].

In conclusion, coverage criteria provide a very useful and practical means to-
wards systematic thorough testing. However, “100% coverage should always be the

result of good testing but it makes few sense as a goal in itself ”[36].

Test coverage and software reliability 5

3 On software reliability

Testing to find as many faults as possible may seem a good strategy. However,
in real-world production we have to face stringent time and budget constraints,
which make Herzig note that “There’s never enough time to do all the testing you

want” [21]. Henceforth, this strategy could not be the best choice.

The point is that debug testing targets all faults indiscriminately, without
considering the important difference between a fault (the cause) and a failure (its
manifestation), nor the likelihood and potential impacts of the failure originating
from a given fault. Indeed, not all faults are created equal. An early seminal study
by Adams [1] showed, for example, that the 30% of the faults found in the systems
he studied (at the time in IBM production) would each show itself less then once
every 5,000 years of operational use. Clearly any testing effort spent to find these
“tiny” faults would not be well employed.

This brings us to the fundamental concept of software reliability, which is “the
probability of failure-free operation for a specified period of time in a specified
environment” [24]. When the SUT is not safety-critical, testing to improve software
reliability may be a more convenient aim than debug testing: in other words, we
acknowledge that we would never be able to find all faults, and aim at focusing our
efforts towards those ones whose removal mostly contributes to increase reliability.

Pioneered in the 70’s by Musa [30], software reliability testing is based on the
notion of the operational profile [31,40], which provides a quantitative characteriza-
tion of how a system will be used in the field. In operational profile-based testing
(OP testing in the following), the SUT is thus tested by trying to reproduce how its
final users will exercise it, so that the failures are detected with the same likelihood
they would be experimented by those users in operation.

The operational profile is normally built by associating the points in the input
domain D with values representing the probability to be invoked in operation.
Making such association is a difficult task; the best case is when historical data are
available, otherwise this can be done by domain experts. Usually, D is divided into
M subdomains D1, . . . , Dm, so that the inputs within a partition are estimated as
having the same probability of occurrence in operation. The operational profile is
then defined by a probability distribution over the partitions Di: a value pi denotes
the probability that in operation an input is selected from Di, with

∑M
i=1 pi = 1.

The software reliability, R, can then be defined [16] as:

R = 1 −
∑
t∈F

pt (2)

where F is the (unknown) set of failure-causing inputs and pt is the expected
probability of occurrence in operation of input t.

OP testing has been shown to be an effective strategy, both in theory [16] and
in practice, e.g., [42,14]. With this strategy, when the test is stopped (for instance
because of imperative schedule constraints) and the software released, testers are
ensured that the most-frequently invoked operations have received the greatest
attention, so that the delivered reliability is at the maximum level achievable
under the given test resources [26].

However, OP testing faces difficult challenges that may hinder its broad take-
up: first, an operational profile may not be readily available and its derivation

6 Bertolino, Miranda, Pietrantuono, Russo

can be costly and complex [22]; second, as more frequent failures are detected and
removed, the application of OP testing may progressively lose efficacy.

The latter problem is known as the saturation effect [22]. Actually, it is not a
prerogative of OP testing, but could affect any test technique. To counteract satu-
ration, research has shown that it is convenient to always consider a combination of
different testing strategies, which target different types of faults and can together
achieve higher effectiveness than the individual application of the most effective
technique [25]. Considering specifically reliability improvement, the authors of [11]
suggest that the combination of techniques should aim at exposing failures with
high occurrence probability, but also as many failure regions as possible.1

4 How are coverage and reliability related?

4.1 Ways of combining coverage measures and operational profile

In the previous sections we have overviewed two widely used testing strategies,
which employ different techniques and pursue different goals. Indeed, coverage
testing and OP testing have formed two separate threads of the software testing
literature, with little overlaps (see Section 5).

In recent work, we have addressed the question whether and how coverage
and OP testing techniques could mutually benefit each other towards the goal
of increasing software testing effectiveness for reliability improvement. Indeed, we
have achieved encouraging results in either directions.

On the one hand, we have found that coverage testing can be made more cost-
effective if not all entities are indiscriminately targeted, but a subset of entities
is selected based on their relevance for the final user. In other terms, we have
somehow embedded a notion of operational profile within the definition of cov-
erage measures. This research has been presented in [29], and is summarized in
Section 4.2.

