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Abstract—Failure Mode and Effects Analysis (FMEA) is a well-
known technique for evaluating the effects of potential failure
modes of components of a system. It is a crucial reliability and
safety engineering activity for critical systems requiring system-
atic inductive reasoning from postulated component failures. We
present an approach based on SysML and Prolog to support
the tasks of an FMEA analyst. SysML block diagrams of the
system under analysis are annotated with valid and error states
of components and of their input flows, as well as with the
logical conditions that may determine erroneous outputs. From
the annotated model, a Prolog knowledge base is automatically
built, transparently to the analyst. This can then be queried, e.g.,
to obtain the flows’ and blocks’ states that lead to system failures,
or to trace the propagation of faults. The approach is suited for
integration in modern model-driven system design processes. We
describe a proof-of-concept implementation based on the Papyrus
modeling tool under Eclipse, and show a demo example.

Index Terms—FMEA, SysML, Prolog, Reliability assessment

I. INTRODUCTION

Failure Mode and Effects Analysis (FMEA) is an engineering
technique for evaluating the effects of potential failure modes
of parts of a system1. In the critical systems domain, it is
widely used to systematically identify the potential failures of
components and analyze their effects on the system, which
could adversely affect its overall reliability or safety.

The main artifact used in FMEA is a worksheet, providing
guidance for conducting a structured analysis, for checking
consistency, and for documentation. Different worksheet types
may be adopted, the choice depending on the context, specific
goals, the customer, the system safety working group, the
safety manager, the reliability group, the analyst. All these
influence the amount and type of information FMEA has to
consider. A worksheet should report the following minimal
information for every failure mode of a component:

• Failure mode;
• Component-level effects resulting from failure;
• System-level effects resulting from failure;
• Failure mode causal factors;
• Recommendations.

1Parts may be for instance subsystems, assemblies, components, functions.
Here, we will generically refer to them as components.

FMEA is a time-consuming technique, generally performed
manually. The support provided by tools is still limited to
specific tasks, e.g., the analysis of faults propagation among
components and the effectiveness of fault barriers on the
system safety, isolated from the system development context.
More complex tasks, such as the analysis of the effects of
multiple failures, are often neglected by the analyst. This lack
of support, along with the increasing complexity of systems,
leads either to expensive and error-prone (manual) analyses or
to approximate results.

We propose an approach to support FMEA by enabling formal
knowledge representation – thus automated reasoning – within
a SysML-based model-driven context. SysML is a design
language increasingly used in critical domains, for embedded
[1] as well as for large-scale systems [2][3]. Failure modes and
propagation conditions are specified complementing SysML
models (Block Definition Diagrams and Internal Block Dia-
grams – BDDs and IBDs), by means of annotations and stereo-
types. This enables automatic transformation into a Prolog
knowledge base, which can then be queried, e.g., to identify
the flows’ and blocks’ states that lead to system failures, or to
trace the propagation of faults. The approach eases the FMEA
tasks in that it supports reasoning in the same conceptual
framework of a model-driven design methodology, favoring
communication among the designer and the analyst, early
exploitation of design artifacts for FMEA, and automating
inductive reasoning steps about fault propagation under single
as well as multiple failures.

The paper is structured as follows. Section II details the mo-
tivations and discusses existing works on support for FMEA.
Section III describes the proposed approach, and Section IV
the architecture of an Eclipse-based support environment.
Section V presents an example, based on a prototypal imple-
mentation of the environment. Section VI concludes the paper,
highlighting future work.

II. MOTIVATIONS AND RELATED WORK

FMEA is a disciplined technique, mainly qualitative, for
systematic reasoning about failures. The analysis considers
the system decomposition down to basic components: each
component is analyzed, identifying all its potential failure



modes; for each mode, the propagation of the effects up to
the system as a whole is studied. For quantitative analysis,
e.g. for reliability assessment, FMEA includes estimates of
quantitative parameters, such as expected failure rates. Failure
modes and rates may derive from components’ technical spec-
ifications, historical data, or further appropriate information,
such as handbooks of reliability prediction models. Finally,
an evaluation of severity and/or probability of failure modes
provides a prioritized list for corrective actions and design
improvements.

