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Abstract—Image classification systems using machine learning
are rapidly adopted in many software application systems.
Machine learning models built for image classification tasks are
usually deployed on either cloud computing or edge computers
close to data sources depending on the performance and resource
requirements. However, software reliability aspects during the
operation of these systems have not been properly explored.
In this paper, we experimentally investigate the software aging
phenomena in image classification systems that are continu-
ously running on cloud or edge computing environments. By
performing statistical analysis on the measurement data, we
detected a suspicious phenomenon of software aging induced by
image classification workloads in the memory usages for cloud
and edge computing systems. Contrary to the expectation, our
experimental results show that the edge system is less impacted
from software aging than the cloud system that have four times
larger allocated memory resources. We also disclose our software
aging data set on our project web site for further exploration of
software aging and rejuvenation research.

Index Terms—Cloud computing, Edge computing, Image clas-
sifiers, Machine learning, Software aging

I. INTRODUCTION

Image classifiers using machine learning models are now
pervasively deployed in consumer and industrial software
systems. Recent advances in deep learning have enable
highly accurate image classification in versatile application
domains such as face recognition, surveillance systems, and
autonomous vehicles [1]. To build an image classifier, a
deep learning model is trained from image data sets on rich
computing resources. The copies of the trained models can
be used in software programs that receive image samples and
output the classification results for the applications.

Depending on the requirements and constraints from the
applications, image classifiers are deployed in either a cloud
computing or an edge computer that is located near the data
sources. The edge computer can be a stand-alone server, a
small computer, or a smart device that is directly connected
to an image sensor (e.g., camera). Compared to the cloud
computing that offers scalable computing resources on de-
mand, the edge computers have limited resources that may
not be sufficient for processing image processing [2]. On
the other hand, network connection and bandwidth tend to
be the bottleneck of cloud computing, especially for latency-
critical applications such as connected car [3]. Existing studies
for edge computing discussed when and how to allocate
computing tasks between cloud and edge considering the

performance and resource requirements [4]. However, little
has been explored on the software reliability aspects during
the operation, in particular for continuously running software
programs dealing with image classification tasks.

In this paper, we experimentally evaluate the software aging
phenomena in image classification systems continuously run-
ning on cloud or edge computing environments. We examine
how software aging phenomenon appears differently between
these two environments. In the experiments, we used the
MNIST data set [5] that contains hundreds of handwritten im-
ages of digits from 0 to 9. The image classifier is trained from
the training data set offline. The software program employing
the trained classifier is deployed on either a cloud or an edge
system on which classification tasks are executed continuously
in response to the image samples sent from a client. For
different architecture options (i.e, either the cloud or the
edge) and different workload intensities, we collected system
performance metrics for 72 hours. Using Mann-Kendall test
[6] with Sen’s slope estimate [7], we confirmed the increasing
trends in the memory consumption both in the edge and the
cloud systems. In high workload case for the cloud system,
we observed a system failure due to the depletion of memory.
Contrarily to our expectation, the experimental results indicate
that the cloud system has more significant impact on software
aging. Although the results cannot be generalized easily to
other applications, our observation implies that we cannot
always assume that cloud is more robust than edge computing
against software aging. Since the manifestation of software
aging highly depends on software stacks under the executed
program, the amount of available resource does not guarantee
the safe execution of long running software program. Our data
analysis provides only a preliminary result and further analysis
are required. To open further studies on software aging and
rejuvenation in cloud and edge computing systems, we provide
our data set online [8] that can be used for research purpose.

The rest of the paper is organized as follows. Section II
describes the related work for software aging analysis. Section
III explains our experimental plan in detail. Section IV shows
the experimental results with some statistical analysis. Section
V presents our conclusion.

II. RELATED WORK

Studying software aging in cloud-based systems is becom-
ing increasingly important because of the negative impact



that a problem can have both on user-perceived quality of
services (e.g., availability, reliability and performance) and,
consequently, on the huge market around cloud-based systems
and services. There is an increasing interest from the Software
Aging and Rejuvenation (SAR) community in analyzing the
phenomenon in cloud-based systems. A recent survey reports
almost one hundred papers in the last ten years with a
considerable number of research groups around the world
addressing this topic [9].

A considerable number of works have been proposed to
investigate SAR in the cloud, or more generally in virtualized
systems, by exploiting stochastic models such as stochastic
Petri nets (SPN) and stochastic reward nets (SRN) [10]–[13],
continuous-time Markov chains (CTMC) [14], [15], semi-
markov processes (SMP) [16], [17], as well as combinatorial
models such as reliability block diagrams (RBD) [18] and
dynamic fault trees (DFT) [19]. In these works, the cloud
architectures – including virtual machines (VMs), virtual
machine monitor (VMM), and physical host(s) - and the
associated rejuvenation strategies are modeled with the aim
of computing the optimal time for rejuvenation and of fine-
tuning the adopted rejuvenation techniques.