On the other hand, we have found that using coverage information can help
prevent the saturation effect of OP testing and achieve higher effectiveness in
reliability improvement. In other terms, to further improve reliability beyond a
certain point, within a selected input subdomain the testing should target those
entities that are the most rarely covered. This research has been presented in [5],
and is summarized in Section 4.3.

4.2 Mimicking operational profile by means of coverage count spectrum

The leading idea of OP testing is exercising the SUT in similar way to how their
final users would do. OP testing is inherently a black-box technique, since it disre-
gards the SUT internal structure. Conversely, in coverage testing, a tester tries to
exercise the SUT thoroughly without leaving parts untested, no matter of whether
and how final users will exercise them. One attractive feature of coverage testing is
the availability of a simple and intuitive stopping rule, which is provided, as said,
by the coverage measure. On its side, OP testing lacks such a straightforward
adequacy criterion.

1 A failure region is the set of failure points eliminated by a program change [16].

Test coverage and software reliability 7

In traditional coverage testing, while testing proceeds each entity is marked as
covered or not covered, i.e., from monitoring code coverage testers derive the so-
called hit spectrum. In general, a program spectrum [19] characterizes a program’s
behavior by recording the set of entities that are exercised as it executes. The
hit spectrum, in particular, records if an entity is covered (“hit”) or not. When
used in operation, the different program entities will be covered with different
frequencies. Some entities will never be exercised, others will be accessed only few
times, and others will be covered very frequently. The hit spectrum does not give
any information about this varied usage of program entities, beyond revealing that
some entities have never been exercised and hence are probably “out-of-scope”.
Conversely, the count spectrum records how many times an entity is exercised: by
referring during coverage testing to the count spectrum rather than to the normally
used hit spectrum, we keep track of the frequency with which each entity is covered.

As an example, Table 1 displays the branch-hit and branch-count spectra of two
test cases TC1 and TC2 exercised during a test campaign. Both TC1 and TC2 cover
the same set of branches, thus their hit spectra are identical. If we look at their
count spectra, we can notice that TC1 and TC2 exercise the SUT quite differently.

Table 1 An example of branch-hit and branch-count spectra

Branch-hit
spectrum

Branch-count
spectrum

Branch ID TC1 TC2 TC1 TC2

b1 1 1 5 23
b2 0 0 0 0
b3 1 1 1 1
b4 0 0 0 0
b5 1 1 85 394
b6 1 1 9 42
b7 0 0 0 0
b8 1 1 28 129
b9 0 0 0 0

Hence, the count spectrum could be used to obtain an approximate represen-
tation of how the final users behaviour impacts on the SUT code. Such intuition
inspired us the idea of “operational coverage”: using the count spectrum, it mea-
sures code coverage taking into account whether and how the entities are relevant
with respect to a users operational profile.

In principle, the notion can be applied to any existing coverage criterion. In
previous work [28,29], we studied operational coverage for three types of entities,
namely statements, branches and functions.

To measure operational coverage, we developed the following method. First,
program entities are classified into different importance groups based on the count
spectrum. Consider, for instance, three importance groups, denominated high,
medium, and low. To cluster entities into these three groups, the list of entities
is ordered according to their usage frequency; the first 1/3 entities are assigned to
the high frequency group; the second 1/3 entities to the medium frequency group;
and the last 1/3 entities to the low frequency group. Of course, different grouping
schemes could be adopted.

8 Bertolino, Miranda, Pietrantuono, Russo

Then, different weights are assigned to the importance groups to reflect the
operational profile. We gave the highest weight to entities in the high group, and
the lowest weight to the low group. Entities that are never covered are assign a
zero weight (they are out-of-scope).

Finally, the operational coverage is computed as the weighted arithmetic mean
of the rate of covered entities according to the Equation:

Operational coverage =

3∑
i=1

wi · xi

3∑
i=1

wi

· 100(%) (3)

where: xi is the rate of covered entities from group i; wi is the weight assigned to
group i. Note that reducing the above formula to only one group we re-obtain the
formula of traditional coverage as per Equation 1.

Operational coverage can be used both as an adequacy criterion and as a selec-
tion criterion. In the former case, we use operational coverage for deciding when to
stop testing: intuitively, the coverage measure that we achieve during testing gives
a weighted estimation of how many of the entities that are more relevant for the
final users have been covered. The weights allow testers to take into account if the
not yet covered entities may have a large impact on the delivered reliability. For
the same reason, using operational coverage in test selection provides a criterion
to prioritize the next test cases to be executed.

