
Requirements Engineering
in Rail Transit Production: an Experience Report

Fernanda Buonanno∗, Domenico Di Leo†, Paolo di Paolo∗, Roberto Pietrantuono†, Stefano Russo †‡
∗AnsaldoBreda S.p.A., Via Argine, 425, 80147 Napoli Italy

†DIETI, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
‡Critiware s.r.l., Incipit, Via Cinthia, Complesso Univ. Monte S. Angelo, 80126, Napoli, Italy

{buonanno.fernanda,dipaolo.paolo}@ansaldobreda.it, {domenico.dileo,roberto.pietrantuono,sterusso}@unina.it

Abstract—Software is an increasing part of train control
systems, calling for the integration of sound software design
techniques into consolidated industrial systems’ engineering
processes. Although requirements engineering is a traditional
software engineering area, its relevance for critical embedded
systems is underestimated. We present the experience of a public-
private collaboration between University of Naples and Ansaldo
Breda, a leading company in the field of rail transit systems. The
experience is focused on requirements engineering as a driver to
improve the development process in order to better support, in
the long term, software quality and safety assurance activities, at
the same time with a proper cost/quality trade-off (higher quality
costs are compensated through reuse over a product line).

I. INTRODUCTION

Software has become a non-negligible part of on-board train
control equipments. This demands for innovation in system
engineering processes in the field, with the aim of giving
evidence of control software quality and safety levels, while
reducing costs. We report the experience within a public-
private collaboration between the University of Naples and
Ansaldo Breda (AB), a leading company in the market of
rail transit systems, with a product line of technologically
advanced rolling stocks1. Companies like AB are called to
build high-quality control software, compliant to reference
standards of railway and software industry (such as CENELEC
50128 [1], IEEE 830), with contained cost and within stringent
time to market. This pushes to explore a modernization of
the internal software development life cycle to strengthen key
aspects like reusability and software integrity levels assurance.

The experience we describe focuses on the integration of
requirements engineering [2] techniques into AB’s consol-
idated industrial process. The cooperation started in 2010
and is continuing through the Critiware spin-off company2.
Our experience highlights the role of proper requirements
engineering as main driver for addressing the issues related
to development cost, product quality, and standard compli-
ance. Indeed, requirements have “a crucial importance ... in
critical software systems engineering” [3]; their importance is
however underestimated, if we just admit that - as pointed out
again in [3] - “most tools in common use today still represent
a requirement as a simple, unadorned string”.

1www.ansaldobreda.it
2www.critiware.com

II. MAIN ISSUES AND PROPOSED SOLUTIONS

A. System overview

We focused on the MLA (Automated Light Metro) product
line, namely what UNI 8369 defines as Light Rail Transit3.
This AB’s rail transit platform has been deployed in several
sites all over the world, such as Riyadh (SA), Milan and
Brescia (I), Saloniki (GR), Taipei (RC). The main subsystems
of this platform are: Train Control System (TCS), Traction
Control Units (TCUs), and Monitoring and Diagnostic
System (MDS).

The TCS is the on-board train automation unit managing
logic functions, contactors and electrovalves during the trac-
tion, braking and coasting status. The MDS is the on-board
unit which collects and displays diagnostic data from each
subsystem of the train. The TCU is the on-board controller of
the propulsion system with capability to manage propulsion
inverters and braking choppers, and to move the dedicated
contactors. Communications among entities of the vehicle is
carried out through dedicated buses (Multifunctional Vehicle
Bus, MVB), a serial RS485 bus, and an Ethernet bus. These
units have a considerable part of software, e.g., the TCS sizes
up 10,000 LoC. Fig. 1 depicts the architecture of the TCS.

Fig. 1. The Architecture of the TCS.

3http://store.uni.com/



B. Development process

The AB software development process adheres to the V-
Model (Fig. 2), prescribed by the CENELEC EN 50128
standard [1]. This model, adopted in several critical industrial
domains, has key benefits in accounting for verification and
validation (V&V) at early stages, as soon as requirements are
elicited, and supporting model-based V&V [4].

Requirement engineering starts with user requirements de-
scribed in the contractual documents with the customer, con-
taining technical specifications and references to standards and
norms to be respected. From these, system requirements are
first specified, and a high-level system architecture is devised.
A primary work of the design team is the allocation of system
requirements to subsystems, and the derivation of sets of
subsystem requirements. Then, the team identifies which tasks
should be realized by software, ending up with the software
requirements specification (SRS) for each subsystem. SRSs are
used by designers to derive the software architecture, which
is finally used, along with requirements, as input for the other
phases of the life cycle process.