Many other researchers considered a measurement-based
approach to the aging problem in cloud-based systems or
cloud applications, which is the same approach we adopt
in this work. Statistical techniques for time series analysis
of indicators of interest (such as response time and mem-
ory/resource consumption) is the most common approach. For
instance, the work by Araujo et al. characterize the aging
phenomenon on the Eucalyptus cloud computing framework
[20]. That work adopts several regression models including
linear, quadratic, exponential growth, and Pearl-Reed logistic
models to predict memory consumption trends and schedule
software rejuvenation properly. Sukhwani et al. analyze the
aging of IBM cloud controller systems with a similar strategy
[21]. Umesh et al. also exploit time series models to forecast
software aging patterns of Windows active directory service
for virtualized environments [22].

Mohan and Reddy study the effect of aging on an un-
common, but very important indicator for cloud computing,
namely energy consumption [23]. The authors exploit linear
regression to estimate the trend. Energy consumption is also
considered by Villalobos et al. [24], where an IDS-based self-
protection mechanism at the virtual machine level inspired
by software rejuvenation concepts is presented. A correlation
between IDS accuracy, attack rate, cloud system workload,
energy consumption, and response time is identified – in
fact, security-related aging problems are also of increasing
interest. The work presented in [25] performs a workload-
dependent analysis of performance degradation and memory
indicators in Apache Storm, an event stream processing (ESP)
application, deploying tasks over a cloud architecture, by
means of workload-dependent time series analysis. In addition
to time-series analysis, machine learning strategies have also
been used in cloud-based systems or cloud applications to
detect/predict the possible aging system state (e.g., [26] [27]

[28]), as well as the simpler threshold-based approach on
specific aging indicators [29] [30].

In this work, we focus not only on aging at cloud level, but
also explore aging in an edge-computing scenario. Deploy-
ing physical resources and distributing computational efforts
following a different architectural style, such as in the edge
computing paradigm, can have effect on the overall perfor-
mance degradation perceived by the end user. Moreover, to the
best of our knowledge, the task we consider as application,
namely machine-learning-based image classification, is also
unexplored from the SAR perspective. We hereafter show
whether this task is able to expose aging phenomena in the
underlying cloud-based and edge-based architectures.

III. EXPERIMENTAL PLAN

A. Research questions

The objective of our study is to analyze the potential
software aging issues of image classification systems running
on cloud or edge. If software aging appears, it is interesting to
know the difference of aging impacts between cloud and edge
systems. Therefore, we set the following research questions
for our experimental study.

• RQ1: Does an image classification system executing on
a cloud encounter any software aging issue? and, if so,
how significant it is and what is the cause?

• RQ2: Does an image classification system executing on
an edge computer encounter any software aging issue?
and, if so, how significant it is and what is the cause?

• RQ3: Does the image classification system executing on
an edge computer have a higher impact from software
aging than a the same system executing on a cloud?

To answer these questions, we setup the following experi-
ments.

B. Setup

For an application of image classification system, we used
the MNIST data set that contains hundreds of handwritten
images of digits from 0 to 9. This data set is a well known
benchmark for image classification. The challenge with this
data set is to correctly classify a handwritten digit based on a
28-by-28 black and white image. Therefore, we implemented
in Python a neural network system that recognizes handwritten
digits based on the MNIST data set. In this system, images are
generated and sent from a client’s device over the network to
a server for image classification on a continuous basis. Note
that the input of the image classification system is a 784 size
vector, obtained from converting the image, originally a 28x28
size matrix, to a 784 position vector.

Two distinct testbeds were adopted for the experiments.
One for the cloud architecture and the other for the edge
architecture. Our testbed for the former consisted of a client
device and a virtual machine executing the image classification
system (hosted on Google’s infrastructure). The latter con-
sisted of a client device and an edge also executing the same
image classification system. Note that the client device is the
workload generator, which is a program written in Python 3



to create constant workload. The settings for the devices are
the following:

• Client device: Apple MacBook Air 11-in, Intel Core i5
1.60GHz, 4 GB, 64 GB, Mac OS X Lion 10.7.

• Virtual machine: n1-standard-1 (1 vCPUj, 3.75 GB of
memory), Debian GNU/Linux 10 located in us-central1-
a.

• Edge: Raspberry Pi 3, 900MHz quad-core ARM CPU,
1GB RAM, running the default Raspbian Linux image.

