The Software Aging and Rejuvenation Repository

http://openscience.us/repo/software-aging/

Domenico Cotroneo, Antonio Ken Iannillo, Roberto Natella, Roberto Pietrantuono, Stefano Russo
Universita degli Studi di Napoli Federico II, Naples, Italy
{cotroneo, antonioken.iannillo, roberto.natella, roberto.pietrantuono, sterusso} @unina.it

Abstract—While Software Aging and Rejuvenation (SAR)
research has been steadily increasing, the artifacts related to SAR
studies (such as software aging measurements and bug datasets)
are seldom made available to researchers and practitioners, thus
limiting potential improvements of rejuvenation solutions and
their practical adoption. We discuss in this paper the role of
artifacts in SAR research, and present SARRY (the Software
Aging and Rejuvenation RepositorY), an open-access support
for the SAR community to share research artifacts (available at
http://openscience.us/repo/software-aging/). We invite researchers
to contribute to SARRY, in order to aid future SAR research and
to improve the visibility and impact of their work.

Keywords—Software Aging and Rejuvenation; Research Arti-
Jfacts; Open Access; Data Repository

I. INTRODUCTION

Several researchers and practitioners have been addressing
the phenomenon of software aging since the seminal paper
“Software rejuvenation: Analysis, module and applications”
by Huang et al. [1], which was published two decades ago.
Research on Software Aging and Rejuvenation (SAR) has
steadily increased, gaining attention in several international
conferences and journals [2], [3], and led to the WoSAR
workshop series [4] and to software rejuvenation solutions
deployed in several commercial and open-source systems [5].

Therefore, existing SAR research provides a solid foun-
dation for new researchers and practitioners that want to
enhance and put into practice software rejuvenation solu-
tions. Past experiences with software aging are valuable for
both measurement-based and model-based SAR research. For
measurement-based solutions, experimental data on resource
consumption and performance are required to design and
to validate techniques for detecting and forecasting software
aging. For model-based solutions, experimental data can sup-
port rejuvenation scheduling models, whose applicability is
often criticized by practitioners due to the lack of realistic
parameters. SAR research and innovation processes would
significantly benefit from artifacts produced by previous re-
search, such as software aging measurements and rejuvenation
scheduling models. However, new researchers and practitioners
must face the scarcity of artifacts from previous SAR research,
and they are forced to build new datasets for supporting their
efforts, or they have to base their projects on the limited
information available in research papers.

To address this gap, our goal is to promote the sharing
of artifacts developed by the SAR research community. The
sharing of artifacts is a common practice among several
areas of science, including computer science and software

engineering, to improve the reproducibility of results and to
foster new research. Several initiatives are raising awareness of
these issues, encouraging researchers to make computer code
and data publicly accessible to reuse and to validate the results

(61, [71.

Some notable examples of such initiatives are: the
Software-artifacts Infrastructure Repository (SIR) [8], which
supports testing research by providing programs, test cases
and real software bugs; the Amber Data Repository (ADR) [9],
which hosts data from field failure analyses and fault injection
experiments; the Artifact Evaluation Committees (AECs) [10]
established at top computer science conferences to publish
experimental data, complete experimental setups, test suites,
and tools; and the Promise Repository of Empirical Software
Engineering Data (PROMISE) [11], which was born for
sharing datasets for software defect prediction research, and
then expanded to host other artifacts for effort estimation,
requirement analysis, testing, social analysis and other types
of software engineering research.

We present in this paper SARRY, the Software Aging and
Rejuvenation RepositorY, which is an open-access support for
the SAR community to share research artifacts and to aid
future research. We believe that this is a good opportunity
both for individual SAR researchers, whose research may
achieve a broader visibility and impact, and for the SAR
community, which may benefit from previous efforts and
build new solutions upon them. Thus, we invite other SAR
researchers to join us in this endeavor, by contributing to
SARRY with research artifacts, and by referring the reader
to these artifacts in their research studies.

In the following of this paper, we first discuss the role of
artifacts in SAR research, by providing notable examples that
have helped in the past to develop new studies and products
(Section II). Then, we provide an overview of the SARRY
repository (Section III). Section IV concludes the paper.