C. The impact of requirements

The innovation needs initially identified were a rapid iden-
tification of reusable modules of software artifacts across
instances of the MLA product line, and the improvement of
traceability of requirements, so as to favour reuse, as well
as an easier compliance with the certification standards. As
we jointly started to analyze the development process from
the upper system level down to the code, we realized that the

Fig. 2. The company “V-model” for software development.

primary area of intervention to achieve both goals should have
concerned requirements specification and management. The
principal warning was the high heterogeneity of requirements
in terms of writing style, structuring, classification, granularity,
relations, and semantics (i.e., separation of what from how).

Differences in specifying requirements may be due to
several reasons. A relevant one in our case is related to the
different stakeholders involved, which include - besides the
AB engineers: the customer requiring the train; the partner
railway company Ansaldo STS, which for some projects
acts as main contractor, and whose requirements refer to the
whole rail transportation system (including signaling); external
consultants supporting AB in control software development.

In this context, system requirements, expressed in natural
language, of an MLA project is the result of: i) user needs,
expressed in the contractual documents, properly analyzed and
specified at system level; ii) standards rules and regulations
to be respected; iii) more basic, stable, and “reusable” re-
quirements coming from domain knowledge and consolidated
practices within the company; iv) constraints coming from
COTS (Commercial Off-the-Shelf) component providers.

The different points of view often result in relevant dif-
ferences not only in the style by which a requirements is
expressed, but also in the meaning of requirements, in their
abstraction level, and in their granularity. This often leads
to consistency problems among requirements and ambiguity
when read from different actors in the development chain.

Moreover, the coarse-grained way requirements are typi-
cally specified by system engineers does not support “design
for reuse”. This pushes development engineers to proceed,
practically, by starting from the most resembling project,
instead from the platform, and applying customizations; in this
way the product becomes a “customization of customizations”,
with some parts derived from similar projects, some other parts
derived from the platform.

Issues in requirements specification lead to problems of
reusability, traceability (up to code), testability (each specifica-
tion problem reflects into a problem in the test specification),
and maintainability (e.g., change and impact analysis are more
difficult with non-homogeneous requirements specifications).
All these issues result into high costs of customization of the
platform to user needs and, more importantly, may affect con-
fidence in the evidences of the satisfaction of non-functional
requirements, including safety. For instance, testability and
traceability (which is highly recommended by certification
standard [5], [6]) are essential goals in this domain.

D. Improvement Actions

In order to improve quality, traceability and reusability
of requirements across the product line, first we envisaged
their organization into platform-level, independent from a
specific project, and product-specific requirements, obtained
through a customization of the former according to contractual
specifications. Then we defined procedures and practices for
requirements classification, structuring, traceability, and man-
agement, experimented on an internal pilot case study, namely



an instance of the MLA system. In particular, we acted on:
• a classification of requirements per typology;
• a clear separation of abstraction levels, so as to favour

the distinction of what should be specified where, and
the consequent identification and respect of roles;

• rules for a structured use of natural language, with a
common representation for all the types of requirements
(system, subsystem, interface, data, software), previously
left to the individual decision of project managers;

• a proper granularity of requirements’ textual description;
• using terms and definitions, in all artifacts, consistently

among different projects.
The main implemented actions are the following.

Abstraction. The difficulty in reusing requirements was
mainly due to the intersected customizations and the absence
of common abstraction criteria across different projects. Hence
we deemed important to proceed with step-by-step refinements
in specifying requirements [2]. We suggested distinguishing
requirements at different abstraction levels - high-level and
low-level requirements (HLR, LLR) - in order to separate the
platform-level (more abstract) and project/product-dependent
(more specific) set of requirements, and derive the latter from
the former by customization. Table I shows an example of
HLR with a coresponding LLR for the TCS subsystem.
This choice also favours the separation of concerns and
responsibilities (since a different expertise is required for the
two types of requirements): at higher level, a broader system-
level and cross-project knowledge is required, to specify
requirements in a way that can be potentially reused in other
projects, whereas at lower level a much closer view to the
technical perspective of the specific subsystem being realized,
as well as to the programming domain, is required. A better
separation between what is required from how it is realized in
a specific project is also obtained in this way.

