
Is Software Aging related to Software Metrics?

Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono

Dipartimento di Informatica e Sistemistica,
Università degli Studi di Napoli Federico II,

Via Claudio 21, 80125, Naples, Italy
{cotroneo, roberto.natella, roberto.pietrantuono}@unina.it

Abstract—This work presents an empirical analysis aiming at
investigating what kind of relationship exists between software
aging and several static features of the software. While past
studies on software aging focused on predicting the aging effects
by monitoring and analytically modeling resource consumption
at runtime, this study intends to explore if the static features of
the software, as derived by its source code, presents potential
relationships with software aging. We adopt a set of common
software metrics concerning program structure, such as size
and cyclomatic complexity, along with some features specif-
ically developed for this study; metrics were then computed
from ten complex software applications affected by aging. A
statistical analysis to infer their relationship with software
aging was carried out. Results encourage further investigations
in this direction, since they show that software aging effects
are related to the static features of software.

Keywords-Software Aging; Software Complexity Metrics;
Aging-Related Bugs

I. INTRODUCTION

Long-running systems are known to experience a con-

tinued and growing degradation of software’s internal state

and a progressive performance loss due to the phenomenon

of software aging [1]. This phenomenon has been widely

observed in the past in several operational systems [2],

[3]. In the literature, software aging has been typically

addressed by estimating the time to failure due to aging

(usually referred to as Time-To-Exhaustion, TTE), in order

to take appropriate proactive actions. This can be achieved

by monitoring resource consumption at runtime [2], [4], and

by using analytical models [5], [6].

In this work, we intend to analyze the phenomenon by a

different perspective. Our goal is to investigate if software

aging has a relationship with software metrics. Software

metrics are a measure of the complexity of a program with

respect to the properties of the program’s text [7]; as such,

they are computed statically and do not require to execute the

program. We intend to carry out an analysis based on these

static features to figure out if there is some characteristic

of the software that can induce, or simply be indicative of,

aging-related bugs in a program. To this aim, we set up an

empirical study based on a set of ten software applications

whose software aging issues are known.

It is reasonable that it is more likely for a developer to

omit release operations (e.g., to release locks or memory) in

complex and large code than in a relatively simple and small

piece of code; similarly, round-off errors may be related to

the amount of operations, fragmentation to the number of

files opened, and so on. Hence, we assume that the software

size, its complexity, the usage of some kinds of programming

structures related to the resource management, the use of

arithmetic operators, and other features are related to the

occurrence of aging-related bugs.

Being able to relate the software complexity with software

aging can be useful to mitigate the problem of software

aging. For instance, by estimating the extent of aging issues

in their software, developers could be able to invest the

correct amount of testing efforts for detecting and fixing

aging-related bugs, which can be a time-consuming activity

and requires tailored techniques and tools [8]. Moreover,

the software aging estimate can be useful to refine analytical

models for selecting the best software rejuvenation schedule.

The results from this study encourage this possibility, since

they show that software aging effects are related to the static

features of software.

The rest of the paper is organized as follows. In Section

II, past work on software aging and complexity metrics is

reviewed. A detailed description of the empirical study is

provided in Section III, and the results are presented in

Section IV. Section V summarizes the conclusions of the

study, and presents some future research directions.

II. RELATED WORK

Software metrics have been widely used in the past

for predictive/explanatory purposes. Much work was on

investigating relationships between several kinds of software

metrics and the number of faults in a program. Statistical

techniques have been adopted in order to build regression

models, also known as fault-proneness models. Such models

allow developers to focus their attention on fault-prone

software modules.

In [9], authors used a set of 11 metrics and an approach

based on regression trees to predict most faulty modules. In

[10], authors investigated metrics to predict the amount of

post-release faults in five large Microsoft’s software projects.

They adopted the well-known statistical technique of Prin-

cipal Component Analysis (PCA), in order to transform the

original set of metrics into a set of uncorrelated variables,

978-1-61284-346-9/11/$26.00 c©2011 IEEE

with the goal of avoiding the problem of redundant features

(multicollinearity). The study in [11], then extended in [12],

adopted logistic regression to relate software measures and

fault-proneness, in the context of homogeneous software

products. Studies in [13], [14] investigated the suitability

of metrics based on the software design.

In many cases, common metrics provide good prediction

results, even across several different products. However, it

is still difficult to claim that a given regression model or

a set of regression models is general enough to be used

even with very different products, as discussed in [10].