In [29], we performed some empirical studies to assess operational coverage and
the results confirmed the above intuition. Precisely, operational coverage is better
correlated than traditional coverage with the probability that the next test case
will not fail while performing OP testing. Regarding test case selection, operational
coverage on average outperforms traditional coverage in terms of test suite size and
fault detection capability.

4.3 Boosting reliability improvement by targeting the lowest covered entities

As described in Section 3, in OP testing the test cases are selected from the oper-
ational profile, aiming at finding the failure-causing inputs that have the highest
likelihood of being invoked in operation. However, as we already observed, due
to the saturation effect [22], after some testing campaign in which the most fre-
quent faults have been revealed and removed, continuing to perform OP testing
will progressively lose its efficacy.

Saturation is a well-known problem, and advanced approaches have been pro-
posed to counteract it. For example, Cotroneo and coauthors [11] have recently
developed the RELAI technique that uses an adaptive scheme for redefining the
operational profile, dynamically learning from the test outcomes. Indeed, to con-
tinue improving reliability, at a certain point it becomes necessary to find a proper
strategy to move farther from the most frequently exercised operations and start
“digging” in less frequent zones of the input domain.

In line with [25] that suggests to combine different testing approaches, we
explored whether considering code coverage as an additional information to the

Test coverage and software reliability 9

operational profile helps achieving higher reliability. The intuition is that coverage-
driven selection can point to parts of the program that have not been exercised
by the operational profile driven test cases and that may contain faults. However,
even so, we would like to take into account the user’s profile, because the aim
remains to improve reliability.

Along such line of reasoning, we have recently developed a hybrid approach
that relies on both operational profile and coverage information, the latter specif-
ically considering the above introduced count spectrum [5]. The approach, called
covrel, works in iterations: each iteration dynamically uses the test outcomes from
previous iteration to re-arrange the operational profile. This adaptation is based
on an inference method called Importance Sampling (IS) method [6], which was
previously used in the already cited work [11].

Each iteration consists of two steps. First, a partition of the input domain into
subdomains Di is dynamically redefined. In line with traditional OP testing (see
Section 3), this step allows to assign probability values to inputs. More precisely,
at each iteration the output of the first step is the number of test cases to execute
from within each partition (for more details we refer the reader to [5]). In the
second step, among all the inputs within a partition (i.e., having a same occurrence
probability), covrel selects those that exercise the least covered entities according
to the count spectrum. This is the novel aspect of covrel, in comparison with the
more usual approach of selecting such test cases in random way. Of course, to do
so covrel assumes that the SUT is instrumented and test traces are tracked, as in
any white-box testing strategy.

Note that similarly to operational coverage (Section 4.2), the covrel strategy de-
rives the count spectrum and classifies the entities into three different importance
groups: high, medium, and low. However, differently from operational coverage, in
covrel we are interested in covering the most “hidden” entities. Therefore, we as-
sign the weights for the importance groups prioritizing the low group. Then, for
each partition, we select the test cases with the highest ranks. The two steps are
repeated until the available budget of test cases exhausts.

In [5] we have evaluated covrel against traditional OP testing with controlled
experiments. The results showed that covrel can outperform OP testing and achieve
faster a given reliability value. The performance of covrel is better considering high
values of reliability, confirming the intuition that the extra costs it requires for
coverage measurement do pay when a high value of reliability is required.

5 Related work

While a huge literature exists about the topics of coverage testing and OP testing
considered individually, here we are concerned with the interplay between the two
worlds. As anticipated in Section 4.1, there have been only few overlaps between
the two research communities. These overlaps have interested mostly the investi-
gation of the effectiveness of coverage testing in terms of reliability improvement
instead of fault finding, as, e.g., in [12,15] and the usage of coverage information
for refining software reliability growth models, as surveyed in [2].

Related approaches of interest are those exploring some direct or indirect
knowledge derived from the program code (i.e., white-box information) or from
the development process in order to either improve or assess reliability.

10 Bertolino, Miranda, Pietrantuono, Russo

Smidts et al. consider operational testing as a means to corroborate (rather
than to assess) an already assessed reliability, by complementing evidences gained
in previous phases of the development process (e.g., by white-box testing) [39].
This is a problem particularly felt in ultra-reliable systems, where no failures are
observed during testing, making operational testing not able, by itself, to give
confidence about reliability.

Neil et al. propose to use Bayesian networks (BN) as a means to combine
evidences: in their example, many pieces of information coming from development-
time activities, including code coverage and operational profile, are used together
with test results as evidence to assess reliability [32]. A Bayesian approach is also
proposed by Singh et al., who use reliability prediction obtained from UML models
as the prior belief for reliability assessment in system operational testing [38].