Several approaches to support FMEA have been proposed in
the literature. They automate some tasks starting either from
a system model, or from some form of fault trees.

Approaches falling in the first category augment an architec-
tural system model with specifications of the failure behaviour
of single components: these are either explicitly provided
by the user adding information to the model, or they are
implicitly defined in the domain (e.g., if the system includes an
electric circuit, the failure modes of basic elements – capacitor,
resistors and inductors – are known). Using the augmented
model, the propagation of failures is analyzed, supporting the
automated production of artifacts such as Fault Trees and
FMEA worksheets. Typically, the analysis generates lists of
failure modes that lead to the violation of safety requirements.
The analysis is performed by traversal algorithms or by
simulation in [4], [5] (approach categorized as Failure Logic
Modeling in [6]). It is performed using model checkers or
constraint solvers in [7], [8], [9] (Model-Checking / Failure
Injection, according to [6]).

Approaches falling in the second category support FMEA
through Synthesized Fault Trees [10][11]. Algorithms are
applied on top-level events of a fault tree, and the root causes
is found by traversing the tree. A row of the FMEA table is
generated for each path that connects the root to a leaf.

Our approach belongs to the first category. It includes three
steps:

• FMEA-oriented modeling: we believe that the task of the
FMEA analyst can benefit from the availability of a model
of the system architecture, that (s)he complements with
information on components’ failure modes and propaga-
tion conditions; to this aim we adopt SysML, as it is
increasingly being used for critical systems in industries;

• Model transformation: the extended (SysML) model is
transformed into a knowledge base (KB) for subsequent
analysis; to this aim, we adopt the logic programming
language Prolog, as the KB can be algorithmically gen-
erated through a Model-to-Text transformation (M2T) of
annotated SysML BDDs and IBD diagrams;

• Model analysis: FMEA queries, expressible in the form
of Horn clauses, are performed on the KB; this sup-
ports typical inductive reasoning tasks of the FMEA
analyst. Clearly, Prolog programming aspects are made
transparent to the analyst. The KB is also meant to act

as shared repository of knowledge about components’
failure modes, so as to favour reuse across multiple
projects in an organization.

Previous work has explored several formalisms for the model-
ing step, including UML/SysML [12][13], Architecture Anal-
ysis & Design Language (AADL) [9][14], Simulink models,
block diagrams, and temporal logic notations [15]. For FMEA,
a SysML model is augmented with information about the
component failure modes; then it is translated into other for-
malisms suited for analysis, such as Altarica [16], or MAUDE
[17]. The studies of David et al. [16][18] present a methodol-
ogy, named MéDESIS, to enhance the development of safety
critical systems. MéDESIS starts with an automatic computa-
tion of a preliminary FMEA, obtained by exploiting SysML
diagrams with a dysfunctional behavior database, and links the
functional design phase with reliability techniques (FMEA and
dysfunctional models construction in AltaRica Data Flow) to
compute reliability indicators. Likewise, we adopt a custom
FMEA-oriented profile to transform the SysML model into a
Prolog KB.

The idea of separating the KB from the modeled elements,
promoting reuse, is present in some past studies. In [8], an ex-
ternal repository (defined in a non-standard language) is used
to store components’ failure characterization. The study [19]
presents a domain meta-model that is exploited as a KB; this
solution reuses the knowledge for the instances of the meta-
model. A custom profile in a model-driven methodology has
been proposed in [16], where FMEA worksheets are generated
starting from transformations of sequence diagrams. In [20]
the authors exploit an ontology to enable an automatic FMEA
generation based on a functional system model. Authors in
[21] propose an ontology defined in OWL for modeling the
knowledge in an FMEA. Our external KB in Prolog aims at
promoting the reuse and supporting FMEA by formal queries,
without burdening engineers with formalisms, like ontologies,
they may be less familiar with.

The use of Prolog for supporting FMEA is envisaged in very
few works, but with no link to system design models. In [22],
authors report an application of Prolog III for an FMEA case
study. In [23] the author proposes, as future work, to exploit
pattern analysis in Prolog to develop automated ways to apply
model annotations for FMEA.