On the other hand, they are undoubtedly useful within an

organization that collects faults data iteratively, during its

development process. If a similar relationship could be found

for aging-related bugs, developers would better deal with this

phenomenon before the operational phase, e.g., by tuning

techniques for detecting aging-related bugs according to

such predictions.

III. EXPERIMENTAL DESIGN

A. Empirical data

In this study, we consider a set of complex software

systems that revealed to be affected by software aging

phenomena. Unfortunately, there are few field data studies

that analyzed aging-related bugs, and they do not provide the

raw data or detailed information about aging-related bugs.

Instead, most studies analyzed the resource consumption

trends, which are the manifestation of aging-related bugs.

The list of the considered systems is provided in Table

I. Systems that come with detailed information are divided

in modules, and the memory depletion trend caused by

each module is provided. We focus on memory depletion

since memory has the lowest TTE among the resources

of computer systems [2], [3], and memory management

bugs (e.g., memory leaks) represent the most considerable

software aging source.

Table I: Aging data.

Software Module Aging (MB/h)

Sun JVM
GarbageCollector 2.933400
JITCompiler 0.183600

CARDAMOM

Trace 3.574644
Common 0.000102
Repository 0.000029
LoadBalancing 0.000041
ORBSupport 0.000016

CARDAMOM OTS
Xerces 0.000008
TAO 10.608754

Apache Httpd 0.034442

A software aging analysis of Sun Java Virtual Machine

(JVM) was conducted in [15]; that work pinpointed the

memory depletion trends attributable to the Garbage Collec-

tor and the JIT Compiler, respectively. CARDAMOM is a

CORBA-based middleware, and its memory leaks have been

studied in [8]: the analysis found memory leaks in several

modules. Moreover, the analysis included two OTS products,

namely the Xerces XML parser and the TAO ORB, which

are also considered in this study. Finally, we include the

Apache web server, which was extensively studied in [3].

We base our analysis on resource consumption trends,

assuming that the software aging trends are correlated with
the number and the severity of aging-related bugs. Other

factors affecting aging trends are represented by the hard-
ware and the workload of the system, since they influence

the type and rate of system operations. To minimize the

workload influence, we consider worst-case aging trends of

each system; this was possible since they were analyzed

under several workload conditions. Moreover, the studies on

the Sun JVM and CARDAMOM were conducted within our

research group on the same hardware and operating system,

thus minimizing the bias of testbed configuration; although

the study on the Apache web server has been made on a

different testbed, we decided to include it in the analysis,

in order to compare our results with this well-known case

study on software aging.

B. Software metrics

The adopted software metrics are summarized in Table II.

These were automatically extracted by using the Understand

tool for static analysis [16]. We include several metrics

that revealed to be correlated with bug density in complex

software—in this study, we evaluate if these metrics are

correlated also with the specific class of aging-related bugs.

Table II: Software metrics.

Type Metrics Description

Program size LOC, CountLineCodeDecl,
CountLineCodeExe, Count-
LineComment, CountDeclFile-
Code, CountDeclFileHeader,
CountDeclClass, CountDe-
clFunction, CountLineInactive,
CountStmtDecl, CountStmtExe,
RatioCommentToCode

Metrics related
to the amount
of lines of code,
declarations,
statements, and
files

McCabe’s
cyclomatic
complexity

AvgCyclomatic, MaxCyclomatic,
MaxNesting, CountPath,
SumCyclomatic, SumEssential

Metrics related
to the control
flow graph of
functions and
methods

Halstead
metrics

Program Volume, Program
Length, Program Vocabulary,
Program Difficulty, Effort, Bugs
Delivered

Metrics based
on operands and
operators in the
program

Resource
management

Memory allocations, Memory
deallocations, Files opened,
Files closed, Difference in
memory allocations/deallocations,
Difference in files opened/closed

Metrics based
on resource
management
primitives (e.g.,
mallocs)

The first subset of metrics is related to the “size” of

the program in terms of lines of code (e.g., total num-

ber of lines, and number of lines containing comments

or declarations) and files. These provide a rough estimate

of software complexity, and they have been already used

as simple predictors of fault-prone modules [17]. Further

metrics are here adopted, in order to improve fault prediction

models, such as the McCabe’s cyclomatic complexity and

the Halstead metrics [18]. These are based on the number

of paths in the code and the number of operands and

operators, respectively. We hypothesize that these metrics

are connected to aging-related bugs, since the complexity

of error propagation (which is the distinguishing feature of

aging-related bugs [19], [20]) may be due to the complex

structure of a program. Finally, we introduce a set of

metrics related to resource management, specifically defined

for this study. These metrics are based on the number of

calls of resource management primitives in the program; in

particular, we focused on primitives for memory allocation

and filesystem access, since the presence of these primitives

introduce the opportunity of resource leakage.

