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Abstract—As robots become increasingly intelligent and au-
tonomous, spread well beyond the traditional area of industrial
automation, and find many new critical applications – from
robotics medicine to anthropic domains - we advocate the need
for certification for robotics software. We discuss some relevant
issues in robotics software engineering and certification, and
outline some important challenges for the dependable software
engineering community.
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I. INTRODUCTION

For decades, robots have spread mainly in the field of indus-
trial automation; nowadays, robots are becoming ubiquitous
and increasingly autonomous, and are more and more used
in critical applications. Major examples are robotics surgery,
medical and assistive robots, service robots, Industry 4.0.

Surgical robotics is a rapidly evolving field aiming to minimize
the pain and risk associated with surgery, while increasing
precision and likelihood of excellent surgical outcomes. The
introduction of surgical robots into the operating room com-
bines technological and clinical breakthroughs to improve the
quality and outcome of the surgery.

Medical robotics is wider in scope, concerning devices used
also for medical training, prosthetics, and assisting people with
disabilities. Nowadays, robotic devices are used to deliver re-
habilitation therapy to patients, and perform a growing number
of other health-related tasks. Biologically inspired robots are
becoming popular, giving raise to the field of assistive robotics.
An assistive robot performs physical tasks for the well-being
of a person with a disability. The task is embedded in the
context of normal human activities of daily living and would
otherwise have to be performed by an attendant.

Aerial and underwater robotics envisage a new generation
of robots to support human beings in activities requiring
the ability to interact actively and safely with environments
not constrained on ground; an example is the inspection of
buildings and infrastructures such as dams. In a broader view,
service robots are foreseen to become a major part of the world
robotics market in the upcoming decades, with applications in
critical scenarios such as fire-fighting.

In Industry 4.0, the current fourth industrialization generation
[1], human operators are foreseen to co-produce with robots

and heavy machines, and “the strength and speed of indus-
trial robots are potentially lethal to human beings” [2]. The
Final Report of the Industrie 4.0 Working Group recognizes
that “safety and security are both critical to the success of
smart manufacturing systems. It is important to ensure that
production facilities and the products themselves do not pose
a danger either to people or to the environment” [3].

In all such emerging fields where robots go beyond the
more traditional areas of manufacturing systems, and perform
critical tasks or enter anthropic domains envisaging physical
human-robot interaction, reliability, safety and security of
robots operations are major concerns [4] [5] [6] [7]. This raises
several challenges in robotics software engineering: in Sec-
tion II we discuss the need for certification, and in Section III
we identify some challenges at three levels: standardization;
engineering processes; organizational, cultural and educational
issues. Section IV provides some concluding remarks.

II. THE NEED FOR CERTIFICATION

As intelligence is added to robot systems to achieve greater
autonomy, and robots find unprecedented applications, their
ability to work safely and securely in critical contexts becomes
essential. The challenge is not just to build innovative robots,
but ones which can be justifiably trusted. Quoting [8], while
“computing technologies are integral parts of any autonomous
robotic system, they are often considered ancillary to their
development”; this is probably a reason for the little attention
to robots’ software engineering issues, and in particular to the
one of providing assurance of their safe and secure operation.

Software certification is an indispensable factor for the spread
of robots in critical application fields such as those outlined
in Section I. The incredible diffusion of Artificial Intelligence
(AI) in robotics gives to software a prominent role, and raises
its complexity. This is likely to make the provisioning of
evidences about correct operation of robots in scenarios where
they may come into direct contact with (possibly untrained)
humans and/or take autonomous decisions a much more dif-
ficult and expensive activity. We believe that the increasing
sophistication and “weight” of software in future intelligent
robots poses new and diverse challenges to their software
engineering and certification.



Fig. 1. Issues and challenges towards a culture of robotics software certification

In the following, we highlight some issues and challenges, that
we envisage considering the current standards, the peculiarities
of this domain as well as at the gap with respect to other
domains, and by considering what practices from more mature
sectors could be leveraged for robotics. Figure 1 shows the en-
visaged issues and actors, described in the next Section, which
we refer to three levels: standardization, software engineering
and cultural/organizational/educational aspects.