II. SAR ARTIFACTS

In software engineering, an artifact is a tangible piece of
information that is used or produced by a process. In our case,
we define a SAR artifact as a product of SAR research that
can be useful for researchers, including experimental data,
software, and system models. We analyzed previous SAR
research, and identified the following main categories of SAR
artifacts for SARRY:

e Measurements on performance, resource consumption
and failures collected at run-time from deployed soft-
ware systems;

e Measurements on performance, resource consumption
and failures collected during stress tests of software
systems;

e Datasets on software aging bugs in software systems,
and their software complexity metrics;

e Models for rejuvenation scheduling.

In the following of this section, we analyze each of these
categories, by answering the following questions:

e ARTIFACT NATURE: what artifacts can be derived and
shared from SAR research?

e RELATED STUDIES: which SAR research studies have
produced artifacts of this kind?

e DERIVED STUDIES: how did these artifacts help other
SAR research?

A. Measurements on performance, resource consumption and
failures collected at run-time from deployed software systems

This category includes datasets with measurements col-
lected from software systems in production. These systems
are exercised by the workload imposed by their end-users.
Measurements are usually collected using existing monitoring
tools, which are installed in the system for troubleshooting
purposes.

Measurements collected during the operational phase are
an excellent way to analyze the actual behaviour of deployed
software systems, since the measurements reflect the breadth
and the variability (e.g., seasonal variations) of real workloads.
Researchers can use these data to validate and to benchmark
techniques for detecting and forecasting aging phenomena in
a real environment.

ARTIFACT NATURE: These artifacts consist of one or more
time series, where each time series represents the usage of a
resource, a performance or workload indicator, or a failure
symptom. Examples of relevant measurements are: used/free
memory, used/free swap space, process states, occupation of
network queues, I/O device throughput, used/free inodes, CPU
usage. Each sample in the time series is marked with the
current timestamp. These data can be saved in a database
or dumped on a file, using a format such as CSV (Comma-
Separated Values) or ARFF (Attribute Relationship File For-
mat), where each row represents a sample of a time series.

RELATED STUDIES: Measurements of this kind have been
used for investigating statistical trend analysis techniques, to
characterize and forecast software aging trends. Garg et al.
[12] collected system data using SNMP every fifteen minutes,
for determining the “health” of the eight heterogeneous UNIX
workstations during a period of 53 days. Fig. 1 shows an
example of analysis applied on these data: The points rep-
resent the amount of free physical memory, which gradually
decreases, and the size of the process table, which gradually
increases. These data were smoothed to show the trend of
resource consumption. Moreover, the data collected in this
study provide evidence of aging-related failures caused by
resource exhaustion (e.g., Out-Of-Memory and swap space
exhaustion failures). Finally, this study used the seasonal
Kendall test to detect, with statistical confidence, the presence

35000

Real Memory Free
25000

15000

File Table Size
140 160 180 200 220 240 260

Time

Fig. 1. Resource consumption measurements (free memory and file table
size) from a SunOS workstation, and non-parametric regression smoothing to
visualize trends [12].

of a trend in the measurements, and the Sen procedure for
robust linear regression to forecast the Time To Exhaustion
(TTE) of system resources.

DERIVED STUDIES: Vaidyanathan er al. [13] adopted a
workload-based approach to improve the forecasting of the
time to exhaustion. Their approach uses a clustering algorithm
to identify workload clusters, where each cluster represents
a state in a semi-Markov reward model, and each cluster is
individually analyzed and is attributed a resource consumption
rate. The approach has been validated using the measure-
ments collected by Garg et al. [12]. Measurements under real
workload conditions were important to support the claim that
the resource consumption rate varies with the workload, and
to accurately evaluate how the new algorithm improves the
estimation of the TTE.

B. Measurements on performance, resource consumption and
failures collected from stress tests of software systems

Data from production systems are often not available,
such as in the case of new systems or technologies under
development that have not been yet widely deployed. Thus,
researchers often adopt data obtained from laboratory tests, in
which the system is put under stressful conditions in order to
trigger aging phenomena. The tests use synthetic workloads
that stress the system with a constant workload, whose type
and volume can vary across experiments. These tests are
useful to analyze the relation between workload and software
aging, and to investigate aging forecasting and rejuvenation
scheduling.