IV. RESULTS

A. Is there a correlation between metrics and aging?

To identify a relationship between metrics and aging,

our first step is to evaluate the correlation with individual

metrics. We evaluated the Pearson correlation coefficient

between each metric and aging trends; this coefficient can

be used to test a linear relation between two variables [7].

The Pearson coefficient for each metric are shown in

Table III; metrics with a statistically significant relationship

(p-value < 0.05) are highlighted. For instance, almost all

the metrics related to the program size are correlated with

software aging. This confirms the hypothesis that there

exists a relationship between software aging and software

complexity. Although some metrics do not exhibit a linear

correlation with statistical significance, we do not exclude

them from subsequent analysis: there could be a non-linear

relationship (alone or in combination with other metrics) not

found by this preliminary test.

B. Can we build a regression model for software aging?

We adopted statistical regression models to obtain a quan-

titative relationship between software metrics and aging.

Since a linear correlation with some metrics was observed,

we evaluated a multiple linear regression model (see the

Appendix for mathematical definitions). In order to build this

model, we have to deal with the mutual correlation among

metrics (e.g., a software with high LOC will probably have a

high number of function declarations); this correlation leads

to an unstable model, since small variations in the data set

may result in large variations of the model [21]. Therefore,

we adopted the stepwise method to build the model, that

is, distinct variables are introduced or removed from the

Table III: Pearson correlation coefficient between individual

metrics and aging trends.

Metric Pearson coeff. p-value

LOC 0.9202 0.0002
CountLineCodeDecl 0.9209 0.0002
CountLineCodeExe 0.9195 0.0002
CountLineComment 0.9061 0.0003
CountDeclFileCode 0.9282 0.0001
CountDeclFileHeader 0.9112 0.0002
CountDeclClass 0.9274 0.0001
CountDeclFunction 0.9307 0.0001
CountLineInactive 0.8960 0.0005
CountStmtDecl 0.9233 0.0001
CountStmtExe 0.9064 0.0003
RatioCommentToCode -0.3632 0.3023

AvgCyclomatic -0.1388 0.7021
MaxCyclomatic 0.8428 0.0022
MaxNesting 0.5486 0.1005
CountPath 0.4815 0.1589
SumCyclomatic 0.9126 0.0002
SumEssential 0.9148 0.0002

n1 (mean) -0.0792 0.8278
n2 (mean) -0.0663 0.8556
N1 (mean) 0.0189 0.9587
N2 (mean) 0.0322 0.9296
Volume (mean) 0.0228 0.9502
Length (mean) 0.0244 0.9466
Vocabulary (mean) -0.0683 0.8513
Difficulty (mean) -0.0250 0.9453
Effort (mean) 0.3980 0.2547
Bugs delivered (mean) 0.0572 0.8752
n1 (variance) -0.1544 0.6701
n2 (variance) -0.0143 0.9688
N1 (variance) 0.5934 0.0705
N2 (variance) 0.6502 0.0418
Volume (variance) 0.5928 0.0709
Length (variance) 0.6188 0.0565
Vocabulary (variance) -0.0185 0.9595
Difficulty (variance) 0.3366 0.3415
Effort (variance) 0.9221 0.0001
Bugs delivered (variance) 0.8717 0.0010

Memory allocations 0.9280 0.0001
Memory deallocations 0.9208 0.0002
Diff. mem. alloc.-dealloc. -0.6538 0.0403
Files opened 0.8410 0.0023
Files closed 0.8920 0.0005
Diff. files opened-closed 0.1556 0.6678

model and a statistical significance test is performed to select

the best model [22]. This method produced a linear model

with only one variable, namely CountDeclFunction, which

is shown in Figure 1.

Table IV provides some statistics about this model in the

first column. The model is characterized by a high standard

deviation of residuals (1.3185 MB/h). This high variance

significantly affects the prediction for software modules

with a low aging trend (� 1 MB/h), leading to a very

high average relative error (1.686 · 106%). Moreover, the

independent variables are characterized by a very high inter-

correlation, since only one variable has been introduced into

the model by the stepwise method.