III. TOWARD ROBOTICS SOFTWARE ENGINEERING AND
CERTIFICATION

A. Standardization issues

Certification requires standards. As for safety, some existing
standards are applicable to robot systems, but they contain
generic (product) requirements; an example is the European
Machinery Directive 2006/42/EG. The main software-related
standard considered applicable to the robotics domain are:

• Part 3 of the well-known IEC/EN 61508 – which inspired
various domain-specific standards - sets requirements for
management, development and validation of code for the
functional safety of electronic safety-related systems [9];

• IEC/EN 62061 for functional safety of safety-related
control systems [10], which is the machinery-specific
adaptation of the above IEC/EN 61508;

• ISO 12100 for risk assessment and reduction of safety of
machinery [11];

• ISO 13849-1 for safety of control systems [12];
• ISO 10128 for safety requirements for industrial robots –

specifically, for manipulators for industrial environment,
part 1, and for robots systems and integration, part 2 [13];

• ISO/TS 15066 for collaborative robots [14], which ap-
plies only to industrial robot systems;

• ISO 13482 for safety requirements of personal care
robots, a kind of service robots [15]; it concerns specif-
ically three types of earthbound robots, namely mobile
servant, physical assistant, and person carrier robots.

A further important standard for robot safety in factories is
the ANSI/RIA R15.06 [16], the US adoption of ISO 10218.

Software safety issues in current standards appear insufficient
for the emerging robotics fields described in Section I. Some
standards, like ISO 12100, hardly apply to systems outside

of their strict (industrial) target. Others, like EC/EN 61508,
are process-oriented (i.e., they prescribe asks to perform to
improve safety and formally analyze software) and may still be
deemed applicable. Nevertheless, the software-specific issues
of AI-driven robots in anthropic environments appear so far
underestimated. The situation is different from other critical
domains, where software safety assurance is known to pose
issues remarkably different from mere development and test.
In those sectors where specific standards do exist – like
CENELEC EN 50128 [17], RCTA DO-178C [18] and ISO
26262 [19] for railway, airborne and automotive software
systems, respectively - this has been well understood, and
software certification is deemed essential. What appears to
be necessary for future AI-driven autonomous robots are
new concepts about the provisioning of evidences of correct
behavior, different from the traditional ones of checklists
of known hazards, or prescription of process activities to
statically encompass all possible operating conditions.

(Cyber)security is “a lower and sometimes forgotten priority”
for robots manufacturers [7]. Even in highly regulated sectors
like railways and avionics, standards are still mainly focused
on safety. However, robots operating in anthropic domains
have to be more secure than other embedded systems. Robots
exploiting online services (so that the term cloud robotics has
been coined) will have vulnerabilities, but robotics standards
do not to explicitly address cybersecurity. The tight relation
between safety and security is today recognized, so the issue
of their co-engineering is felt important, yet it is still a research
area, and future standards are called to account for it.

A further aspect to consider is that robot manufacturers move
toward adopting common “standardized” platforms. Probably
the main such initiative is the Robot Operating System [20].
As suggested in [7], this gives the opportunity for industry
consortia to publish “security and testing standards to be
followed by robot application developers”. More in general,
leading companies and consortia may drive de facto robotics
standards which will help to improve practices and to raise
awareness of safety and security assurance.

Standardization is an essential stage along the road to software
certification. The research community can contribute to build
up a solid background, developing new techniques and provid-
ing evidence, through concrete applications, both of the need



for software certification in robotics and for possible solutions
to specific problems. This is preparatory for standardization
and industrial exploitation. Innovation-driven companies too
are called to support efforts in this direction (e.g., through
investments, collaborations with academy, by leading consortia
and standardization groups). The aim should be to create
awareness and concrete evidence that software certification
is a must for robotics industry market. Indeed, developing
standards for software certification is a long-lasting process
requiring the involvement of companies, of certification au-
thorities as well as of governmental agencies.

B. Software engineering issues
The culture of certification is the one of providing evidences.
Providing a faithful assessment with an acceptable confidence
is an as much important as challenging engineering task.
Safety and security are system (not merely software) proper-
ties, which demand for evidences they are properly addressed
throughout the whole manufacturing process, for achieving
high levels of confidence in the proper system operation, and
for meeting criteria of standards (both at process and product
level). Software assurance is thus part of system assurance,
but, as already perceived in other domains, it requires specific
techniques and a specialized software engineering culture.
Robotics software engineering is the emerging area – wit-
nessed by initiatives like the IEEE Technical Committee on
Software Engineering for Robotics and Automation - where
the scientific and practitioners community can contribute to-
ward a robotics software certification culture.