III. A MODEL-DRIVEN APPROACH TO FMEA

The proposed model-driven approach aims at supporting au-
tomated reasoning on propagation of (single or multiple)
failures, on their interferences and their effects. The approach
is outlined in Fig. 1.

It starts from a system model expressed in SysML. SysML de-
sign artifacts are augmented with FMEA-oriented information
by means of annotations, that can exploit external knowledge
derived by past projects or other sources (e.g. FMEA hand-
books, technical datasheets). The additional information allows
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Fig. 1. Overview of the proposed approach.

model transformation to a Prolog knowledge base. The Prolog
engine enables to query the model to derive FMEA results.

The FMEA-oriented modeling, Model transformation and
Model analysis steps are detailed in the following.

A. FMEA-oriented SysML system modeling

SysML is an INCOSE2 and OMG3 standard for system mod-
eling, supported by many commercial and open source tools.
It is a graphical language, extensible through mechanisms
like stereotypes and annotations. The system architecture is
modeled using structural diagrams (namely Block Definition
Diagrams and Internal Block Diagrams); information flow
among components is modeled using ports and flows. We opt
for SysML as the approach is meant to be integrated into
standard-based model-driven development processes, where
such models are already provided by design engineers. This
fosters communication between the designer and the FMEA
analysts, and allows to model components failure behaviors in
an incremental way, as low-level system design proceeds.

The aspects of interest for FMEA are about modeling the
failure modes and the failure propagations. We are defining an
FMEA-oriented SysML profile to enable the analysts to add
these aspects to the model. Domain-specific formalisms have
been proposed in literature, such as the Fault Propagation and
Transformation Notation [24] (Fig. 2), that we plan to further
investigate as basis for defining the SysML profile.

The FMEA analysts enrich the SysML model with the follow-
ing information:

1) The description of component’s failure modes (and
correct behavior), that are typed in order to be properly
handled during the analysis.

2International Council on Systems Engineering, www.incose.org.
3Object Management Group, www.omg.org.

2) The description of correct and incorrect states of the
flows among components.

3) The set of conditions that constraint the component
states with the flow states, and viceversa.

4) The severity of failure states of components and flows.
5) The description of fault tolerance mechanisms.

The enriched model is then transformed in a Prolog knowledge
base and used for FMEA tasks.

B. Model transformation

The model-to-text transformation (M2T, in the model-driven
terminology) translates the annotated SysML model elements
into facts and rules of a Prolog base. The failures of compo-
nents and the conditions for their propagation are expressed
in logical terms, by a set of Horn clauses4. For instance, let:

p = "Electric outage",
q = "Low backup battery",
t = "Failure of system",

then ¬p∨¬q∨ t ⇐⇒ (p∧q) ⇒ t is a Horn clause that asserts
one failure mode of the system due to two concurrent faults,
the electric outage and the low backup battery.

Any programming language with a Prolog-like syntax (e.g.
ProbLog [25]) supports the M2T transformation, as well as the
direct translation of queries, to be formulated by the FMEA
analyst in terms of logic expressions (with Prolog syntactic
details to be made transparent). It is also possible to associate
a probability to the satisfaction of Horn clauses, enabling
quantitative FMEA.

C. Model analysis

The Prolog engine supports the analyst in querying the mod-
eled system. Indeed, an inference engine allows discovering
information on the KB, especially knowledge that is hard

4A Horn clause is a clause (i.e., an expression formed by the disjunction
of a finite collection of literals) with at most one positive (i.e., non-negated)
literal. A Horn clause with no negative literals is sometimes called a fact.
Horn clause are suited to be employed for both the analysis of single and
multiple failures.
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Fig. 2. The Fault Propagation and Transformation Notation [24].



to extract by a manual or a pure model-based analysis. For
instance, the Prolog engine enables:

• to follow the propagation of failures inside the system;
• to identify root causes of a component’s failure;
• to compute failures derived from multiple errors;
• to study the effectiveness of fault tolerance mechanisms.

The architecture includes a front-end that hides details of
queries for the Prolog Engine, and offers an easy-to-use way to
generate the most common FMEA results, such as worksheets
or reports. When advanced analyses are needed, complex
queries can be expressed directly in Prolog.