In a PhD proposal by Omri [33], white-box information is used in combination
with the operational profile, again with the aim of estimating reliability; the author
applies symbolic execution combined with stratified sampling to derive the most
favorable partitions for minimizing the variance of the estimate. We too have
conjectured the usage of white-box information such as coverage as a means to
modify the belief about the partitions’ failure proneness, with the aim of driving
the profile-based test generation process [34,35].

All these approaches try to augment the profile-based testing with other pieces
of information so as to expose more reliability-impacting failing inputs. None,
however, directly embeds code coverage information into the test selection or gen-
eration process like covrel [5].

Our operational coverage and covrel approaches rely on the coverage count
spectrum. The idea of using program spectra to help software validation tasks is
not new: program spectra have been used, among others, for fault localization [45]
and regression testing [46]. To the best of our knowledge, however, we are the first
to compute coverage measures based on program count spectra, for the purpose
of reflecting the importance of program entities.

One more feature of our approaches is adaptivity. Many authors have exploited
adaptivity for improving testing. A noticeable example is the well-known family
of Adaptive Random Testing (ART) techniques by Chen et al. [8], in which the
intuition is to improve random testing by using test results online in order to evenly
distribute test cases across the input domain. ART is aimed at debug testing; as
such, it does not explicitly target reliability improvement and/or assessment like
OP testing. Adaptive testing, proposed by Cai et al., uses the operational profile
for reliability assessment and foresees adaptation (via controlled Markov chains)
in the assignment of test cases to partitions [7]. Both these approaches use neither
coverage nor any other development-time information to boost reliability.

To implement adaptivity, we used Importance Sampling, a statistical sampling
method to approximate the true distribution of a variable of interest [6]. We used
it to approximate the unknown distribution of the number of test cases for each
partition to maximize delivered reliability. While Importance Sampling is success-
fully used in many fields, its usage for testing is limited to few papers: Sridharan
and Namin used it to prioritize mutation operators in mutation testing [41]; we
ourselves used it for test techniques selection [9].

Test coverage and software reliability 11

6 Conclusions

A large part of software testing literature evaluates the effectiveness of testing
techniques based on the faults found, irrespectively of the potential likelihood and
impact of such faults. In this way, among several test techniques the one that finds
the highest number of faults would be considered the most effective, but this might
not correspond to reality. If the faults found are never experienced in practice, the
test technique would not be very effective.

In this work, considering that test effectiveness should be evaluated based
on the delivered reliability [16], we have discussed some results from combining
two usually separated test strategies: white-box coverage criteria and black-box
operational testing. The former exploits knowledge of program internals, the latter
of program usage.

We have overviewed two approaches that mix the two strategies following two
different intuitions. In operational coverage, we have augmented coverage testing
criteria with a notion of user’s relevance. The intuition is that if an entity is rarely
or never used in operation, coverage of this entity should contribute to coverage
measure with lower weight. On the contrary, entities that, based on operational
profile, are frequently covered, should be given higher weights. In covrel, we have
augmented OP testing with coverage information, targetting the selection of test
cases within a domain partition towards those entities that remain hidden, i.e.
yielding a lower coverage count. The intuition here is that monitoring coverage
along OP testing may help increasing faster the reliability.

The approaches we have developed are just a first attempt to implement what
seems a very attractive perspective: by combining information from coverage and
operational profile we can achieve a stronger testing technique that yields both a
practical stopping rule and mitigates the inherent saturation problem.

Having opened a novel research thread, we are also aware that a myriad of other
potential techniques could be devised, only limited by creativity. For example, we
have considered coverage of only three more common entities, statement, branch
and function. Other entities could have been considered. Moreover, as we hinted
in the introduction, we could consider a model of software behaviour and different
combinations also involving functional testing strategies.

Acknowledgements This work has been partially supported by the PRIN 2015 project
“GAUSS” funded by MIUR. B. Miranda wishes to thank the postdoctoral fellowship jointly
sponsored by CAPES and FACEPE (APQ-0826-1.03/16; BCT-0204-1.03/17).