A peculiarity of robot systems, compared to other critical
domains, is the role of the environment where they operate.
The environment is not merely a passive area where a robot
operates, but it becomes active, since it is directly engaged
in accomplishing the robot’s intended function. For instance,
in the area of personal care robots, concepts like a “shared
workspace” between robot and human are defined in the
cited standard [15], where an intended contact is foreseen,
which, of course, entails a risk related to autonomous decisions
and actions of robots. The active role of the environment
has a great impact on (critical) requirements elicitation (e.g.,
on hazard analysis), on design and modeling, and on V&V,
which all will have to account for an insufficient design-time
knowledge (i.e., incompleteness of requirements), for highly
dynamic contexts (hence with changing requirements) and for
high non-determinism (i.e., uncertain requirements). Some of
the challenges regarding these engineering activities are:

• Requirements/Hazards analysis. In traditional critical do-
mains, safety assurance means providing confidence that
the system will operate correctly even under environmen-
tal conditions different from the nominal ones. As unin-
tended conditions can seriously compromise the system,
engineers strive to foresee and enumerate at design time
all potential adverse situations (e.g., by hazard analysis).
This approach has clear limitations because of the diffi-
culties in capturing all the events of interest. It generally

works when the environment is known and is quite stable
at operational time. A “static” hazard analysis may be not
enough in active environments. Design time specification
of the conditions where the system will operate captures
a small part of possible interactions with humans and en-
vironment. A serious challenge is how to gain knowledge
about the surrounding environment dynamically, and how
to “update” hazard analysis at runtime by the acquired
knowledge so as to assure safety in operation. Like for
autonomous vehicles, the explosion of AI within robotics
raises key challenges as for assurances, because it is not
sufficient to show that a robot can learn and adapt: it is
required to provide pre-delivery evidence that the system
will learn correctly and will not learn wrong behaviors
leading to potentially dangerous actions/decisions.

• Architecture and design. While “the production of soft-
ware for robotic systems is often case-specific” [21],
it is increasingly designed according to Model Driven
Engineering (MDE) practices, similarly to the embedded
systems domain [22]. This is not surprising, because
automation engineers have always been using models,
especially for the design of control algorithms. However,
the culture of providing evidences requires additional
skills with respect to mastering good design principles
and practices [23]. Differently from other domains, ar-
chitecting software for autonomous robots demands for
greater focus on environment and uncertainty modeling,
as well as on runtime modeling (i.e., models that evolve
at runtime) as design principle. Examples are context
models and computation-independent models, used in
critical domains [24], and runtime models developed for
adaptive systems [25]. The usage of these models for
safety assurance and certification of robot systems, and
their possible adaptation/extension to make them able of
supporting evidence production, needs to be explored. An
initial and noticeable effort toward this direction is done
by Schneider et al. [26], who target the issues coming
with certifying adaptive systems.
An important research issue is the extension of modeling
languages with support for certification-oriented engi-
neering activities. Examples are the construction of safety
arguments or Failure Modes and Effect Analysis [27]. For
instance, safety arguments notations should be extended
to explicitly account for uncertainty, as well as for the
role played by humans and the environment in interacting
with robots.
An additional issue arises for cooperative robots. These
are systems in which more robots interact to achieve
an intended goal. There is again a clear similarity with
the automotive domain, if we consider platoons of au-
tonomous vehicles interacting through vehicle-to-vehicle
communication. Research is needed to adapt existing dis-
tributed software systems design techniques and patterns
to cooperative robots. The challenge is not only to design
properly interacting robots, but to provide evidences of
their correctness in all operating conditions.



• Implementation. Besides the practices recommended by
standards in other domains (use of certified compilers,
avoidance of unsafe coding techniques such as use of
pointers, dynamic objects, automatic type-conversion,
etc.), a greater emphasis should be put on integrity
checks and defensive programming because of dynamic
environments. Runtime code generation (e.g., triggered by
a model change at runtime), with different requirements
in terms of space and time efficiency compared to design-
time code generation, is a further issue to explore. This
also indirectly implies a tool qualification process of
runtime code generators, with related challenges. Specific
programming abstractions and languages for robotics
software represent a further area of investigation.

• Verification and Validation (V&V). Software testing in
critical domains is always a predominant cost factor,
which might be amplified for critical autonomous robots.
Specifying and executing test cases for checking intense
human- and environment-robot interactions need new
techniques. Deriving test cases by modeling the environ-
ment would definitely help (e.g., through a Computation-
Independent Test model [28]), possibly complemented by
stochastic reasoning (e.g., via Markovian and Bayesian
models) to deal with uncertainty (for instance, by mod-
eling a variable operational profile in terms of stimuli to
a robot, and generating tests accordingly).
Runtime testing (i.e., generating and running tests at
operational time exploiting field data about new observed
behaviors) and runtime verification techniques are further
interesting research areas to investigate for robotics.
Finally, the issue of testing cost becomes of paramount
importance because of the huge additional cost that would
come from adopting environment-aware techniques: a
wide research area will regard test automation for robotic
systems as well as simulation/emulation-based testing.