Structure of a requirement. We defined a tailored scheme
to structure the requirements. We included the fields: ID,
Name, Description, Input, Output, Precondition, Postcondi-
tion, Type (functional, performance, interface) (Table I ).

Relations among requirements. A high-level functional
requirement represents a functionality requested to the system,
that will be expressed as a flow of actions to perform. We
encountered a number of situations in which a requirement
expressed a basic functionality with successive requirements
expressing “variations”, or “specialization” detailing it. There-
fore we found it beneficial to introduce of a hierarchical
relation among requirements. Note that this is different for
abstraction levels; we can have a hierarchy between require-
ments at the same level of abstraction, i.e., indicating both
details close to the implementation but, for instance, indicating
a normal and an abnormal scenario.

We have formalized further relations among requirements,
that connect requirements referring to different subsystems.
For instance, it happens that a requirement for subsystem A
describes the interactions with subsystem B; a reference in A’s
requirement should be put in the requirement for B in order
to trace the dependence relationship.

TABLE I
STYLE OF HIGH- AND LOW- LEVEL REQUIREMENTS.

Attribute HLR LLR
ID SHR-TCMS-01 SLR-TCS-01

Type Functional Functional
Link to SYS-REQ01 SHR-TCMS-01
Name Traction release by TCS Traction release by TCS

Preconditions ... ...
Input Coasting and Propulsion Coasting and Propulsion

Reset commands Reset commands on
by ATC MVB by ATC through

dataset 707/708
Output Coasting commanded, Coasting − > 1 on MVB,

service brake released, Service Brake − > 0,
and breaking train line Train Line − > 1.

set to off. BCU shall se- BCU shall send back
nd back the status of ser- the status of service
vice and holding brake. and holding brake.

Postconditions ... ...

Linking artifacts. Traceability establishes the (bidirec-
tional) relationships among artifacts of the development pro-
cess [5], [6]. We implemented traceability relations among
elements at different level of abstraction, both vertically and
horizontally.

Considering the separation in levels of abstraction intro-
duced, we have relations between:

• Each system functional requirement with the interface
requirements possibly mentioned in the text;

• Each high-level software requirement with the corre-
sponding(s) system requirements that it implements;

• Each high-level software requirement with other HLRs
of other subsystems that it mentions in the text;

• Each low-level software requirement with the correspond-
ing(s) HLR that it implements;

• Each low-level software requirement with other LLRs of
other subsystems that it mentions in the text.

This way, a requirement needs to specify only what con-
cerns its level of abstraction and its subsystem, citing with a
link actions that are described elsewhere. This prevents from
having in the same document requirements with very different
levels of abstractions, or mixing interface with functional
requirements, or with other subsystem’s requirements.

Form and style. We introduced a set of rules to spec-
ify requirements unambiguously, with the same form (e.g.,
verbs in active form, sentences shorter than a limit, using
common meaning of terms, using properly terms like shall,
must, should, avoiding qualitative terms, decompose complex
requirements in more one-goal requirements, etc.)

Tool support. The usage of a requirements management
tool, namely IBM Rational DOORS4, by all actors and across
all development phases was promoted. Through knowledge
transfer and training activities within the collaboration, the
adoption of the tool has been consolidated; it is currently
being used with success, providing support for specification,
traceability, impact analysis, sharing (acting as common re-
quirements repository) and reuse.

4www-03.ibm.com/software/products/us/en/ratidoor/



E. Benefits
The major observed benefits from the implemented actions

can be grouped as follows.
Reusability. The separation of abstraction levels, the correct

identification of hierarchical relations and linking among re-
quirements, and the common structure and classification crite-
ria for specification definitely help in separating out platform-
level from project-specific needs, easing the implementation of
a shared product line requirements database. The expectation
is that next projects can be developed by simply customizing
the baseline, and that new common features can be seamlessly
specified at platform level.

Testability. A well defined organization of requirements
eases the derivation of test specifications and test cases.
Specifically, it is possible to apply specification-based testing
techniques with a contained efforts since key elements of the
test specification such as the inputs and test dependencies are
easy to identify. Furthermore, the usage of a requirements
management tool allows the derivations of test specification
partially automatically, thus supporting the test designer in
repetitive and likely error-prone tasks. Test specification sup-
port baed on requirements is an in-progress activity.