References

1. Adams, E.N.: Optimizing Preventive Service of Software Products. IBM Journal of Re-
search and Development 28(1), 2–14 (1984)

2. Alrmuny, D.: A Comparative Study of Test Coverage-Based Software Reliability Growth
Models. In: Proc. 11th Int. Conference on Information Technology: New Generations,
ITNG, pp. 255–259. IEEE (2014)

3. Beizer, B.: Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York,
NY, USA (1990)

4. Bertolino, A.: Software testing. In: P. Bourque, R. Dupuis (eds.) Software Engineering
Body of Knowledge (SWEBOK), chap. 5. IEEE Computer Society (2001)

12 Bertolino, Miranda, Pietrantuono, Russo

5. Bertolino, A., Miranda, B., Pietrantuono, R., Russo, S.: Adaptive coverage and operational
profile-based testing for reliability improvement. In: Proc. 39th Int. Conference on Software
Engineering, ICSE, pp. 541–551. IEEE (2017)

6. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer-Verlag, New York, NY, USA (2006)

7. Cai, K.Y., Li, Y.C., Liu, K.: Optimal and adaptive testing for software reliability assess-
ment. Information and Software Technology 46(15), 989–1000 (2004)

8. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Proc. 9th Asian Com-
puting Science Conference, Lecture Notes in Computer Science, vol. 3321, pp. 320–329.
Springer (2004)

9. Cotroneo, D., Pietrantuono, R., Russo, S.: A Learning-based Method for Combining Test-
ing Techniques. In: Proc. 35th Int. Conference on Software Engineering (ICSE), pp. 142–
151. IEEE (2013)

10. Cotroneo, D., Pietrantuono, R., Russo, S.: Combining Operational and Debug Testing for
Improving Reliability. IEEE Transactions on Reliability 62(2), 408–423 (2013)

11. Cotroneo, D., Pietrantuono, R., Russo, S.: RELAI Testing: A Technique to Assess and
Improve Software Reliability. IEEE Transactions on Software Engineering 42(5), 452–475
(2016)

12. Del Frate, F., Garg, P., Mathur, A., Pasquini, A.: On the correlation between code coverage
and software reliability. In: Proc. 6th Int. Symposium on Software Reliability Engineering,
ISSRE, pp. 124–132. IEEE (1995)

13. Dijkstra, E.W.: Structured programming. In: J. N.Buxton, B. Randell (eds.) Software
Engineering Techniques, NATO Science Committee (1970)

14. Donnelly, M., Everett, B., Musa, J., Wilson, G., Nikora, A.: Best Current Practice of SRE.
In: Handbook of software reliability engineering, chap. 6, pp. 219–254. IEEE Computer
Society Press and McGraw-Hill (1996)

15. Frankl, P.G., Deng, Y.: Comparison of delivered reliability of branch, data flow and oper-
ational testing: A case study. ACM SIGSOFT Software Engineering Notes 25(5), 124–134
(2000)

16. Frankl, P.G., Hamlet, R.G., Littlewood, B., Strigini, L.: Evaluating testing methods by
delivered reliability. IEEE Transactions on Software Engineering 24(8), 586–601 (1998)

17. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria. IEEE
Transactions on Software Engineering 14(10), 1483–1498 (1988)

18. Gay, G., Staats, M., Whalen, M., Heimdahl, M.P.: The risks of coverage-directed test case
generation. IEEE Transactions on Software Engineering 41(8), 803–819 (2015)

19. Harrold, M.J., Rothermel, G., Wu, R., Yi, L.: An Empirical Investigation of Program
Spectra. In: Proc. of the 1998 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE, pp. 83–90. ACM (1998)

20. Herzig, K.: Let’s assume we had to pay for testing. Keynote at the 11th IEEE/ACM
International Workshop on Automation of Software Test (2016). URL https://www.
kim-herzig.de/2016/06/28/keynote-ast-2016/

21. Herzig, K.: There’s never enough time to do all the testing you want. In: Perspectives on
Data Science for Software Engineering, pp. 91–95. Elsevier (2016)

22. Horgan, J., Mathur, A.: Software testing and reliability. The Handbook of Software Reli-
ability Engineering pp. 531–565 (1996)

23. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite effective-
ness. In: Proc. 36th Int. Conference on Software Engineering, ICSE, pp. 435–445. ACM
(2014)

24. Institute of Electrical and Electronic Engineers: IEEE standard glossary of software engi-
neering terminology - IEEE Standard 610.12 (1990)

25. Littlewood, B., Popov, P., Strigini, L., Shryane, N.: Modelling the effects of combining
diverse software fault detection techniques. In: Formal methods and testing, Lecture Notes
in Computer Science, vol. 4949, pp. 345–366. Springer (2008)