IV. AN ECLIPSE-BASED FMEA SUPPORT TOOL

The architecture of an environment supporting the approach is
sketched in Fig. 3. It is based on the open source Eclipse plat-
form [26], thus exploiting the full infrastructure of the Model-
Driven Engineering tools provided by the Eclipse Foundation.
The FMEA plug-in integrates the following components:

• Papyrus, an Eclipse plug-in [27] providing an integrated
environment for editing models in SysML and UML 2.
Papyrus offers advanced support for UML profiles, thus
enabling the creation of editors for Domain Specific
Languages (DSLs);

• SWI-Prolog, an efficient C implementation of the logic
programming language Prolog [28], providing application
interface libraries.

define

query

uses

produce

FMEA
results

FMEA4
Plug7in

Papyrus

Prolog
Knowledge4 Base

uses

Fig. 3. An Eclipse-based architecture for the proposed approach.

An integrated environment can thus be provided for the Design
Engineer to extend the system model using the FMEA Profile
(Fig. 4), and to the FMEA Engineer for the analysis. The
FMEA plug-in links the model with the knowledge base. The
analyst can query the model through the plug-in; support for
automated production of FMEA documents (worksheets or
documentation) can be also provided.

A proof-of-concept implementation of the framework has
been developed in Java by means of the library provided

Fig. 4. SysML modeling with Papyrus in the Eclipse IDE.

by tuProlog5, and is shown in operation with the following
illustrative example.

V. ILLUSTRATIVE EXAMPLE

A simple alarm system is considered as example (Fig. 5). It
consists of: a battery connected to the power supply, which
tolerates short power outages; a push button that switches on
the alarm; a solenoid, that generates an electromagnetic field;
a clapper-bell device that produces the acoustic alarm sound.

UPS
(battery)

Push/button

Power
source Solenoid

Clapper

Bell

Fig. 5. The example alarm system.

Starting from the specification, the Design Engineer defines
the SysML model of the alarm system, including the Internal
Block Diagram shown in Fig. 6. The architecture of the system
consists of four blocks (Battery, PushButton, Solenoid, Clap-
per), and of six flows, that connect the components through
their ports. The flows are: the powerSupply; the mechanical-
Force, that switches on the push-button; the solenoidEnergy,
the energy from the PushButton to the Solenoid; the elec-
tromagneticField, generated by the solenoid when powered;
and, finally, the acousticSignal, produced by the bell-clapper
device under a proper electromagnetic field. We assume that
if the Battery fails, then the energy cannot flow in the system.

5An open source Java-based light-weight Prolog system, available online
at http://tuprolog.alice.unibo.it.



Fig. 6. SysML Internal Block Diagram of the alarm system.

Then, the FMEA analyst refines the SysML artifacts of the
designer. He/she revisits the blocks and flows of interest for
the analysis, augmenting the model with:

• the description of the (valid and invalid) logical states for
all input flows (such as, “energy on”, “energy outage”);

• the description of the (valid and invalid) logical internal
states of all blocks (e.g., “battery charged”, “low bat-
tery”), related to their failure modes;

• the constraints on the blocks’ and flows’ logical states,
that can depend on local or global conditions (e.g.,
“energy is low if the battery is low and there is an energy
outage”).

• additional information for quantitative analyses. In the
example we add the probability that each component Ci

be in a state s per demand, P (Ci = s) where s ∈ Si, the
set of values (component’s states) of Ci.

The last activity is mostly local to the blocks, and the modeler
focuses on the conditions and effects of the failure modes. The
results of the analysis are shown in Tab. I. At this stage, the
model can be algorithmically translated into the knowledge
base in Prolog, to perform the desired analyses.