Traceability. Traceability is crucial for many quality control
and assurance activities. The definition of clear items subject
to traceability is fundamental. Defining a homogenous form
for requirements (in size, style, structure, classification, level
of abstraction), and vertical and horizontal relations with other
requirements, make tracing trees clear to understand and much
less prone to mistakes. Starting from this, traceability can be
implemented and verified up to source code files and test cases
for each requirement.

Maintainability. Actions are expected to bring further
benefits from the perspective of maintenance. In fact, the
implementation of links and relations among requirements and
the introduction of a support tool ease the impact analysis
whenever a change occurs, identifying requirements to be
taken care of and regression tests to carry out.

Automation. The systematic usage of a requirements
management tool allows certainly to reduce cost of performing
repetitive tasks; in the case of AB, the automation support
has been extended through the implementation of plugins to
enhance the linking between different phases of the lifecycle.
For instance, several scripts have been implemented with
various goals, such as: to relate entries in the issue tracker
with the requirement in DOORS, to synchronize files in the
software versioning and revision control (SVN) system with
objects in DOORS, to generate IEEE-compliant SRSs, to
automatically generate a Software Change Record whenever
a change is required through the issue tracker.

We expect all above benefits to be amplified by two further
ongoing innovations. The former, technological, concerns the
integration of the several different support tools involved - for
requirements management, model creation, code generation,
testing, issue tracking. For instance, the (possibly custom)
integration of DOORS with the company testing tools (besides

SVN and tracking tools) will clearly ease traceability and
maintenance activities (including issues and change manage-
ment). The second innovation, methodological, is the intro-
duction of model-driven engineering (MDE) techniques in the
company V-model. Similarly to what described in [4] for the
air traffic control domain, MDE will support automation in
test cases specification and generation from the requirements,
early verification, and traceability.

III. LESSONS LEARNT AND NEXT STEPS

For critical embedded systems, software requirements en-
gineering tremendously impacts all development phases, as
well as V&V activities (e.g., specification based testing, unit
testing, integration testing). Badly specified requirements not
only lead to unintended software, but also to ineffective testing.
Sound requirements engineering practices are essential if the
embedded software is meant to undergo a certification process.

In a traditional industrial setting, where software is part
of very complex systems - although an increasing part - the
consolidation of sound requirements management practices
may take a long time and requires the full involvements of all
the actors. Unfortunately, it may not be possible to have the
commitment of all actors at the same time; in our experience,
the definition of adequate company practices benefited from
a progressive refinement over time. The V&V team plays
an important role in this sense, as it can devise testing
activities as soon as the requirements are available, and can
give valuable feedback to proper requirements specification
practices in the application field. Moving towards common
agreed platform requirements, automation support, structured
use of natural language, and traceability, will definitely provide
valuable results in terms of software quality and integrity level
assurance.

Our next steps will concern the improvement of the test
(cases) specification process starting from requirements, so as
to customize the V-model also along its “right” branch through
model-driven testing techniques.

ACKNOWLEDGMENT

This work has been partially supported by the project
CECRIS (CErtification of CRItical Systems) - FP7 - Marie
Curie (IAPP) number 324334 (www.cecris-project.eu) - and
by the project “Embedded Systems in Critical Domains” (CUP
B25B09000100007).

REFERENCES

[1] CENELEC EN 50128, Railway applications - Communications, sig-
nalling and processing systems, http://www.cenelec.eu

[2] E. Hull, K. Jackson, J. Dick. Requirements Engineering, 3rd ed., 2010.
Springer-Verlag.

[3] X. Larrucea, A. Combelles, J. Favaro, Safety-Critical Software (Guest
editors’ introduction), IEEE Software, 30 (3), May/June 2013.

[4] G. Carrozza, M. Faella, F. Fucci, R. Pietrantuono, S. Russo. Engineering
Air Traffic Control Systems with a Model-Driven Approach, IEEE
Software, 30 (3), May/June 2013.

[5] DO - 178B. Software Considerations in Airborne System and Equipment
Certification.

[6] C. Esposito, D. Cotroneo, N. Silva. Investigation on Safety-Related
Standards for Critical Systems. Proceedings 1st International Workshop
on Software Certification, WoSoCER 2011, IEEE CS Press.