This kind of data are complementary to the data described
in Section II-A. Stress tests do not reflect the actual usage of
the system by end-users, and thus they may over- or under-
represent some workload conditions that are experienced in
production. However, the workload is now a controllable factor
of stress tests, and it is thus fully known and tunable by
the experimenter. For example, the experimenter can evaluate
the sensitivity of the system to different types or volumes
of workload. Moreover, similarly to the studies discussed in
Section II-A, these measurements can be used to investigate
techniques for aging detection and forecasting.

ARTIFACT NATURE: Artifacts with this kind of measure-
ments are similar to the ones discussed in Section II-A. Since
these data are collected in a laboratory setting, they usually
include a more rich set of monitored metrics. Moreover, the
synthetic workloads represent a worst-case workload for the
system. Therefore, the aging trends in stress testing experi-
ments are more numerous and more pronounced than aging
trends experienced in production systems.

RELATED STUDIES: A synthetic workload has been used
by Grottke et al. [14] to study resource consumption trends
for an Apache HTTPD web server, which was stressed at
its maximum capacity over a period of 25 days. During the
experiment, data on response time, free physical memory, and
used swap space were collected. This study further developed
the statistical techniques adopted by Garg et al. [12] for
detecting aging trends with statistical hypothesis testing, and
for estimating the TTE with robust linear regression, which
confirmed the existence of software aging phenomena in
this system. The measurements exhibited noticeable seasonal
patterns, which were due to periodical events in the system
(in particular, the automated restart of child processes, and
the scheduled maintenance for log rotation and filesystem
indexing). Therefore, the study developed an autoregressive
model to forecast resource consumption in the presence of
seasonal patterns. Fig. 2 shows the usage of swap memory
over time, and the trend prediction made by the autoregressive
model. It is also worth to mention another study on software
aging in the Apache HTTPD web server by Matias jr. and
Filho [15], which stressed this system by considering several
workloads, by varying the size of requested pages, the type of
page (static or dynamic), and the request rate. They used the
design of experiments methodology to identify the degree of
influence of these factors on aging trends.

DERIVED STUDIES: El-Shishiny et al. [16] further devel-
oped techniques for aging forecasting, using the data from the
Apache HTTPD experiment that were kindly shared by Grottke
et al. [14]. This study proposed the use of Artificial Neural
Networks for predicting resource consumption, in order to
provide a more general and powerful identification of patterns
in the time series. The data from [14] were used to train and
to evaluate the accuracy of the model in [16], which was able
to fit the time series with a low error.

C. Datasets on software aging bugs and complexity metrics

These artifacts provide information on the root cause of
software aging. A software system manifests software aging
when a special type of software faults, called “Aging-Related
Bugs” (ARBgs), is triggered. According to Grottke et al., an

UsedSwapSpace [kB]
9000 10000 11000 12000 13000
1 | 1

8000

7000

T T T T T T
350 400 450 500 550 600
Time [hr]

Fig. 2. Used swap space in a stress test experiment on Apache HTTPD, and
an autoregressive model fitted on the data (dashed line) [14].

ARB is a fault that decreases performance and/or increases
the failure rate in long-running software [17]. Software reju-
venation is a practical and effective technique to proactively
mitigate software aging effects, by scheduling rejuvenation
actions when the maintenance downtime is lower than the
failure downtime. Moreover, if ARBs are removed before
deployment (e.g., by performing stress tests), the downtime
can be further reduced. In order to support research on ARB-
oriented testing, it is useful to share samples of these faults,
along with contextual information, such as software complex-
ity metrics from the faulty software. Studies on ARBs could
use these data to predict aging-prone components, and to plan
testing activities by focusing on these components.

ARTIFACT NATURE: Information on ARBs of complex
software projects can be obtained by analyzing bug reports
issued by users and developers. These bug reports can be
retrieved from the issue trackers of both proprietary and open-
source projects. Artifacts of this category are datasets that
classify bug reports according to the conditions that trigger
the bug, to identify ARBs among the bug reports. The artifacts
can also provide further information about the nature of the
fault, such as the resource affected by the ARB, the location
of the fault in the code base (e.g., a file, a class, a package,
or a module affected by the fault), and the complexity of
the component containing the fault (in terms of number of
statements, paths, external dependencies, etc.). These data can
be stored in a file formatted as CSV or ARFF, and containing
one row per bug, or one row per software module, and their
related information.