C. Experiments, metrics, and analysis method

To address the research questions, two sets of experiments
was carried out. The first set aimed at investigating the possible
presence of software aging in the image classification system
executing on the edge computer. For that, we considered the
following workload settings: no workload, low workload (1
image every 1 second), medium workload (1 image every 0.5
seconds) and high workload (1 image every 0.1 seconds). For
each workload setting, we executed the experiments for 72
hours. The second set investigated the possible presence of
software aging in the image classification system executing on
the cloud. The workload settings were the same as the ones
presented for the edge. The difference is that the experiments
were carried out in the cloud.

For each experiment, we gathered data and analyzed aging
indicators. These indicators refer to the system variables that
can be directly measured and can be related to the software
aging phenomena [31]. The analysis of aging indicators can
be performed both at system level and process level. System
level analysis investigates system resources which can age. On
the other hand, process level analysis aims to identify those
processes more responsible for resource consumption and user-
perceived performance degradation, if any. In this work, the
main aging indicators we considered were regard both the user-
perceived performance and the resource depletion in terms of
real memory consumption. As stated in [32], these are the
typical aspects considered in software aging studies. Regarding
the user-perceived performance, we adopted the mean response
time, which is the mean time from sending the image to the
end of image processing.

In term of aging detection, we adopted the conventional
Mann–Kendall test (MKT) to estimate the trends of aging
indicators, and the Sen’s slope estimate to calculate the magni-
tude of the trends. The Mann-Kendall analysis checks the null
hypothesis (H0) that there is no trend in the data during the
time, while the alternative hypothesis (H1) indicates an upward
or a monotonic downward trend in the data. If the p-value of
the test is lower than the significance level (α =0.05), then
there is statistically significant evidence that a trend is present
in the time series data. As software aging is a cumulative
process, the MKT can be used to reveal patterns of software
internal state degradation. Although MKT suffers from high
rates of false positives, it remains the most widely adopted test
to detect aging [33]. The statistic to measure the magnitude
of the trend is the Sen’s slope. It is computed as the median
between each pair of data points, so that a positive Sen’s slope

implies a positive trend, while a negative Sen’s slope means a
negative trend.

IV. RESULT ANALYSIS

In this section, we present the experimental results with
some statistical analysis to address our research questions.

A. Results from the cloud environment: RQ1

For the image classification system running on the cloud, we
observed software aging issues both in the response time and
in the memory usages. Figure 1 plots the measured response
times for the image classification system by different workload
settings. The horizontal and vertical axes represent the exper-
imental time and the observed response times, respectively.
The results clearly show the response times are affected by
the workloads of image classification tasks. In particular,
we observed an increase in response time for the case of
high workload around 10 hours in which the virtual machine
crashed. For the middle workload case, on the other hand, we
observed the characteristic behavior of the response time that
had two peaks in the observation period. After reaching the
first peak around 18 hours, the response time decreases slowly,
but it jumps up again around 56 hours. In total, the response
time is getting worse. For the low workload case, the response
time is relatively stable, although it can be observed a little
increasing trend.

Fig. 1: Response time for the image classification system on
the Cloud.

In Figure 2, we show the traces of memory usages in
the cloud VM under the different workloads: (a) None, (b)
Low, (c) Middle, and (d) High. For all the cases including no
workload case, we observe the increasing trends in the memory
usage. For the high workload case, the memory usage reached
the maximum capacity of the VM around 10 hours at which the
VM is restarted by the cloud. Similar behavior was detected
in the middle workload case, but the memory was not released
because it did not reached the maximum memory capacity.



As a result of Mann-Kendall test, the p-values are less than
0.05 for all the cases, leading to the conclusion that the null
hypothesis is rejected. In order to compare the significance of
trends, we applied Sen’s slope estimator. Table I presents Sen’s
slope estimators for cloud memory usages under different
workloads with the Lower Confidence Interval (LCI) and
Upper Confidence Interval (UCI) at 95% confidence level. For
high and middle workloads, we only considered the data until
the first peak points. The results showed that the slope becomes
more steep as the intensity of the workload increases.

TABLE I: Sen’s slope for estimates for the cloud memory
usage data in different workload settings at 95% confidence
level with confidence intervals.