The knowledge base contains, in general: i) the definition
of rules and facts that are needed for the FMEA; ii) the
knowledge that can be reused in multiple projects, part of the
domain under analysis; iii) and by the knowledge specific for
the instance of the system under analysis. The KB derived for
the alarm system is listed in the following.

block ( b a t t e r y ) .
b lock ( pushButton ) .
b lock ( b e l l ) .
b lock ( so leno id ) .
b lock ( b e l l ) .
b lock ( system ) .

f l ow ( powerSupply ) .

f l ow ( energy ) .
f l ow ( solenoidEnergy ) .
f l ow ( mechanicalForce ) .
f l ow ( e lec t romagne t i cF ie ld ) .
f l ow ( acous t i cS igna l ) .

i s S o l u t i o n (M, P) :− M = [ [ powerSupply , S1 ] , [ ba t te ry , S2 ] ,
[ energy , S3 ] , [ mechanicalForce , S4 ] , [ pushButton , S5 ] ,
[ solenoidEnergy , S6 ] , [ so lenoid , S7 ] ,
[ e lec t romagne t i cF ie ld , S8 ] , [ b e l l , S9 ] ,
[ acous t i cS igna l , S10 ] ] , s t a t e ( powerSupply , S1 , M, P1) ,
s t a t e ( ba t te ry , S2 , M, P2) , s t a t e ( energy , S3 , M, P3) ,
s t a t e ( mechanicalForce , S4 , M, P4) ,
s t a t e ( pushButton , S5 , M, P5) ,
s t a t e ( solenoidEnergy , S6 , M, P6) ,
s t a t e ( solenoid , S7 , M, P7) ,
s t a t e ( e lec t romagne t i cF ie ld , S8 , M, P8) ,
s t a t e ( b e l l , S9 , M, P9) ,
s t a t e ( acous t i cS igna l , S10 , M, P10 ) ,
P i s P1∗P2∗P3∗P4∗P5∗P6∗P7∗P8∗P9∗P10 .

/∗ System − i npu ts ∗ /
s t a t e ( powerSupply , on , _ , 0.9999) .
s t a t e ( powerSupply , outage , _ , 0.0001) .

s t a t e ( mechanicalForce , ac t i ve , _ , 0.001) .
s t a t e ( mechanicalForce , i n a c t i v e , _ , 0.999) .

/∗ b a t t e r y ∗ /
s t a t e ( ba t te ry , lowBat tery , _ , 0.009) .
s t a t e ( ba t te ry , chargedBattery , _ , 0 .99) .
s t a t e ( ba t te ry , ce l l _ma l f unc t i on , _ , 0.001) .

s t a t e ( energy , on , M, 1) :−
(member ( [ powerSupply , on ] , M) ,
not (member ( [ ba t te ry , c e l l _ m a l f u n c t i o n ] , M) ) ) , ! .

s t a t e ( energy , on , M, 1) :−
member ( [ ba t te ry , chargedBat tery ] , M) .

s t a t e ( energy , outage , M, 1) :−
(member ( [ powerSupply , outage ] , M) ,

member ( [ ba t te ry , lowBat te ry ] , M) ) , ! .
s t a t e ( energy , outage , M, 1) :−

member ( [ ba t te ry , c e l l _ m a l f u n c t i o n ] , M) .

/∗ pushButton ∗ /
s t a t e ( pushButton , working , _ , 0.9998) .
s t a t e ( pushButton , s tuckOpenCircu i t , _ , 0.0001) .
s t a t e ( pushButton , s tuckC losedCi rcu i t , _ , 0.0001) .

s t a t e ( solenoidEnergy , on , M, 1) :−
member ( [ energy , on ] , M) ,



TABLE I
BLOCKS’ AND FLOWS’ LOGICAL STATES OF THE MODEL. PROBABILITY IS "-" WHEN IS DEPENDENT OF THE GLOBAL SYSTEM STATE.

Element Type State Dependencies Probability
powerSupply Flow on - 0.9999

powerSupply Flow outage - 0.0001

mechanicalForce Flow active - 0.001

mechanicalForce Flow inactive - 0.999

battery Block lowBattery - 0.009

battery Block chargedBattery - 0.99

battery Block cell_malfunction - 0.001

energy Flow on (powerSupply is on and not(battery
is cell_malfunction)) or (battery is
chargedBattery)

-

energy Flow outage (powerSupply is off and battery
is lowBattery) or (battery is
cell_malfunction)

-

pushButton Block working - 0.9998

pushButton Block stuckOpenCircuit - 0.0001

pushButton Block stuckClosedCircuit - 0.0001

solenoidEnergy Flow on energy is on and ((switchButton is
working and mechanicalForce is active)
or (switchButton is stuckClosedCircuit))