RELATED STUDIES: Cotroneo et al. [18] investigated how
to predict the location of ARBs in order to support verification
activities, and considered ARBs found in three complex soft-
ware systems, namely the Linux kernel, the MySQL DBMS,
and the CARDAMOM middleware. They first identified ARBs
by manually analyzing the bug reports from these projects.
Then, they extracted a set of software complexity metrics
(both traditional metrics, such as McCabe’s and Halstead’s,
and “aging-related” metrics proposed in the study) for each
file and module in these projects, in order to build an ARB

dataset. Finally, they used this dataset to train and to validate
machine learning algorithms for the prediction of ARB-prone
locations. The prediction has been validated by training the
predictor using data respectively from the same component,
from other components of the same project, and from external
projects. The experimental evaluation allowed to assess the
potentialities and the limitations of bug prediction: while intra-
project prediction is feasible (especially when using aging-
related metrics), inter-project prediction can be inaccurate
when projects are heterogeneous.

The classification of ARBs was refined in [19]. ARBs
(along with other types of Mandelbugs) in open-source projects
were further classified in subtypes, by considering the type of
software aging symptom: accumulation of memory manage-
ment errors (e.g., memory leaks), accumulation of storage er-
rors (e.g., disk block leaks), accumulation of system-dependent
resources (e.g., sockets), accumulation of numerical errors, and
other bugs with no accumulation but influenced by the total
system runtime. The study analyzed the occurrence of ARBs
over time, and the relationships between, on the one hand, the
bug type/subtype and, on the other hand, the type of project,
the severity, and the time-to-fix. Besides the insights on real
ARBs, and the verification and fault-tolerance strategies to
address them, this study provided a dataset for future analysis
on ARBs, including, but not limiting to, defect classification
and prediction approaches.

DERIVED STUDIES: The data on ARBs from open-source
projects [18], [19] were used by Xia et al. [20] to develop
and validate an approach for the automated classification of
bug reports, by using a text mining algorithm to analyze the
description of the bug in natural language. This approach
creates a set of terms suitable to classify a bug into a Bohrbug
or Mandelbug, and builds a classifier on these terms. The
dataset from open-source projects was used to identify the
classifier and the terms which achieve the best performance.

Another type of derived studies is represented by model-
based studies on software systems that are affected by Man-
delbugs and ARBs. Two studies of this type by Grottke et
al. [21], [22] analyzed, respectively, the availability obtained
with recovery strategies to counteract Mandelbugs [22], and
the availability achieved when considering both testing and
software rejuvenation [21]. These models are apt to be con-
figured with parameters that reflect the relative frequency of
Mandelbugs and ARBs, and of failures caused by these bugs,
which can be provided by empirical studies on bug analysis.

D. Models for rejuvenation scheduling

This category includes artifacts from model-based SAR
research. This research uses models of the system behaviour,
and solves these models to tune software rejuvenation (i.e.,
the optimal rejuvenation schedule) and to evaluate its effec-
tiveness. The focus is on modelling aging phenomena, in
order to achieve an accurate failure prediction, and to suggest
practitioners when to plan rejuvenation. Sharing these models
is useful for researchers to better understand the state-of-the-
art, to configure and use the model for specific systems, and
to improve them.

ARTIFACT NATURE: In this case, the artifacts are the
models used for the analysis and prediction of the system

< Tenmdt " Thodefait
Tomdntf g7
Paodefaill == xS
o z > s Q i
Ttd oot Pty oo
il T immd1s

Fig. 3. Cluster system adopting time-based rejuvenation [25].
oftware Rejuvenation - COPAMUNDIAL
iew Tools Help o
=8 COPAMUNDIAL 00
= [@8 PLATINI h 5
U Zco
& '~ Pxr Pas Ines Pae
Py o N e NG s
Exr [~ P Pao SN [SNe A
e N 7 N S P S N
B AN EN N N EN RN
N N N WO ¢ T e N
. [77 3 Pa 25 3
¥ i S
27] 0
{11 Reauy. | Server Time: 10:17:05am 081612000