Table IV: Regressions statistics.

Procedure Stepwise PCA Stepwise Stepwise Stepwise

Sample All software All software LittleAging group BigAging group
BigAging group

(except Trace)

R2 0.8662 0.9013 0.9896 0.9277 0.9999
Adjusted R2 0.8494 0.7770 0.9791 0.8915 0.9999
Standard Error (MB/h) 1.3185 1.6013 5.3911E-06 1.4625 0.0127
Average relative error (%) 1.686E+06 1.096E+06 11.4922 154.5025 6.81

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

CountDeclFunction

A
g

in
g

 t
re

n
d

 (
M

B
/h

)

 ← Trace

 ← GarbageCollector

 TAO →

Figure 1: Linear regression over all software.

In order to obtain a more precise model, we also adopted

the Principal Component Analysis (PCA) technique, which

transforms the dependent variables in a low number of

uncorrelated variables [21]; nevertheless, this approach did

not improve the model (see the second column in Table IV).

We also evaluated an exponential and a logarithmic model,

but they also were not able to provide better precision.

We hypothesized that the lack of a simple and precise

model is due to heterogeneity of the software modules. A

noticeable feature of the dataset is the very large range of

values in the aging trends—they differ by several orders

of magnitude. Therefore, we separated the dataset into two

disjoint groups, namely BigAging and LittleAging, which

were individually analyzed (Table V). We only considered

two groups due to the low number of software modules.

After splitting the dataset, we applied the stepwise method

to the groups; we obtained a much more precise model

in both cases (see the third and fourth columns in Table

IV). Both the models satisfy the hypotheses of residuals’

homoscedasticity, normality, and uncorrelation with the in-

dependent variables. In particular, the model for the LittleAg-
ing group is characterized by a low standard deviation and

an acceptable average relative error (about 11%). Figure 2a

shows the linear model for the LittleAging group. The depen-

Table V: Software grouped by order of magnitude of aging

trends.

Module Aging (MB/h) Group

TAO 10.608754 BigAging
Trace 3.574644 BigAging
GarbageCollector 2.933400 BigAging
JITCompiler 0.183600 BigAging
Httpd 0.034442 BigAging
Common 0.000102 LittleAging
LoadBalancing 0.000041 LittleAging
Repository 0.000029 LittleAging
ORBSupport 0.000016 LittleAging
Xerces 0.000008 LittleAging

dent variables included in this model (RatioCommentToCode
and CountLineInactive) do not appear to be representative

of software complexity; however, given the high correlation

between the dependent variables, we conclude that the aging

trend of software of this group is related to the program size

(both the dependent variables belong to this type of metrics).

Although the model for the BigAging group is signifi-

cantly better than the initial model, it is still characterized by

a high error (about 154%). We suspected that the error was

due to the presence of the Trace module in the group, since

it is characterized by a low complexity and a high aging

trends (e.g., it has a low CountDeclFunction, as shown in

Figure 1). Therefore, we treated this sample as an outlier

and removed it from the group; the resulting model was

much more accurate (see the fifth column in Table IV and

Figure 2b), with a low average relative error (about 6%).

We believe that this result was due to the immaturity of the

Trace module, which was affected by severe aging-related

bugs even if it was a relatively simple module [8]. In this

group, aging is related to the size of the modules (LOC); the

model also accounts for the complexity of the code (Volume).

Finally, in order to explain the difference between the two

groups, and to apply the right model to a new software (i.e.,

not included in our dataset), we evaluated if it is possible to

classify the modules into groups using software metrics.

To select the best features (i.e., metrics) to use in the

classifier, we applied a feature selection technique, namely

the Independent Features procedure [23]. This procedure

performs a statistical test for each individual feature, indi-

cating that the difference in the means is unlikely to be

−0.383
−0.382

−0.381
−0.38

−0.379
−0.378

0
0.5

1
1.5

2

−2

0

2

4

6

8

10

x 10−5

CountLineInactiveRatioCommentToCode

A
g

in
g

 t
re

n
d

 (
M

B
/h

)

(a) LittleAging group.

0.2
0.4

0.6
0.8

1

0.4

0.6

0.8

1
0

2

4

6

8

10

LOCVolume (mean)

A
g

in
g

 t
re

n
d

 (
M

B
/h

)

(b) BigAging group.