Overall, there is room to exploit existing principles, method-
ologies and techniques, e.g., used for adaptive or cooperative
systems, for safety and security improvement of robots’ soft-
ware, by conceiving proper adaptation/extension or tailoring
of sound methods. This indeed opens new research directions.
But while developing new methods or borrowing existing ones
is certainly good to increase robotics software quality (reliabil-
ity, security, etc.), it may be not enough in view of certification.
The challenge is that certification demands for assurance
methods able to provide – before systems are deployed or put
into market - evidences of correctness even under conditions
unforeseen at design time. Considerable research effort is thus
needed for the definition of engineering methods supporting
such evidences for robots which will be used in our daily life
and will be governed by artificial intelligence. In this sense,
robotics may borrow advances which will be made available
by other domains. A relevant example is the automotive sector,
which is seeing a great increase of AI techniques too, facing
similar problems as for co-operativity, environment-awareness
and autonomy.

C. Organizational, cultural and educational issues

The cultural and organization level (see Figure 1) includes
challenges that, even in presence of specific techniques for
robotics software engineering, would hinder their industrial
application. We believe there is the need for a much higher
awareness of the relevance and criticality of software in au-
tonomous robots, and hence of safety and security issues. This
in turn needs to reflect on organizational processes tailored for
robotics software production. We list some challenges:

• Adopting or tailoring practices (like the ones mentioned
above) coming from other industrial sectors is not im-
mediate. An example is Model Driven Engineering, used
in the embedded systems domain [22]. It uses models
as artifacts of the development activities, and derives
outputs, such as program code, through automatic trans-
formations [29]. Automation engineers use to prototype,
simulate and test control algorithms with modeling tools
such as MATLAB/Simulink, and then produce running
code from models. Adopting state-of-the-art techniques
and tools is however not enough for assurance and cer-
tification. Although modeling is recommended by safety
standards, MDE techniques need to be carefully intro-
duced in software processes, justifying their effectiveness,
and assuring the compliance with certification standards.
Most MDE approaches underestimate the problems of
certifiable systems; this limits their application in critical
domains. MDE of critical robots is much more than
generating code of control algorithms from modeling
tools; it requires proper skills and a re-organization of
production processes (similarly to what discussed in [30]
for the air traffic control systems domain), which may be
hard where certification is in order.

• Besides using modeling and code generation tools, there
is a trend in robotics software development to use Com-
mercial Off-The-Shelf (COTS) or Free and Open Source
Software (FOSS) technologies (like the ROS platform
mentioned in Section III-A). Using software tools, COTS
and FOSS poses well-known issues when software assur-
ance and certification come into play, which demand for
consciousness and for careful management of engineering
processes – and it is known that the use of certified tools
is not the panacea.

• Innovations in software practices are hard to introduce in
manufacturing industries, partly because of the lack of
specific culture by managers, who are often anchored to
consolidated industrial processes where software is seen
just as an intangible “add-on” to the concrete system, and
tend to underestimate software issues.

• There is a cultural barrier to overcome in companies not
originally born and organized for software development,
as automation industries. The background of robotics
practitioners is generally in mechanical and electrical en-
gineering. The generic awareness about the criticality of
robotics software needs to be supported by advanced soft-
ware engineering knowledge and skills, integrated into



wider-scope certifiable systems engineering processes.
Simply outsourcing software production is definitely not
a solution for assurance and certification. There is the
need for software quality assurance culture in robotics
companies, and certification demands for professionals
with qualifications - including the use of formally defined
and managed software engineering processes - not cur-
rently in the background of most automation engineers.
Industry-academia cooperation can help filling the gap.

• The cultural shift requires time and pass also through
changes in academic robotics engineering curricula.
Nowadays, software topics in university curricula even at
the graduate level focus mainly on programming skills,
and pay little attention to the aspects of software quality
assurance. An important step would be the definition
of a suitable body of knowledge to educate robotics
engineers to deal with the advanced software assurance
and certification challenges of future robotics systems.

IV. CONCLUSIONS

Thanks also to the increasing mutual influence of Artificial
Intelligence and Robotics, in the next future robots are very
likely to find application in many new fields other than
traditional industrial automation, and to play an important role
in our daily lives. We claim that this demands inevitably for
robotics software certification, partially similarly to what is
happening in the medical devices domain [31].

The software certification issue appears to have still very
limited awareness in the robotics domain, yet it poses im-
portant challenges, which we believe invest standardization,
engineering practices, as well as organizational, cultural and
educational aspects. Addressing the outlined issues is by
far not sufficient, but, indeed, robotics software certification
cannot be achieved without coping with them.
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