Fig. 4. Software rejuvenation calendar [26].

behaviour, including aging failures. The most common models
are based on Markov chains and Petri nets. Markov chains
are mainly used to analyse a system with multiple rejuvena-
tion strategies, or to describe complex failure manifestations.
Petri nets, instead, are useful to define performability metrics
under multiple conditions, or to model system with multiple
nodes, such as clustered system. In practice, these models
are “implemented” in textual configuration files, by using ad-
hoc specification languages, to be fed to software tools for
reliability modelling. SHARPE [23] and GreatSPN [24] are
examples of such tools.

RELATED STUDIES: Vaidyanathan et al. [25] used Stochas-
tic Reward Nets (SRNs) to model and analyze cluster systems
that adopt software rejuvenation. SRNs are an extension of
Petri nets, where the reward rates are specified at the net level.
In a SRN, the cardinality of an arc is a function of the number
of tokens in a place, and a transition can be enhanced with
a guard in addiction to other firing conditions. In a cluster
system modelled by SRNs, a token in a place represents a
node that is in a certain state (e.g., all nodes in the clusters
are initially in a robust state). A transition can fire according
to a pre-defined probability, such as the probability of a node
to fail when in a failure-prone state. Using an SRN model,
researchers implemented rejuvenation approaches on a cluster
system and determined the optimal rejuvenation interval with
respect to availability and cost. Fig. 3 shows a model of a
cluster system that adopts time-based rejuvenation.

DERIVED STUDIES: Castelli et al. [26] designed and
developed a rejuvenation agent for IBM Director, namely

the xSeries Software Rejuvenation Agent (SRA), to manage
highly-available clustered environments. The SRA monitors
consumable resources, estimates the time-to-exhaustion of
those resources, and generates alerts to the management in-
frastructure when the time to exhaustion is less than a user-
defined threshold. A calendar interface is presented to the
user (Fig. 4) to visually manage rejuvenations. A user has
simply to drag-and-drop a node from the left panel in the
desired day, in order to plan rejuvenation of that node in that
day. By exploiting the previously described SRNs, time- and
prediction-based rejuvenation approaches are evaluated to de-
fine the best parameters to use. For example, a model for time-
based rejuvenation may show two different intervals within the
potential rejuvenation periods: one minimising expected costs,
the other minimising expected downtime. Thus, a practitioner
should make a compromise on whether the expected downtime
or the expected cost is more important, while deciding the
period of the rejuvenation actions.

III. THE SARRY REPOSITORY

The SARRY repository is meant to collect SAR artifacts
like those discussed in the previous section. In addiction to the
raw files with the data, the artifacts are accompanied by the
following information:

e The category of the artifact, among the four categories
previously showed;

e A brief description on the structure of the artifact
(e.g., how information is represented in a file), and
an overview of possible uses of the data;

e A bibliographic reference (in BibTex format) to the
study that produced the artifact, in order to provide
a citable reference to users, and to give credit to the
authors of the artifact.

The natural way to disseminate SAR artifacts is the World
Wide Web. However, creating a new website to host the
artifacts, or using a personal website, may not be a wise choice.
The main issue is to assure the long-term availability of SAR
artifacts for future research: an individual researcher may not
be able to assure the availability of artifacts along his/her
whole career, and a network of researchers, with the financial
and technical support of their institutions, can provide better
guarantees.

Therefore, we opted to join with a big and well-established
repository, the OpenScience tera-PROMISE [11], which pro-
vides a long-term storage facility for research artifacts.
PROMISE is “a research dataset repository specializing in
software engineering research datasets”, which is organized in
a hierarchical structure in order to host data from several areas
of software engineering (including defect prediction, effort
estimation, requirement engineering, testing and debugging,
etc.). In agreement with the maintainers of PROMISE, we
added a new category for SAR research on the PROMISE
repository. This category is the root of the SARRY repository,
which will include sub-pages to host artifacts from different
research studies. Fig. 5 shows an example of page with a
dataset on Mandelbugs.