Figure 2: Linear regression models.

random variation; if the difference is sig times lower than

the standard error, then the feature is not deemed useful for

classification. The test is performed by evaluating

se(A−B) =

√
var(A)

nA
+

var(B)

nB
(1)

|mean(A)−mean(B)|
se(A−B)

> sig (2)

where A and B are the same feature measured for the two

classes, and nA and nB the number of samples in the classes.

We considered several sets of features obtained using

different values of sig. We evaluated the effectiveness of

each set of features using the leave-one-out procedure: n−1
samples are used for training a classifier, and the remaining

sample is used for testing the classifier; this step is repeated

for different splittings of the dataset. For classification we

adopted the two-class SVM classifier, using the LIBSVM

implementation [24].

Table VI shows the results of leave-one-out validation of

the best classifier (sig = 3.4). This classifier is effective in

9 out of 10 cases; it is not accurate in the case of the Trace

module, which was previously shown to be an anomalous

sample. Feature selection and leave-one-out validation were

repeated without the Trace Service, and the best classifier

correctly classified the samples in all cases. This result

supports the use of software metrics for classifying the

software with respect to software aging. The metrics of the

best classifier were Volume (mean), Effort (mean), Volume
(variance), N1 (variance), N2 (variance), Length (variance).

Table VI: Leave-one-out validation (L = LittleAging, B =

BigAging) for sig = 3.4.

Module Reference class Predicted class

GarbageCollector B B
JITCompiler B B
Trace B L
Common L L
Repository L L
LoadBalancing L L
ORBSupport L L
Xerces L L
TAO B B
Httpd B B

V. CONCLUSIONS AND FUTURE WORK

In this study, we investigated a relationship between

software metrics and software aging on ten software appli-

cations. The results of the analysis can be summarized as

follows:

1) Software applications belong to two distinct groups,

namely, software in which the aging effects are negli-

gible (LittleAging), and software significantly affected

by software aging (BigAging). We did not find a simple

model able to predict aging effects of both groups at

the same time, thus they had to be analyzed separately.

2) There exist two precise multiple linear regression

models for modeling the two software application

groups. Aging trends in the LittleAging group seem to

be related with the program size, while the complexity

of the program in terms of operands and operators (i.e.,

Halstead metrics) should be also taken into account for

the BigAging group.

3) It is possible to classify software applications in one

of the two groups by using software metrics. The

Halstead metrics turned out to be the most suitable

for this purpose.

These results encourage the use of software metrics for

coping with software aging at development time. The clas-

sification of a new software could be made by identifying

its category (LittleAging or BigAging), and then applying a

tailored linear regression model. However, to achieve this

goal more research is needed in the following directions:

1) To extend the analysis and validate the results by in-

cluding additional software. Unfortunately, the limited

amount of published data on software aging does not

allow to draw definitive conclusions.

2) To analyze the relationship with actual aging-related

bugs. Due to the lack of data about aging-related bugs,

we based our analysis on the worst-case aging trend

exhibited by the programs. This will require to collect

and analyze data from bug repositories to discover

the actual aging-related bugs. The expected number

of aging-related bugs could be useful for developers

to evaluate their progress in fixing these bugs.

APPENDIX

DEFINITIONS

Multiple linear regression model A.1 The linear rela-
tionship between the independent variables X and the
expected dependent variable Ŷ : Ŷ = b0 + b1X1 + b2X2 +
. . .+ bkXk + e
Sum of Square Total A.2 The deviance between the sam-
ples and the average value: SST =

∑
i(yi − y)2

Sum of Square of Regression A.3 The deviance between
the model and the average value: SSR =

∑
i(ŷi − y)2

Sum of Square of Error A.4 The deviance between the
samples and the model: SSE =

∑
i(yi − ŷi)

2

R2 A.5 The share of the total deviance explained by the
model: R2 = SSR

SST = 1− SSE
SST

Adjusted R2 A.6 The R2 adjusted to account for the num-
ber of variables in the model: R2

adj = 1− SSE
n−k−1/

SST
n−1

Standard Error A.7 The standard deviation of residuals:
S =

√
SSE
n−2 =

√∑
i(yi − ŷi)2/n− 2

Average Relative Error A.8 The relative size of residuals
with respect to the samples: E = 1

n

∑
i |yi − ŷi| / |yi|

ACKNOWLEDGMENT

This work has been partially supported by the project “CRITICAL Soft-

ware Technology for an Evolutionary Partnership” (CRITICAL-STEP, http:

//www.critical-step.eu), Marie Curie Industry-Academia Partnerships and

Pathways (IAPP) number 230672, within the context of the 7th Framework

Programme (FP7), and by the Italian Ministry for Education, University,

and Research (MIUR) within the framework of the project “Dependable

Off-The-Shelf based middleware systems for Large-scale Complex Critical

Infrastructures” (DOTS-LCCI, http://dots-lcci.prin.dis.unina.it), DM1407.