-

solenoidEnergy Flow off energy is outage or ((switchbutton is
working and mechanicalforce is inactive)
or switchButton is stuckOpenCircuit)

-

solenoid Block working - 0.9999

solenoid Block brokenFerrite - 0.0001

electromagneticField Flow active (solenoidEnergy is on) and (solenoid is
working)

-

electromagneticField Flow inactive (solenoidEnergy is off) or (solenoid is
brokenFerrite)

-

bell Block working - 0.9999

bell Block damaged - 0.0001

acousticSignal Flow active (bell is working) and
(electromagneticField is active)

-

acousticSignal Flow inactive (bell is damaged) or
(electromagneticField is inactive)

-

(member ( [ pushButton , working ] , M) ,
member ( [ mechanicalForce , a c t i v e ] , M) ) , ! .

s t a t e ( solenoidEnergy , on , M, 1) :−
member ( [ energy , on ] , M) ,
member ( [ pushButton , s tuckC losedC i r cu i t ] , M) .

s t a t e ( solenoidEnergy , o f f , M, 1) :−
member ( [ energy , outage ] , M) , ! .

s t a t e ( solenoidEnergy , o f f , M, 1) :−
member ( [ pushButton , working ] , M) ,
member ( [ mechanicalForce , i n a c t i v e ] , M) , ! .

s t a t e ( solenoidEnergy , o f f , M, 1) :−
member ( [ pushButton , s tuckOpenCi rcu i t ] , M) .

/∗ so leno id ∗ /
s t a t e ( solenoid , working , _ , 0.9999) .
s t a t e ( solenoid , b rokenFer r i te , _ , 0.0001) .

s t a t e ( e lec t romagne t i cF ie ld , ac t i ve , M, 1) :−
member ( [ solenoidEnergy , on ] , M) ,
member ( [ so lenoid , working ] , M) .

s t a t e ( e lec t romagne t i cF ie ld , i n a c t i v e , M, 1) :−
member ( [ solenoidEnergy , o f f ] , M) , ! .

s t a t e ( e lec t romagne t i cF ie ld , i n a c t i v e , M, 1) :−
member ( [ so lenoid , b rokenFer r i t e ] , M) .

/∗ b e l l ∗ /
s t a t e ( b e l l , working , _ , 0.9999) .
s t a t e ( b e l l , damaged , _ , 0.0001) .

s t a t e ( acous t i cS igna l , ac t i ve , M, 1) :−
member ( [ b e l l , working ] , M) ,
member ( [ e lec t romagne t i cF ie ld , a c t i v e ] , M) .

s t a t e ( acous t i cS igna l , i n a c t i v e , M, 1) :−
member ( [ b e l l , damaged ] , M) , ! .

s t a t e ( acous t i cS igna l , i n a c t i v e , M, 1) :−
member ( [ e lec t romagne t i cF ie ld , i n a c t i v e ] , M) .

/∗ System outputs ∗ /
s t a t e ( system , system_ok , M, P) :− i s S o l u t i o n (M, P) ,

( ( member ( [ acous t i cS igna l , i n a c t i v e ] , M) ,
member ( [ mechanicalForce , i n a c t i v e ] , M) ) ;
(member ( [ acous t i cS igna l , a c t i v e ] , M) ,
member ( [ mechanicalForce , a c t i v e ] , M) ) ) .

s t a t e ( system , system_fa i led , M, P) :−
i s S o l u t i o n (M, P) ,
( ( member ( [ acous t i cS igna l , a c t i v e ] , M) ,
member ( [ mechanicalForce , i n a c t i v e ] , M) ) ;
(member ( [ acous t i cS igna l , i n a c t i v e ] , M) ,
member ( [ mechanicalForce , a c t i v e ] , M) ) ) .

At this stage, the analyst can pose queries and generate reports.
Suppose we want to detect if there are system failures when the
alarm is active. We transform the query in Prolog, and submit it
to the inference engine: state(system, system_failed,

M, P),member([acousticSignal, active], M).