26. Lyu, M.R.: Software reliability engineering: A roadmap. In: Future of Software Engineer-
ing, FOSE, pp. 153–170. IEEE (2007)

27. Marick, B.: How to misuse code coverage. In: Proc. 16th Int. Conference on Testing
Computer Software, pp. 16–18 (1999)

28. Miranda, B., Bertolino, A.: Does Code Coverage Provide a Good Stopping Rule for Op-
erational Profile Based Testing? In: Proc. 11th Int. Workshop on Automation of Software
Test, AST, pp. 22–28. ACM (2016)

https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/

Test coverage and software reliability 13

29. Miranda, B., Bertolino, A.: An assessment of operational coverage as both an adequacy
and a selection criterion for operational profile based testing. Software Quality Journal
26(4), 1571–1594 (2018)

30. Musa, J.D.: A theory of software reliability and its application. IEEE Transactions on
Software Engineering SE-1(3), 312–327 (1975)

31. Musa, J.D.: Operational profiles in software-reliability engineering. IEEE Software 10(2),
14–32 (1993)

32. Neil, M., Fenton, N., Nielson, L.: Building large-scale Bayesian networks. Knowledge
Engineering Review 15(3), 257–284 (2000)

33. Omri, F.: Weighted statistical white-box testing with proportional-optimal stratification.
In: WCOP’14 Proc. 19th Int. Doctoral Symposium on Components and Architecture, pp.
19–24. ACM (2014)

34. Pietrantuono, R., Russo, S.: On Adaptive Sampling-Based Testing for Software Reliability
Assessment. In: Proc. 27th Int. Symposium on Software Reliability Engineering, ISSRE,
pp. 1–11. IEEE (2016)

35. Pietrantuono, R., Russo, S.: Probabilistic Sampling-Based Testing for Accelerated Relia-
bility Assessment. In: Proc. IEEE 18th Int. Conference on Software Quality, Reliability
and Security (QRS), pp. 35–46. IEEE (2018)

36. Prause, C.R., Werner, J., Hornig, K., Bosecker, S., Kuhrmann, M.: Is 100% test coverage
a reasonable requirement? lessons learned from a space software project. In: M. Felderer,
D. Méndez Fernández, B. Turhan, M. Kalinowski, F. Sarro, D. Winkler (eds.) Product-
Focused Software Process Improvement, Lecture Notes in Computer Science, vol. 10611,
pp. 351–367. Springer (2017)

37. Roper, M.: Software testing—searching for the missing link. Information and Software
Technology 41(14), 991–994 (1999)

38. Singh, H., Cortellessa, V., Cukic, B., Gunel, E., Bharadwaj, V.: A Bayesian approach to
reliability prediction and assessment of component based systems. In: Proc. 12th Int.
Symposium on Software Reliability Engineering, ISSRE, pp. 12–21 (2001)

39. Smidts, C., Cukic, B., Gunel, E., Li, M., Singh, H.: Software reliability corroboration.
In: Proc. 27th Annual NASA Goddard/IEEE Software Engineering Workshop, pp. 82–87.
IEEE (2002)

40. Smidts, C., Mutha, C., Rodŕıguez, M., Gerber, M.J.: Software testing with an operational
profile: OP definition. ACM Computing Surveys 46(3), 39:1–39:39 (2014)

41. Sridharan, M., Namin, A.: Prioritizing Mutation Operators Based on Importance Sam-
pling. In: 21st Int. Symposium on Software Reliability Engineering, ISSRE, pp. 378–387.
IEEE (2010)

42. Tian, J., Lu, P., Palma, J.: Test-execution-based reliability measurement and modeling for
large commercial software. IEEE Transactions on Software Engineering 21(5), 405–414
(1995)

43. Wei, Y., Meyer, B., Oriol, M.: Is Branch Coverage a Good Measure of Testing Effective-
ness? In: B. Meyer, M. Nordio (eds.) Empirical Software Engineering and Verification,
Lecture Notes in Computer Science, vol. 7007, pp. 194–212. Springer (2012)

44. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions on
Software Engineering 17(7), 703–711 (1991)

45. Wong, W., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A Survey on Software Fault Localiza-
tion. IEEE Transactions on Software Engineering 42(8), 707–740 (2016)

46. Xie, T., Notkin, D.: Checking inside the black box: regression testing by comparing value
spectra. IEEE Transactions on Software Engineering 31(10), 869–883 (2005)

47. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

	Introduction
	On test coverage measures
	On software reliability
	How are coverage and reliability related?
	Related work
	Conclusions