REFERENCES

[1] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” in Intl.
Symp. on Fault-Tolerant Computing, 1995.

[2] S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. S. Trivedi,
“A Methodology for Detection and Estimation of Software
Aging,” in Intl. Symp. on Software Reliability Engineering,
1998.

[3] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi,
“Analysis of Software Aging in a Web Server,” IEEE Trans.
Reliability, vol. 55, no. 3, 2006.

[4] K. Vaidyanathan and K. Trivedi, “A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems,” in Proceedings of the International Sym-
posium on Software Reliability Engineering, 1999.

[5] Y. Bao, X. Sun, and K. Trivedi, “A Workload-Based Analysis
of Software Aging, and Rejuvenation,” IEEE Transactions on
Reliability, vol. 54, no. 3, 2005.

[6] K. Vaidyanathan and K. Trivedi, “A Comprehensive Model
for Software Rejuvenation,” IEEE Trans. on Dependable and
Secure Computing, vol. 2, no. 2, 2005.

[7] V. Basili and B. Perricone, “Software Errors and Complexity:
An Empirical Investigation,” Communications of the ACM,
vol. 27, no. 1, 1984.

[8] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and
S. Russo, “Memory Leak Analysis in Mission-Critical Mid-
dleware,” Journal of Systems and Software, vol. 83, no. 9,
2010.

[9] S. Gokhale and M. Lyu, “Regression Tree Modeling for the
Prediction of Software Quality,” in Intl. Conf. on Reliability
and Quality in Design, 1997.

[10] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to
Predict Component Failures,” in 28th Intl. Conf. on Software
Engineering, 2006.

[11] G. Denaro, S. Morasca, and M. Pezzè, “Deriving models
of software fault-proneness,” in 14th Intl. Conf. on Software
Engineering and Knowledge Engineering, 2002.

[12] G. Denaro and M. Pezzè, “An empirical evaluation of fault-
proneness models,” in 24th Intl. Conf. on Software Engineer-
ing, 2002.

[13] A. Binkley and S. Schach, “Validation of the Coupling
Dependency Metric as a Predictor of Run-time Failures and
Maintenance Measures,” in 20th Intl. Conf. on Software
Engineering, 1998.

[14] N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switches,” IEEE Trans. on Software
Engineering, 1996.

[15] D. Cotroneo, S. Orlando, and S. Russo, “Characterizing
Aging Phenomena of the Java Virtual Machine,” in 26th IEEE
Symp. on Reliable Distributed Systems, 2007.

[16] Scientific Toolworks Inc., What metrics does Understand
have?, http://www.scitools.com/documents/metrics.php.

[17] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the Location
and Number of Faults in Large Software Systems,” IEEE
Transactions on Software Engineering, 2005.

[18] N. Fenton and M. Neil, “A Critique of Software Defect
Prediction Models,” IEEE Trans. on Software Engineering,
vol. 25, no. 5, 1999.

[19] M. Grottke and K. Trivedi, “Software Faults, Software Aging
and Software Rejuvenation,” Journal of the Reliability Engi-
neering Association of Japan, vol. 27, no. 7, 2005.

[20] M. Grottke, A. Nikora, and K. Trivedi, “An Empirical Investi-
gation of Fault Types in Space Mission System Software,” in
Intl. Conference on Dependable Systems and Networks, 2010.

[21] T. Khoshgoftaar, E. Allen, K. Kalaichelvan, and N. Goel,
“Early Quality Prediction: A Case Study in Telecommuni-
cations,” IEEE Software, vol. 13, no. 1, 1996.

[22] T. Khoshgoftaar and J. Munson, “Predicting software devel-
opment errors using software complexity metrics,” IEEE J.
on Selected Areas in Communications, vol. 8, no. 2, 1990.

[23] S. M. Weiss and N. Indurkhya, Predictive Data Mining: A
Practical Guide. Morgan Kaufmann, 1997.

[24] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support
vector machines, http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