The engine identifies three system’s failure states where the
acoustic alarm is on:

M = [ [ powerSupply , on ] , [ ba t te ry , lowBat te ry ] ,
[ energy , on ] , [ mechanicalForce , i n a c t i v e ] ,
[ pushButton , s tuckC losedC i r cu i t ] ,
[ solenoidEnergy , on ] , [ so lenoid , working ] ,
[ e lec t romagne t i cF ie ld , a c t i v e ] , [ b e l l , working ] ,
[ acous t i cS igna l , a c t i v e ] ] ,

P = 8.988302969721009e−7

M = [ [ powerSupply , on ] , [ ba t te ry , chargedBat tery ] ,
[ energy , on ] , [ mechanicalForce , i n a c t i v e ] ,
[ pushButton , s tuckC losedC i r cu i t ] ,



[ solenoidEnergy , on ] , [ so lenoid , working ] ,
[ e lec t romagne t i cF ie ld , a c t i v e ] , [ b e l l , working ] ,
[ acous t i cS igna l , a c t i v e ] ] ,

P = 9.887133266693112e−5

M = [ [ powerSupply , outage ] , [ ba t te ry , chargedBat tery ] ,
[ energy , on ] , [ mechanicalForce , i n a c t i v e ] ,
[ pushButton , s tuckC losedC i r cu i t ] ,
[ solenoidEnergy , on ] , [ so lenoid , working ] ,
[ e lec t romagne t i cF ie ld , a c t i v e ] , [ b e l l , working ] ,
[ acous t i cS igna l , a c t i v e ] ] ,

P = 9.888122078901003e−9

The inference engine found three solutions: the alarm can
ring when the pushButton is not pressed, but the button fails
with failure mode “stuckClosedCircuit” and the bell circuit
is powered: the bell circuit is powered when the battery is
“charged” and powerSupply is “on” (case 1), in “outage” state
(case 2), or when the battery is low but the powerSupply is
“on” (case 3).

In addition, we have computed the overall probability of
failure per demand for the system (1.01E-4), using the query∑

P state(system, system_failed, _, P).). A report
is finally generated (Fig. 7) listing all the failure modes of the
alarm system. In total, 69 failure modes are identified.

Fig. 7. The spreadsheet report generated by the tool.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a model-driven approach to support FMEA.
It exploits annotated system models in SysML to generate a
knowledge base in Prolog, to provide automated support for
the FMEA inductive reasoning tasks.

The approach is meant to work with modern model-driven
methodologies. As SysML is being adopted by industries even
in critical domains [2], the availability of a SysML model of
the system architecture - the starting point of the approach -
appears to be an opportunity rather than a limitation. BDD
and IBD diagrams are intuitive models for systems engineers,
which - properly extended - may serve also for conducting
and documenting FMEA. We envisage the integration of the
proposed approach into the model-driven engineering process
based on the V-model, that we have defined and experimented
in industrial collaborations [1][2].

The logic programming language Prolog is suited for repre-
senting the knowledge base, as this can be algorithmically
generated by a model-to-text transformation of BDDs and
IBDs. Typical FMEA queries expressible in the form of Horn
clauses can then be performed on the knowledge base by
means of a Logic Reasoner tool. Reuse of knowledge of
components failure modes over different FMEA projects in
an organization is also supported in the envisaged approach.

A tool has been set up and shown in operation with a
simple example. The research is however still on-going. We
foresee the following next steps. We plan to define a SysML
profile and to provide guidelines for the analyst to integrate,
into the system model, the information needed for FMEA.
This will enable the formal definition of the model-to-text
transformation into the knowledge base. The effectiveness of
the approach requires also the Prolog knowledge base to be
made as transparent to the analyst as possible; this demands for
the definition of a proper tool supporting queries and relating
results back to the system model. Indeed, the search with
Prolog can become unfeasible when dealing with complex
systems, like other techniques for the automatic FMEA/FTA
generation. Therefore sophisticated techniques must be con-
ceived in order to perform the analysis, such as solutions
to manage the state space explosion and to parallelize the
computation [30].

The investigation of such techniques and the application to
real-world FMEA case studies will assess the applicability and
scalability of the approach, as well as the performance of the
envisaged support tools.
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