The repository is open to researchers that want to contribute
with new artifacts. To submit an artifact, you can either contact

tera-PROMISE Home

About People Contact Contribute -~

A/ repo / software-aging / mandelbugs.html

.
Mandelbugs in Open-Source Software
Data
Categories URL
Data from authors website - mandelbugs_oss
Code Analysis @)
Defect €@ Author(s)
«® « Roberto Natela
McCabe & Halsted
‘ Change Log
other @ When what
Dump @ August o8, 2015 Donated by Rober
Effort €B)
Cobol @ Reference
@mn (o) Studies who ha sing the data (in any form) are required to include the following reference:
Function Points
Analysis @ e
1SBSG @
Personnel €)
Other @
Green Mining @ y
Issues €@
B About the data

‘This dataset contains a list bugs from four open-source projects (the Linux kernel, the MySQL DBMS, the Apache HTTPD web server, and the

Apache AXIS WS framework). The bugs have been classified into Mandelbugs, Bohrbugs, or Aging-Related Bugs, by analyzing the conditions
eful to get insights into bugs and failures that can o

tribution of bug types in a project.

that exercise the bug (i.e., the "fault trigger”). This clas:
and to tune testing and fault-tolerance strategies acco)

‘The dataset contains an ARFF file for each subsystem of the four oper

projects. Each row of the ARFF file
« AnIDs of the bug, which can be used to retrieve more infc about the bug from the issue tracker of the project;

« Astring that represents the class of the bug (BOH = Bohrbug; NAM = Mandelbug; ARB = Aging-Related Bug; UNK = Unknown class);

* Astring that represents the sub-class of the bug (for Bohrbugs, the sub-class is not available; the subclasses for Mandelbugs are LAG,
ENV, TIM, SEQ; the subclasses for Aging-Related bugs are MEM, STO, LOG, NUM, TOT).

Software Maintenance

Spreadsheet @
Other €
Fig. 5. An example of dataset published on the SARRY repository.

the authors of this paper (see the contacts in the front of this
paper), or you can fill the online form on the website, by
specifying Software Aging as the “PROMISE repo category”.
The dataset will be added to the SARRY repository, and will
become openly accessible. We remark that the sharing of
artifacts is a good opportunity for researchers to improve the
visibility and the impact of their work.

The SARRY repository can be accessed at the address:
http://openscience.us/repo/software-aging/.

IV. CONCLUSION

Software Aging and Rejuvenation (SAR) is a well-
established research area, but it lacks a “sharing culture” to
enable new research to benefit from the results of previous
studies. We proposed four categories of SAR artifacts to share,
and we analyzed past studies that developed notable examples
of SAR artifacts, from which later SAR studies have benefited.
SAR artifacts include performance, failure, and resource con-
sumption measurements from software systems in production
and from stress testing experiments, data on aging-related bugs,
and rejuvenation scheduling models. SARRY is an open repos-
itory for long-term storage of these SAR artifacts, available at
the address http://openscience.us/repo/software-aging/. Our
hope is that other SAR researchers will join us in populating
SARRY, and that much more researchers can benefit from it
for their high-quality SAR research.

ACKNOWLEDGMENT

The authors would like to thank the maintainers of the
PROMISE repository, and in particular Rahul Krishna and Tim
Menzies, for their kind support for the SARRY repository. We

ceur in 0SS projects,

would also like to thank Michael Grottke and Kishor Trivedi
for sharing their SAR artifacts for the initial version of the
SARRY repository. This work was supported by the COSMIC
public-private laboratory, projects SVEVIA (PON02_00485_
3487758), MINIMINDS (PON02_00485_3164061) and DIS-
PLAY (PON02_00485_3487784), funded by the Italian Min-
istry of Education, University and Research.

[3]

[4]

[5]

[6]

[8]
[9]
[10]

(11]

[12]

REFERENCES

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software reju-
venation: Analysis, module and applications,” in Fault-Tolerant Com-
puting, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International
Symposium on. 1EEE, 1995, pp. 381-390.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
and rejuvenation: Where we are and where we are going,” in Software
Aging and Rejuvenation (WoSAR), 2011 IEEE Third International
Workshop on. 1EEE, 2011, pp. 1-6.

