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§ Università degli Studi di Napoli Federico II, roberto.pietrantuono@unina.it

Abstract—This paper summarizes the main methods adopted
for the analysis and detection of software aging phenomena based
on measurements (measurements-based aging analysis) as well as
the metrics more commonly used as aging indicators.

I. MEASUREMENTS FOR SOFTWARE AGING ANALYSIS

One broad class of techniques to cope with software agin
is the measurement-based strategy [1]. In measurement-based
analysis, the focus is on defining a proper set of aging
indicators, on observing them to determine the existence of
the phenomenon and, once detected, estimating the remaining
time to live of the system [2]. This in turn allows determin-
ing the optimal moment to trigger the software rejuvenation
process. The way in which aging indicators are analyzed
range from considering simpler but less accurate techniques,
such as observing the value of some key metric, to more
accurate but complex strategies relying on hypothesis tests for
trend detection, time series analysis, up to machine learning
algorithms to support the diagnosis of the system’s aging state.
We focus on two dimensions to classify measurement-based
techniques: i) the indicators to analyze the aging phenomenon,
ii) the analysis technique. These are briefly discussed in
the following. A detailed explanation is in the Handbook of
Software Aging and Rejuvenation, Chapter 4 [3].

II. AGING INDICATORS

The correct identification of metrics capturing the aging of
the system is of paramount importance to have a clear view on
the system health’s state. Aging indicators can refer to resource
usage and to performance. Table I synthesizes commonly
used metrics, which are about Performance degradation –
the main user-perceived effect caused by aging - Memory
consumption, such as free physical memory and swap space,
which are by far the most commonly adopted ones, and
other resource consumption besides memory, which monitor
resources such as the filesystem, CPU, storage, network, or
application-specific metrics (e.g., DBMS shared pool latches).
In cloud systems, indicators can be measured at any layer of
the virtualization technology stack, e.g., at guest, host or VMM
layer. Other indicators of interest are related to VMs, e.g.,
the number of VM allocations/releases or migrations. Further
indicators aim at capturing specific effects like accumulation
of numerical errors and memory fragmentation [4].
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III. AGING ANALYSIS TECHNIQUE

A. Threshold-based

The simplest way to warn about aging in the system is to
define thresholds on some key indicators, so as rejuvenation
is triggered when these are exceeded. Indicators may refer
to response time or memory consumption. Difficulties arise in
identifying the best indicators and the right thresholds for them
(especially in presence of strong correlations among multiple
indicators): the choice of the indicators should be able to
prevent actual failures and useless rejuvenation actions at the
same time. An example is in the work by Silva et al. [5],
which adopts thresholds on mean response time and on quality
of service indicators. Authors propose a rejuvenation based on
self-healing techniques that exploits virtualization to optimize
recovery. They implemented a framework, called VM-Rejuv,
in which an Aging Detector module revealing aging based on
the mentioned thresholds.

B. Statistical time series analysis

With time series analysis, variables potentially related
to software aging, such as system’s resources consumption
or performance indicators, are monitored periodically over
time, and the resulting time series are analyzed to assess
the presence of aging. This approach copes with two main
problems: 1) detecting the presence of a degradation trend
(trend detection) and 2) quantitatively estimating the extent
of the degradation (trend estimation) and its characteristics

TABLE I
EXAMPLE OF AGING INDICATORS (# DENOTES number of )

Performance Memory Resources consumption
degradation consumption (beside memory)

Response time Free RAM memory File handles, file table size
Throughput Cache/Buffer size Temporary files size
Latency Virtual memory CPU utilization
Transaction rate Resident Set Size (RSS) #threads/processes
#SLA violations Swap space #locks

Active/Inactive Socket descriptors
(more/less recently used mem.) DBMS res. (e.g., shared pool)
Slab (in-kernel cache) Power consumption
Shared memory Disk space
At VM-level VM creation/term./migration
(e.g., Free RAM in the VM At VM-level
Heap/GC stats in the JVM) (e.g., #threads in the VM)



(e.g., seasonality in data). Trend detection applies statistical
hypothesis test to determine whether the values within a time
series generally increase (or decrease) over a long period of
time. Trend estimation allows quantitatively characterizing the
long-term component of a time series.

The most used trend detection techniques in software aging
research are, by far, the Mann-Kendall and Seasonal Kendall
test. They are hypothesis tests (for non-periodic and periodic
time series, respectively) to accept/reject the hypothesis of no
trend in data. Being non-parametric tests, they do not make
assumptions on the distribution of data and are more robust
to outliers than parametric tests; on the other hand, they are
generally conservative, namely some actual trend could be
missed. Mann-Kendall (and Seasonal Kendall) test is usually
applied in conjunction with the Sen’s (and Seasonal Sen’s)
procedure for trend estimation. The Sen’s procedure is also a
non-parametric linear regression technique (also insensitive to
outliers) that fits a linear model and computes the slope as the
median of all slopes between paired values. More recently, the
Mann-Kendall test is being questioned because of the high rate
of false positives, suitability for linear trends only, sensitivity
to noise. Zheng et al. proposed a modified version of the
Cox-Stuart test for trend detection and the iterative Hodrick-
Prescott Filter for (linear and non-linear) trend estimation as
alternative to Mann-Kendall/Sen’s procedure pair [6].

Beside conventional regression, time-series ARMA/ARX
models have been extensively used for trend estimation, e.g.,
[7], as well as ARIMA and Holt-Winters (Triple Exponential
Smoothing) model [8]. Non-linear time-series analyses are
used by Araujo et al. [9], where four time-series models
allows to schedule rejuvenation properly: the linear, quadratic,
exponential growth and Pearl-Reed logistic model.

Time-series analysis has been also adopted to study the
relationship of the software aging and workload in complex
systems, including the Linux Kernel code [10], and the Java
Virtual Machine [11]. The impact of the workload is also
investigated by a Design of Experiment (DoE) method [12].

C. Machine-learning-based

If we consider software aging as a result of two factors
(the system resource presenting the aging bug and time), time
series approaches can be considered ideal. However, these
approaches are limited by the forehand knowledge about the
resource/metric that is affected by the aging phenomena, espe-
cially in complex systems with many interdependency between
resources at different system layers. Machine Learning is a
more sophisticated form of data analysis, which adopts re-
gression and/or classification to identify trends (and predict the
time to exhaustion (TTE)) and classify a system state as robust
or failure-prone. Often time series analysis and classification
are used together to identify trends and then classify the system
state. Alonso et al. compare different regression algorithm
families (i.e., regression trees, linear regression and hybrids)
in different scenarios and multiple aging phenomena involved
[13]. Many classifiers have been explored for aging detection,

including naive Bayes, decision trees, neural network, random
forest, LDA/QDA, SVM, K-NN, and ZeroR [8], [14].

Eto, Dohi and Ma [15] use reinforcement learning to esti-
mate the optimal rejuvenation schedule, hence not requiring
the complete knowledge on system failure time distribution.

IV. CONCLUSION

The advantage of measurements-based solutions lies in the
possibility to gather accurate and detailed information about
the aging state, and there is no need to make assumptions on
model parameters because real data are available. However,
the gathered data are hardly generalizable to other systems.
This requires a tuning of the technique used based on the
system to be analyzed. Combination of measurements-based
approaches with model-based ones make sense in order to
be able of parametrizing models with real observations and
exploiting the advantage of both approaches. This is a strategy
that we will likely witness more and more in the future.
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