Workload Slope estimate (MB/hour) LCI UCI
None 5.871991e-04 5.439642e-04 6.309148e-04
Low 5.345212e-04 5.034965e-04 5.658627e-04

Middle 1.5831818 1.53600 1.63016
High 5.7149268 5.689639 5.760805

In order to understand the the underlying causes of the aging
phenomenon, we performed a process analysis for the VM on
the Cloud. For this purpose, we created a program in Python 3
to gather information about the processes running on the sys-
tem every hour. This program uses the ps command1 to retrieve
such information, including the process identification numbers.
Our analysis indicated that two main process were responsible
for such increase in the memory consumption: ”tmux” and
”systemd-journald”. Tmux is a terminal multiplexer, while
systemd-journald is a system service that collects and stores
logging data. In the experiments, tmux was used to keep
the system running regardless of the cloud SSH connection.
Although tmux is not the main part of image classification
system (rather it is the part of experimental configuration), the
memory consumption was affected by the workload intensity
of image classification tasks. If this causes a failure like the one
observed in the high workload case, it is not a negligible issue.
To locate the root-cause, we need more deep investigation on
the dependencies of related software components.

B. Results from the edge environment: RQ2

Likewise the cloud environment, we deployed the image
classification system on our edge system and performed the
same workload tests. Figure 3 shows the observed response
times of the system by different workload settings. In con-
trast to the results from the cloud system, we do not see
clear increasing trends of the response time regardless of the
workload intensity. For the high and middle workload cases,
the difference is almost negligible especially after 20 hours
(the difference is less than 0.01 second). The response time
for middle workloads, however, is consistently worse than the
others (about 0.02 second longer than the other cases after
35 hours). We suspect this small difference was caused by
temporally congestion of local area network traffic.

In Figure 4, we show the traces of memory usages in
the edge computer under the different workloads: (a) None,

1The ps command is a traditional Linux command to lists running processes.
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Fig. 2: Cloud memory usages considering the following work-
loads: (a) None, (b) Low, (c) Middle and (d) High.



Fig. 3: Response time for the image classification system on
the Edge.

(b) Low, (c) Middle, and (d) High. As can be seen, the
results highlight the trends on memory consumption for all
workloads, even in the case without workload. The results
of Mann-Kendall test for these memory usage data showed
the p-values are less than 0.05. Thus, the null hypothesis is
rejected implying that there are trends in the data. We also
applied the Sen’s slope estimator to compare the significance
of trends among different workloads. Table II shows Sen’s
slope estimators for edge memory usages, including the lower
and upper confidence intervals. They reveal that higher work-
loads cause the steepest slopes of memory usage trends. The
increasing trends in memory consumption maybe caused by
benign process which does not have any aging-related bugs.
However, there could be a factor that accelerates the memory
usage in response to the workloads of image classification
tasks.

TABLE II: Sen’s slope for estimates for the edge memory
usage data in different workload settings at 95% confidence
level with confidence intervals.

Workload Slope estimate (MB/hour) LCI UCI
None 1.883117e-03 1.871147e-03 1.895147e-03
Low 1.962545e-03 1.950317e-03 1.974779e-03

Middle 1.984127e-03 1.971902e-03 1.996338e-03
High 2.078947e-03 2.060263e-03 2.097693e-03

In order to understand the underlying causes of the in-
creasing memory trends, we performed the process analysis
to identify the processes that are stripping the edge’s memory.
Our analysis indicated that two main process were responsible
for the increase in the memory consumption: “hwrng” and
“systemd-timesyncd”. The former is a library for random
number generation, while the latter is a daemon used for
synchronizing the system clock across the network. Since these
processes are not the part of image classification tasks, we
need more investigation for analyzing the potential software
aging.
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Fig. 4: Edge memory usages considering the following work-
loads: (a) None, (b) Low, (c) Middle and (d) High.



C. Comparison between cloud and edge: RQ3

From the obtained results, we cannot state that an edge
computer is more impacted from software aging than a cloud
environment which has more computer system resources.
In fact, our experimental results showed a counter-intuitive
fact that the edge system provides more robust execution
environment for the image classification system than the cloud
system. For our experimental settings, the allocated memory
for the cloud was about four times higher than the memory
available on the edge (3.75GB vs. 1GB). With numerous
interdependent and tightly coupled components, cloud-based
environments can lead to aging gaps and make it difficult to
find the underlying causes of this phenomenon. Additionally,
as expected, the edge had a better performance than the cloud.
For instance, if we consider high workload, the edge had, on
average, a response time 17 times faster than the Cloud.

V. CONCLUSION

In conclusion, we observed that the manifestation of soft-
ware aging phenomenon in image classification tasks had quite
different characteristics between cloud and edge computing
environments. In our test application program, software aging
has a significant impact on the cloud environment rather than
edge computing systems with less amount of resources. This
could be just an instance of complex environment-dependent
software aging problems among cloud, fog and edge com-
puting architectures. Software aging experiments are essential
to understand the actual software aging impacts on different
software stack and to determine the right place to deploy the
classifier in terms of software system reliability.
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