——, “A survey of software aging and rejuvenation studies,” ACM
Journal on Emerging Technologies in Computing Systems (JETC),
vol. 10, no. 1, p. 8, 2014.

“WoSAR 2015 seventh international workshop on software aging and
rejuvenation,” https:/sites.google.com/site/wosar2015/, accessed: 2015-
08-01.

J. M. Alonso, A. Bovenzi, J. Li, Y. Wang, S. Russo, and K. Trivedi,
“Software rejuvenation: Do it & telco industries use it?” in Software
Reliability Engineering Workshops (ISSREW 2012), 23rd International
Symposium on. 1EEE, 2012, pp. 299-304.

C. Tenopir, S. Allard, K. Douglass, A. U. Aydinoglu, L. Wu, E. Read,
M. Manoff, and M. Frame, “Data sharing by scientists: practices and
perceptions,” PloS one, vol. 6, no. 6, 2011.

“Challenge in irreproducible research : Nature news and comments,”
http://www.nature.com/news/reproducibility-1.17552, accessed: 2015-
08-01.

“SIR software-artifact infrastructure repository,” http://sir.unl.edu/portal/
index.php, accessed: 2015-08-01.

“ADR amber raw data repository,” http://amber-dbserver.dei.uc.pt:8080/
repository/main.action, accessed: 2015-08-01.

“Artifact evaluation for software conferences,” http://www.artifact-eval.
org/, accessed: 2015-08-01.

T. Menzies, M. Rees-Jones, R. Krishna, and C. Pape, “The
promise repository of empirical software engineering data,” 2015,
http://openscience.us/repo. North Carolina State University, Department
of Computer Science.

S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A
methodology for detection and estimation of software aging,” in Soft-
ware Reliability Engineering, 1998. Proceedings. The Ninth Interna-
tional Symposium on. 1EEE, 1998, pp. 283-292.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

K. Vaidyanathan and K. S. Trivedi, “A measurement-based model for
estimation of resource exhaustion in operational software systems,” in
Software Reliability Engineering, 1999. Proceedings. 10th International
Symposium on. 1EEE, 1999, pp. 84-93.

M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” Reliability, IEEE Transactions on,
vol. 55, no. 3, pp. 411-420, 2006.

R. Matias Jr and J. Paulo Filho, “An experimental study on software
aging and rejuvenation in web servers,” in Computer Software and
Applications Conference (COMPSAC ’06), 30th Annual International,
vol. 1. IEEE, 2006, pp. 189-196.

H. El-Shishiny, S. Deraz, and O. Bahy, “Mining software aging patterns
by artificial neural networks,” in Artificial Neural Networks in Pattern
Recognition. Springer, 2008, pp. 252-262.

M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on.
IEEE, 2010, pp. 447-456.

D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Performance Evaluation,
vol. 70, no. 3, pp. 163-178, 2013.

D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in
Software Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on. 1EEE, 2013, pp. 178-187.

X. Xia, D. Lo, X. Wang, and B. Zhou, “Automatic defect categorization
based on fault triggering conditions,” in Engineering of Complex
Computer Systems (ICECCS), 2014 19th International Conference on.
IEEE, 2014, pp. 39-48.

M. Grottke and B. Schleich, “How does testing affect the availability
of aging software systems?” Performance Evaluation, vol. 70, no. 3,
pp. 179-196, 2013.

M. Grottke, D. Kim, R. Mansharamani, M. Nambiar, R. Natella, and
K. Trivedi, “Recovery From Software Failures Caused by Mandelbugs,”
IEEE Transactions on Reliability, 2015, PrePrint, http://dx.doi.org/10.
1109/TR.2015.2452933.

“SHARPE symbolic hierarchical automated reliability and performance
evaluator,” http://sharpe.pratt.duke.edu/, accessed: 2015-08-01.

“GreatSPN 2.0 graphical editor and analyzer for timed and stochastic
petri nets,” http://www.di.unito.it/~greatspn/index.html, accessed: 2015-
08-01.

K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi, “Anal-
ysis and implementation of software rejuvenation in cluster systems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, pp.
62-71, 2001.

V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “‘Proactive management of software

aging,” IBM Journal of Research and Development, vol. 45, no. 2, pp.
311-332, 2001.

